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We reanalyze the far zone contribution to the two-body conservative dynamics arising from interaction
between radiative and longitudinal modes, the latter sourced by mass and angular momentum, which in the
mass case is known as tail process. We verify the expected correspondence between two loop self-energy
amplitudes and the gluing of two classical (one leading order, one at one loop) emission amplitudes, with
focus on the Ward identities. As part of our analysis, we originally compute emission and self-energy
processes with the longitudinal mode sourced by angular momentum for generic electric and magnetic
multipoles and we highlight the role of the contribution from source interaction with two gravitational
fields.

DOI: 10.1103/PhysRevD.108.124010

I. INTRODUCTION

The recent advent of gravitational wave (GW) astronomy
opened a new field not only for observing the universe, but
also for investigating the fundamental nature of gravity in
the most profound way so far possible.
GW detections [1] by the interferometric LIGO [2] and

Virgo [3] observatories have collected signals from com-
pact coalescing binaries in the three completed science
runs, with the fourth one presently ongoing. Moreover, a
third generation of terrestrial detectors and a space detector
are already planned for the next decade, expecting to reach
signal-to-noise ratios at Oð103Þ [4–6].
Besides representing a new way to observe (or rather

listen to) the cosmos, such GW signals are privileged
windows to investigate the nature of gravity at unprec-
edented strongly interacting level. Detections require cor-
relation of data with precomputed waveforms [7,8], whose
accuracy is crucial in maximizing the physics output of

observations, and which, in turn, depends on precise
knowledge of the two-body dynamics.
In view of deepening our analytic insight into the two

body dynamics, we (re)investigate in the present work the
processes arising from the scattering of radiation off the
static curvature produced by the same sources of radiation.
Such processes, besides representing corrections to the
emission process at one (classical) loop, also play a role in
two-loop self-energy diagrams contributing to the binary
dynamics. In particular the scattering of radiation off the
static curvature sourced by the mass of the system is known
as tail process [9] (M-tail in this paper), because of its
phenomenological property of traveling inside the light
cone, rather than on it, giving rise to a metaphorical “tail
strike” in the emitted wave. Tails represent one class of
hereditary processes, i.e., processes relating the field at the
observer to the entire history of the source, rather than its
instantaneous state at retarded time. Another class of
hereditary processes is represented by memory ones [10],
where radiation scatters onto itself, and whose investigation
we reserve to a successive study.
The scattering of radiation off the static curvature

generated by the angular momentum can be described in
complete analogy with the tail at the fundamental level, but
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its phenomenological effect is different as it gives rise to an
instantaneous effect in the waveform, hence it has been
dubbed failed tail [11], which will be referred to as L-ftail
henceforth.
Within conservative dynamics, separation of processes

into those involving the exchange of potential modes only,
and those involving also radiative modes, is a standard
procedure of perturbative computations. This separation is
realized by the method of regions applied to particle
physics [12,13] and the standard near/far zone distinction
in traditional gravitational computations [14].
Restricting here to the spin-less case, among the pertur-

bative approaches used to investigate the conservative
dynamics, we highlight the post-Minkowskian (PM) and
post-Newtonian (PN) approximation schemes, which are
best suited for studying respectively unbound scatterings
and bound systems. The expansion parameters of the
former is GM=b, being G Newton’s constant, M the total
mass of the two-body system, b the impact parameter, and
for the latter v2 ∼GM=r, being v the relative velocity of
binary constituents and r the size of the orbit.
In the context of PM approximation, dynamics has been

completed at 4PM level [15–18], considering the standard
Feynmanprescription forGreen functionsof radiative internal
modes, which is consistent with the principal value prescrip-
tion, corresponding to time-symmetric Green functions,
adopted in [19]. Note that, as far as conservative dynamics
is concerned, for self-energy processes involving up to two
internal radiative Green functions it is indeed equivalent to
using Feynman or retarded/advanced Green functions.
However a treatment in terms of the in-in formalism [20] is
necessary for the memory processes [21–23].
Results obtained with amplitude or effective field theory

(EFT) methods within the PM formalism, see also [24,25],
can be framed in an elegant and compact form in terms of
two-body scattering angle χ, whose PM perturbative
expansion has a simple and distinctive scaling with the
symmetric mass ratio η≡m1m2=M2, being m1;2 the
individual binary constituent masses. It has been shown
in [26] that the m-PM contribution to the scattering angle,
χm, scales with η as χm ∼ η½ðm−1Þ=2�. In particular [25]
included nontime symmetric radiation reaction effects,
but still does not return the correct scaling of χ4 with η.
Far zone processes in conservative two-body dynamics

have been already considered by several studies, see e.g.,
[11,21–23], up to 5PN level, i.e., considering tail, L-ftail
andmemory effects, but their result is still inconsistent with
the above-mentioned η scaling of χ4, requiring further work
to solve the discrepancy [27,28].
Here, we investigate how tail processes can be analyzed in

terms of generalized unitarity [29,30], i.e., how self-energy
diagrams can be described by gluing a pair of emission
diagrams in the context of the nonrelativistic general
relativity (NRGR) EFT approach [31] to the gravitational
two-body problem within the PN approximating scheme.

See [32,33] for an application to generalized unitarity use
in NRGR.
With the goal of shedding light on the EFT side of

the problem, we revisited the study of processes involving
M-tail and L-ftail, showing that the computation procedure
adopted so far [11,21,34] leads to an incorrect result for the
L-ftail. In particular in the case of the electric quadrupole this
is due to having overlooked the process involving a source-
graviton-graviton interaction vertex (henceforth quadratic-
interaction), negligence leading to an apparent violation of
the Ward identities, or equivalently a violation to the gauge
fixing condition. In the case of the magnetic quadrupole, the
Ward identities can be restored by adding to the action a
local term altering the equations of motion and leading to
solutions satisfying the gauge condition and the energy-
momentum conservation, along a procedure first used in the
multipolar PM approach in [35]. For higher order multipoles,
the gauge condition is automatically satisfied.
Our new result confirms the independent result of [36]

and the known computation of the angular momentum flux
ascribable to the L-ftail process in [37].
The paper is structured as follows. In Sec. II we set up

notations and write down emission amplitudes for generic
multipoles, first at the leading order, then at next-to-leading
in G for M-tails and L-ftails, the latter being derived here
for the first time for generic electric and magnetic multi-
poles. We show that the quadratic-interaction process gives
a critical contribution to the L-ftail involving the electric
quadrupole. The section is ended by a discussion of a
residual violation of the Lorentz gauge, happening in the
magnetic quadrupole case. In Sec. III we investigate the
relation between self-energy diagrams and (square of)
emission processes, and how the former are impacted by
the Ward identities issue affecting the L-ftail. We use
angular momentum balance equation to confirm our new
value for the L-ftail self-energy diagram involving the
electric quadrupole, and derive for the first time the
corresponding values for all electric and magnetic multi-
poles. Section IV contains our conclusions and prospects,
while some technical derivations are detailed in the
appendices.

II. EMISSION AMPLITUDES IN EFT

A. One point functions and leading order
emission amplitudes

Our starting point is the following multipolar action
which gives the linear coupling of matter to the gravita-
tional field:

Ssource ¼
Z
t

�
1

2
Eh00−

1

2
Jkjlh0k;l

−
X
r≥0

�
cðIÞr IijR∂RR0i0jþ

cðJÞr

2
JkjiRl∂RR0ilk

��
; ð1Þ
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with

cðIÞr ¼ 1

ðrþ 2Þ! ; cðJÞr ¼ 2ðrþ 2Þ
ðrþ 3Þ! ; ð2Þ

and where JkjiRl are the d-dimensional generalizations
[38] of the 3-dimensional magnetic-type multipoles JijR ¼
1
2
ϵklðiJkjjRÞljd¼3 (symmetrized over the indices ijR) and IijR

the standard electric-type ones.1 In expression (1), Rμνρσ

are the components of the Riemann curvature tensor,
while R denotes the collective symmetric trace-free index,
R ¼ i1…ir, with r ¼ 0 standing for the quadrupole, r ¼ 1
for the octupole, and so on.
The dynamics of the gravitational field is dictated by the

bulk action, given by the Einstein-Hilbert action plus a
gauge-fixing term:

Sbulk ¼ 2Λ2

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
RðgÞ − 1

2
ΓμΓμ

�
; ð3Þ

with Λ≡ ð32πGdÞ−1=2, with Gd being Newton’s constant
in dþ 1-dimensions, Γμ ≡ Γμ

νρgνρ, being Γμ
νρ the standard

Christoffel connection, and the metric gμν will be even-
tually expanded around Minkowski background as per
gμν ¼ ημν þ hμν.
The gauge-fixing term implies that the theory we are

solving for falls back into GR only for Γμ ¼ 0, which
implies the Lorentz condition ∂νh̄μν ¼ 0 at linearized level.
An overbar denotes the trace-reversed field h̄μν ≡
hμν − 1

2
ημνh, being h≡ ημνhμν. The addition to the

Lagrangian of the gauge-fixing term modifies the linearized
Einstein equations precisely to □h̄μν ¼ 0 outside the
source.
From the quadratic term in Eq. (3) we can derive the

Green’s functions for the gravitational perturbation field
hμν ≡ gμν − ημν:

P½hμν; hαβ� ¼ −
i

k2 − ω2

Pμν
αβ

Λ2
;

Pμν
αβ ≡ 1

2

�
δαμδ

β
ν þ δβμδαν −

2

d − 1
ημνη

αβ

�
; ð4Þ

where so far we have not specified the Green’s function
boundary conditions. GWs correspond to the transverse
traceless spatial component of the metric perturbations, and
for direction propagation n̂ they can be selected by
applying the following projector operator

ΛTT
ij;klðn̂Þ≡ PikPjl −

1

d − 1
PijPkl; Pijðn̂Þ≡ δij − n̂in̂j:

ð5Þ

Beside gauge ones, the other components parametrize
longitudinal degrees of freedom, which play a role for
checking energy-momentum conservation, as it will be
discussed below.
We denote by iAαβðω;kÞh�αβðω;kÞ the probability

amplitude for the emission of the generic field hαβ, which
can be computed by deriving the appropriate Feynman
rules from (1) and (3). The classical field at a spacetime
position x, given by the one-point function hhμνðxÞi, is then
related to Aμν by:

hhμνðxÞi ¼
Z

Dh eiS½h�hμνðxÞ

¼
Z
k

dω
2π

e−iωtþik·x

k2 − ðωþ iaÞ2
Pμν

αβ

Λ2
Aαβðω;kÞ; ð6Þ

where the correct retarded boundary condition has been
selected.2

The linearized Lorentz gauge condition translates into
“Ward” identities for the classical process consisting of the
emission of a single gravitational mode3

∂
μhh̄μνðxÞi ¼ 0 ⇔ kμAμνðω;kÞ ¼ 0: ð7Þ

As it happens in the multipolar PM approach [14], the
diagrammatic expansion used in our EFT setup provides a
solution of the perturbative form of Einstein’s equations

□h̄μν ¼ Λμν; ð8Þ

where Λμν is a source term given by the source energy-
momentum tensor plus nonlinear terms in hμν. The gauge
condition (7), which is equivalent to the conservation of the
pseudoenergy momentum tensor Λμν, is however not
automatically satisfied and it has to be checked, and
eventually fixed, on a case-by-case basis.
It is not uncommon in field theory that loop interactions

can break a symmetry which is present in the free theory,
causing the symmetry to be anomalous. In our case GR
invariance under diffeomorphism is broken in the
Lagrangian by the gauge fixing term, implying that GR
is recovered only when Γμ ¼ 0, which makes the gauge-
fixing term a double zero. We will see in Sec. II B that
relation (7) may not hold at interacting level, but in a
consistent, or integrableway, i.e., it is possible to add to the
action functional a local term restoring the Lorentz con-
dition (7) at the level of the equations of motion.

1We adopted the notation
R
x ≡

R
dx,

R
k ≡

R
ddk
ð2πÞd. Our metric

convention is “mostly plus”: ημν ¼ diagð−1;þ1;þ1;þ1Þ.

2We displace the Green’s function pole by �ia, as ϵ is already
used to denote d − 3.

3Note that the trace reversion operator P̂αβ
μν ≡ 1

2
ðδαμδβν þ

δβμδαν − ημνη
αβÞ, which turns hαβ into h̄μν, is identical to its inverse

Pμν
αβ only for d ¼ 3.
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The conserved multipoles (mass and angular momen-
tum) of action (1), see the first two diagrams of Fig. 1,
contribute to (6) as:

AðcÞ
00 ðω;kÞ ¼

1

2
EðωÞ;

AðcÞ
0k ðω;kÞ ¼

1

4
ikjϵijkLiðωÞ;

AðcÞ
kl ðω;kÞ ¼ 0; ð9Þ

where the finiteness of the amplitude for d ¼ 3 allowed us
to use the standard expression of the Li ¼ 1

2
ϵijkJjjk. The

Ward identities follow from

ωEðωÞ ¼ 0; ωLiðωÞ ¼ 0; ð10Þ

and are trivially satisfied at this perturbative order by
admitting that E and Li are conserved.
The leading order electric and magnetic multipole

emission amplitudes, see last diagram in Fig. 1, are finite
for d ¼ 3 and read

iAðeÞ
00 ðω;kÞ

iAðeÞ
0k ðω;kÞ

iAðeÞ
kl ðω;kÞ

9>>=
>>;

¼ 1

2
cðIÞr ð−iÞrþ1kRIijRðωÞ ×

8>><
>>:

kikj
−ωkjδik
ω2δikδjl

;

ð11Þ

and

iAðmÞ
00 ðω;kÞ

iAðmÞ
0k ðω;kÞ

iAðmÞ
kl ðω;kÞ

9>>=
>>;

¼ 1

2
cðJÞr ð−iÞrþ1ϵimnknkRJjmRðωÞ

×

8>><
>>:

0

− 1
2
kjδik

ωδiðkδlÞj

; ð12Þ

whose relative Ward identities are trivially satisfied.

B. Tail-corrected emission amplitudes

At next-to-leading order in gravitational interactions one
has to consider processes of the type represented in Fig. 2.
The first one, involving the scattering of radiation off the

background curvature sourced by the system total mass,
gives a contribution to the waveform arriving later than the
wavefront, which propagates at the speed of light, while the
tail propagates inside the light cone.
The second process in Fig. 2, involving the angular

momentum, gives a purely local term in the waveform,
hence not giving rise to a tail effect. However its dia-
grammatic analogy with the tail process suggests to lump it
together with the M-tail, and we refer to it in this work as
L-ftail.
The M-tail amplitude is divergent for d → 3 and its

radiative, transverse-traceless, on-shell (k ¼ ωn̂) part
is [39,40]

iðAðe−M-tailÞ
ij ÞTTðω;ωn̂Þ

¼ ð−iÞrþ1ω2cðIÞr ðiGEωÞΛTT
ij;klkRI

klRðωÞ

×

�
1

ϵ
− κrþ2 þ

log x
2

�
; ð13Þ

iðAðm−M−tailÞ
ij ÞTTðω;ωn̂Þ

¼ ð−iÞrþ1ωcðJÞr ðiGEωÞΛTT
ij;klkRknJ

njkRlðωÞ

×

�
1

ϵ
− πrþ2 þ

log x
2

�
; ð14Þ

κl ¼
2l2 þ 5lþ 4

lðlþ 1Þðlþ 2Þ þ
Xl−2
i¼1

1

i
; πl ¼

l − 1

lðlþ 1Þ þ
Xl−1
i¼1

1

i
;

ð15Þ

where ϵ≡ d − 3, x≡ −eγω2=μπ, and the inverse length
scale μ is implicitly defined byGd ¼ Gμ−ϵ, withG denoting
the standard 3þ 1-dimensional Newton’s constant.

The Ward identities kμAðeðmÞ−M-tailÞ
μν ðω;ωn̂Þ ¼ 0 are con-

veniently found by taking the divergene of AðeðmÞ−M−tailÞ
μν

before performing the loop integration, as reported in
Appendix A.
The L-ftail amplitudes are finite and local and the

expressions of their radiative TT part for generic electric
and magnetic multipoles are originally given here

FIG. 1. Leading order emission amplitudes. Blue dashed line
refers to a h00 polarization, dotted red to h0i, wavy green to hij.

FIG. 2. Next-to-leading order emission processes involving the
scattering of radiation off the background static curvature sourced
by energy and angular momentum.
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iðAðe−L-ftailÞ
ij ÞTTðω;ωn̂Þ ¼ ð−iÞrcðIÞr GΛTT

ij;klϵmnq
iω2LqIpRðkðωÞ

ðrþ 1Þðrþ 2Þðrþ 3Þðrþ 4Þ
× fknð2½6þ rðrþ 4Þ�δlÞmkpkR− rð10þ rðrþ 5ÞÞδlÞpδi1mkR−1ω2Þþ 24δ0rδlÞmδnpkRω2g; ð16Þ

iðAðm−L−ftailÞ
ij ÞTTðω;ωn̂Þ ¼ ð−iÞrcðJÞr GΛTT

ij;kl
iω3LqJpRðkðωÞ

ðrþ 1Þðrþ 2Þðrþ 3Þðrþ 4Þðrþ 5Þ
× fδlÞi1 ½rðrþ 1Þðr2 þ 8rþ 19Þkpkq − ðr4 þ 9r3 þ 27r2 þ 39rþ 68ð1 − δ0rÞÞω2δpq�kR−1
þ½ðrþ 3Þðr2 þ 5rþ 16ÞδlÞpkq − ðr4 þ 12r3 þ 53r2 þ 102rþ 84ÞδlÞqkp�kRg; ð17Þ

with their un-integrated form also reported in Appendix A.
This time the spatial Ward identities are not satisfied

kμAðe−L-ftailÞ
μl ðω;ωn̂Þ ¼ ð−iÞrþ1

cðIÞr

2Λ2

�
ω

4

�
kjω2ϵijkLkIiRlðωÞ

Z
q

qR
ðq2 − ω2Þ

¼d→3 − δr0
G
2
kjω4ϵijkLkIilðωÞ: ð18Þ

As the q-integral gives a result proportional to the sym-
metric, traceless combination of Kronecker deltas with R
indices, expression (18) vanishes except for r ¼ 0, meaning
that the L-ftail emission process involving the electric
quadrupole violates the spatial components of the Ward
identity. Analogously, for the magnetic part one finds

kμAðm-L-tailÞ
μl ðω;ωn̂Þ ¼d→3 − δr0

4

15
Gω5LkJlkðωÞ: ð19Þ

These two Ward identity violations are resolved in two
different ways, as it will be shown in the next subsections.

C. Amplitudes involving a quadratic-interaction vertex

Processes like the ones shown in Fig. 3 must be also
considered, as they are of the same G order as the (f)tail
ones. It is straightforward to observe that such diagrams
involve time derivatives of the multipole linearly coupled to
gravity, implying that the right diagram in Fig. 3 is actually
vanishing.
We then focus on the left diagram and first consider the

multipole to be Iij. The angular momentum interaction
vertex at quadratic order in the gravitational field is [41]:

Sspinsource ¼ −
Z
t

1

2
Jkjl

�
h0k;l þ

1

4
hlλḣ

λ
k þ

1

2
hλl h0λ;k

−
1

2
hλl h0k;λ þOðh3Þ

�
; ð20Þ

where λ is a space-time index, lowered and raised with ημν.
A straightforward evaluation gives the following ampli-

tude (here again k ¼ ωn̂)

iAðe−L−quadÞ
00 ðω;ωn̂Þ ¼ 0;

iAðe−L−quadÞ
0l ðω;ωn̂Þ ¼ −i

G
2
ω3kkLjεij½kIl�iðωÞ;

iAðe−L−quadÞ
kl ðω;ωn̂Þ ¼ −i

G
2
ω4LjεijðkIlÞiðωÞ; ð21Þ

whose divergence is exactly opposite to the one reported in
(18). By replacing Iij with any higher multipole of electric
type, one obtains instead a vanishing result because of
tracelessness of the multipoles themselves (the amplitude
can have at most two free indices and there are not enough
kj factors to contract with all the multipole indices).

FIG. 3. Emission amplitudes involving quadratic-interaction vertices. The arrow indicate the direction of the retarded propagator in the
loop, as dictated by the in-in formalism. The processes described by the right diagram have vanishing amplitude because E and Li are
conserved quantities.
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It follows that the amplitude combinationAðe-L-totÞ ≡Aðe−L-ftailÞ þAðe-L-quadÞ satisfies the Ward identities kμAðe-L-totÞ
μν ¼ 0

even for r ¼ 0, and its expression is

iðAðe−L-totÞ
ij ÞTTðω;ωn̂Þ ¼ ð−iÞrcðIÞr GΛTT

ij;klϵmnq
iω2LqIpRðkðωÞ

ðrþ 1Þðrþ 2Þðrþ 3Þðrþ 4Þ
× fknð2½6þ rðrþ 4Þ�δlÞmkpkR − rð10þ rðrþ 5ÞÞδlÞpδi1mkR−1ω2Þg: ð22Þ

All the other cases, that is when E and/or the magnetic
multipoles JR are involved, give vanishing results, again
because virtue of the tracelessness of the multipole
moments. To summarize, the class of processes represented
in Fig. 3 give a non-vanishing contribution only in the case
they involve Li and Iij, which fixes the Ward identity
violation of the corresponding L-ftail process.

D. Ward-fixing amplitude correction

The only Ward-violating amplitude left is the L-ftail
involving the magnetic quadrupole. Emitted waveforms
which do not fulfill the Lorentz gauge condition have
already been treated in the standard multipolar PM
formalism [14,35].
The fix consists in finding a particular (nonunique)

solution h̄ðWÞ
μν of the homogeneous, linearized Einstein

equations

□h̄ðWÞ
μν ¼ 0; ð23Þ

whose divergence compensates the previously encountered
Ward identity violation. Once added to the previous
anomalous solution h̄μν, one will have

□ðh̄μν þ h̄ðWÞ
μν Þ ¼ Λμν; ∂

μðh̄μν þ h̄ðWÞ
μν Þ ¼ 0: ð24Þ

The tedious but straightforward check of the full, non-
linearized Lorentz condition is relegated to Appendix C.
In the case we are interested in, the amplitude corre-

sponding to the compensating terms h̄ðWÞ
μν is

AðW;m−L-ftailÞ
00 ðω;ωn̂Þ ¼ −

4

15
Gω3klLkJlkðωÞ;

AðW;m−L-ftailÞ
0l ðω;ωn̂Þ ¼ 4

15
Gω4LkJlkðωÞ;

AðW;m−L-ftailÞ
kl ðω;ωn̂Þ ¼ 0; ð25Þ

the TT part of the amplitude in Eq. (17) is not affected by
the anomaly fixing term (25), whose space-space part is
vanishing. Interesting enough, if we did not include the
quadratic-interaction amplitude and tried to fix also the
electric quadrupole L-ftail following the multipolar PM

formalism procedure, we would have obtained a correcting
amplitude exactly equal to Eq. (21), as it is done in [36].
We have also checked that Aðe-L-totÞ and Aðm-L-totÞ ≡

Aðm−L-ftailÞ return the correct contributions to the radiative
multipole moments UR, VR, as they are defined and
explicated in [42] for r ≤ 2 and for r ≤ 1 in the electric
and magnetic cases, respectively.

III. RELATION BETWEEN SELF-ENERGY
DIAGRAMS AND EMISSION AMPLITUDES

The self-energy diagrams can be factorized into products
of emission diagrams or, equivalently, emission amplitudes
can be glued together to form self-energy amplitudes. Note
that self-energy amplitudes contribute to the dynamics of
the source [43], hence, their consistent computation is
crucial to obtaining the correct effective Lagrangian ruling
the source dynamics.
For instance, the expression for the simplest self-energy

diagram, as computed with the usual EFT Feynman
rules [11]

iSðI2Þ ¼ i
64Λ2

Z
dω
2π

ω4IijðωÞI�klðωÞ
Z
k

1

k2 − ω2

×

�
δikδjl þ δilδjk −

2

ðd − 1Þ δijδkl

þ 2

ðd − 1Þω2
ðkikjδkl þ kkklδijÞ

−
1

ω2
ðkikkδjl þ kiklδjk þ kjkkδil þ kjklδikÞ

þ 4

cdω4
kikjkkkl

�
; ð26Þ

with cd ≡ 2ðd − 1Þ=ðd − 2Þ, is identically equivalent to

iS̃ðI2Þ ¼ 1

2Λ2

Z
k

dω
2π

Aðe;r¼0Þ
μν ðω;kÞ

× P½hμν; hρσ�Aðe;r¼0Þ
ρσ ð−ω;−kÞ

¼ 1

2

Z
k

dω
2π

ðAðe;r¼0Þ
ij ÞTTðω;kÞ

× P½hij; hkl�ðAðe;r¼0Þ
kl ÞTTð−ω;−kÞ; ð27Þ
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with ðAðeÞ
ij ÞTT ≡ ΛTT

ij;abðnÞAðeÞ
ab , and the standard in-out

formalism with Feynman’s prescription for the Green’s
functions is understood. As a consequence of the Ward
identities, the TT part alone of the emission amplitude is
sufficient to reconstruct the self-energy diagram. The
equality between S and S̃ holds for all the electric and
magnetic multipoles, and it applies also to generic tail
diagrams, see Appendix D).
Actually, this LO self-energy diagram is purely dissipa-

tive: after k-integration in (26), (27), one finds purely
imaginary ω-integrand in SðI2Þ. Via standard optical theo-
rem they can be related to a probability loss, or, after
multiplying the ω-integrand by jωj, to energy emission.4

Using more appropriately the in-in formalism, i.e.,
doubling the degrees of freedom and applying retarded/
advanced Green’s functions [20,44,45], one finds the same

real part of the self-energy action as with the in-out (after
appropriate identification of the doubled degrees of free-
dom, see Appendix B) and the imaginary part of the
ω-integrand is the Fourier transform of a real functional,
which can be used to generate non-conservative equations
of motion.
In summary, as mentioned in the introduction and

derived in [46], as far as self-energy diagrams with only
two radiative Green’s functions are concerned, one can
consistently use the in-out formalism with Feynman
Green’s functions to obtain the conservative part of the
equations of motion, and the optical theorem for the emitted
energy. The in-in formalism is, however, necessary to
derive directly the dissipative part of the equations of
motion, see Appendix B for details.
One can verify that analogous relations hold for the

M-tail process,

iSðe−M-tailÞ ¼ −G2E
2rþ2ðrþ 3Þðrþ 4Þ

ðrþ 1Þðrþ 2Þð2rþ 5Þ! ×
Z

dω
2π

ðω2Þrþ3IijRðωÞIijRð−ωÞ
�
1

ε̃
− γðeÞr

�
;

¼ 1

2Λ2

Z
k

dω
2π

ðAe-M-tail
ij ÞTTðω;kÞP½hij; hkl�ðAðeÞ

kl ÞTTð−ω;−kÞ; ð28Þ

iSðm−M-tailÞ ¼ −G2E
2rþ2ðrþ 2Þ2ðrþ 4Þðr!Þ2

ð2rþ 1Þð2rþ 3Þð2rþ 5Þð2rÞ!½ðrþ 3Þ!�2

×
Z

dω
2π

JbjiRjðωÞJb0jkR0lð−ωÞω2rþ6½δbb0δik þ ðrþ 1Þδib0δkb�
�
1

ϵ̃
− γðmÞ

r

�
;

¼ 1

2Λ2

Z
k

dω
2π

ðAm-M-tail
ij ÞTTðω;kÞP½hij; hkl�ðAðmÞ

kl ÞTTð−ω;−kÞ; ð29Þ

with

1

ε̃
≡ 1

d − 3
þ log x − iπsgnðωÞ;

γðeÞr ≡ 1

2
ðHrþ5

2
−H1

2
þ 2Hr þ 1Þ þ 2

ðrþ 2Þðrþ 3Þ ;

γðmÞ
r ¼ 2

rþ 3
þ 1

2rþ 5
−

1

rþ 2
−

1

rþ 4
þHrþ1 þ

1

2
Hrþ3

2
þ log 2; ð30Þ

which are the same numbers, although written in different form, obtained in [22] via direct computation of the self-energy

diagrams. Incidentally, this allows one to derive explicit relations between the γðe;mÞ
r coefficients appearing in (28), (29) and

the finite terms in the emission amplitudes, κrþ2; πrþ2 of (13), 14):

γðeÞr ¼ κrþ2 −
�
1

2
þ 1

rþ 3
þ 1

rþ 4
−
1

2
Hrþ5

2
− log 2

�
; ð31Þ

γðmÞ
r ¼ πrþ2 −

�
1

2
þ 1

rþ 3
þ 1

rþ 4
−
1

2
Hrþ5

2
− log 2

�
þ rþ 5

2ðrþ 3Þ : ð32Þ

4When computing the self-energy diagram with Feynman Green’s functions, the ω integrand is complex and it is not the Fourier
transform of a real function in direct space.
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For the L-ftails we find5:

iSðe-L-totÞ ¼ G2
ð12þ 50rþ 35r2 þ 10r3 þ r4Þ

ðrþ 1Þ2ðrþ 2Þ2ðrþ 3Þ!ð2rþ 5Þ!! ϵ
iklLl

Z
dω
2π

IijRðωÞIkjRð−ωÞω7þ2r

¼ 1

2Λ2

Z
k

dω
2π

ðAe-L-tot
ij ÞTTðω;kÞP½hij; hkl�ðAðeÞ

kl ÞTTð−ω;−kÞ; ð33Þ

iSðm-L�totÞ ¼ −G2
4ð36þ 50rþ 32r2 þ 10r3 þ r4Þ
ðrþ 1Þ2ðrþ 3Þ2ðrþ 3Þ!ð2rþ 5Þ!! ϵ

iklLl

Z
dω
2π

JijRðωÞJkjRð−ωÞω7þ2r

¼ 1

2Λ2

Z
k

dω
2π

ðAm-L�tot
ij ÞTTðω;kÞP½hij; hkl�ðAðmÞ

kl ÞTTð−ω;−kÞ: ð34Þ

In the electric r ¼ 0 case one has

iSðLI2Þ ≡ iSðe-L-totÞjr¼0 ¼
1

30
G2ϵiklLl

×
Z

dω
2π

IijðωÞIjkð−ωÞω7; ð35Þ

also in agreement with [36], once the corresponding
quadratic-interaction process is also added in the self-
energy calculation. Note that the numerical factor 1=30
corrects the value 8=15 obtained via the incomplete
computation in [11] which did not take into account the
process with quadratic interaction in Fig. 3.
One can check the result (35) by computing the radiated

energy and angular momentum calculable from the L-ftail
quadrupolar emission amplitude corrected by the quadratic-
interaction process, and comparing the result with the
mechanical energy and angular momentum loss derivable
from the equations of motion generated by the functional
SðLI2Þ, which are expected to agree with the former modulo
total derivatives, or Schott terms [47,48]. It turns out that
the contribution to the energy emission is a total derivative,
thus not being useful for our purposes; we then focus on
angular momentum emission.
Starting from standard textbook formula, see, e.g.,

Eq. (2.61) of [49], for the emitted angular momentum

ϵijqL̇q ¼ r2

32πG

Z
dΩhḣTTkl xi∂jhTTkl − 2ḣTTkj h

TT
ki i − i ↔ j;

ð36Þ

and using the standard quadrupole formula for GWs one
obtains the leading order (LO) term

ϵijqL̇qjLO ¼ 2G
5

ðh⃛Iik ̈Ijki − h⃛Ijk ̈IikiÞ; ð37Þ

which matches the mechanical angular momentum loss

obtained using the Burke-Thorne acceleration aðBT−IÞi ¼
− 2G

5
xjIð5Þij [50], modulo Schott terms.

Using the emission amplitude one has

ðhðe-L-totÞij ÞTT ¼ 2G
r
Λij;klð̈Ikl − GI⃜ aðkϵlÞbqLqn̂an̂bÞ; ð38Þ

which plugged into (36) enables us to compute its con-
tribution to the angular momentum emission rate

ϵijqL̇qjLI2 ¼
2G2

15
LqIð3Þjk I

ð4Þ
kl ϵilq − i ↔ j; ð39Þ

which matches, again modulo Schott terms, the mechanical
angular momentum loss obtained from the modified Burke-
Thorne acceleration

aðBT−LIÞi ¼ 2G2

15
LqðxjIð7Þjk ϵikq − xjIð7Þik ϵjkqÞ: ð40Þ

Acceleration (40) can be obtained from the in-in version of
the effective action (35), see Appendix B for details. Note
that (39) agrees also with standard results, see, e.g.,
Eq. (2.7) of [37], giving further confirmation that the
1=30 coefficient in the expression for SðLI2Þ is indeed
correct.
Equation (39) is the leading order term of a series of

angular momentum flux contributions by L-ftails involving
electric and magnetic multipoles of all orders, which can be
straightforwardly derived either from the corresponding
emission amplitudes (22), (17), or from the effective
actions (33), (34).

5Notice that the term carrying the δ0r in the magnetic TT
emission amplitude happens to give a vanishing contribution to
the self-energy.
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IV. CONCLUSION AND DISCUSSION

We have analyzed next-to-leading order far-zone dia-
grams contributing to both conservative and dissipative
two-body dynamics. The interaction studied are of the tail-
type, i.e., due to emission of radiation which subsequently
interacts with the quasistatic curvature generated by the
mass and angular momentum of the source.
We applied field theory methods within the framework

of NRGR which makes use of standard gauge-fixed path
integral formulation to derive the classical effective action.
In analogy with what has been found in the classical
approach of the multipolar post-Minkowskian formalism,
we found that, in some cases, the gauge condition chosen to
make the kinetic term of the gravitational field invertible is
not respected by loop corrected classical solutions, giving
origin to anomalous scattering amplitudes. We have then
shown how such apparent anomalies are canceled, respec-
tively in the electric and magnetic case, by the inclusion of
a quadratic-interaction process, and by the standard multi-
polar PM correction procedure.
Then, we showed the consequence of fixing Ward

identity in emission diagrams for self-energy ones, by
suitably obtaining the latter by glueing the former, i.e., via
generalized unitarity. As a natural prosecution of the
present work, we plan to study in an analogous approach
the memory process, which involves the emission of

radiation scattering off another radiative mode, which
has both analogies and differences with respect to the tail
and tail-like processes studied in the present work.
While a violation and the recovery of the gauge-fixing

condition is also expected in the memory case, as per the
results of [35], the presence of three radiative degrees of
freedom in the memory self-energy amplitude requires a
thorough treatment within the in-in formalism which will
be the subject of a future investigation, together with the
fundamental origin of the violation of the energy momen-
tum conservation.
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APPENDIX A: UNINTEGRATED TAIL EMISSION AMPLITUDES

iAðe-M-tailÞ
μν ðω;kÞ ¼ ð−iÞrþ1cðIÞr

Λ2
EIijRðωÞ

Z
q

ðkþ qÞR
½ðkþ qÞ2 − ω2�q2

fðe−MÞ
μν ; ðA1Þ

iAðm-M-tailÞ
μν ðω;kÞ ¼ ð−iÞrþ1cðJÞr

Λ2
EJbjiRaðωÞ

Z
q

ðkþ qÞbðkþ qÞR
½ðkþ qÞ2 − ω2�q2

fðm−MÞ
μν : ðA2Þ

fðe−MÞ
00 ¼

�
−
i
4

��
1

cd
ðkþ qÞiðkþ qÞjðkþ qÞ · qþ ðkikj þ kiqj þ qiqjÞω2

�
; ðA3Þ

fðe−MÞ
0k ¼

�
iω
4

��
1

cd
ðkþ qÞiðkþ qÞjqk þ ðkþ qÞi½ðkþ qÞ · kδjk − kjqk þ kkqj� − ω2δjkqi

�
; ðA4Þ

fðe−MÞ
kl ¼

�
−
i
4

��
ω4δikδjl þ ω2ðkþ qÞi½qjδkl − ðqkδjl þ qlδjkÞ�

þ 1

cd
ðkþ qÞiðkþ qÞj½kkql þ klqk þ 2qkql − ðkþ qÞ · qδkl�

�
; ðA5Þ

fðm−MÞ
00 ¼

�
−
1

8

�
ωðkaqi þ kiqaÞ; ðA6Þ
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fðm−MÞ
0k ¼

�
1

8

�
½ω2ðqiδak þ qaδikÞ − ðkþ qÞiðkþ qÞcðkcδak − kaδckÞ�; ðA7Þ

fðm−MÞ
kl ¼

�
1

8

�
ω½ω2ðδakδil þ δikδalÞ − ðkþ qÞiðqlδak þ qkδalÞ þ δklðkþ qÞiqa�; ðA8Þ

iAðe-L-tailÞ
μν ðω;kÞ ¼ ð−iÞrcðIÞr

Λ2
JbjaIijRðωÞ

Z
q

qaðkþ qÞR
½ðkþ qÞ2 − ω2�q2

fðe−LÞμν ; ðA9Þ

iAðm-L-tailÞ
μν ðω;kÞ ¼ ð−iÞrcðJÞr

Λ2
JsjtJbjiRaðωÞ

Z
q

qtðkþ qÞb0 ðkþ qÞR
½ðkþ qÞ2 − ω2�q2

fðm−LÞ
μν ; ðA10Þ

fðe−LÞ00 ¼
�
−
iω
8

�
fδjbω2qi þ ðkþ qÞj½kbð2ki − qiÞ þ 3ðkþ qÞ · qδib�g; ðA11Þ

fðe−LÞ0k ¼
�
i
8

�
fðkþ qÞiðkþ qÞjðk · qδbk − kbqkÞ

þ½k · qδibδjk − δbkqiqj þ qjðkþ qÞkδib þ ð2kþ qÞjkbδik�ω2g; ðA12Þ

fðe−LÞkl ¼
�
iω
16

�
ðδkcδld þ δkdδlcÞf−½qjδibδcd þ 2ðqiδbc − qcδib þ kbδicÞδjd�ω2

þ ðkþ qÞj½2ðkþ qÞcqiδbd − kbqiδcd − 2ðkþ qÞcqdδib þ ðkþ qÞ · qδcdδib
þ2kbqdδic − 2ðkþ qÞ · qδbdδic�g;

fðm−LÞ
00 ¼

�
−

1

16

�
½ω2ðqiδas − kaδisÞ þ ðkþ qÞiðkað3kþ 2qÞs þ 3ðkþ qÞ · qδasÞ�; ðA13Þ

fðm−LÞ
0k ¼

�
ω

16

�
½ð2kþ qÞiksδak þ ðkþ qÞkqiδas þ ðkaks þ k · qδasÞδik

þðk · qδak − kaðkþ qÞkÞδis þ 2kaqiδks�; ðA14Þ

fðm−LÞ
kl ¼

�
1

16

�
fðkþ qÞi½ðkkql þ klqkÞδas þ 2qkqlδas þ kaðkþ qÞlδsk

þ ðkþ qÞ · qðδalδsk þ δakδslÞ þ kaðkþ qÞkδsl − ksðqkδal þ qkδalÞ�
− ω2½ðqkδil þ qlδikÞδas þ ðqkδal þ qlδakÞδis − qiðδakδsl þ δalδskÞ�
þ δkl½ω2ðqiδas − kaδisÞ − kiδasðkþ qÞ · q − qiðkþ qÞ · qδas − ðkþ qÞikaks�
þ kaðδikδsl þ δilδskÞ − 2ksðδalδik þ δakδilÞg: ðA15Þ

APPENDIX B: MECHANICAL ANGULAR MOMENTUM FLUX AND IN-IN FORMALISM

The real parts of the effective actions associated to tail and ftail processes via Feynman Green’s functions carry
information about the time-symmetric part of the equations of motion. Their imaginary parts carry the information of the
probability loss, from which it is possible to recover the energy and angular momentum loss with standard methods [51,52].
However, adopting the in-in formalism [44,45], it is possible to derive time-asymmetric equations of motion by writing a

functional Sin−in for a degree of freedom propagating forward in time “1” and one backward “2”:

Sin−in ¼
Z

dtðL1 − L2Þ: ðB1Þ

The in-in functional is then written in terms of the Keldyshþ;− variables defined, for a generic dynamical variable x, as
xþ ≡ ðx1 þ x2Þ=2, x− ≡ x1 − x2, in terms of which, e.g., (35) can be recast into its in-in counterpart
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SðLI2Þ
in−in ¼

G2

30

Z
dtð I::::þik I

:::

−jk þ I
::::

−ik I
:::

þjkÞϵijqLq; ðB2Þ

and the equation of motion (40) can be derived from
δSðLI

2Þ
in−in
δx−

jx−¼0 ¼ 0, and by taking the physical limit xþ → x,
leading to

ϵijqL̇qjðBT−LI2Þ ¼ −
2G2

15
LqIjkðIð7Þkl ϵilq − Ið7Þil ϵklqÞ − i ↔ j:

ðB3Þ

The angular momentum loss involving the magnetic
quadrupole L-ftail is derived along the same lines.

APPENDIX C: NONLINEARITIES IN THE
GAUGE CONDITIONS

The gauge we have been using to compute amplitudes is
the harmonic gauge, defined by

Γα
μνgμν ¼ 0: ðC1Þ

When expanded to first order in the fields, we obtain the
condition

∂
μh̄μν ¼ ∂

μ

�
hμν −

1

2
ημνh

�
¼ 0: ðC2Þ

This condition holds only for the leading-order processes.
For higher orders, on the other hand, like the tails and
L-ftails studied in this paper, we have to solve Eq. (C1)
iteratively in G. In this case, the general structure of the
problem can be organized as

∂
μh̄ð1Þμν ¼ 0;

∂
μh̄ð2Þμν ¼ λð2Þμν ðhð1Þ; hð1ÞÞ;
∂
μh̄ð3Þμν ¼ λð3Þμν ðhð1Þ; hð1Þ; hð1ÞÞ þ γð3Þμν ðhð2Þ; hð1ÞÞ;

� � � ; ðC3Þ

where h̄ðnÞμν represents processes of order Gn and λðnÞμν , γ
ðnÞ
μν ,

etc., are functions of the lower-order perturbations
hðn−1Þ; hðn−2Þ;…; hð1Þ. In particular, at order G2, we have

∂
μh̄ð2Þμα ¼ hð1Þμν

�
hð1Þαμ;ν −

1

2
hð1Þμν;α

�
: ðC4Þ

Below we show that, for processes of order G2, the
functions appearing on the right-hand side of Eqs. (C3)
vanish on shell, and therefore, do not contribute for self-
energy diagrams of tail-like processes. To show this,
consider two processes of order G, given generically by

hð1Þμν ¼ G
Z

dω
2π

ARðωÞ
Z
k

e−iωtþik·x

k2 − ω2
KL; and

h0ð1Þμν ¼ G
Z

dω0

2π
BR0 ðω0Þ

Z
q

e−iω
0tþiq·x

q2 − ω02 QL0 ; ðC5Þ

where ARðωÞ and BR0 ðω0Þ represent the integrand for
arbitrary multipoles, including the ones related to con-
served multipoles, by making, e.g., ARðωÞ → EδðωÞ. KL
represents any combination of the momenta k’s, and
likewise for QL0. By plugging this into the right-hand side
of Eq. (C4), we encounter the following behavior:

∂
μh̄μν ∼G2

∂
μ

�Z
dω
2π

ARðωÞ
Z
k

e−iωtþik·x

k2 − ω2
KL

×
Z

dω0

2π
BR0 ð−ω0Þ

Z
q

eiω
0t−iq·x

q2 − ω2
QL0

�

→
Z
k

dω
2π

e−iωtþik·x

k2 − ðωþ iaÞ2 ×
½kμĀμν�
Λ2

; ðC6Þ

where

kμĀμν ¼ ðω2 − k2Þ
Z

dω0

2π
ARðωþ ω0ÞBR0 ð−ω0Þ

×
Z
q

ðKQÞLL0

½ðkþ qÞ2 − ðωþ ω0Þ2�ðq2 − ω02Þ : ðC7Þ

Notice that this expression is always vanishing on-shell,
and hence, will not play any role in the construction of self-
energy diagrams for tail-like processes, see the appendix
below. This justifies the use of the linearized Lorentz
condition ∂

μh̄μν ¼ 0 for processes of order G2.

APPENDIX D: CUTTING AND
GLUING AMPLITUDES

We present in this section a heuristic derivation of
generalized unitarity applied to tail-like self-energy dia-
grams. The gluing of emission amplitudes can be written as

iS̃ðtailÞ ¼ −
i
Λ2

Z
k

dω
2π

AðtailÞ
ij

TTðω;kÞAðLOÞ
ij

TTð−ω;−kÞ
k2 − ω2

¼ −
i

16π2Λ2

Z
dΩ

Z
dω
2π

ðiωÞAðtailÞ
ij

TTðω;ωn̂Þ

×AðLOÞ
ij

TTð−ω;−ωn̂Þ

¼ −
i

16π2Λ2

Z
t

Z
dΩȦðtailÞTT

ij ðt; n̂ÞAðLOÞ
ij

TTðt; n̂Þ;

ðD1Þ

CONSERVATIVE BINARY DYNAMICS FROM GRAVITATIONAL … PHYS. REV. D 108, 124010 (2023)

124010-11



the first passage holding because of the useful identity:

Z
k

ki1…ki2l
k2 − ðω� iaÞ2 ¼

�
∓ i

ω

4π

�
δi1…i2l

ω2l

ð2lþ 1Þ!!

¼
�
∓ i

ω

16π2

�
ω2l

Z
dΩ n̂i1…n̂i2l ;

ðD2Þ

which can be inserted into (D1) as AðtailÞ;AðLOÞ have no
poles in k. To derive the non time-symmetric equations of
motion, it is necessary to recast the action (D1) into its in-in
counterpart, as described in Appendix B, to obtain the
mechanical energy loss

−a · v ¼ 1

16π2Λ2

Z
dΩ ⃛A

ðtailÞTT
ij ðt; n̂ÞðAðLOÞ

ij
TTðt; n̂ÞÞð−1Þ;

ðD3Þ

where a double integration by parts over AðLOÞ,
which is linear in ̈Iij, introduces the “antiderivative”

ðAðLOÞ
ij Þð−1Þ ∝ İij.
Had we used the Feynman boundary condition in (D2),

we would have obtained −ijωj instead of ∓ iω in the first
parentheses, giving rise to the standard optical theorem
relationship between self-energy imaginary part and emis-
sion probability, which can be related to the energy loss by
multiplying the ω-integrand by jωj. While a consistent use
of retarded/advanced Green’s functions requires the in-in
formalism, see Appendix B [53], if we limit ourselves to the
conservative dynamics and the computation of the energy
flux one can use Feynman Green’s functions.

The energy loss of Eq. (D3) agrees, modulo Schott
terms, with the one obtained by direct computation of the
gravitational luminosity at infinity F, via the asymptotic
GW waveform

hTTij ≃ −
1

4πr

Z
ω

�
−

1

Λ2

�
e−iωtretȦTT

ij ðω;nωÞ

¼ 1

4πrΛ2
ȦTT

ij ðn; tretÞ; ðD4Þ

as

F ¼ Λ2r2
Z

dΩḣTTij ḣTTij

¼ 1

16π2Λ2

Z
dΩ ȦTT

ij ðtret; n̂ÞȦTT
ij ðtret; n̂Þ; ðD5Þ

with

ATT
ij ≃AðLOÞ

ij
TT þAðtailÞ

ij
TT; ðD6Þ

and expanding at NLO.
Note that, considering the extra i provided by the

integration over k, see Eq. (D2), one has that the real part
of AðtailÞ=AðLOÞ contributes to the probability and energy
loss, the imaginary part to the conservative dynamics,6 and
the self-energy action is completely determined by the
emission amplitude.
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