
Electromagnetic antennas for the resonant detection
of the stochastic gravitational wave background
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Some stochastic gravitational wave background models from the early Universe has a cutoff frequency
close to 100 MHz, due to the horizon of the inflationary phase. To detect gravitational waves at such
frequencies, resonant electromagnetic cavities are very suitable. In this work, we study the expected
frequency response of such detectors using a brand new approach, and show how we could use them to
probe this cutoff frequency and also the energy density per frequency of this stochastic background.
This paper paves the way for further experimental studies to probe the most ancient relic of the
Universe.

DOI: 10.1103/PhysRevD.108.124009

I. INTRODUCTION

The stochastic gravitational wave background (SGWB)
is the most ancient relic of the big bang. This is the analog
of cosmic microwave background for gravitational waves
(GWs), potentially giving information about the early
ages of the Universe, before the formation of atoms and
nuclei, glimpsing directly when fundamental interactions
supposedly splitted. Maggiore [1] described SGWB first
as isotropic, Gaussian, and stationary, and its frequency
dependence is contained in a one-sided power spectral
density. Recent works have detailed SGWB at high
frequencies [2–6]. In the review [4], a variety of possible
sources of stochastic background are considered, which
mostly arises from hypothetical physics of the early
Universe: (pre)heating, oscillons, cosmic strings, infla-
tion, to name but a few. Most of these hypothetical sources
can be characterized by two parameters, first the energy
density ΩGW per logarithmic frequency sampling, and
then some of potential sources have a cutoff frequency in
the MHz-GHz band. This is due to GWs trapped in the
horizon at the epoch of the end of inflation [7]. To detect
GWs at such high frequency, electromagnetic (EM)
detectors should be considered. Their working principle
is based on wave resonance mechanism and was discov-
ered by Gertsenshtein [8], although this author worked it
out for GW generation. Detection can be achieved with
the so-called inverse Gertsenshtein effect, which can be

physically described as follows. A GW fundamentally
constitutes of a local volume distortion. If we put a
magnetic field on the way of this spacetime distortion,
then the passing GW will modify the EM flux by affecting
the volume, giving rise to an induced EM field from
Lenz’s principle. This induced EM field betrays the
passage of a GW, as it inherits the frequency from its
gravitational progenitor, all features that constitute a
specific response of EM detectors based on inverse
Gertsenshtein effect. Some detector proposals were made
just few years after Gersenshtein’s discovery [9–19].
Recently, this topic of EM detection of GW has seen a
renewal of interest after first GW detection by LIGO [20],
with proposals based on the inverse Gertsenshtein mecha-
nism [21–25]. These kind of detectors are complementary
with other detection techniques to detect the whole
spectrum of GWs. For instance, interferometers can detect
GWs in the mHz to kHz band. EM detectors can
theoretically detect any GW frequency, but the induced
field intensity and detector dimensions make it suitable for
high frequencies, from kHZ to THz. Research on (ultra)
high frequency GW is currently active. The review [4] lists
potential sources and detectors for those frequencies. We
focus here particularly on resonant EM detectors, already
described in [26], by treating directly the detectors
frequency response and apply this to the experimental
SGWB search. Resonant detectors are indeed suitable to
spot on a narrow frequency range, and are especially
interesting to isolate the cutoff frequency of SGWB. We
claim resonant EM detectors of GWs are promising tools
for the detection of SGWB, allowing to reveal the position
of its power spectrum cutoff frequency and the variation of
the related cosmic energy density with the frequency.
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II. PROPOSED EXPERIMENTAL SETUPS

SGWB detection antennas are based on the conversion of
GWs into EM fields through the inverse Gertsenshtein
effect. Precisely, we consider resonant detection schemes
where the interaction of the passing GWs with some
external magnetic field induces excitation of EM modes
into a cavity. The energy induced into the resonator by the
passing GW is faint, due to the weakness of the gravita-
tional coupling. However, the root-mean square (rms) value
of the induced power inside the cavity is proportional to the
strain of the incoming GW. More details about detection
scheme configuration and observable can be found in
patents [27] or in article [26]. The fundamental equation
that rules the conversion of GWs to EM field is the
Maxwell wave equation on curved spacetime, from which
one can derive the induced EM fields. Let us consider the
detection schemes have cylindrical symmetry. The electro-
magnetic field within the resonant cavity is a superposition
of some background static magnetic field B⃗ð0Þ and a
perturbation that is the induced electromagnetic field due
to the Gertsenshtein effect B⃗ð1Þ. Under these assumptions,
one obtains the following wave equation for the induced
magnetic field B⃗ð1Þ,

�
−

1

c2
∂
2

∂t2
þ Δ⃗

�
B⃗ð1Þ ¼ −μ0∇⃗ × ½J⃗ effðB⃗ð0Þ; hμνÞ þ J⃗ loss�;

ð1Þ

where Δ⃗ is the Laplacian and J⃗ effðB⃗ð0Þ; hμνÞ is an effective
current density that source the induced magnetic field,
containing the correction due to local modification of
volume caused by the passing GW and J⃗ loss denotes the
ohmic losses in the cavity. We will discuss and describe in
the next section the computation of the effective current
density. The boundary condition for the magnetic field is

B⃗ð1Þ
⊥ ¼ 0. An analogous equation of Eq. (1) can be written

for the induced electric field E⃗ð1Þ. However, the leading
effect is given by the induced magnetic perturbation that is
amplified by the external magnetic field. Indeed, the
variation of energy ΔE inside the cavity of volume V at
first order in the induced magnetic field B⃗ð1Þ is given by

ΔE ≈
1

μ0

Z
V
B⃗ð0Þ · B⃗ð1ÞdV; ð2Þ

which is therefore boosted by the external magnetic field
B⃗ð0Þ. This energy variation evolves with time with a similar
frequency content as the passing GWand its rms amplitude
is directly proportional to the GW strain (see [26]).
Consequently, we focus here on the induced magnetic
field, which constitutes the dominant effect in the induced
rms power in the cavity, obtained by timely derivating the

energy fluctuation Eq. (2). This variation at first order is
very promising for high-frequency GW detection since
the order of magnitude of the induced EM power is much
higher than other proposals [21–23]. These proposals
focused on second order effects in the induced electromag-
netic fields (and therefore in GW too). The work [23] even
discards first order effects on the basis of their vanishing time
average. However, it must be reminded that time average is
not physically relevant for energy transport: periodic signals
do carry energy by nonvanishing rms average. This simple
physical fact lies at the very basis of the ac technology that
we are using everyday. Fundamentally, the carried energy is
related to the L2 norm of time-dependent signals (the rms
average), given by the power spectrum in Fourier analysis
(since such transform is unitary). Therefore, the quadratic
meanof the incomingGWcan alsobemeasured in the energy
fluctuations Eq. (2), and, since these are amplified by the
strong external magnetic field, they constitute a dominant
effect compared to other interesting proposals [21–23].
By analyzing the Eq. (2), we can see that we only need to
consider the induced field along the external magnetic field
direction, which is here assumed transverse to the longi-
tudinal axis of the resonant cavity. Therefore, we will
compute the source term J⃗ eff in this way.
The wave equation (1) can be decomposed in eigenm-

odes, as in [14], by developing the solution on the eigen-
functions of the Laplacian operator with required boundary
conditions on the cavity walls. These functions are

ψ r
kmn ¼ Cr

kmn ·
RkmðrÞ
mr

·

�
cos

sin

�
ðmθÞ ·

�
cos

sin

��
2πnz
L

�
;

ð3Þ

ψθ
kmn ¼Cθ

kmn ·
dRkmðrÞ

dr
·

�−sin

cos

�
ðmθÞ ·

�
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��
2πnz
L

�
;

ð4Þ

ψ z
kmn ¼ Cz

kmn ·RkmðrÞ ·
�
cos

sin

�
ðmθÞ ·

�
cos

sin

��
2πnz
L

�
;

ð5Þ

where k, m, n are integers that appears during the variable
separation method. These are “quantum” numbers to differ-
entiate each harmonic.Ckmn are normalization constants and
L is the length of the cavity. The radial function RkmðrÞ
depends if we consider the transverse magnetic (TM) or the
transverse electromagnetic (TEM) cavity, and contains a
combination of Bessel functions that respect the boundary
conditions. The roots of these functions are denoted by αk
and can be tuned by the cavity geometry (see [26]). These
eigenfunctions satisfy the Helmholtz equation

Δ⃗ψ⃗kmn ¼ −Ω2
kmnψ⃗kmn; ð6Þ
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where

Ω2
kmn ¼ α2k þ

4π2n2

L2
: ð7Þ

The wave numbers Ωkmn are the resonant wave numbers of
the cavity. We can obtain the resonant frequencies by
dividing the wave numbers by c. With the spectral decom-
position

Bð1Þr;θ;zðt; r⃗Þ ¼
X
k;m;n

b̂r;θ;zkmn ðtÞψ r;θ;z
kmn ðr⃗Þ; ð8Þ

μ0ð∇⃗ × ⃗jeffÞr;θ;zðt; r⃗Þ ¼
X
k;m;n

ŝr;θ;zkmn ðtÞψ r;θ;z
kmn ðr⃗Þ; ð9Þ

the inhomogeneouswave equation (1) becomes a forced and
damped harmonic oscillator equation for each eigenmode
b̂r;θ;zkmn . The damping term comes from the ohmic losses that

we can express as J⃗ loss ¼ σE⃗ð1Þ and using the Maxwell

equation ∂tB⃗
ð1Þ ¼ −∇⃗ × E⃗ð1Þ at first order. These oscillator

equations are

1

c2
d2b̂r;θ;zkmn

dt2
þΩkmn

cQ
db̂r;θ;zkmn

dt
þΩ2

kmnb̂
r;θ;z
kmn ¼ ŝr;θ;zkmn ð10Þ

for each ðk;m; nÞmode, where we express the ohmic losses
effective conductivity σ for each mode as σ ¼ cΩkmnϵ0

Q . Only
purely radial modes survives to the volume integral giving
the induced energy Eq. (2): those that are not constant along
the longitudinal axis and not behaving as a sinusoidal
function of the azimuth angle will disappear due to cylin-
drical symmetry (shown in [26]). In other words, only the
radial modes b̂r;θ;zk10 ðtÞ contributes to the total energy varia-
tion. We are going to use the temporal Fourier transform,
whichwe can apply to any time-dependent functionfðtÞ and
obtain the temporal Fourier transform

f̃ðωÞ ¼
Z

∞

−∞
fðtÞe−iωtdt; ð11Þ

that depends on ω ¼ 2πν where ν is the frequency. This
temporal Fourier transformwill turn our harmonic oscillator
differential equation in an algebraic one and will allow us to
compute the frequency response of the cavity. Thus our
harmonic oscillator equation (10) becomes

−
ω2

c2
b̃r;θ;zkmn þ iωΩkmn

cQ
b̃r;θ;zkmn þΩ2

kmnb̃
r;θ;z
kmn ¼ s̃r;θ;zkmn ; ð12Þ

where b̃r;θ;zkmn is the temporal Fourier transform of b̂r;θ;zkmn , and

s̃r;θ;zkmn ðωÞ ¼
Z
V
μ0ð∇⃗ × J⃗effðω; r⃗ÞÞr;θ;zψ r;θ;z

kmn ðr⃗ÞdV; ð13Þ

where J⃗effðω; r⃗Þ is the temporal Fourier transform of

J⃗ effðt; r⃗Þ. This can be made because the temporal and the
spatial variables in our effective current density are inde-
pendent. The solution for each mode is given by

b̃r;θ;zk10 ðωÞ ¼
Ar;θ;z
k10 þ iBr;θ;z

k10

− αkc
2Q þ iðω −ϖkÞ

þ c2s̃r;θ;zk10 ðωÞ
c2α2k þ iωαkc

Q − ω2
; ð14Þ

with ϖk ¼ cαk
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1

2Q

q
for any ω > 0. The constants Ar;θ;z

k10

andBr;θ;z
k10 are determinedwith initial condition b̂r;θ;zk10 ðt¼ 0Þ¼

db̂r;θ;zk10
dt jt¼0

¼ 0 Using the previous equation and assuming the

external field aligned with the x axis, B⃗ð0Þ ¼ B0e⃗x we can
finally compute the induced power in the cavity at first order
of the strain, depending on the frequency ω,

P̃ðωÞ ¼ iB0ω

μ0

Z
V
B̃ð1Þ
x dV; ð15Þ

where B̃ð1Þ
x is the temporal Fourier transform ofBð1Þ

x . Passing

the expression of B̃ð1Þ
x in cylindrical coordinates, and using

the cylindrical harmonics decomposition (8), we obtain
that the induced power in our cavity is

P̃ðωÞ ¼ 2iπωB0

μ0

X
k

Ikb̃k10ðωÞ; ð16Þ

where b̃k10ðωÞ ¼ b̃rk10ðωÞ ¼ −b̃θk10ðωÞ and the radial inte-
gral Ik is given by

Ik ¼
Z

R;R2

0;R1

Rk1ðrÞdr: ð17Þ

The bounds of the integral depends if we consider a TM or
a TEM cavity. Equation (16) gives us a very powerful way
to compute the induced power in our cavity at first order by
only using the harmonic oscillator solution (14). The only
remaining development we need to investigate is expressing
the forcing term given by Eq. (13), which will be done in the
following.

III. COMPUTING THE SOURCE TERM
AND THE RMS IMPULSE RESPONSE

Before providing an analysis of the frequency response
of such detection schemes, we have to discuss the choice of
the frame modeling the detection process. A simplification
made in the article [26], as emphasized in subsequent
work [23], was that we consider the traceless-transverse
frame (TT gauge) for the incoming GW and the proper
detector frame for the electromagnetic fields involved in the
process. In the present work, we first investigate the validity
of this approximation by computing explicitly the gauge
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transformation from traceless-transverse coordinates to the
Fermi-normal ones. We then give both analytical and
numerical evidence in favor of the simplification used in
the work [26]. The passing GW coming from astrophysical
sources is usually described in traceless-transverse gauge,
where hTTþ;× denotes the polarization of the propagating
transverse modes. However, this coordinate choice,
although suitable for GW propagation in vacuum is not
ideal for describing the detection scheme. For the last, a
coordinate choice based on the electromagnetic fields at
play, the proper detector frame, is more convenient. One
has therefore to express the incoming GW (given in the TT
gauge) in the proper detector frame, as noticed in [23]. This
new frame can be described physically as the coordinates
where an inertial observer will measure physical quantities
in his vicinity. Let us carefully perform this transformation
here by following the results obtained in Refs. [28,29].
Particularly, we can use the development of the metric
perturbation in the Fermi-normal coordinates made by
Rakhmanov [29]. In this coordinate system, where a
gravitational plane wave propagating along the z axis,
the hμν tensor can be expressed only with the spatial
coordinates and the following functions

Pþ;×ðz; tÞ ¼
X∞
n¼2

n − 1

ðnþ 1Þ! z
n d

nhTTþ;×ðtÞ
dtn

; ð18Þ

Qþ;×ðz; tÞ ¼
X∞
n¼2

n
ðnþ 1Þ! z

n d
nhTTþ;×ðtÞ
dtn

; ð19Þ

where z is the coordinate related to the propagation
direction of the GW in the detector frame and t is the
time in the detector frame.
The metric perturbation computed by Rakhmanov [29]

has the form

h11 ¼ Pþ; ð20Þ

h22 ¼ −Pþ; ð21Þ

h12 ¼ P×; ð22Þ

h13 ¼ −
1

z
ðxPþ þ yP×Þ; ð23Þ

h23 ¼ −
1

z
ðxP× − yPþÞ; ð24Þ

h33 ¼
1

z2
ð½x2 − y2�Pþ þ 2xyP×Þ; ð25Þ

h01 ¼ −
1

z
ðxQþ þ yQ×Þ; ð26Þ

h02 ¼ −
1

z
ðxQ× − yQþÞ; ð27Þ

h03 ¼
1

z2
ð½x2 − y2�Qþ þ 2xyQ×Þ; ð28Þ

h00 ¼ 2h03 − h33: ð29Þ

Since we work in the proper detector frame, the metric
perturbation tensor is generally not traceless and is not
ruled by Lorenz gauge condition. As in [23], the effective
current density is given by

J μ
eff ¼ ∂νh

μ
αFν

α þ ∂νhναFμα þ 1

2
∂νhFμν;

¼ jμ1 þ jμ2 þ jμ3; ð30Þ

where Fμν is the Faraday tensor of the background
electromagnetic field (not to be confused with the one
induced by inverse Gertsenshtein effect). The general
source term obtained in the detector frame is more
complicated than the one in [26], because the metric
perturbations do not verify the TT gauge constraints.
However, let us show a practical analytical approximation.

First, let us assume that our source term μ0ð∇⃗ × J⃗effðω; r⃗ÞÞ
can only depend on ðz;ωÞ, as a plane wave approximation.
We can show that in our case the forcing term of our
oscillator equations, due to vanishing quantities in the
volume integral and the source term expression in cylin-
drical coordinates, we can rewrite Eq. (13) as

s̃k10ðωÞ ¼ s̃rk10ðωÞ ¼ −s̃θk10ðωÞ;

¼ πIk

Z L
2

−L
2

μ0ð∇⃗ × J⃗effðω; zÞÞxdz; ð31Þ

The metric perturbations in the proper detector frame can
be obtained by Eqs. (19)–(28) from [29]. If we truncate the
series development of the functions Pþ;× and Qþ;× at the
dominant n ¼ 2 term, then one finds that

μ0ð∇⃗ × j⃗1Þx ¼ −B0

1

c2
d2hþ
dt2

; ð32Þ

μ0ð∇⃗ × j⃗2Þx ¼
B0

6

1

c2
d2hþ
dt2

−
B0z
3

1

c3
d3hþ
dt3

; ð33Þ

μ0ð∇⃗ × j⃗3Þx ¼ −
B0

3

1

c2
d2hþ
dt2

: ð34Þ

If we neglect the term in 1
c3, then we find out that

μ0ð∇⃗ × J⃗ effÞx ¼ −
7B0

6

1

c2
d2hþ
dt2

¼ 7

6
μ0ð∇⃗ × j⃗1Þx: ð35Þ
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That means that we can approximate the source term by
using the definition of j⃗1,

μ0ð∇⃗ × J⃗ effÞx ≈
7

6
μ0ð∇⃗ × j⃗1Þx: ð36Þ

Hence, we find that the source term j⃗1, used in [26], only
underestimates the total effective current density by 14% at
the leading order in the transformation from the traceless-
transverse coordinates to the detector frame. One can now
asks how far this analytical approximation holds valid at
higher orders in the series expansion. We can therefore
extend the gauge transformation to all orders in the series of
Eqs. (18), (19) and examine numerically the convergence.
Figure 5 in Appendix B gives a comparison of the effective
current densities due to the metric perturbations in the
proper detector frame obtained with the series expansion
of [29], truncated at tenth order (n ¼ 10). Please note that
this approximation was made under the assumption that the
GW propagation axis is aligned with the symmetry axis of
the cavity. The directionality analysis is still to perform for
further experimental development. Anyway we can see this
approximation as an upper limit since the cavity response
should be maximal in this configuration. Moreover, to
cope with this directionality problem, one can set up two
separate cavities with their symmetry axis perpendicular
in order to maximize the potential astrophysical GW
detection.
With the approximation Eq. (36), we can use as the

source term for the x component of Eq. (1) the following
expression:

μ0ð∇⃗ × J⃗ effÞx ¼ −
7B0

6

�
∂
2Pþ
∂z2

þ 2

z
∂Pþ
∂z

�
; ð37Þ

which we can use for all orders in the series expansion (18).
Since the approximation (37) is valid, we can use Eqs. (31)
and (18) to get the source terms our our harmonic oscillator
equations, and we obtain then

s̃k10ðωÞ¼−
7πB0Ik

6

×
Xþ∞

n¼2

1

ðn−1Þ!
��

L
2

�
n−1

−
�
−
L
2

�
n−1

��
iω
c

�
n
h̃þ;

ð38Þ

where h̃þðωÞ is the Fourier transform of the þ polarization
of the incoming GW, assumed as a plane wave (see also
[26]). This equation above, after small algebraic manipu-
lations and sum indices modifications, we can obtain as
source term

s̃k10ðωÞ ¼
7πB0Ikωh̃þ

3c
sin

�
ωL
2c

�
: ð39Þ

Please note that this equation is exactly 7
6
of the temporal

Fourier transform of the harmonic oscillator source term
computed in [26].
Using these computations and some results of [26] we

can easily compute the expression of the rms power for a
monochromatic unit strain amplitude gravitational wave,
the rms impulse response (RIR) of our cavity. We detailed
these computation in Appendix A. This rms impulse
response has the form

PRIRðωÞ ¼
7

ffiffiffi
2

p
c

3μ0
π2B2

0ω
2

				 sin
�
ωL
2c

�				S; ð40Þ

where

S ¼
X
k

ðIkÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2kc2 − ω2Þ2 þ



αkωc
2Q

�
2

r · ð41Þ

We can see the similarity with the results obtained in [26]
with a direct temporal domain approach, beside the frame
discussion mentioned above. We can also easily compute
the rms induced power for inspiral signals, such as merging
planetary primordial black holes. For an incoming GW
with Fourier transform h̃þðωÞ, the rms induced power can
be expressed by

P2
rms ≃

Z
∞

0

jPRIRðωÞj2jh̃þðωÞj2dω: ð42Þ

We can also obtain the expected detection scheme strain
sensitivity from this impulse response diagram in Fig. 1,
where the dashed black curve shows the strain we could
possibly detect with the proposed detection scheme,
assuming that we could detect an induced rms power of
10−14W. The parameters chosen for our detection scheme
are a 5T external magnetic field, for a one-meter long cavity
with a 5 m radius. We can see a better sensitivity at the
cavity resonant frequencies. Their locations depend on
the radius of the cavity [26]. We also add to this figure the
characteristic strain of inspiral GW signals and the one
from the stochastic GW background we consider. Both
types of sources can hopefully be detected by such resonant
detection schemes. To go further on the detection schemes
modeling, the exact experimental design and its noise
sources should be studied and considered. Another impor-
tant point is the measurement of the rms induced power at
first order. Experience gained in the field of haloscopes,
like in the Axion Dark Matter Experiment [30], are of direct
application for the EM detection of SGWB and in general
high-frequency gravitational waves. In the ADMX experi-
ment, the rms power they can measure is of the order of
10−21W, but the time scale is quite different in our case.
Their scale is order of a year, ours is microseconds for
inspiral signals, and could be longer for the stochastic ones.
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IV. RESULTS ON A STOCHASTIC GW
BACKGROUND TOY MODEL

Considering the properties of hypothetical SGWB
sources described earlier, we decided to consider a toy
model that parameters could be adapted if we want to focus
on some specific early Universe mechanism. The toy model
for the power spectral density of our SGWB for any
frequency ν is

ShðνÞ ¼
3H2

0

4π2
ΩGWðνÞν−3sigmð−νþ νcutÞ; ð43Þ

where H0 is the Hubble parameter of today, ΩGWðνÞ is the
GW energy density per logarithmic frequency interval, νcut
is the cutoff frequency. At this cutoff frequency, the signal
decreases exponentially as in [7] due to the sigmoid
function sigmð·Þ. Gathering the values of the different
sources in [4], we choose a constant ΩGW ¼ 10−10 and a
cut-off frequency at 100 MHz for the toy model. This toy
model is very useful to show how we could potentially use
electromagnetic cavities to detect SGWB. However, real-
world spectra for the SGWB should not be as simple as this
toy model. The frequency distribution of the spectrum
could be not as smooth as in this toy model, or the cutoff
could not so sharp. An example of a realistic GW spectrum
is given by the SMASH model described in [6], which
combine the SGWB coming inflation, preheating and

thermal fluctuations at the beginning of the radiation-
dominated epoch. A first result from this toy model is
that we can use an analogue of the Eq. (16) to compute the
power spectral density (PSD) of the induced EM power in
our cavity. The method is that we replace the temporal
Fourier transform of the signal by the temporal Fourier
transform of its autocorrelation. The plot of this PSD can be
found for three different cutoff frequencies in Fig. 2. We
can see that for our cavity, with the same parameters than in
Fig. 1, the resonant frequencies before the cutoff will have
much higher density than the other ones. This means that
the autocorrelation of several signals coming from the
stochastic background will be higher at the first resonant
frequency and if we detect a significant drop between two
resonant frequencies, the cutoff frequency must be some-
where in between. We insist on the fact that the possibility
to tune the cavities parameters to get the resonant frequen-
cies we want, for optimal detection. One cavity parameter
that we can tune is the radius of the cavity, that change the
resonant frequency. We show in Fig. 3. Modifying the
radius of the cavity can help to spot the cutoff frequency
when the cutoff frequency is between two resonant fre-
quency. The cutoff frequency will be more difficult to spot
otherwise. Moreover, using simultaneously cavities of
different size could also help to spot multiple cutoff
frequencies or even specific frequencies where the fre-
quency dependence of GW spectrum changes. This is also
shown in Fig. 4. Here we simulate the rms induced power
for several outer radius between 1 and 10 m. We also
considered other distribution for ΩGW, as one can see
through the green and blue points. There is a gap in the
values around 1.5 m. This gap is where the resonant

FIG. 2. The power spectral density of the induced EM power
that detects our stochastic GW background toy model, for three
different cutoff frequencies. We can see that the response is
several orders of magnitude lower above the cutoff frequency.
The cutoff frequency should appear clearly when several signals
are correlated, with resonant frequencies chosen carefully.

FIG. 1. Expected strain sensitivity of our cavity and possible
sources. The black dashed curve is the strain sensitivity for a
monochromatic GW if we could detect a rms induced power of
10−14 W. We can clearly see that the detection will be better
around the resonant frequencies of the cavity. The behavior at
high frequency is due to the sinusoidal term in Eq. (40). The blue
and red lines are, respectively, the characteristic strain for a
stochastic GW signal and an inspiral GW signal at ISCO
(Innermost Stable Circular Orbit) frequency. Both curves are
consistent with [4].
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frequencies goes below the cutoff frequency and the
response is several order of magnitude higher. If one can
combine cavities of different radii, then we can also spot
more precisely the cutoff frequency and also check whether
or not ΩGW is constant with frequency. The value of the
slope after the gap is 2 for constant ΩGW, that means that

the main contribution of the increasing induced power with
the radius comes from the increase of the detection volume,
which is proportional to the square of the radius for a
cylindrical cavity. Another assumption forΩGW will lead to
another slope in this model. For instance, for the ΩGW
varying linearly with the frequency, the slope becomes
equal to 1.5. With these results one can also checking the
frequency dependency of the GW spectrum, the presence of
one or multiple cutoff frequencies or special frequencies
where the frequency distribution change.
Please note that these results computed for the SGWB

was made under one hidden assumption. In order to excite
the resonant frequencies in the cavity, we shall assume that
the SGWB has enough spatial and temporal coherence. By
extension, the results presented above should be applied to
any GW source that has enough coherence to trigger the
resonance.
To sum up the results presented above, resonant detec-

tors allow measuring the cutoff frequency of the yet
hypothetical SGWB and also check the constancy of the
GW density with frequency, two parameters that are
specific to some early Universe SGWB.

V. CONCLUSION AND DISCUSSION

In this work, we develop the frequency response analysis
of resonant EM detectors of high-frequency GWs first
described in [26] and references therein. The present work
completes previous ones by giving tools for computing the
response in function of time or frequency, depending on the
application. While temporal approach is more suitable for
transient signals like inspiraling binary primordial black
hole mergers, the frequency approach is more suited to the
search of the SGWB. In addition, this brand new frequency
approach gives us an analytical, straightforward and maybe
more intuitive way to compute the response of the con-
sidered detection scheme, and fixed the mixed frame
modeling mentioned in the literature. It can also examine
directly the strain sensitivity at any given frequency after
setting the experimental design and study the noise sources.
This approach is also suitable theoretically for any GW
signal. We just need the Fourier transform for inspiral
signals, and strain power spectral density for stochastic
ones. We also confirm that choosing the cavity parameters
is very important to define the frequency range where we
want an optimal detection. This location of the resonant
frequencies is also very important to emphasize the cutoff
frequency for the SGWB. The detection scheme response
will get a massive drop above this special frequency. If the
studied model has no sharp cutoff as described here, we
could possibly spot a change in the frequency distribution
at a specific frequency. The possibility to combine several
cavities of different radii is also very interesting because
you can get resonant response of different frequency bands.
These kind of detectors are also a good addition to
interferometers to detect SGWB at different frequencies.

FIG. 3. The power spectral density of the induced EM power
that detects our stochastic GW background toy model, for three
cavity radii. The cavity resonant frequencies are depending on the
radius of the cavity as shown in [26]. We can see that the cutoff
frequency appear clearly when the resonant frequencies are
chosen carefully. Otherwise, locate the cutoff frequency should
be more difficult.

FIG. 4. rms induced EM power generated in our cavity with
respect to the radius of the detection scheme for our stochastic
GW background toy model. We can see a jump in the response by
two orders of magnitude due to the excitation of resonant
frequencies. Below this point the resonant frequencies are above
the cutoff frequency. After this point, the slope of the line is 2 for
constant ΩGW, which means that the factor that increase the
response is the increasing of volume in the cavity.
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We also get a more realistic model since we take account of
the losses at the walls of the cavity, therefore smoothing the
resonance peaks.
We claim the present work give strong arguments in

favor for resonant EM detectors in the crucial SGWB
investigation. Further studies should investigate deeper
the experimental feasibility of first order induced power
detection, as well as specific noise sources for this
particular application. Another point of interest for further
consideration is how one can correlate several detections to
recreate the PSD of stochastic signals. By the way, we have
provided some important prospects for motivating further
experimental work. The results presented here indicate that
the expected strain sensitivity of such resonant detector
could theoretically go below 10−30 for some frequencies.
Moving toward an experiment based on the results pre-
sented here will require common effort from scientific
communities working on axion detection, high-precision
physics in strong magnetic field environment and high-
frequency gravitational wave. We are confident resonant
EM detectors of high-frequency gravitational waves will
one day become the antennas through which we will listen
to the most ancient relic of the big bang, glimpsing even
further at the very origins of the Universe.
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APPENDIX A: COMPUTING THE
RMS IMPULSE RESPONSE

In this paper, we summarized how we can compute the
induced electromagnetic field at first order, in the proper
detector frame, in a gravitational wave detection process.
This is the response we chose to compute for our detection
schemes. This response can be function of time of frequency,
but the durationof the signal or its frequency content couldbe
quite different with respect of the incoming gravitational
wave. This is why we have to compute a quantity that can
be useful to compare signals between each other. For such
oscillating field, we have to consider the root-mean-square
average, which can be defined as

P2
rms ¼ lim

T→∞

1

T

Z
T

0

ðPðtÞÞ2dt: ðA1Þ

This is a key quantity because it is related to the L2 norm
of the signal, which is unitary for the Fourier transform.

Physically, as it can be done for ac electric currents, the rms
power is related to the energy of the signal. One quantity
that we can compute using this definition of rms power
is the rms power impulse response. This the rms power
when the incoming signal is a sine wave. If we consider
hþðtÞ ¼ sinðωtÞ, then combining Eq. (36) with Eq. (39)
and the inverse Fourier transform we have that

ŝk10ðtÞ ¼
7πB0Ikω

3c
sin

�
ωL
2c

�
sin ðωtÞ: ðA2Þ

Equation (A2) is coherent with Eq. (39). With such a source
term the solution of Eq. (10) is simpler,

b̂k10ðtÞ ¼ e−
αkc
2QtðAk10 cos ðϖktÞ þ Bk10 sin ðϖktÞÞ

þ 7πcB0Ikω
3

sin
�
ωL
2c

�
sinðωtþ ϕÞ

α2kc
2 þ iωαkc

Q − ω2
: ðA3Þ

If we look at the behavior of this solution when t goes to
infinity, then one can discard the homogeneous solution

because of the decreasing exponential e−
αkc
2Qt. In this case,

we can compute the PRIR, the rms impulse response
electromagnetic power,

PRIRðωÞ ¼
7

ffiffiffi
2

p
c

3μ0
π2B2

0ω
2

				 sin
�
ωL
2c

�				S; ðA4Þ

where

S ¼
X
k

ðIkÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα2kc2 − ω2Þ2 þ

�
αkωc
2Q

�
2

s · ðA5Þ

This equation can be useful because if we neglect the
contribution of the homogeneous solution that vanish
when t goes to infinity, Eqs. (16) and A3 can show us that

jPðωÞj2 ¼ 2jPRIRðωÞj2jh̃þðωÞj2; ðA6Þ

wherewe have here theGWpower spectral density jh̃þðωÞj2.
This expression will help us to close this chapter by finding a
practical estimation of rms induced power when we have a
signal h̃þðωÞ. Let us first assume that PðtÞ is a periodic
function, one can expand it as a real-valued Fourier series,

PðtÞ ¼
X∞
n¼1

�
an cos

�
2π

U
nt

�
þ bn sin

�
2π

U
nt

��
; ðA7Þ

where U is the period. Putting the expression above in the
definition (A1) gives us
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P2
rms ¼

X∞
n¼1

a2n þ b2n
2

: ðA8Þ

By generalizing the equation above to any function with the Fourier transform and using the approximation (A4), we find our
estimation of the rms power, which is

P2
rms ≃

Z
∞

0

jPRIRðωÞj2jh̃þðωÞj2dω: ðA9Þ

APPENDIX B: NUMERICAL VALIDATION OF EQ. (37)

FIG. 5. Numerical validation of the approximation Eq. (37). On the top, the blue curve represents the L2 norm of the source term for a
slice at several values of z (in meters), integrated over a unit disk for the x and y coordinates. The orange curve is the same computation
for the approximation equation (36).The bottom panel is the source term in the detector frame divided by the source term in the TT gauge
to validate Eq. (36). The signal considered here is the Newtonian GW inspiral phase of primordial black hole mergers (10−5M⊙) you can
find in [1]. The number of terms considered in Eqs. (18), (19) are n ¼ 10. Higher order terms will only modify the directional sensitivity
of our detection scheme. Here we consider only the propagation along the symmetry axis of the cavity.
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