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Various attempts to surpass the theory of general relativity start from the assumption that spacetime is not
a four-dimensional but rather a higher-dimensional manifold. Among others, braneworld scenarios
postulate that the spacetime we effectively observe is actually a four-dimensional brane embedded in a
higher-dimensional spacetime. In general, braneworld models predict a departure from the Newton gravity
law in the nonrelativistic regime. Based on this fact, we propose an experimental test that uses a pair of
gravitationally interacting identical particles to determine the validity of certain braneworld models and
provide numerical results that should be compared with experimental data. In particular, we consider
the Randall-Sundrum braneworld model and study two cases of five-dimensional gravity theories:
the Einstein-Hilbert gravity with the negative cosmological constant and the Einstein-Gauss-Bonnet
(nearly-Chern-Simons) gravity.
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I. INTRODUCTION

Newton’s law of gravity has been experimentally verified
a long time ago [1] and since then has been repeatedly tested
using various experimental setups, from tabletop experi-
ments to cosmological observations. However, we know this
law is only an approximation, as a more fundamental theory
is general relativity (GR). Although its predictions have
been corroborated in many different ways to a high level of
precision [2,3], GR does not amount to a whole story about
spacetime and gravity. The main symptom of the theory’s
incompleteness is the appearance of singularities, both in the
center of a black hole and at the beginning of the universe. In
order to solve this problem, many attempts to quantize
gravity have been made [4]. The most naive procedure is
based on using a linear approximation of Einstein’s field
equations and the standard tools of quantum field theory,
which leads to a nonrenormalizable theory that cannot be
trusted to arbitrary high energies. Ostensibly, some radical
change in our basic assumptions has to be made when
dealing with the quantum theory of gravity. Some
approaches, among which string theory is perhaps the
most notable one, start from a theory defined in a number
of spatial dimensions greater than three. Effective, four-
dimensional physics is then obtained from the Kaluza-Klein
compactification [5,6]where one assumes that the additional
spatial dimensions are small enough and thus experimen-
tally inaccessible at current energies.
For phenomenological reasons, an alternative approach

that does not assume the smallness of extra dimensions was
proposed [7–9]. Those models are known under the name

of braneworld models, and they assume that our world is a
three-brane embedded in a higher-dimensional spacetime.
Matter fields are usually confined on this brane, while
gravity is free to propagate in all dimensions. Naturally,
those models have some features that differ from the
standard gravity theories. In this paper, we will propose
a way to test the predictions of some braneworld models
experimentally.

II. BRANEWORLD SCENARIO

For simplicity, we will focus on the so-called Randall-
Sundrum (RS) II model (see Ref. [10] for a review). We
start from a five-dimensional Einstein-Hilbert gravity with
the negative cosmological constant, defined by the action
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whereG5 is the five-dimensional gravity constant related to
the fundamental five-dimensional Planck scale MP by
G5 ¼ 8π=M3

P. The Gibbons-Hawking-York term, with
induced metric hij on the boundary, has to be included
in the presence of a boundary so that the variation principle
is well-posed. We then insert a brane Q of constant tension
T, usually defined as a hyper-surface for which one
coordinate in a preferred coordinate system is constant.
The relevant term that we add to the action is
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where γij is the metric induced on the brane. Away from the
brane, the anti-de Sitter (AdS) spacetime solves the bulk
equations of motion. However, appropriate junction con-
ditions have to be imposed that patch together solutions on
both sides of the brane. Also, more complicated matter
fields that are confined to the brane could be added.
In order to derive Newton’s law of gravity from the

underlying relativistic theory, one has to use both the action
and the associated equations of motion, and therefore,
different models lead to different results. Generically, the
modified gravitational potential on the four-dimensional
brane has the form

VðrÞ ¼ −
Gm
r

ð1þ ΔðrÞÞ; ð2:3Þ

where G ¼ G5=lAdS is the effective four-dimensional
gravitational constant and the five-dimensional AdS radius
lAdS is the characteristic bulk length scale [11]. In the case
of RS II model, for large distances r ≫ 1

k (k is the inverse of
the bulk AdS radius, k ¼ 1=lAdS), we have
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while for small distances, r ≪ 1
k, the modification is
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see Refs. [12,13] for more details. One can also find an
approximate potential interpolating between those two
extremes. It is given in [11] as
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There are other braneworld models that one could also
study. For example, in [14], modified Newton’s potential
was derived, with the following large distances behavior,
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e−2
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There are also models that start from a different number of
spacetime dimensions or involve more than one brane [13].
Attempts to experimentally verify those corrections have
been made in the context of classical physics [15].
It is important to note that the results concerning the

modification ofNewton’s potential follow from the tree-level
computations and hence do not contain nonzero powers ofℏ.
This is in contrast with the one-loop calculations of the
gravity propagator that yields a similar result (using the ideas

from AdS=CFT, those two can be seen on equal footing
[16]). Namely, if we were to quantize GR (despite it being
nonrenormalizable), we could obtain modifications of
Newton’s potential at the one-loop level, but those would
be suppressed by powers ofℏ. The potentials that we analyse
in this paper are not of this type. This means that we do not
have to claim any results from quantum gravity in order to
talk about the modified potentials in braneworld models; we
only assume the existence of extra dimensions. Also,
corrections of the form 1=r3 in Newton’s potential are well
known in GR (they are responsible for the precession of
Mercury orbit). However, they are not in any way connected
to the corrections we are dealing with here, which are
nonrelativistic.

III. TWO IDENTICAL PARTICLES

Let us consider two identical quantum particles that
mutually interact via gravitational force and are otherwise
neutral—a gravitational atom. The two particles need not
be elementary (like neutrinos) or even subatomic (like
neutrons); we could have a pair of identical composite
particles of the size of an atom or a large molecule. For
sufficiently small masses (energies), classical gravity is
well approximated by Newton’s theory, which allows us to
assume the following form of the two-particle Hamiltonian,

H ¼ P2

4m
þ p2

m
−
Gm2

r
; ð3:1Þ

where P is the total momentum of the system and p is the
relative momentum. For concreteness, we will from now on
consider the case of two spin-1=2 fermions, see Fig. 1.
Eigenstates of the Hamiltonian (3.1) are of the form

jψi ¼ eiK⃗·R⃗ffiffiffiffi
V

p RnlðrÞYm
l ðθ;φÞ ⊗ jχi: ð3:2Þ

We assume that the spatial volume V of the box in which
we constrain our quantum system is much larger than the
characteristic length scale of the bound states of the

FIG. 1. Two identical spin-1
2
fermions with zero charges,

interacting through a modified Newton’s potential. The total
energy of the system depends on the spin polarization.
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Hamiltonian (3.1) so that we can neglect the influence of
this box on the energy spectrum. In case we place the
system in some external (nonconstant) potential, we
demand that the relevant scale of variations in the potential
are large compared to any scale in (3.1) so that we can again
assume that we can restrict ourselves to the case of
Hamiltonian (3.1). The interchange of two particles
corresponds to r⃗ → −r⃗, which induces the change
Ym
l ðθ;φÞ → ð−1ÞlYm

l ðθ;φÞ. Preparing the spin state of
the system in an appropriate manner (singlet or triplet),
we are able to control the parity of the relative angular
momentum of the eigenstates, as the total state of the two
fermions has to be antisymmetric. In the case of 1=r
potential, states with different values of the orbital number l
have the same energy as long as the principal quantum
number n is the same. This is related to the SOð4Þ
symmetry of the Hamiltonian (3.1). However, in the case
of braneworld models, this Hamiltonian is corrected using
previously introduced potentials. The new Hamiltonian has
only rotational SOð3Þ symmetry, and therefore, states with
different angular momentum have different energy. We
want to determine the eigenenergies of the braneworld
Hamiltonians resulting from various braneworld scenarios.
First, let us consider the RS II model with Einstein-Hilbert
action, where the correction to Newton’s potential is given
by (2.6).
The energy spectrum of the unperturbed Hamiltonian

(3.1) is well known, as it is the same (up to a numerical
factor) as for the hydrogen atom. This means that the
unperturbed energies (disregarding the center of mass
energy) are given by (taking c ¼ 1)

Eð0Þ
n ¼ −

m
4n2

�
m
mP

�
4

; ð3:3Þ

where mP is the four-dimensional Planck mass. We now
consider correction to Newton’s potential − Gm

r ΔðrÞ as a
perturbation and use the first-order perturbation calculus to
obtain corrections of the energies of the first excited
(n ¼ 2) level. We will see that the perturbation calculus
is valid as long as 1 ≪ ka0, where a0 ¼ 2ℏ2

Gm3. As the
perturbation also has SOð3Þ symmetry, we only need to
calculate diagonal matrix elements to obtain corrections to
the energy levels. In Fig. 2, we present the numerical
calculation for the corrections to the first excited level
n ¼ 2 for l ¼ 0 and l ¼ 1 as a function of the dimension-
less parameter 1=ka0. To be more precise, we plot the
dimensionless quantity

Un;l ¼ 8
a0
k2

Z þ∞

0

jψn;lðxÞj2ð−xÞΔðxÞdx; ð3:4Þ

while the first-order corrections to the energy levels are
E0
n;l ¼ Gm2

8a0
Un;l. The energy difference for the first excited

level n ¼ 2 between l ¼ 1 and l ¼ 0 states in terms of
ΔU ¼ U2;1 −U2;0 is presented in Fig. 3. It is important to
note that our system is nonrelativistic so we can use the
Newtonian approximation. For this to be true, we must
have p ∼ ℏ

a0
≪ mc. In the case when the perturbation theory

is not applicable, we can make the following observation.
In this regime, a0 is at least of the same order as 1=k, or
possibly larger. Wave functions peak around a0, and this
means that we can use the form of the potential for r ≪ 1

k.
It turns out that potential − A

r −
B
r2 (for some constants A

and B) corresponds to a Hamiltonian that we can exactly
diagonalize. It can be shown that for 1

ka0
> 3π

32
≈ 0.3,

the particles would merge, and our analysis based on
quantum mechanics and Newton’s gravity would be
inappropriate [17].

A. Chern-Simons gravity

So far, we assumed that the five-dimensional theory is
well-described by Einstein-Hilbert gravity. In five dimen-
sions, one can also consider Chern-Simons (CS) gravity,
defined in the metric formulation as
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FIG. 2. Corrections to the energies of the first excited level
n ¼ 2 for l ¼ 0 (red line) and l ¼ 1 (blue line).
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FIG. 3. Difference in energies between l ¼ 1 and l ¼ 0 state for
the first excited level n ¼ 2 in the Einstein-Hilbert case.
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This theory has an enlarged SOð4; 2Þ symmetry group [18].
CS theory has nonvanishing torsion, but here we restrict to
the case of torsion-less geometries, as they are much better
understood. More generally, the CS action (3.5) can be

generalized by substituting the constant parameter 1
4k2 with

some general parameter α
4k2, thus obtaining the Einstein-

Gauss-Bonnet theory. One can calculate the modification of
Newton’s potential for this generalized gravity theory [11]
and obtain that the CS case exhibits no corrections.
Moreover, if we take α close to the CS value, the
corrections are small enough so that perturbation theory
can be used for all values of 1=ka0.
The correction to the potential takes the form [11]
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where x ¼ kr, and β and γ are numerical constants defined
in [11]; for α ¼ 0.95 they are given as β ≈ 3.86443 and
γ ≈ 0.637448. Again, we are using approximate potential,
with approximate numerical values of the parameters, as
our goal is to demonstrate the possibility of detecting extra
dimensions and provide some rough theoretical data that
could be made more precise with more advanced numerical
techniques. In Fig. 4, we present corrections to the first
excited energy level n ¼ 2 for l ¼ 0 and l ¼ 1 in the case
α ¼ 0.95. Note that the form of the corrections is as
expected. The energy is shifted more for greater values
of 1=ka0, but the rate of this shift is decreasing. Also, for
large 1=ka0, the energy difference between the two levels
decreases. This can be deduced from the asymptotic form
of the gravitational potential. In Fig. 5, we present the
energy difference between the two states.
Finally, we can draw the energy difference for the first

excited state n ¼ 2 between l ¼ 1 and l ¼ 0, obtaining
Fig. 5. Due to the approximate nature of our constants,
previous graphs may not give the best numerical values for
large 1=ka0, but the form of the graph should be correct.

IV. TESTING THE BRANEWORLD HYPOTHESIS

Let us now propose a way to empirically verify whether
the consequences of the braneworld hypothesis are valid or
not. The procedure is essentially based on the fact that the
beyond-Newtonian gravitational potential (of the kind we
considered above) lifts the orbital degeneracy of the energy
levels for a pair of gravitationally interacting particles.
Consider, for example, the following two states of a pair of
identical spin-1

2
particles,

jΨ1i ¼
1ffiffiffi
2

p j2; 0; 0i ⊗ ðj↑↓i − j↓↑iÞ; ð4:1Þ

jΨ2i ¼ j2; 1; 0i ⊗ j↑↑i: ð4:2Þ

Both states are antisymmetric as a whole, the particles
being fermions. The first state has the antisymmetric
singlet state in the spin sector, while the orbital part is
symmetric (l ¼ 0). On the other hand, the second state has
a symmetric spin part and an antisymmetric orbital part
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FIG. 4. Corrections to the energies of the first excited level
n ¼ 2 for l ¼ 0 (red line) and l ¼ 1 (blue line) in nearly-CS case.
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FIG. 5. Difference in energies between l ¼ 1 and l ¼ 0 state for
the first excited level n ¼ 2 in the nearly-CS case.
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(note that we could also choose some other spin state from
the symmetric triplet and also some other value for the
magnetic quantum number, namely �1). The braneworld
potential (2.6) implies that states with different orbital
quantum numbers l have a different energy, which is in
contrast with the Newtonian case. In principle, we may also
consider a superposition of the above two states,

jΨi ¼ 1ffiffiffi
2

p ðjΨ1i þ jΨ2iÞ; ð4:3Þ

and use the standard Mach-Zehnder (MZ) interferometer
[19] with the first beam splitter selecting the states by the
total spin projection Sz. If the energies of the states jΨ1i and
jΨ2iwere the same, as in the Newtonian case, the final state
after passing through the MZ interferometer would remain
the same. If, on the other hand, the energies of the two
states were different, as predicted by the braneworld
models, the final state would be

jΨfinali ¼
1ffiffiffi
2

p ðeiϕjΨ1i þ jΨ2iÞ; ð4:4Þ

where the relative phase ϕ is determined by the energy
difference,

ϕ ¼ ðEn¼2;l¼1 − En¼2;l¼0Þt=ℏ ¼ G2

16ℏ3
ΔUm5t: ð4:5Þ

The second beam splitter in the MZ scheme should
postselect the state jΨi. If ϕ is nonzero, i.e. if the brane-
world corrections do exist, the statistics on the detectors
would be modified to cos2 ϕ

2
and sin2 ϕ

2
. In this way, we can

experimentally obtain the value of the energy splitting if it
exists. Therefore, by preparing the particles in the super-
position state jΨi, simple MZ interferometry can be used to
refute (or support) the braneworld scenario. If the outcome
of the experiment were positive, in support of the brane-
world, one would be able to estimate the initially unknown
bulk parameter k ¼ 1=lAdS. In Fig. 6, we present a scheme
of the experimental proposal.

Note that we could also use a pair of identical bosons
instead of fermions. The main point of using identical
particles was to exploit the exchange symmetry properties
of their quantum state. Taking, for example, a pair of spin-1
bosons, we would have a symmetric orbital state, say
jn ¼ 2; l ¼ 0; m ¼ 0i, coupled to some symmetric spin
state (total spin 0 or 2), or an antisymmetric orbital state,
say jn ¼ 2; l ¼ 1; m ¼ 0i, coupled to some antisymmetric
(total spin 1) spin state. We could also choose fermions and
bosons with other values of the spin (different from zero).
What is essential is that the energy difference in orbital
states with different exchange symmetry (i.e., energy
splitting in the orbital quantum number l due to the
modification of the gravitational potential) can be revealed
by taking into account the exchange symmetry of the
corresponding spin state of the gravitational atom; the
overall exchange symmetry, i.e., whether the particles are
fermions or bosons, is not, therefore, essential. The rest of
the procedure is then virtually the same.

V. FEASIBILITY OF THE EXPERIMENT

From a purely theoretical point of view, as far as the
fundamental principles of quantum mechanics and classical
gravity are concerned, it seems that nothing prevents us
from executing the proposed experiment. Although, at this
point, we are not capable of providing precise technical
details of the relevant experimental procedures, we can at
least consider the orders of magnitude of the parameters
involved in our analysis and thus estimate whether such an
experiment is feasible.
The major difficulty we face is how to maintain a

gravitational atom, which could be built out of a pair of
large composite particles, in a state of quantum super-
position long enough. Some interesting recent develop-
ments concerning quantum control of large systems can
be found in [20–22]. Also, to reduce the effects of
decoherence, which depend on the complicated interaction
with the environment, we assume that the two particles are
neutral, interacting only via gravity. Moreover, our pro-
posal has a distinct advantage in that it does not involve a
direct test of the purported modification of Newtonian
potential, i.e., one does not have to actually measure the
strength of the gravitational interaction in order to find
whether it deviates from 1=r (and for that reason we are not
concerned with difficulties associated with high precision
measurements of gravity between very small masses). The
idea is to test the braneworld effect indirectly by using
ordinary quantum mechanics, and for that matter, the mass
scale of the gravitational atom in question is indeed
important.
Our setup is designed so that an observation of the phase

difference (relative phase) between states jψ1i and jψ2i
signalizes a deviation from 1=r, and the particular value of
the phase difference would, if it were observed, determine
the value of the AdS radius (lAdS ¼ 1=k), which is an

FIG. 6. The experimental setup. Interferometry is used to
determine the relative phase between the two states, jψ1i and
jψ2i, and therefore, test the braneworld hypothesis.
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unknown (but fixed) parameter of the five-dimensional
bulk theory of gravity. On the other hand, failing to detect
the phase difference would allow us to at least set a bound
on the five-dimensional AdS radius, thus narrowing the
scope of possible braneworld models. It is important to note
that potential experimental results essentially depend on the
value of the five-dimensional parameter in question. In
particular, larger values of the AdS radius (smaller k) would
require a smaller mass of the particles in order to detect
the same phase difference. Thus far, tabletop experiments
for the Einstein-Hilbert case set the upper bound on the
AdS radius at lAdS ≲ 10−1 mm, while certain cosmological
observations give us lAdS ≲ 10−2 mm, see Ref. [23].
Since we do not know the value of the five-dimensional

parameter lAdS, we want to be able to determine it or at least
significantly constrain it. The parameters that we have to
consider are the mass of the particles that make up the
gravitational atom, the coherence time for maintaining
the quantum superposition of the gravitational atom, and
the sensitivity of the MZ interferometer. By changing the
values of these parameters (within the scope of current
technology) and performing measurements of the phase
difference, we want to find out something about the five-
dimensional theory of gravity. In what follows we give our
estimation of the orders of magnitude for the relevant
parameters in order to assess the feasibility of the experi-
ment (we stick to the much more familiar Einstein-
Hilbert case).
The relative phase for our gravitational atom in the

superposition state (4.4) is given by

ϕ ¼ G2

16ℏ3
ΔUm5t; ð5:1Þ

wherem is the mass of each of the particles that make up the
gravitational atom, t is the time it takes the gravitational atom
to pass through the MZ interferometer (it has to be short
enough so that the gravitational atom can pass through the
MZ interferometer without decohering), and ΔU is a
dimensionless parameter whose role is explained above.
We set the sensitivity of the MZ interferometer at a rather
modest value of ϕ ¼ 0.01. We thus assume that below that
threshold we cannot detect the phase difference. As for the
coherence time, the methodology and technology of main-
taining quantum coherence for systems of relatively large
mass are developing very rapidly and in various directions.
Based on the recent achievements [24–26], it is reasonable to
consider the case of t ¼ 1s. Based on the numerical results
for ΔU presented in Fig. 3, we conclude that by using
particles ofm ∼ 10−16 kg we can lower the upper bound for
lAdS ¼ 1=k from the current 10−5m down to 10−11m, which
is a rather significant progress. As for the larger or smaller
masses, we can say the following.
Assuming m ∼ 10−18 kg, even with the current upper

bound for lAdS, the resulting phase difference is notably

small. This means that in our experimental proposal, we
should use larger masses. However, determining the upper
bound for the mass requires knowledge of the coherence
time for the respective particles. This is a challenging task
that is not solvable on a general basis. However, there is
another aspect of the problem that also puts constraints on
the mass. For that matter, we point out note that the radius
of a composite particle consisting of atoms depends on its
mass, and this can give us a meaningful upper bound for the
mass. Namely, we need the parameter a0 to be at least a few
times greater than the size of the particles. We can see that
for m ∼ 10−17 kg, we have a0 ∼ 10−7m, suggesting that we
could use particles of the type discussed, for example,
in [27], see also [28]. It is unexpected that one can use
composite particles with masses larger than m ∼ 10−16 kg
as parameter a0 would become too small (of the order of
atomic size). Therefore, our final estimate for the mass of
the (composite) particles that make up the gravitational
atom is between 10−18 kg and 10−16 kg.
Note however that we have focused on the first excited

state (n ¼ 2) of our system simply because it was the
simplest option to discuss. By increasing the quantum
number n, we can make the separation of particles larger,
thus mitigating the issue concerning the size of the
particles. By extension, this would also allow us to consider
masses larger than 10−16 kg, which were excluded, as we
saw, based on the relation between the size of the particles
and their separation.

VI. DISCUSSION AND CONCLUSION

The main purpose of this article was to promote the idea
that a particular hypothesis regarding the structure of
spacetime (the braneworld scenario), coming from high-
energy physics, could be tested in a tabletop experiment in
the near future by combining quantum mechanics with
classical gravity.
Our proposal is based on the fact that the braneworldRS II

model predicts a modification of the energy spectrum of
gravitationally bound states by lifting the characteristic
orbital degeneracy associated with Newtonian gravity. To
test the existence of an extra dimension and probe the
unknown five-dimensional parameter lAdS one uses a pair of
gravitationally bound neutral identical particles (fermions or
bosons) whose energy spectrum depends on whether their
spin state is symmetric or antisymmetric. From a practical
point of view, the crucial step would be to prepare the
particles in the superposition state (4.3), which might be
achievable by solely manipulating the spin of the particles.
A Mach-Zehnder interferometer is then used to measure the
relative phase between the two branches of superposition.
Detection of the relative phase signalizes a modification of
the Newtonian potential in support of the braneworld
scenario, yet failing to detect the relative phase would still
allow us to constrain the possible braneworld models.
Setting the sensitivity of the MZ interferometer at a rather
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modest value of ϕ ¼ 0.01 and assuming the coherence time
of order of 1s, the relevant mass range would be from
10−18 kg to 10−16 kg. In particular, by using particles of
m ∼ 10−16 kg we can significantly lower the upper bound
for lAdS ¼ 1=k from the current 10−5m down to 10−11m.
We have studied two cases of five-dimensional theories of

gravity, Einstein-Hilbert and nearly-Chern-Simons gravity,
and presented the numerical results concerning the orbital
energy splitting, which appears solely due to the braneworld
hypothesis (the presence of a large extra spatial dimension).
By controlling the masses of the particles that make up the
gravitational atom, one can obtain a graph of the relevant
energy difference and compare it to the theoretical predic-
tions such as Figs. 3 and 5 presented above. In this way,
one could discriminate between different models of five-
dimensional gravity. Another proposal for testing the RS
model can be found in [15]. However, we believe that
gravitational atoms made out of identical particles in
combination with quantum mechanics could be the most
straightforward way to test the braneworld models.
A possible extension of our work would be to make a

comparison to a similar experimental setup [29,30], dis-
cussing the entanglement between quantum particles
induced by gravity [31–35], see also [36,37]. In particular,
one could use potentials analyzed in this paper to see the
differences induced by the corrections coming from the
RS II model. In the case of Einstein-Hilbert gravity, and
using the limit of small or large distance, this was done
recently in [38,39]. It would be interesting to analyse other
experimental proposals and to see the effects coming from
different gravity models in the five-dimensional bulk. Let
us also note an interesting case of gravitationally bound
states of dark matter considered in [40]. One might suspect
that the effect analyzed in this paper could also be relevant
in that case. However, what we have discussed is a tabletop
experiment, and we are not suggesting that dark matter, or
anything similar, could be a viable resource for the

particular setup we have in mind. Nevertheless, in per-
spective, the influence of gravity on quantum mechanical
systems of the type analyzed in this paper could also be
relevant for some cosmological observations.
As a final remark, we point out that our discussion here

delves into the general possibility of achieving a super-
position of states while simultaneously extracting informa-
tion about gravitational dynamics. We have refrained from
delving into the specific superposition of states proposed in
our paper, as that would pose a considerable challenge that
would necessitate a separate investigation, which falls
outside the scope of this article. Nevertheless, our analysis
indicates that there are no inherent obstacles preventing the
execution of the proposed experiment, and with the positive
trend of recent experimental results, it is reasonable to
anticipate that the experiment we have envisioned will soon
become feasible with the currently available technology. Its
realization holds the promise of systematically scrutinizing
the theory of large extra dimensions.
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