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Nonsingular black holes have received much attention in recent years as they provide an opportunity to
avoid the singularities inherent to the mathematical black holes predicted by general relativity. Based on the
assumption that semiclassical physics remains valid in the vicinity of their horizons, we derive kinematic
properties of dynamically evolving spherically symmetric regular black holes. We review the Hawking-
Ellis classification of their associated energy-momentum tensors and examine the status of the null energy
condition in the vicinity of their horizons as well as their interior. In addition, we analyze the trajectory of a
moving observer, find that the horizons can be crossed on an ingoing geodesic, and thus entering and
exiting the supposedly trapped spacetime region is possible. We outline the ramifications of this result for
the information loss problem and black hole thermodynamics. Throughout the article, we illustrate relevant
features based on the dynamical generalization of the regular black hole model proposed in Carballo-Rubio
et al. [J. High Energy Phys. 09 (2022) 118] and elucidate connections to the only self-consistent dynamical
physical black hole solutions in spherical symmetry.
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I. INTRODUCTION

While the existence of dark massive compact objects has
been established beyond any reasonable doubt, their precise
physical nature remains enigmatic, with a range of pos-
sibilities under consideration [1–6]. The prevalent astro-
physical description is the Schwarzschild/Kerr black hole
paradigm, which is based on the mathematical black hole
(MBH) solutions of general relativity (GR). Their hallmark
features are the presence of an event horizon and central
singularity. Despite the successes of the paradigm, both
features that distinguish MBHs are accompanied by
empirical and conceptual pathologies which are absent
by design in many alternative models describing dark
ultracompact objects (UCOs) that are also compatible with
observational data.
By its very definition, the event horizon is a global

geometric property and thus physically unobservable [7].
While current data is consistent with having the
Schwarzschild/Kerr solutions as asymptotic final states
of gravitational collapse, such objects are de facto horizon-
less for distant observers (as their horizons exist only for
t → ∞). In contrast, physical black holes (PBHs) [8]
bounded by a dynamically evolving quasilocal horizon
formed in finite time according to the clock of a distant

observer are (at least in principle) physically observable,
i.e. there is a measurement that can be performed in a finite
time interval and within a finite-size region of spacetime to
determine the presence or absence of a quasilocal horizon.
The presence of a physical singularity (i.e. one that is not an
artifact of a particular choice of coordinates) inevitably
introduces nontrivial causal structures into the spacetime at
large [9] and is typically interpreted as a harbinger that the
underlying theory breaks down.1 An immediate conse-
quence that is frequently discussed in the literature is the
so-called information loss paradox [11]: in this scenario,
the apparent lack of unitarity in the black hole evaporation
process is typically ascribed to the propagation of quantum
correlations into the singularity located at the black hole’s
interior [12]. To maintain unitarity and avoid information
loss, it has been conjectured that the time dependence of the
Hawking radiation’s entanglement entropy follows the
Page curve [13,14], i.e. it first increases until it reaches
its peak at the Page time (where it coincides with the
Bekenstein–Hawking entropy [15–20] of the black hole)
and subsequently decreases until it reaches zero at the end
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1“The crushing of matter to infinite density by infinite tidal
gravitational forces is a phenomenon with which one cannot live
comfortably. […] it is difficult to believe that physical singular-
ities are a fundamental and unavoidable feature of our universe.
[…] one is inclined to discard or modify that theory rather than
accept the suggestion that the singularity actually occurs in
nature” [10].
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of the evaporation process (corresponding to a final pure
state).2

Several alternatives to MBHs have been proposed to
describe the observed astrophysical black hole candidates
and avoid the presence of singularities, including horizon-
less UCOs [5], gravastars [22,23], wormholes [24–26], and
fuzzballs [27,28]. Our analysis in this article focuses on
dynamical models of “horizonful” but singularity-free
regular black holes (RBHs) [29–32] that are bounded by
a quasilocal inner and outer horizon. In such models, the
spacetime is typically regularized through the introduction
of a minimal length scale that arises from a theory of
quantum gravity and acts as a Planckian cutoff. In spherical
symmetry, the central singularity is replaced by a de Sitter
core and the introduction of a minimal length scale leads to
the emergence of an inner horizon [33]. The minimal length
scale is bounded from above by observational data, such as
the trajectory of the S2 star orbiting Sagittarius A⋆ [34], i.e.
the astrophysical black hole candidate at the center of the
Milky Way galaxy. The close contact with astrophysical
observations of dark UCOs highlights the importance of
studying realistic candidate models such as dynamically
evolving RBHs more thoroughly.
It is worth noting that significant challenges arise from

the presence of an inner horizon due to the fact that they are
typically unstable under small perturbations. These insta-
bilities are characterized by an exponential growth of the
gravitational energy in the neighborhood of the inner
horizon (which can be checked by tracking the relevant
curvature scalars), a problem known as mass inflation
instability [35–40]. We use the dynamical generalization of
the so-called inner-extremal RBH model proposed in
Ref. [41] to illustrate the key aspects of our analysis. In
this model, the mass inflation problem is resolved at the
expense of a degenerate inner horizon with vanishing
surface gravity, although a recent study argues that even
in this case the mass inflation instability cannot be avoided
once semiclassical effects are taken into account [42].
Nevertheless, we stress that the properties we derive in this
article are generic and apply to any and all dynamical RBH
models described by a metric function of the form given
in Eq. (7).
The absence of the central singularity is the principal

characteristic of nonsingular black holes and offers a
potential resolution to the information loss problem. In
such models, the infalling matter never disappears from the
manifold, and may possibly escape. By considering
dynamical RBH models rather than their static counter-
parts, we explore this phenomenon based on the

assumption that semiclassical gravity remains valid in
the vicinity of their horizons.
The remainder of this article is organized as follows: in

Sec. II, we review the construction of spherically sym-
metric dynamical RBHs in semiclassical gravity from a
model-agnostic point of view, and introduce the inner-
extremal RBH model we use to illustrate relevant physical
features in Figs. 2–6. We then focus on the classification of
energy-momentum tensors (EMTs) describing dynamical
RBHmetrics, discuss implications for the associated matter
content, and in particular for the status of the null energy
condition (NEC) in the vicinity and interior of RBHs
(Sec. III). In Sec. IV, we consider the perspective of a
moving observer attempting to escape the trapped space-
time region. Based on an expression for the linear coef-
ficient of the Misner-Sharp (MS) mass, we highlight the
relevance of our results for black hole thermodynamics and
the transition between self-consistent dynamical PBH
solutions (Sec. V). Lastly, we summarize the physical
implications of our results and comment on possible
avenues for future research related to nonsingular black
hole spacetimes (Sec. VI). Throughout this article, we use
the metric signature ð−;þ;þ;þÞ and work in dimension-
less units such that c ¼ G ¼ ℏ ¼ kB ¼ 1.

II. DYNAMICAL REGULAR BLACK HOLES IN
SEMICLASSICAL GRAVITY

The geometry of a general spherically symmetric space-
time is described by the line element

ds2 ¼ −e2hþðv;rÞfðv; rÞdv2 þ 2ehþðv;rÞdvdrþ r2dΩ2; ð1Þ

where dΩ2 denotes the normalized spherically sym-
metric Riemannian metric on the 2-sphere S2. The metric
function fðv; rÞ is related to the MS mass [43] Mðv; rÞ ¼
Cðv; rÞ=2 via

fðv; rÞ ≔ ∂μr∂μr ¼ 1 −
Cðv; rÞ

r
; ð2Þ

where r denotes the areal radius, the MS mass3 is described
by the series expansion

Cðv; rÞ ¼ rþðvÞ þ
X∞
i¼1

wiðvÞðr − rþðvÞÞi; ð3Þ

with coefficients
2The results of a recent study [21] indicate that the evaporation

of two-dimensional nonsingular dilatonic black holes, which can
be used to model some of the thermodynamic properties of four-
dimensional nonsingular black holes, conforms to the unitary
evolution predicted by the Page curve.

3While the MS mass is technically Cðv; rÞ=2, we take the
liberty to refer to Cðv; rÞ itself as the MS mass as well when there
is no need (in terms of its physical relevance) to account for the
factor of one half.
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wiðvÞ ¼
1

i!
∂
iCðv; rÞ
∂ri

����
rþðvÞ

; ð4Þ

and the functions hðt; rÞ and hþðv; rÞ play the role of
integrating factors that turn the expression

dt ¼ e−hðt;rÞ
�
ehþðv;rÞdv −

dr
fðv; rÞ

�
ð5Þ

into an exact differential (provided that the coordinate
transformation exists). Since hþðv; rÞ ¼ 0 in all spherically
symmetric RBH spacetimes that we are aware of, we limit
our considerations to this case in what follows.4 The
general spherically symmetric metric specified in Eq. (1)
then simplifies to

ds2 ¼ −fðv; rÞdv2 þ 2dvdrþ r2dΩ2; ð6Þ

and a dynamically evolving RBH is described by a metric
function of the form

fðv; rÞ ¼ gðv; rÞðr − r−ðvÞÞaðr − rþðvÞÞb; ð7Þ

where r−ðvÞ and rþðvÞ denote the inner and outer horizon,
respectively, and a; b∈N>0 ¼ f1; 2;…g are positive inte-
gers labeling their degeneracy. The role of the a priori
undetermined function gðv; rÞ is to ensure regularity at the
center as well as the proper asymptotic behavior of the
metric at infinity [44]. It must be positive for the entire
existence of the trapped region, that is gðv; rÞ > 0 for every
vf ≤ v ≤ vd, where vf and vd denote the formation and
disappearance of the trapped region, respectively, as indi-
cated in Fig. 1.
The expansions of ingoing and outgoing radial null

geodesics are given by

θ− ¼ −
2

r
; θþ ¼ fðv; rÞ

r
; ð8Þ

respectively. The existence of a trapped spacetime region is

determined by the signature of their product θ−θþ≶
?

0.
Following the argumentation in Ref. [45], a trapped region
is present if and only if θ−θþ > 0. In consequence, the
disappearance of the trapped region at v ¼ vd implies
θ−θþjvd ≤ 0. At this point, the inner and outer horizon
merge, i.e. r−ðvdÞ≡ rþðvdÞ. From Eqs. (7) and (8), it then
follows that

θ−θþjvd ¼ −
2

r2
gðvd; rÞðr − rþðvdÞÞaþb ≤ 0: ð9Þ

For this to hold true ∀ r ≥ 0, we must have gðv; rÞ > 0,
and the sum of the powers aþ b must be even (otherwise
the trapped region cannot disappear, which would imply
that an RBH cannot evaporate completely). In addition, the
sign of the outgoing radial null geodesic θþ can only
change (which is a prerequisite to enable the formation of a
trapped region) if both a and b are odd numbers due to the
fact that the immediate neighborhood of the RBH center
must be an untrapped region [44].
A model that—once generalized to the dynamical case

[i.e. r0− ≠ 0 and r0þ ≠ 0]—satisfies all of the requirements
outlined above is the inner-extremal RBH model intro-
duced in Ref. [41] (whose associated mathematical expres-
sions are indicated by the subscript “ie” in what follows). In
the dynamical case, it is described by the metric function

FIG. 1. Schematic Carter-Penrose diagram depicting the for-
mation and evaporation of a RBH with an apparent horizon rg
that has a shrinking inner r− (dashed blue line) and shrinking
outer rþ (solid red line) component. The trajectory of a distant
observer Bob is indicated in purple and marked by the initial B.
The dashed gray line corresponds to an outgoing radial null
geodesic that reaches future null infinity Iþ. The asymptotic
structure of a simple RBH spacetime coincides with that of
Minkowski spacetime. An immediate neighborhood of r ¼ 0
never belongs to the trapped region. The points f and d represent
the events of formation and disappearance of the trapped region.
The equal time hypersurface Σtf is shown as a dashed orange line
connecting the center r ¼ 0 and spacelike infinity i0. Both the
outer and inner horizon are timelike membranes over the course
of the lifespan of the RBH, i.e. ∀ v∈ ðvf ; vdÞ.

4Note also that hþðv; rÞ ¼ 0 at the outer horizon r ¼ rþðvÞ.
For hþðv; rÞ ¼ 0 and Cðv; rÞ≡ CðvÞ, the metric of Eq. (1)
reduces to the Vaidya metric.
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fieðv; rÞ ¼ gieðv; rÞðr − r−Þ3ðr − rþÞ; ð10Þ

gieðv; rÞ ¼
1

r3−rþ − ð3r2−rþ þ r3−Þrþ c2r2 − 3r−r3 þ r4
;

ð11Þ

where

c2 ¼ c̃2 þ
15

4
r2− þ 9

4
r−rþ þ 1

4

r3−
rþ

; c̃2 ≥ 0; ð12Þ

and we have omitted dependencies on v [r� ≡ r�ðvÞ,
c2 ≡ c2ðvÞ, c̃2 ≡ c̃2ðvÞ] for the sake of readability. The
explicit form of the coefficient c̃2 is constrained by the
positivity requirement of the MS mass. An explicit deri-
vation of Eqs. (10)–(12) including our choice for c̃2
[cf. Eq. (A16)] is provided in Appendix A.
Since this is a dynamical model, we must consider

appropriate generalizations of surface gravity to quasilocal
non-Killing horizons [46,47]. The two principal general-
izations to dynamical black hole spacetimes are related to
either the affine peeling surface gravity [48] or the so-called
Kodama surface gravity [49–51]. Here, we restrict our
considerations to the latter since the peeling surface gravity
is ill-defined for transient objects that form in finite time of
a distant observer [52–54] (which includes dynamical
RBHs), and there are strong arguments that Kodama
surface gravity is the critical quantity with respect to the
emission of Hawking radiation [51,54].
It is worth noting that any dynamical generalization of

surface gravity vanishes at a degenerate horizon [45]. Thus,
the inner [a ¼ 3] and outer [b ¼ 1] horizon degenaracies of
the inner-extremal RBHmodel [cf. Eqs. (7) and (10)] imply
a nonzero Kodama surface gravity at the outer horizon and
a vanishing Kodama surface gravity at the inner horizon.
The latter is what ultimately cures the mass inflation
instability problem that typically plagues RBHs [41] (at
least in classical GR).
The assumption that a regular (in the sense that scalar

curvature invariants remain finite) apparent horizon rg
forms in finite time of a distant observer implies a violation
of the NEC [8]. This leaves only evaporating black holes
[r0g < 0] and accreting white holes [r0g > 0] as viable (i.e.
real-valued) horizonful solutions to the spherically sym-
metric semiclassical Einstein equations (see Ref. [8],
Table 2). As our interest lies in describing singularity-free
objects resulting from gravitational collapse, we limit our
considerations to evaporating RBH solutions [i.e. r0− < 0
and r0þ < 0] in what follows. In this case, the inner and
outer components of the apparent horizon are timelike
membranes for the entire evolution v∈ ðvf ; vdÞ of the black
hole, i.e. from immediately after the instant of horizon
formation at v ¼ vf until just before the disappearance of
the trapped region at v ¼ vd [55]. This can be seen as
follows: a hypersurface Σ can be defined by restricting the

coordinates via ΦðΣrξÞ≕ r − rξ ≡ 0. The inner and outer
horizon correspond to the constraint

ΦðΣr�Þ ¼ r − r� ≡ 0; ð13Þ

which leads to a normal vector nμ defined by

nμ ≕ η∂μΦðΣr�Þ ¼ ηð−r0�; 1; 0; 0Þ; ð14Þ

where η is a normalization factor. Using the simplified
metric of Eq. (6), the inner product of this normal vector at
the inner/outer horizon is given by

nμnμjr� ¼ −2η2r0�: ð15Þ

For evaporating RBHs [r0� < 0] this inner product is
spacelike, nμnμ > 0. Consequently, the causal character
of the inner and outer horizon is timelike.

III. ENERGY MOMENTUM TENSOR AND
ENERGY CONDITIONS FOR AN EVAPORATING

REGULAR BLACK HOLE

A. Hawking-Ellis classification

The Hawking-Ellis classification of the EMT [56]
provides a convenient model-independent framework to
study the matter content of a spacetime geometry as well as
its connection to various energy conditions [57,58]. The
different EMT types I-IV are distinguished through their
eigenvectors, and more specifically through their causal
structure (timelike vs. null vs. spacelike) and degeneracy
(single, double, triple). We work in an orthonormal frame
(abbreviated ONF; indicated by a hat “ ˆ” on the tensor
indices in what follows) in which the eigenvalues λ of the
EMT are the solutions of the equation

det ðT μ̂ ν̂ − λημ̂ ν̂Þ ¼ 0: ð16Þ

In spherical symmetry, the generic form of the EMT in the
ONF is given by

T μ̂ ν̂ ¼

0
BBB@

T 0̂ 0̂ T 0̂ 1̂ 0 0

T 1̂ 0̂ T 1̂ 1̂ 0 0

0 0 T 2̂ 2̂ 0

0 0 0 T 3̂ 3̂

1
CCCA; ð17Þ

where explicit expressions for the EMT components are
provided in Appendix B, and T 2̂ 2̂ ¼ T 3̂ 3̂ due to the
symmetries of the spacetime. Both of these components
are also eigenvalues of the EMT. Their corresponding
eigenvectors are v2̂ ¼ ð0; 0; 1; 0Þ and v3̂ ¼ ð0; 0; 0; 1Þ,
respectively. The remaining eigenvalues are determined
by the (reduced) characteristic polynomial
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λ2 þ ðT 0̂ 0̂ − T 1̂ 1̂Þλþ ðT2
0̂ 1̂

− T 1̂ 1̂T 0̂ 0̂Þ ¼ 0; ð18Þ

and their degeneracy is specified by its discriminant

Δ ¼ ðT 0̂ 0̂ þ T 1̂ 1̂Þ2 − 4T2
0̂ 1̂
: ð19Þ

For the general spherically symmetric metric specified in
Eq. (1), the discriminant is given by

Δðv; rÞ ¼ ∂rhþ
16π2r2

½ð∂rhþÞf2 − 2e−hþ∂vf�: ð20Þ

For hþ ¼ 0 we have Δ ¼ 0, meaning that—depending on
the value of the EMT component T 0̂ 1̂—the EMT will be
either of type II or degenerate type I [58]. Dynamical RBHs
necessarily have T 0̂ 1̂ ≠ 0. In this case, there exists only one
additional eigenvector, and the corresponding EMT is of
type II (null dust/massless radiation). For static RBH
models, on the other hand, T 0̂ 1̂ ¼ 0, T 1̂ 1̂ ¼ −T 0̂ 0̂, and
the EMT admits four eigenvectors corresponding to type I,
which is degenerate in this case because two different
eigenvectors are associated with the same eigenvalue.
These results are consistent with the theorem derived in
Ref. [59]. The same type of EMT arises for the cosmo-
logical constant fluid [58]. However, in contrast to the
perfect fluid associated with the cosmological constant,
RBH models (both static and dynamical) correspond to an
imperfect (anisotropic) fluid since T 1̂ 1̂ ≠ T 2̂ 2̂ [60,61].
The type of EMT that is associated with a particular

solution of the Einstein equations has implications for the
status of various energy conditions [56]. Here, we focus on
the null energy condition (NEC), which posits that
Tμνlμlν ≥ 0, i.e. the contraction of the EMT with any
future-directed null vector lμ is non-negative. Since the
NEC is the weakest of all energy conditions, its violation
implies that all other energy conditions (strong, weak,
dominant) are violated as well. In spherical symmetry, an
EMT of type IV is generally considered to be the most
exotic as it always violates the NEC. The expectation value
of the renormalized EMT near the apparent horizon of a
spherically symmetric black hole has been shown to be of
this type [62,63]. Conversely, as we have outlined above,
dynamical RBHs are described by an EMT of type II. This
raises the question of how the NEC behaves in the vicinity
of the inner and outer horizon, as well as inside of the
RBH’s trapped region.

B. Null energy condition

An apparent horizon can be observed from future null
infinity Iþ only if the NEC is violated in its vicinity
[56,64,65]. For PBHs (which include RBHs as the
singularity-free subset) with hþ ¼ 0, the NEC is marginally
satisfied for ingoing null vectors [8]. For the metric

specified in Eq. (6), an outgoing null vector is described
by lμ ¼ ð1; f=2; 0; 0Þ. Since the NEC is a classical energy
condition, it is reasonable to expect violations in the
presence of quantum effects that ultimately lead to the
evaporation of RBHs [66]. In fact, it has been demonstrated
that the emission of Hawking radiation [18,19] violates
several energy conditions [12,67–69]. It should also be
noted that—contrary to popular belief—an event horizon is
not required to enable the emission of Hawking radiation: a
slowly evolving future apparent horizon is sufficient [70].
Using the components of the Einstein tensor

Gμν ¼ 8πTμν, the NEC can be expressed as

Tμνlμlν ¼ 1

8π

�
G00 þ G01f þG11

f2

4

�
≥ 0; ð21Þ

evaluated at the horizon. For the metric of Eq. (6), we find

Tμνlμlν ¼ −
∂vf
8πr

: ð22Þ

As argued in Sec. II, we consider only evaporating RBH
solutions [r0− < 0 and r0þ < 0]. Evaluating Eq. (22) at the
horizons, we find that the NEC is violated in the vicinity of
the outer horizon while being satisfied in the vicinity of the
inner horizon. Assuming that semiclassical gravity is valid,
this is a universal property for spherically symmetric
dynamical RBHs. As we will see below, the change in
the signature of the NEC expression implies the presence of
a hypersurface r0ðvÞ that acts as a boundary between the
NEC-violating and the NEC-nonviolating region within the
trapped spacetime domain.
For the generic metric function Eq. (7) describing

dynamical RBHs, performing a series expansion of
Eq. (22) at the outer apparent horizon yields

Tμνlμlνjrþ ¼ −bgðv; rþÞð−r0þÞðrþ − r−Þa
8πrþ

ðr − rþÞb−1

þOðr − rþÞb: ð23Þ

Therefore, the NEC is always violated in the vicinity of the
outer horizon (both inside and outside of the trapped
region) irrespective of its degeneracy, as our argumentation
in Sec. II revealed that b is odd. For a degenerate outer
horizon [b > 1], the NEC is marginally satisfied at the
outer horizon r ¼ rþ itself. However, note that having a
nonzero surface gravity at the outer horizon is only possible
if it is nondegenerate [45], i.e. if b ¼ 1 [cf. Eq. (12) in
Ref. [44] ]. Once again, we stress that the violation of the
NEC is not only consistent with, but rather, it is a
prerequisite for the observability of the outer apparent
horizon from future null infinity.

KINEMATIC AND ENERGY PROPERTIES OF DYNAMICAL … PHYS. REV. D 108, 124007 (2023)

124007-5



At the inner horizon, we find

Tμνlμlνjr− ¼ ð−1Þbþ1
agðv; r−Þð−r0−Þ

8πr−
ðrþ − r−Þb

· ðr − r−Þa−1 þOðr − r−Þa: ð24Þ

Consequently, the NEC is satisfied in the vicinity of the
inner horizon, and marginally satisfied at r ¼ r− if it is
degenerate [a > 1]. Since the NEC is always violated in the
vicinity of the outer apparent horizon, consistency requires
the existence of a hypersurface r0 ∈ ðr−; rþÞ located
between the inner and outer horizon, thus effectively
separating the trapped region into two distinct spacetime
domains as detailed in Table I.
To illustrate this behavior in more detail, we consider the

dynamical generalization of the inner-extremal RBH model
[41] described by Eqs. (10)–(12). Evaluating Eq. (22) at the
outer horizon for the metric function of Eq. (10), we find

Tμνlμlνjrþ ¼ ðrþ − r−Þ3r0þ
8πr3þðr2þ þ r2−Þ

; ð25Þ

which is either negative or zero due to r0þ < 0; equality
occurs only at the extremal cases, i.e. at the formation v ¼ vf
and disappearance v ¼ vd of the trapped region. At the inner
horizon, the corresponding expression is always zero due to
its degenerate nature [a ¼ 3 in the inner-extremal RBH
model, cf. Eq. (10)], and thus the NEC is always satisfied. At
the formation v ¼ vf and disappearance v ¼ vd of the
trapped region, the two expressions for the NEC coincide
as the inner and outer apparent horizon (e)merge.
Figure 2 illustrates the extent of the NEC violation for an

evaporating inner-extremal RBH. We note that the mini-
mum (i.e. a maximally violated NEC) occurs close to the
disappearance of the trapped region, indicating that the
quantum effects responsible for the NEC violation are more
pronounced toward the final stages of the evaporation
process. This is in qualitative agreement with the results
obtained for evaporating two-dimensional regular dilatonic
black holes [21].
The existence of an NEC boundary has been pointed out

previously for RBHs with horizons that are not exclusively
timelike [64]. However, in our analysis, both the inner and
outer horizon are timelike for the entire evolution of the

evaporating RBH as motivated by our argumentation in
Sec. II. Determining the location of the hypersurface
separating the NEC-violating from the NEC-nonviolating
region requires solving the schematic equation

Tμνlμlν¼! 0: ð26Þ

For the inner-extremal RBH model [that is, using Eq. (22)
with the metric functions Eqs. (10)–(12)], we obtain five
roots, namely r ¼ 0, r ¼ r− (double root), r0, and two
complex conjugate roots which are excluded since r is real.
The expression obtained for the root r0 is too convoluted to
determine its exact location. However, in the vicinity of the
inner apparent horizon r ∼ r−, we find

Tμνlμlνjr∼r− ¼ −3r0−ðrþ − r−Þ
8πr4−ðrþ þ r−Þ

ðr − r−Þ2 þOðr − r−Þ3;

ð27Þ

indicating that the NEC is satisfied as r0− < 0.
Our analysis in this section is valid for vf ≤ v ≤ vd, i.e.

for as long as the trapped spacetime region persists,
including the instants of its formation and disappearance.
Figure 3 illustrates the trapped spacetime region and the
status of the NEC over the course of the RBH’s lifetime. In
the next section, we consider the energy density observed
by a moving observer, and find that a similar feature of the
trapped region emerges.

TABLE I. Overview of NEC-nonviolating (✓) and NEC-
violating (✗) regions of an evaporating RBH with a nondegena-
rate outer horizon [b ¼ 1]. If the outer horizon is degenerate
[b > 1], the NEC-violating region is given by r0 < r < rþ, i.e. it
no longer includes the outer horizon r ¼ rþ itself.

0 ≤ r ≤ r− r− < r ≤ r0 r0 < r ≤ rþ

Tμνlμlν ≥
?
0 ✓ ✓ ✗

FIG. 2. Evaluation of the NEC for the entire evolution period
v∈ ½vf ; vd� of an evaporating inner-extremal RBH. The red (blue)
line represents the NEC evaluated at the outer (inner) apparent
horizon rþðvÞ ½r−ðvÞ�. The points v ¼ vf and v ¼ vd denote the
advanced null coordinate at the formation and disappearance of
the trapped region, respectively. For the purpose of modeling the
NEC violation, the outer and inner horizon are chosen as rþðvÞ ¼
rþð0Þ − aþv − bþv2 and r−ðvÞ ¼ r−ð0Þ − a−v − b−v2 with
parameter values aþ ¼ 0.1, bþ ¼ 0.1, a− ¼ 1, b− ¼ 0.001,
and initial radii rþð0Þ ¼ r−ð0Þ ¼ 10. With this particular choice,
the equation rþðvÞ ¼ r−ðvÞ has exactly two roots, which re-
present the formation and the disappearance point.
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IV. TRAJECTORIES OF MOVING OBSERVERS

In this section, we study the trajectory of a moving
observer Alice. We start by examining the energy density
she observes while following a particular geodesic that
allows her to enter and exit the trapped region.

A. Ingoing and outgoing trajectories:
Entering and exiting the trapped region

Assume that Alice begins her expedition from the
untrapped region near the RBH center and initially follows
an outgoing geodesic. After making a few generic state-
ments about her trajectory, we once again illustrate our
results based on the dynamical inner-extremal model
described by Eqs. (10)–(12) and comment on important
features that arise over the course of her journey.
For radially moving timelike observers and particles, the

Lagrangian associated with the metric of Eq. (6) is given by

L ¼ 1

2
fv̇2 − v̇ ṙ; ð28Þ

where the overdot denotes derivatives with respect to
Alice’s proper time.5 The corresponding Euler-Lagrange
equations are

v̈ ¼ −
1

2
ð∂rfÞv̇2; ð29Þ

̈r ¼ 1

2
ð∂vfÞv̇2 −

1

2
ð∂rfÞ: ð30Þ

Alice’s four-velocity is normalized by uμuμ ¼ −1, which
results in

−fv̇2 þ 2v̇ ṙ ¼ −1: ð31Þ

From the normalization conditions, we obtain two possible
solutions for v̇, which in turn restrict the admissible values
of the radial velocity ṙ. Specifically, we find that

v̇ ¼ ṙ�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ṙ2 þ f

p
f

: ð32Þ

To ensure that Eq. (32) maintains real-valued solutions
inside of the trapped region, the relation

ṙ ≤ −
ffiffiffiffiffiffi
−f

p
ð33Þ

must hold ∀ v∈ ðvf ; vdÞ. Outside of the trapped region
there are no restrictions since fðv; rÞ is always positive
there. It is important to note that, during Alice’s motion, v̇
must be positive. This condition necessitates different
choices for the sign in the numerator of Eq. (32) to

(b)(a)

FIG. 3. The solid and dashed black lines represent the evolution of the outer rþ and inner r− apparent horizon, respectively, until the
disappearance of the trapped region. The solid gray line indicates the location of the hypersurface r0 which separates the NEC-violating
region between r0 and rþ from the NEC-nonviolating region between r0 and r−. (a) Illustration of the trapped spacetime region in the
v-r-plane. (b) Status of the NEC within the trapped region and its vicinity. The spacetime domain where the NEC is violated (satisfied) is
shaded in red (blue). The hypersurface r0 located between the two horizons corresponds to the boundary of the two domains.

5Since the action and its corresponding Lagrangian are invariant
under reparametrization of the trajectory and our argumentation in
this section requires only the equations of motion, we have the
freedom to choose the time parameter in the Lagrangian.

KINEMATIC AND ENERGY PROPERTIES OF DYNAMICAL … PHYS. REV. D 108, 124007 (2023)

124007-7



accommodate different types of motion associated with the
spacetime regions Alice is traversing. For untrapped
regions, i.e. for 0 ≤ r < r− and r > rþ, it is straightforward
to verify that the correct choice of signature is “þ” for both
ingoing and outgoing trajectories. On the other hand, this is
not the case when trajectories inside the trapped region are
considered. The deviation occurs because ṙ < 0 for both
ingoing and outgoing trajectories, which is a well-known
feature associated with the presence of a trapped region due
to the fact that fðv; rÞ is negative there [55,71,72]. In this
case, to guarantee the positivity of v̇ and ensure that it takes
on only real values, ingoing and outgoing trajectories must
satisfy the respective relations

v̇ ¼ ṙþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ṙ2 þ f

p
f

; r− < r < rþ ðingoingÞ; ð34Þ

v̇ ¼ ṙ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ṙ2 þ f

p
f

; r− < r < rþ ðoutgoingÞ: ð35Þ

With this in mind, an interesting exercise is to investigate
what happens to the radial acceleration of Alice’s motion in
the general case described by Eq. (7). As Alice begins her
journey from an untrapped region, her trajectory (both
ingoing and outgoing) is described by the signature given in
Eq. (34). On her outgoing trajectory, she first encounters
the inner horizon. Performing a series expansion on the
right-hand side of Eq. (30) reveals that, when approaching
the inner horizon on an outgoing geodesic that satisfies
Eq. (34), her radial acceleration is given by

r̈¼ ð−1Þaþb2aṙ2

gðv;r−Þðrþ− r−Þb
r0−ðvÞ

jr− r−jaþ1
þO

�
1

ðr− r−Þa
�
: ð36Þ

From our argumentation in Sec. II, we know that
(A) the disappearance of a trapped region in finite time

according to the clock of a distant observer is only
possible if the sum of the horizon degeneracies
aþ b is an even number;

(B) the only viable dynamically evolving semiclassical
black hole solutions in spherical symmetry are
evaporating black holes; for dynamical RBHs, this
implies that both the inner and outer component of
the apparent horizon must shrink.

Therefore, while traveling on an outgoing trajectory, Alice’s
acceleration is negative and divergent, thus forcing her to
stop and reverse her trajectory so as to follow an ingoing
geodesic. We note that the value ṙ ¼ 0 for the radial velocity
is allowed since Alice is still in the untrapped region r < r−.
Assuming that semiclassical gravity remains valid in this
regime, this is another universal result that holds for every
dynamical RBH described by Eq. (7).
Close to the evaporating inner horizon, specific trajec-

tories undergo a transition from outgoing to ingoing. As a
result, the inner horizon can overtake Alice, and she may

find herself inside of the trapped region. In fact, this is the
only way to enter the trapped region from areal radii
r < r−. Once inside, Alice’s motion is characterized by
ṙ < 0 and ̈r < 0. This implies that her radial velocity ṙ will
continue to become increasingly more negative until it
reaches the minimum value −

ffiffiffiffiffiffi
−f

p
. At this point, a

continuous transition from Eq. (34) to Eq. (35) occurs,
and Alice will once again find herself on an outgoing
geodesic. As she approaches the outer apparent horizon,
her acceleration is given by

r̈¼ 2bṙ2

gðv;rþÞðrþ− r−Þa
−r0þðvÞ

jr−rþjbþ1
þO

�
1

jr−rþjb
�
; ð37Þ

which is positive. Therefore, as she approaches the horizon,
her velocity becomes less and less negative until she
reaches the maximum allowed value. Once again, a
transition occurs, this time from Eq. (35) to Eq. (34),
meaning that Alice now finds herself on an ingoing
trajectory, and she can only exit the trapped region if the
outer apparent horizon overtakes her. Consequently, no
matter which horizon Alice approaches on an outgoing
geodesic, there is a unique way to cross it, namely on an
ingoing geodesic. This analysis provides relevant insights
on how information (e.g. in the form of particles) can exit
the trapped region, thus offering a natural resolution to the
information loss problem [11] as information that is
supposedly trapped can once again become visible to an
observer who is performing measurements in the exterior of
the trapped region. However, as illustrated in Fig. 4(a),
information will become visible for distant observers only
after the two horizons have merged and the trapped region
has disappeared.

B. Energy density at the horizon crossing

In this subsection, we calculate the energy density
experienced by Alice upon her exit from the trapped
region. Recall that Alice’s motion is described by the
four-velocity

uμA ¼ ðv̇; ṙ; 0; 0Þ; ð38Þ

and the energy density she observes is given by the
contraction

ρA ¼ Tμνu
μ
Au

ν
A; ð39Þ

or, equivalently,

ρA ¼ 1

8π
ðG00v̇2 þ 2G01v̇ ṙþG11ṙ2Þ: ð40Þ

Instants where Alice crosses the horizons are of particular
interest. Horizon crossings always occur while she is on an
ingoing geodesic trajectory, meaning that v̇ is given by
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Eq. (34), and ṙ is negative at each crossing. Close to both
horizons fðv; rÞ ≃ 0, and thus we can expand her ingoing
trajectory [Eq. (34)] and measured energy density
[Eq. (40)] as follows:

v̇jr� ¼ −
1

2ṙ
þ f
8ṙ3

þOðf2Þ; ð41Þ

ρAjr� ¼
�

1

8πr2

�
1 − r∂rf −

r
4ṙ2

∂vf

������
r�

þOðfÞ: ð42Þ

Using Eqs. (41) and (42), we can confirm that Alice
observes a finite energy density when crossing the hori-
zons, although the specific values will depend on their
degeneracy, see Eqs. (43)–(46). Therefore, unlike non-
geodesic observers, Alice does not experience any firewalls
(in the sense of a diverging energy density) on her ingoing
geodesic. When she is traveling in the vicinity of a
nondegenerate inner horizon [a ¼ 1], we find that

ρAjnondegr− ¼ 4ṙ2 − gðv; r−Þr−ðr− − rþÞbð4ṙ2 − r0−Þ
32πṙ2r2−

þOðr − r−Þ; ð43Þ

whereas for a degenerate inner horizon [a > 1]

ρAjdegr− ¼ 1

8πr2−
−
r − r−
8πr3−

þOðr − r−Þ2; ð44Þ

which is independent of the outer horizon degeneracy b.
Similarly, we can calculate the relevant expressions when

Alice travels near the vicinity of the outer horizon. For the
nondegenerate case [b ¼ 1], we obtain

ρAjnondegrþ ¼ 4ṙ2 − gðv; rþÞrþðrþ − r−Það4ṙ2 − r0þÞ
32πṙ2r2þ

þOðr − rþÞ; ð45Þ

while in the degenerate case ½b > 1�

ρAjdegrþ ¼ 1

8πr2þ
−
r − rþ
8πr3þ

þOðr − rþÞ2: ð46Þ

Again, we demonstrate the physical implications of
these results based on the dynamical inner-extremal model
described by Eqs. (10)–(12). From Eq. (42), or, equivalently,
from Eqs. (44) and (45) [recall that a ¼ 3 and b ¼ 1 in this
model], we find that the energy density Alice observes at the
degenerate inner horizon is given by

ρAja¼3
r− ¼ 1

8πr2−
; ð47Þ

which is positive, while at the nondegenerate outer horizon
we obtain the more intricate expression

ρAjb¼1
rþ ¼ 4ṙ2r−ðr2− −2r−rþþ3r2þÞþðrþ− r−Þ3r0þ

32πṙ2r3þðr2þþ r2−Þ
: ð48Þ

Figure 5 represents the energy density Alice records
throughout her journey. A negative energy density is
observed close to the outer apparent horizon in agreement

(a) (b)

FIG. 4. Properties of outgoing trajectories illustrated using the generalized dynamical inner-extremal RBH model described by
Eqs. (10)–(12). (a) An observer Alice starts her journey at areal radius r < r− and follows an outgoing trajectory. The red line represents
the outgoing motion up to the first black triangle, which signifies the point where ṙ ¼ 0. The second segment of the red line corresponds
to an ingoing trajectory. The orange line represents Alice’s outgoing trajectory inside of the trapped region. The first segment of the blue
line corresponds to an ingoing geodesic up to the black triangle, and the second segment describes an outgoing geodesic. (b) The solid
black line illustrates the evolution of Alice’s radial velocity ṙ as a function of her proper time, and the dashed line the evolution of −

ffiffiffiffiffiffi
−f

p
during the outgoing motion of Alice inside of the trapped region [indicated by the orange segment in (a)]. We note that the beginning and
end of Alice’s outgoing trajectory correspond to the points where her radial velocity equals the maximum possible value ṙ ¼ −

ffiffiffiffiffiffi
−f

p
.
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with the presence of an NEC-violating region, cf. Table I. In
consonance with the results obtained in Sec. III B, we
conclude that—in the evolution of evaporating RBHs—
quantum effects are more pronounced near the outer
apparent horizon and toward the final stages of the
evaporation process. The absence of firewalls, i.e. the fact
that the energy density observed by Alice upon crossing the
horizons on her geodesic trajectory is always finite and
never divergent, is a universal result due to the uniqueness
of the horizon crossing scenario (there is no other way of
crossing the horizon). Lastly, we note that at the disappear-
ance point v ¼ vd of the trapped region [r−ðvdÞ≡ rþðvdÞ],
the expressions derived in Eqs. (47) and (48) coincide.
While this is of course expected from self-consistency
requirements, it can also be understood as an observable
consequence of the transition from k ¼ 0 to k ¼ 1 PBH
solutions, with the energy density taking on its appropriate
value for the extremal case [8]. This will be explained
further in the next section.

V. TRANSITION FROM k= 0 TO k = 1

With the assumptions of regularity and finite-time
horizon formation (as described at the end of Sec. II),
the semiclassical Einstein equations admit only two distinct
classes of dynamical spherically symmetric black hole
solutions, which are distinguished by the scaling behavior
∼fk [cf. Eq. (2)] of their effective EMT components close
to the horizon. The only self-consistent values are
k∈ f0; 1g [52,73]. Hence, the two classes are typically
referred to as k ¼ 0 and k ¼ 1 solutions. In addition to
evaporating black holes [r0g < 0], each class also includes
accreting white hole solutions [r0g > 0]. A detailed expo-
sition of the two classes of solutions is provided in
Chapter 2 of Ref. [8], and a brief overview is given in
Table I of Ref. [74]. Explicit relations for k ¼ 0 solutions
in different coordinate systems can be found in Ref. [75].

A straightforward way to determine which class of
solutions a particular metric belongs to is the value of
the linear coefficient w1ðvÞ of its corresponding MS mass
[cf. Eq. (3)]: metrics with w1ðvÞ < 1 belong to the k ¼ 0
class, whereas metrics in the k ¼ 1 class have w1ðvÞ ¼ 1.
Rearranging Eq. (2), we can write

Cðv; rÞ ¼ rð1 − fðv; rÞÞ: ð49Þ

By comparison with the series expansion of Eq. (3), we note
thatw1ðvÞ ¼ ∂rCjrþ . Using Eq. (49) in combinationwith the
metric function Eq. (7) describing generic dynamical RBHs,
it is easy to confirm that w1ðvÞ ¼ 1 ∀ v∈ ½vf ; vd� when the
outer horizon is degenerate [b > 1]. On the other hand, if the
outer horizon is nondegenerate [b ¼ 1], the linear coefficient
of the MS mass is given by

w1ðvÞjrþ ¼ 1 − gðv; rþÞrþðrþ − r−Þa < 1; ð50Þ

which is strictly smaller than one ∀ v∈ ðvf ; vdÞ since rþ >
r− > 0 by construction and gðv; rÞ is positive (see Sec. II).
Recall that at the instants of formation v ¼ vf and dis-
appearance v ¼ vd of the trapped region, the inner and
outer horizon (e)merge, i.e. r−ðvfjdÞ≡ rþðvfjdÞ. From
Eq. (50), we see that in this case w1ðvfjdÞ ¼ 1. In this
sense, the value of the linear coefficient of the MS
mass w1ðvÞ indicates the transition from a k ¼ 1 to a
k ¼ 0 solution at the formation of the trapped region
[w1ðvfÞ ¼ 1 → w1ðv > vfÞ < 1], and similarly the transi-
tion from a k ¼ 0 to a k ¼ 1 solution at the disappearance of
the trapped region [w1ðv < vdÞ < 1 → w1ðvdÞ ¼ 1].
Figure 6 illustrates the evolution of w1ðvÞ for the

dynamical inner-extremal RBH model described by
Eqs. (10)–(12). During the evaporation of the RBH, the
value of w1ðvÞ initially starts to decrease from its initial
value w1ðvfÞ ¼ 1 at the instant of formation. At some point
in the evaporation process, it reaches a minimum value

FIG. 5. Energy density measured by a moving observer Alice
throughout her trajectory as a function of her proper time. The
red, orange, and blue lines as well as the two points indicated by
black triangles have the same physical meaning as in Fig. 4(a).

FIG. 6. Evolution of the linear coefficient of the MS mass
w1ðvÞ from the instant of formation of the trapped region at
vf ¼ 0 until its complete evaporation at vd ≈ 8.8.
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w1ðvmÞ ≈ 0.975 at vm ≈ 7.15. It then increases until the
complete evaporation of the RBH at w1ðvdÞ ¼ 1.
Apart from its role in modeling the transition between

the two classes of dynamical PBH solutions in spherical
symmetry, the linear coefficient of the MS mass w1ðvÞ is of
immediate relevance in the thermodynamic description of
RBHs. In fact, it fully specifies the relevant work terms in
the generalized dynamical first law of black hole mechanics
[see Eq. (22) in Ref. [44] ]. A more comprehensive
discussion of its role in black hole thermodynamics and
specifically the first law of black hole mechanics is
provided in Ref. [44].
To illustrate the connection with our results from Sec. IV,

we note that the Kodama surface gravity at the horizon is
given by

κKjr� ¼ 1

2
∂rf

���
r�
; ð51Þ

which depends on the linear coefficient w1ðvÞ of the MS
mass due to the relations prescribed by Eqs. (2) and (3). In
conjunctionwithEq. (22), this allows us to rewrite the energy
density measured by a moving observer [cf. Eq. (42)] as

ρAjr� ¼
�

1

8πr2
−

κK
4πr

þ Tμνlμlν

4ṙ2

�����
r�

þOðfÞ: ð52Þ

At the outer horizon, the Kodama surface gravity is
given by

κKjrþ ¼ 1 − w1ðvÞ
2rþðvÞ

: ð53Þ

Due to the transition to a k ¼ 1 solution at the disappearance
point v ¼ vd withw1ðvdÞ ¼ 1, theKodama surface gravity is
zerowhen the evaporation process terminates. If we interpret
the Kodama surface gravity as an effective temperature
parameter, as is standard practice in black hole thermody-
namics [76], this implies that the remnant is a cold remnant
with zero temperature. Our analysis therefore confirms the
previously obtained result that RBHs end their life as cold
remnants [77] and demonstrates directly observable (at least
in principle) physical consequences.

VI. CONCLUSIONS

Starting from the general metric function that describes
generic spherically symmetric dynamical RBHs in semi-
classical gravity [Sec. II, Eq. (7); see also Fig. 1] we derive
their kinematic properties and analyze the behavior of the
NEC in the vicinity of their horizons. Specifically, we find
that the NEC is violated in the vicinity of the outer horizon
and satisfied in the vicinity of the inner horizon, which
implies that the trapped spacetime region (as determined
from the behavior of null geodesic congruences) is
effectively separated into an NEC-violating and an

NEC-nonviolating domain by a hypersurface situated
between the two horizons [Sec. III B, Table I and Fig. 3].
In addition, we demonstrate that there is a unique way for

massive observers and particles to escape the trapped
region on a geodesic trajectory, whereby crossing the
horizon is only possible on an ingoing trajectory. This
result has two rather pleasant side effects, namely (i) the
absence of firewalls (energy densities measured by the
geodesic observer do not diverge); and (ii) by virtue of
particles (and thus any information content associated with
their existence on the manifold) being able to escape the
trapped spacetime region, a natural resolution to the
information loss paradox [Sec. IV, Figs. 4 and 5].
The presence of spacetime regions where the NEC is

violated and the energy density is negative is inherently
linked to the quantum effects underlying the evaporation of
black holes. Our results suggest that, at least for dynamical
RBHs, these effects are more dominant near the outer
horizon and become more pronounced toward the final
stages of the evaporation process [Sec. III, Fig. 2].
The formation and disappearance of the trapped space-

time region are associated with a transition between the
only two self-consistent classes of dynamical semiclassical
black hole solutions in spherical symmetry. We show that
the value of the linear coefficient of the MS mass can be
used to distinguish the two classes of solutions and model
the transition, and comment on implications for the
thermodynamic description of RBHs [Sec. V, Fig. 6].
While keeping our analysis as generic as possible, we

highlight the importance of the degeneracy of the inner
horizon (e.g. in curing mass inflation instabilities) and
nondegeneracy of the outer horizon (e.g. in ensuring a
nonzero Kodama surface gravity) where it is physically
relevant. Throughout the article, we illustrate relevant
features based on the dynamical generalization of the
inner-extremal RBH model [Sec. II, Eqs. (10)–(12); see
also Ref. [41] ]. Although our considerations here focus on
spherically symmetric dynamical RBHs, realistic dark
UCOs possess angular momentum, and modeling the
emission of gravitational waves requires at least a (mass)
quadrupole moment that cannot be captured in spherically
symmetric settings. On this account, it will be interesting to
extend the present analysis to nonsingular axially sym-
metric black hole spacetimes to confirm whether or not they
exhibit similar physical features, and investigate what (if
anything) can be learned about nonsingular black holes
from the observed emission spectra of gravitational waves
(e.g. the extraction of upper bounds on the minimal length
scale l).
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APPENDIX A: DERIVATION OF THE
COEFFICIENTS IN THE METRIC FUNCTION OF

THE INNER-EXTREMAL REGULAR BLACK
HOLE MODEL [EQS. (10)–(12)]

Here, we explicitly (re)derive the metric functions
Eqs. (10)–(12) of the dynamical generalization of the
inner-extremal RBH model [41] and elaborate on the
physical intuition for the underlying assumptions. Our
starting point is Eq. (2.9) of Ref. [41], which specifies
the inner [a ¼ 3] and outer horizon [b ¼ 1] degeneracies,
i.e. [cf. Eq. (7)]

fðv; rÞ ¼ gðv; rÞðr − r−Þ3ðr − rþÞ; ðA1Þ

as well as the polynomial decomposition of gðv; rÞ as a
function of the radial coordinate r, namely

gðv; rÞ ¼ 1

c0 þ c1rþ c2r2 þ c3r3 þ c4r4
; ðA2Þ

where explicit dependencies on the advanced null coor-
dinate v have been omitted here and in what follows unless
they add mathematically relevant context. The more
explicit form given in Eq. (11) is obtained by demanding
that g satisfy several requirements: first, we note that it is
usually assumed that f and 1=g are polynomials of the
same degree in r [33]. Otherwise it would be impossible to
recover the Vaidya form of the metric f ¼ 1 − rþ=r in the
asymptotic limit r → ∞. With respect to Eq. (A2), the
choice a ¼ 3 and b ¼ 1 then implies that higher-order
powers r > 4 in the denominator of g are not permissible.
Substituting Eq. (A2) into Eq. (A1) and dividing by r4, we
obtain

fðv; rÞ ¼ ð1 − r−
r Þ3ð1 − rþ

r Þ
c0
r4 þ c1

r3 þ c2
r2 þ c3

r þ c4
: ðA3Þ

Performing a Taylor expansion about the point z ≔ 1
r ¼ 0 to

represent the limit r → ∞ leads to the expression

fðv; rÞjz¼0 ¼
1

c4
−
�
c3 þ 3c4r− þ c4rþ

c24

�
1

r
þO

�
1

r2

�
:

ðA4Þ

Therefore, to recover the Vaidya form of the metric in the
asymptotic limit, we must have

c4 ¼ 1; ðA5Þ

rþ ¼ c3 þ 3c4r− þ c4rþ
c24

⇒ c3 ¼ −3r−; ðA6Þ

where Eq. (A5) was used to obtain the rightmost equality in
Eq. (A6). Another requirement for nonsingular black holes
is that their center be devoid of singularities (as implied by
their name). Mathematically, this regularity manifests itself
through the nondivergence of spacetime curvature at r ¼ 0,
which can be tracked by evaluating the relevant curvature
scalars. Performing a series expansion of the Ricci scalar
R ≔ gμνRμν about this point results in

R ¼ ð1 − gðv; 0Þr3−rþÞ
2

r2
þ
h
gðv; 0Þðr− þ 3rþÞ

− r−rþð∂rgÞjr¼0

i 6r2−
r

þOðr0Þ: ðA7Þ

To avoid divergences at the center, the coefficients of the first
two terms of this expansion must vanish. Consequently, the
regularity requirement prescribes the following expressions
for the two lowest-order coefficients6 of the polynomial
1=gðv; rÞ:

gðv; 0Þ ¼ 1

r3−rþ
⇒ c0 ¼ r3−rþ; ðA8Þ

ð∂rgÞjr¼0 ¼
r− þ 3rþ
r4−r2þ

⇒ c1 ¼ −r2−ðr− þ 3rþÞ: ðA9Þ

Additionally, to avoid divergences in fðv; rÞ, the equation
Dðv; rÞ ≔ 1=gðv; rÞ ¼ 0 must not have real solutions
[cf. Eq. (A1)]. This allows us to determine the remaining
coefficient c2. Substituting Eqs. (A5), (A6), (A8), and (A9)
into Eq. (A2) yields

Dðv; rÞ ¼ r3−rþ − r2−ðr− þ 3rþÞrþ c2r2 − 3r−r3 þ r4:

ðA10Þ
This expression can be rewritten as

Dðv; rÞ ¼ r2
�
r −

3r−
2

�
2

þ
�
c2 −

15

4
r2− −

9

4
r−rþ −

r3−
4rþ

�

þ r3−rþ

�
1 −

1

2
r

�
3

r−
þ 1

rþ

��
2

: ðA11Þ

Since the first and the third term are non-negative and they
cannot be zero simultaneously, it suffices to require that the
second term be non-negative, i.e.

c2 −
15

4
r2− −

9

4
r−rþ −

r3−
4rþ

≥ 0; ðA12Þ

to ensure that the denominatorDðv; rÞ has no real roots. This
non-strict inequality guarantees the positivity of the function
gðv; rÞ. We can rewrite Eq. (A12) as

6Note that the same result can be obtained by evaluating
other scalar curvature invariants, e.g. the Kretschmann scalar
K ≔ RμνρσRμνρσ .

SEBASTIAN MURK and IOANNIS SORANIDIS PHYS. REV. D 108, 124007 (2023)

124007-12



c2 ¼ c̃2 þ
15

4
r2− þ 9

4
r−rþ þ r3−

4rþ
ðA13Þ

for some c̃2 ≥ 0, which corresponds to the expression in
Eq. (12). A more explicit form can be obtained from the
requirement that the MS mass Cðv; rÞ=2 be positive near the
black hole center. From the expansion ofCðv; rÞ about r ¼ 0,

Cðv; rÞ ¼ c2 − 3r2− − 3r−rþ
r3−rþ

r3 þOðr4Þ; ðA14Þ

it then follows that c2 > 3r2− þ 3r−rþ, which implies that the
coefficient c2 can be written as

c2 ¼ 3r2− þ 3r−rþ þ γ2; γ2 > 0: ðA15Þ

The smallest possible length scale is given by r−, which is a
plausible choice, although not unique. We use this particular
choice in our numerical calculations throughout the paper. In
combination with Eq. (A13), it leads to the expression

c̃2 ¼
r−
4rþ

ð3r2þ þ r−rþ − r2−Þ: ðA16Þ

APPENDIX B: ENERGY-MOMENTUM
TENSOR COMPONENTS IN THE

ORTHONORMAL FRAME

The EMT components Tμν associated with the general
spherically symmetric metric of Eq. (1) are specified
through the following relations:

T00 ¼
ehþ

8πr2
ð−ehþfð−1þ f þ r∂rfÞ − r∂vfÞ; ðB1Þ

T01 ¼
ehþ

8πr2
ð−1þ f þ r∂rfÞ; ðB2Þ

T11 ¼
1

4πr
∂rhþ: ðB3Þ

To obtain the relevant expressions needed for our calcu-
lation in Sec. III A, we first write the orthonormal tetrad
vectors

eμ
0̂
¼ ðe−hþf−1=2; 0; 0; 0Þ; ðB4Þ

eμ
1̂
¼ ðe−hþf−1=2; f1=2; 0; 0Þ; ðB5Þ

eμ
2̂
¼

�
0; 0;

1

r
; 0

�
; eμ

3̂
¼

�
0; 0;

1

r sin θ
; 0

�
: ðB6Þ

To obtain explicit expressions for the orthonormal EMT
components from those given in Eqs. (B1)–(B3), we use the
transformation

Tâ b̂ ¼ eμâe
ν
b̂
Tμν: ðB7Þ

The resulting orthonormal EMT components are

T 0̂ 0̂ ¼ −
fð−1þ f þ r∂rfÞ þ e−hþr∂vf

8πr2f
; ðB8Þ

T 0̂ 1̂ ¼ −
e−hþ∂vf
8πrf

; ðB9Þ

T 1̂ 1̂ ¼ −
−f½−1þ r∂rf þ fð1þ 2rð∂rhþÞÞ� þ e−hþr∂vf

8πr2f
;

ðB10Þ

T 2̂ 2̂ ¼ T 3̂ 3̂ ¼
1

16πr

h
∂rfð2þ 3r∂rhþÞ þ 2f½∂rhþ

þ rð∂rhþÞ2 þ rð∂2rhþÞ� þ rð∂2rf þ 2e−hþ∂r∂vhþÞ
i
:

ðB11Þ

[1] M. Visser, Proc. Sci. BHs GRandStrings 2008 (2008) 001.
[2] S. W. Hawking, arXiv:1401.5761.
[3] V. P. Frolov, arXiv:1411.6981.
[4] V. Baccetti, R. B. Mann, and D. R. Terno, Int. J. Mod. Phys.

D 26, 1743008 (2017).
[5] V. Cardoso and P. Pani, Living Rev. Relativity 22, 4 (2019).
[6] S. Murk, Int. J. Mod. Phys. D 32, 2342012 (2023).
[7] M. Visser, Phys. Rev. D 90, 127502 (2014).
[8] R. B. Mann, S. Murk, and D. R. Terno, Int. J. Mod. Phys. D

31, 2230015 (2022).

[9] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[10] K. S. Thorne, The general-relativistic theory of stellar

structure and dynamics, in Proceedings of the International
School of Physics “Enrico Fermi”, Course XXXV, at
Varenna, Italy, 1965, edited by L. Gratton (Academic Press,
New York, 1966), p. 273.

[11] D. Harlow, Rev. Mod. Phys. 88, 015002 (2016).
[12] R. M. Wald, Living Rev. Relativity 4, 6 (2001).
[13] D. N. Page, Phys. Rev. Lett. 71, 3743 (1993).
[14] D. N. Page, J. Cosmol. Astropart. Phys. 09 (2013) 028.

KINEMATIC AND ENERGY PROPERTIES OF DYNAMICAL … PHYS. REV. D 108, 124007 (2023)

124007-13

https://arXiv.org/abs/1401.5761
https://arXiv.org/abs/1411.6981
https://doi.org/10.1142/S0218271817430088
https://doi.org/10.1142/S0218271817430088
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1142/S0218271823420129
https://doi.org/10.1103/PhysRevD.90.127502
https://doi.org/10.1142/S0218271822300154
https://doi.org/10.1142/S0218271822300154
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/RevModPhys.88.015002
https://doi.org/10.12942/lrr-2001-6
https://doi.org/10.1103/PhysRevLett.71.3743
https://doi.org/10.1088/1475-7516/2013/09/028


[15] J. Bekenstein, Lett. Nuovo Cimento 4, 737 (1972).
[16] J. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[17] J. Bekenstein, Phys. Rev. D 9, 3292 (1974).
[18] S. W. Hawking, Nature (London) 248, 30 (1974).
[19] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).
[20] S. W. Hawking, Phys. Rev. D 13, 191 (1976).
[21] M. Cadoni, M. Oi, and A. P. Sanna, J. High Energy Phys. 06

(2023) 211.
[22] P. O. Mazur and E. Mottola, Proc. Natl. Acad. Sci. U.S.A.

101, 9545 (2004).
[23] P. O. Mazur and E. Mottola, Universe 9, 88 (2023).
[24] H. G. Ellis, J. Math. Phys. (N.Y.) 14, 104 (1973).
[25] M. S. Morris and K. S. Thorne, Am. J. Phys. 56, 395 (1988).
[26] A. Simpson and M. Visser, J. Cosmol. Astropart. Phys. 02

(2019) 042.
[27] O. Lunin and S. D. Mathur, Nucl. Phys. B623, 342 (2002).
[28] S. D. Mathur, Fortschr. Phys. 53, 793 (2005).
[29] J. M. Bardeen in Proceedings of the International

Conference GR5 (Tbilisi University Press, Tbilisi, 1968).
[30] I. Dymnikova, Gen. Relativ. Gravit. 24, 235 (1992).
[31] S. A. Hayward, Phys. Rev. Lett. 96, 031103 (2006).
[32] Regular Black Holes: Towards a New Paradigm of Gravi-

tational Collapse, edited by C. Bambi (Springer, Singapore,
2023).

[33] V. P. Frolov, Phys. Rev. D 94, 104056 (2016).
[34] M. Cadoni, M. De Laurentis, I. De Martino, R. Della

Monica, M. Oi, and A. P. Sanna, Phys. Rev. D 107, 044038
(2023).

[35] E. Poisson and W. Israel, Phys. Rev. Lett. 63, 1663 (1989).
[36] E. Poisson and W. Israel, Phys. Rev. D 41, 1796 (1990).
[37] A. Ori, Phys. Rev. Lett. 67, 789 (1991).
[38] A. J. S. Hamilton and P. P. Avelino, Phys. Rep. 495, 1

(2010).
[39] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and

M. Visser, J. High Energy Phys. 05 (2021) 132.
[40] P. K. Dahal, S. Murk, and D. R. Terno, AVS Quantum Sci. 4,

015606 (2022).
[41] R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, and

M. Visser, J. High Energy Phys. 09 (2022) 118.
[42] T. McMaken, Phys. Rev. D 107, 125023 (2023).
[43] C.W. Misner and D. H. Sharp, Phys. Rev. 136, B571 (1964).
[44] S. Murk and I. Soranidis, Phys. Rev. D 108, 044002 (2023).
[45] S. A. Hayward, Phys. Rev. D 49, 6467 (1994).
[46] A. B. Nielsen and J. H. Yoon, Classical Quantum Gravity

25, 085010 (2008).
[47] B. Cropp, S. Liberati, and M. Visser, Classical Quantum

Gravity 30, 125001 (2013).
[48] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Phys. Rev.

D 83, 041501(R) (2011).

[49] H. Kodama, Prog. Theor. Phys. 63, 1217 (1980).
[50] G. Abreu and M. Visser, Phys. Rev. D 82, 044027 (2010).
[51] F. Kurpicz, N. Pinamonti, and R. Verch, Lett. Math. Phys.

111, 110 (2021).
[52] S. Murk and D. R. Terno, Phys. Rev. D 103, 064082 (2021).
[53] S. Murk and D. R. Terno, The Sixteenth Marcel Grossmann

Meeting (World Scientific, Singapore, 2023), pp. 1196–
1211, 10.1142/9789811269776_0095.

[54] R. B. Mann, S. Murk, and D. R. Terno, Phys. Rev. D 105,
124032 (2022).

[55] P. K. Dahal, I. Soranidis, and D. R. Terno, Phys. Rev. D 106,
124048 (2022).

[56] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure
of Space-Time (Cambridge University Press, Cambridge,
England, 1973), Chap. 4.3, Chap. 9.2.

[57] P. Martín-Moruno and M. Visser, Classical Quantum
Gravity 35, 125003 (2018).

[58] P. Martín-Moruno and M. Visser, Phys. Rev. D 103, 124003
(2021).

[59] H. Maeda, Gen. Relativ. Gravit. 53, 90 (2021).
[60] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics

(Oxford University Press, New York, 2013).
[61] N. Andersson and G. L. Comer, Living Rev. Relativity 24, 3

(2021).
[62] T. A. Roman, Phys. Rev. D 33, 3526 (1986).
[63] P. Martín-Moruno and M. Visser, J. High Energy Phys. 09

(2013) 050.
[64] P. Binétruy, A. Helou, and F. Lamy, Phys. Rev. D 98,

064058 (2018).
[65] V. Baccetti, R. B. Mann, S. Murk, and D. R. Terno, Phys.

Rev. D 99, 124014 (2019).
[66] E. A. Kontou and K. Sanders, Classical Quantum Gravity

37, 193001 (2020).
[67] M. Visser, Phys. Rev. D 56, 936 (1997).
[68] V. P. Frolov and I. D. Novikov, Black Holes: Basic Concepts

and New Developments (Kluwer, Dordrecht, 1998).
[69] A. Levi and A. Ori, Phys. Rev. Lett. 117, 231101 (2016).
[70] M. Visser, Int. J. Mod. Phys. D 12, 649 (2003).
[71] C. Misner, K. Thorne, and J. A. Wheeler, Gravitation

(Princeton University Press, Princeton, NJ, 1973).
[72] M. Blau, Lecture Notes on General Relativity (2023), http://

www.blau.itp.unibe.ch/newlecturesGR.pdf.
[73] D. R. Terno, Phys. Rev. D 101, 124053 (2020).
[74] S. Murk, Phys. Rev. D 105, 044051 (2022).
[75] P. K. Dahal, F. Simovic, I. Soranidis, and D. R. Terno, Phys.

Rev. D 108, 104014 (2023).
[76] S. A. Hayward, Classical Quantum Gravity 15, 3147 (1998).
[77] M. Cadoni, M. Oi, and A. P. Sanna, Phys. Rev. D 106,

024030 (2022).

SEBASTIAN MURK and IOANNIS SORANIDIS PHYS. REV. D 108, 124007 (2023)

124007-14

https://doi.org/10.1007/BF02757029
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1103/PhysRevD.9.3292
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1103/PhysRevD.13.191
https://doi.org/10.1007/JHEP06(2023)211
https://doi.org/10.1007/JHEP06(2023)211
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.3390/universe9020088
https://doi.org/10.1063/1.1666161
https://doi.org/10.1119/1.15620
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1088/1475-7516/2019/02/042
https://doi.org/10.1016/S0550-3213(01)00620-4
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1007/BF00760226
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevD.94.104056
https://doi.org/10.1103/PhysRevD.107.044038
https://doi.org/10.1103/PhysRevD.107.044038
https://doi.org/10.1103/PhysRevLett.63.1663
https://doi.org/10.1103/PhysRevD.41.1796
https://doi.org/10.1103/PhysRevLett.67.789
https://doi.org/10.1016/j.physrep.2010.06.002
https://doi.org/10.1016/j.physrep.2010.06.002
https://doi.org/10.1007/JHEP05(2021)132
https://doi.org/10.1116/5.0073598
https://doi.org/10.1116/5.0073598
https://doi.org/10.1007/JHEP09(2022)118
https://doi.org/10.1103/PhysRevD.107.125023
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRevD.108.044002
https://doi.org/10.1103/PhysRevD.49.6467
https://doi.org/10.1088/0264-9381/25/8/085010
https://doi.org/10.1088/0264-9381/25/8/085010
https://doi.org/10.1088/0264-9381/30/12/125001
https://doi.org/10.1088/0264-9381/30/12/125001
https://doi.org/10.1103/PhysRevD.83.041501
https://doi.org/10.1103/PhysRevD.83.041501
https://doi.org/10.1143/PTP.63.1217
https://doi.org/10.1103/PhysRevD.82.044027
https://doi.org/10.1007/s11005-021-01445-7
https://doi.org/10.1007/s11005-021-01445-7
https://doi.org/10.1103/PhysRevD.103.064082
https://doi.org/10.1142/9789811269776_0095
https://doi.org/10.1103/PhysRevD.105.124032
https://doi.org/10.1103/PhysRevD.105.124032
https://doi.org/10.1103/PhysRevD.106.124048
https://doi.org/10.1103/PhysRevD.106.124048
https://doi.org/10.1088/1361-6382/aac147
https://doi.org/10.1088/1361-6382/aac147
https://doi.org/10.1103/PhysRevD.103.124003
https://doi.org/10.1103/PhysRevD.103.124003
https://doi.org/10.1007/s10714-021-02862-8
https://doi.org/10.1007/s41114-021-00031-6
https://doi.org/10.1007/s41114-021-00031-6
https://doi.org/10.1103/PhysRevD.33.3526
https://doi.org/10.1007/JHEP09(2013)050
https://doi.org/10.1007/JHEP09(2013)050
https://doi.org/10.1103/PhysRevD.98.064058
https://doi.org/10.1103/PhysRevD.98.064058
https://doi.org/10.1103/PhysRevD.99.124014
https://doi.org/10.1103/PhysRevD.99.124014
https://doi.org/10.1088/1361-6382/ab8fcf
https://doi.org/10.1088/1361-6382/ab8fcf
https://doi.org/10.1103/PhysRevD.56.936
https://doi.org/10.1103/PhysRevLett.117.231101
https://doi.org/10.1142/S0218271803003190
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
http://www.blau.itp.unibe.ch/newlecturesGR.pdf
https://doi.org/10.1103/PhysRevD.101.124053
https://doi.org/10.1103/PhysRevD.105.044051
https://doi.org/10.1103/PhysRevD.108.104014
https://doi.org/10.1103/PhysRevD.108.104014
https://doi.org/10.1088/0264-9381/15/10/017
https://doi.org/10.1103/PhysRevD.106.024030
https://doi.org/10.1103/PhysRevD.106.024030

