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Postmerger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure
of astrophysical black holes, which may be modified due to nonperturbative quantum gravity phenomena.
However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop search
methods that are less reliant on specific models for detecting echoes from observational data. A promising
strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, in frequency
space, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon
our previous work targeting these modes by incorporating relative phase information to optimize the
Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be
significantly improved for well-resolved QNMs. This enables an efficient search for QNMs of various
shapes, utilizing a simple search template that is independent of specific models. To demonstrate the
robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform
that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate
our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian
noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently
detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-
independent approach to “quantum black hole seismology.”
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I. INTRODUCTION

Observations have yet to map the immediate vicinity of
astrophysical black holes, and near-horizon corrections
could be crucial in resolving associated theoretical prob-
lems through potential links to quantum gravity effects.
From an observational standpoint, an additional structure
outside the gravitational radius is likely to modify the
ingoing boundary condition of the horizon, allowing for
substantial reflection. This is expected to generate gravi-
tational wave echoes in the postmerger stage of compact
binary coalescence, providing a unique opportunity to
probe the near-horizon structure around astrophysical
black holes [1,2]. For later discussion, we use the term
“ultracompact objects” (UCOs) to refer to black hole
mimickers that can produce echoes (for a review on
UCOs, see, e.g., [3,4]). Current gravitational wave

observations have the potential to probe quantum gravity
corrections around macroscopic UCOs through detection of
echoes, thanks to the logarithmic dependence of its time
delay on the position of the effective interior surface. While
model-dependent search methods have been extensively
explored [5–13] and applied to real data [14–20], the
challenge lies in the presence of waveform uncertainties
arising from the unknown details associated with UCOs.
Therefore, it is necessary to develop model-independent
search methods that target the characteristic features of
echoes without relying on ad hoc or model-specific
details [21].
Echoes result from an effective reflection of gravitational

waves inside the photon-sphere barrier, but outside the
gravitational radius. In the case of a weak reflection, echoes
damp quickly with time, resulting in a quasiperiodic s
ignal with only a few pulses. Such signals can be efficiently
detected by morphology-independent search methods
developed for bursts, such as the BayesWave algorithm
[22,23] and the coherent WaveBurst pipeline [20,24].
In the case of a strong reflection, echoes are characterized
by a large number of small pulses, rendering burst-based
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searches inefficient. However, in this limit, echoes in the
frequency space exhibit well-separated narrow resonances
that correspond to the quasiperiodic and long-lived quasi-
normal modes (QNMs) of UCOs, reminiscent of similar
long-lived modes in the asteroseismology program
(e.g., [25]) that probe the inner structure of stars [26,27].
These characteristic QNMs then serve as robust search
targets for echoes in frequency space, complementing the
existing searches of quasiperiodic pulses in time.
A uniform comb model with triangular teeth has been

adopted to search for long-lived and quasiperiodic QNMs
associated with echoes [28,29]. Recently, a Bayesian search
algorithm was developed along the same line, employing a
phase-marginalized likelihood [30]. In these studies, the
focus is on the amplitude in the frequency space, with the
phase information being discarded. Although this approach
largely mitigates the theoretical uncertainties associated
with the phase, it comes at the cost of reduced search
sensitivity. Specifically, the absence of phase information
makes it impossible to detect a signal that is significantly
weaker than the noise level.
In this paper, we optimize the Bayesian search method

presented in Ref. [30] by considering a more realistic
treatment of the QNM phase. We find that a significant
portion of the phase information can be retained without
introducing additional parameters. As a result, we develop
a new phase-marginalized likelihood that can significantly
improve the search sensitivity for QNMs that are well
resolved in the frequency space. To comprehensively
address theoretical uncertainties, we present a generic
description of the echo waveform in Sec. II, with a
particular focus on formulating the waveform as a super-
position of the characteristic QNMs of UCOs. We then
derive the new phase-marginalized likelihood and compare
with the old one introduced in [30]. In Sec. III, we first
define a simple search template, dubbed UniEw, with a
small number of parameters. We then validate the Bayesian
search algorithm by conducting a consistent injection-
recovery study of UniEw using the two likelihoods. In
Sec. IV, we construct a few complementary benchmarks for
the echo waveforms. We then define a more generic search
procedure and validate the algorithm with injections of the
benchmarks. We summarize in Sec. V.

II. FORMALISM

A. Generic construction of echo waveforms

A sufficiently compact UCO can be visualized as a leaky
cavity bounded by the light-ring potential barrier and an
effective inner boundary, with the average cavity length x0
and round-trip time td ≈ 2x0. The light-ring potential
barrier has been well constrained through current obser-
vations of black hole ringdown signals (e.g., [18]), as
well as radio imaging with the Event Horizon Telescope
(e.g., [31]). The interior boundary encodes the essential

information for the near-horizon corrections. If linear
perturbations are present inside or outside the cavity,
echoes are produced by the initial pulse, which undergoes
repeated and damped reflections, gradually leaking out of
the light-ring potential barrier.
The merger product typically has a significant spin. For

simplicity, we represent the spinning UCO as a truncated
Kerr black hole, where the inner boundary is located
at a radius of r0 outside the would-be horizon radius of
rþ [5,9–11,28,32,33]. When r0 is very close to rþ,
corresponding to an extremely large compactness, the time
decay is roughly twice the length of the cavity, with [3]

td
M

≈ 2
h
1þ ð1 − χ2Þ−1=2

i
ln

�
1

ϵ

�
; ð1Þ

where M and χ are the mass and dimensionless spin of the
merger product. The parameter ϵ ¼ ðr0 − rþÞ=rþ quanti-
fies the compactness of the UCO or the distance from the
surface r0 to the would-be horizon rþ ¼ Mð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ.

For the coordinate and proper Planck length distance,
ln ϵ ≈ −η lnðM=lPlÞ ¼ −½87.4þ lnðM=M⊙Þ�η, for η ¼ 1
and 2, respectively. It is important to note that, in the case
of a realistic UCO, the time delay in Eq. (1) that scales
with lnð1=ϵÞ might be underestimated if the interior
of the UCO manifests a considerably deep gravitational
potential [34].
For a sufficiently small ϵ, the linear gravitational wave

(GW) perturbations of UCOs are governed by the
Teukolsky equation with a modified boundary condition
at r0. For a given source, the response of UCOs at infinity
can be related to the responses of the corresponding Kerr
black holes (BHs) at infinity and horizon. In the absence of
mode mixing, the GW strain is related to the Teukolsky
variables in a simple way. The observation for UCOs then
manifests as a sum of BH ringdown and echoes, i.e.,
hUCOðωÞ ¼ hRDðωÞ þ hechoðωÞ, with [11] (see Appendix A
for the derivations)

hechoðωÞ¼PðωÞheffðωÞ; PðωÞ¼ RBHðωÞRwallðωÞ
1−RBHðωÞRwallðωÞ

:

ð2Þ

The waveform is essentially determined by two ingre-
dients: the BH response at the horizon heffðωÞ and the
processing function PðωÞ, which relies on the reflection
coefficients of the light-ring potential barrier for waves
coming from the left RBHðωÞ and the reflection coefficient
for the interior boundary RwallðωÞ. As expected, hUCO
reduces to hRD with zero interior reflection, i.e., Rwall ¼ 0.
In the following, we discuss these two ingredients in more
detail.
The BH response at the horizon, heffðωÞ, contains

information about the source and determines the initial
pulse profile. In certain cases, this response is closely
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related to the black hole ringdown waveform hRDðωÞ.
Specifically, as demonstrated in Appendix A, if the source
is an outgoing pulse originating from within the potential
barrier or an incoming pulse originating from outside
the potential barrier, then we find heffðωÞ ¼ hRDðωÞ and
heffðωÞ ¼ −ðT 2

BH=R
2
BHÞhRDðωÞ, respectively. T 2

BH and
R2

BH denote the transmission and reflection of energy flux
for the light-ring potential barrier. This yields the “inside”
and “outside” prescriptions of the echo waveform in the
geometric “optics” picture [9], i.e.,

hechoðωÞ ≈ PðωÞ
8<
:

hRDðωÞ; inside;

− T 2
BH

R2
BH
hRDðωÞ; outside:

ð3Þ

The ringdown waveform can be modeled as the excitation
of the dominant l ¼ m ¼ 2 fundamental mode [10], i.e.,
hRDðωÞ ¼ ARDeiδRD=ðω−ωRD þ i=τRDÞ þARDe−iδRD=ðωþ
ωRD − i=τRDÞ,1 which peaks around the ringdown fre-
quency �ωRD. Considering that the coefficient RBH
approaches unity for frequencies below ωRD and that the
ratio T 2

BH=R
2
BH is suppressed in this frequency regime, the

signal obtained using the outside prescription would be
significantly smaller than the inside one.
More generally, heffðωÞ may not be closely related to

the BH ringdown signal due to the additional contribution
induced by the source. For example, a numerical study of
echo waveforms for infalling particles [11] reveals that heff
could lie somewhere between the two prescriptions
presented in Eq. (3). Moreover, in the case of compa-
rable-mass UCOs, the merger could generate additional
perturbations that are independent of those originating from
the light-ring potential barrier, owing to the significant time
dilation associated with the inner boundary. As a result,
the echo waveform could differ significantly from the
predictions outlined in Eq. (3). These findings highlight
the considerable uncertainties associated with the source
and underscore the limitations of the geometric optics
picture.
The processing function PðωÞ is intimately dependent

on the combined reflectivity, RBHðωÞRwallðωÞ, of the
cavity. For later discussion purposes, it is convenient to
separate the amplitude and phase of the product so that
RBHðωÞRwallðωÞ≡ReffðωÞeiδðωÞ. The QNMs of UCOs
correspond to the zeros of the denominator of PðωÞ in
the complex plane, i.e.,

1 −ReffðωÞeiδðωÞ ¼ 0; for ω ¼ ωR þ iωI: ð4Þ

The square of amplitude R2
effðωÞ is the product of the

reflectivities of the energy flux on the two surfaces. To
avoid ergoregion instability, a stable UCO must satisfy
Reff ≤ 1. The phase δðωÞ encodes the dependence of the
propagating distance. For extremely compact UCOs, where
the time delay td is much longer than the typical timescale
of the system ∼M, it is a reasonable approximation to take
δðωÞ ≈ tdω̃, where ω̃ ¼ ω − ωH denotes the wave fre-
quency close to the inner boundary, with ωH ¼ mΩH
and ΩH ¼ χ=ð2rþÞ the angular frequency of the horizon.
Assuming jωIj ≪ jωRj and jdReff=dωj ≪ td, Eq. (4) can
be solved analytically with ðωR;ωIÞ ¼ ðωn;−1=τnÞ for a
series of integer n,

tdðωn − ωHÞ ≈ 2πn; td=τn ≈ − lnReffðωnÞ: ð5Þ

These are exactly the trapped modes of a long cavity with
sufficiently strong reflection. The oscillation frequency is
quasiperiodic, with the spacing between two modes
roughly equal to the inverse of time delay, that is,
ωnþ1 − ωn ≈ 2πΔf, where Δf ¼ 1=td. The ratio of mode
width 1=τn to spacing Δf is determined by the rate of
energy dissipation. When ReffðωnÞ is close to 1, 1=τn is
considerably smaller than Δf. Consequently, the echo
waveform in the frequency space is characterized by a
quasiperiodic and well-separated resonance pattern. Under
the same approximation, the processing function around
the simple pole ωn − i=τn can be expanded as

PðωÞ ≈ReffðωnÞ
−itd

eitdω

ω − ωn þ i=τn
þ � � � ; ð6Þ

and the amplitude at ω ¼ ωn is given by jPðωnÞj ¼
ReffðωnÞ=j lnReffðωnÞj.
In the absence of ergoregion instability, PðωÞ can

be expressed as an infinite sum, i.e., PðωÞ ¼ P∞
k¼1

Rk
BHðωÞRk

wallðωÞ. The echo waveform is then given by

hechoðωÞ ¼
X∞
k¼1

heffðωÞRk
effðωÞeiktdω̃: ð7Þ

For early pulses with distinct shapes, the nth term in the
infinite sum corresponds to the nth pulse in the echo
waveform, with, for example, heffðωÞReffðωÞeitdω̃ being the
frequency content of the first pulse.
In practice, we typically analyze a finite segment

of strain data. The corresponding waveform in the
frequency domain is then described by a finite sum
in Eq. (7), which is truncated at the number of pulses,
NE ¼ T=td, i.e.,

1We only consider the plus polarization in our waveform
model. See Eq. (A27) in Appendix A for the case of including
both polarizations.
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hðTÞechoðfÞ ¼ heffðfÞ
XNE

k¼1

Rk
effðfÞeiktdω̃

¼ heffðfÞReffðfÞeitdω̃
1 −RNE

eff ðfÞeiNEtdω̃

1 −ReffðfÞeitdω̃

≈ Aneiδnei2πftd
1 − e−T=τnei2πðf−fnÞT

2πðf − fnÞ þ i=τn
; for f ∼ fn;

ð8Þ

where f ¼ ω=ð2πÞ and fn ¼ ωn=ð2πÞ. We expand around
the nth mode in the second line, using the analytical
approximation in Eq. (5) and T ≈ NEtd. The amplitude
and overall phase are given by An ≈ jheffðfnÞjReffðfnÞ=td
and δn ≈ argðheffðfnÞÞ − 2πfntd þ π=2, respectively. The
factor 1 − e−T=τnei2πðf−fnÞT represents the finite duration
correction.2 The correction is negligible for the fully
resolved mode (i.e., T ≫ τn), while it smears out the
resonance when the sampling resolution is insufficient
(i.e., td ≪ T ≲ τn). The amplitude of resonance peak at
f ¼ fn is given by

jhðTÞechoðfnÞj ≈ jhð1ÞechoðfnÞj
1 − e−T=τn

jlnReffðfnÞj
; ð9Þ

where jhð1ÞechoðfnÞj ¼ jheffðfnÞjReffðfnÞ denotes the first
pulse profile of echoes. Since the discrete Fourier transform
may not sample exactly at the peak position, Eq. (9) depicts
the envelope that bounds all the reconstructed resonances
from above. Compared to the amplitude of the first pulse,
the envelope of resonances is significantly enhanced. For

well-resolved modes, i.e., T ≫ τn, jhðTÞechoðfnÞj is enhanced
by a factor of 1=j lnReffðfnÞj ≈ τn=td. In the low-resolution
limit, i.e., td ≪ T ≪ τn, the enhancement factor becomes
T=td. Thus, as a good approximation, we have

jhðTÞechoðfnÞj=jhð1ÞechoðfnÞj ≈minfτn; Tg=td for a generic T.
This also determines the improvement of the optimal

signal-to-noise ratio (SNR) of hðTÞecho relative to that of

hð1Þecho, as given in Eq. (C2). Note that the above estimates are
no longer precise when Reff is considerably below 1. For
the wider modes, the envelope can be approximated by
adding a factor of jheffðfnÞjReffðfnÞ on top of Eq. (9) [28].
Now, let us examine the expansion around the nth mode

in more detail. For fn −Oð1Þ=τn ≲ f ≲ fn þOð1Þ=τn, the
amplitude and phase are given by

jhðTÞechoðfÞj ≈
Anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2ðf − fnÞ2 þ 1=τ2n
p j1 − e−T=τnei2πðf−fnÞT j;

ð10Þ

argðhðTÞechoðfÞÞ≈arg

�
1−e−T=τnei2πðf−fnÞT

i2πðf−fnÞþ1=τn

�
þðδnþ2πftdÞ:

ð11Þ

The amplitude takes on a Lorentzian shape with a smearing
factor and is described by four parameters fAn; fn; τn; Tg,
which encode the essential information about td, ReffðfÞ,
and heffðfÞ. The phase has been separated into two parts.
The first term comes exactly from the Lorentzian shape and
is determined by the same parameters as the amplitude. The
second term depends on the overall phase δn, as well as the
start time td. As a result, it is more affected by theoretical
uncertainties.
Therefore, in order to improve the search for QNMs, we

retain the first part of the phase to enhance the detection
probability. As for the additional contributions, the term
2πftd varies more slowly with frequency compared to the
first part and can be treated as a constant.3 In a more general
scenario, there might be corrections associated with the
interference of QNMs, leading to additional variations on
top of Eq. (11). To simplifymatters, we choose to retain only
the Lorentzian shape contribution and treat the rest
as a constant. This motivates the development of our
new phase-marginalized likelihood below, which accounts
for the marginalization of a single constant phase for each
mode. In Sec. III C and Appendix B, we verify the
assumption of a constant phase and find that the algorithm’s
performance is minimally affected by these intricacies.

B. Two phase-marginalized likelihoods

To derive the explicit forms of phase-marginalized
likelihoods, we start from the Gaussian likelihood in polar
coordinate,

LðdjjhjÞ ¼
jdjj
2πPj

exp

�
−
1

2

jdjj2 þ jhjj2
P̃j

�

× exp

�jdjjjhjj
P̃j

cosðϕj − ψ jÞ
�
; ð12Þ

where dj and hj denote the data and signal model in the jth
frequency bin, and ϕj ¼ argðdjÞ, ψ j ¼ argðhjÞ denote their
phases, respectively. P̃j ¼ Pj=4δf is the normalized one-
sided power spectral density (PSD), with δf ¼ 1=T as the
frequency resolution. In Ref. [30], we marginalize the
signal model phase in each bin separately with a flat prior
πðψ jÞ ¼ 1=ð2πÞ, and the resulting marginalized likelihood
in each bin is given by

2As demonstrated in Appendix B, this exactly matches the
finite time duration effects for the Fourier transform in Eq. (B3).

3For f − fn ∈ ½−1=τn; 1=τn�, 2πðf − fnÞtd ∼ td=τn ≪ 1 for the
long-lived QNMs, while the first phase term varies by ∼π.
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LðdjjjhjjÞ≡
Z

2π

0

LðdjjhjÞπðψ jÞdψ j

¼ jdjj
2πPj

exp

�
−
1

2

jdjj2 þ jhjj2
P̃j

�Z
2π

0

× exp

�jdjjjhjj
P̃j

cosðϕj − ψ jÞ
�
πðψ jÞdψ j

¼ jdjj
2πPj

exp

�
−
1

2

jdjj2 þ jhjj2
P̃j

�
I0

�jdjjjhjj
P̃j

�
;

ð13Þ

where I0 is the zeroth-order modified Bessel function of the
first kind. By combining all frequency bins, the margin-
alized log-likelihood normalized by the noise contribution
is obtained as follows [30]:

lnLold ≡
X
j

½lnLðdjjjhjjÞ − lnLðdjj0Þ�

¼
X
j

ln I0

�jdjjjhjj
P̃j

�
−
1

2

X
j

jhjj2
P̃j

: ð14Þ

We denote this as the old likelihood for later comparison.
The second term is the conventional optimal SNR term:
SNR2 ¼ P

j jhjj2=P̃j. The first term reflects the main effect
of phase marginalization. Without phase information, a log-
Bessel function acts on the overlap of the absolute values of
signal and data. As a result, the sensitivity of the old
likelihood depends mainly on SNR2 per frequency bin, that
is, SNR2

bin. The overlap term jdjjjhjj=P̃j ≈ jhjj2=P̃j when
hj dominates over the noise. However, the signal sensitivity
is lost when jhjj2=P̃j ≲ 1.
Next, we move to the more refined treatment

of the phase in Eq. (11). To deal with the unwanted
phase for the nth QNM, we first combine the likelihood
of all frequency bins within the range fn − Δf=2≲
fj ≲ fn þ Δf=2, that is, for j∈J n ≡ ½⌈ 1

δf ðfn − Δf=2Þ⌉;
b 1
δf ðfn þ Δf=2Þc�. We then marginalize over the second
phase term δ0n ≡ δn þ 2πfntd by treating it as a
constant. The combined likelihood for the nth mode is
given by

LnðdjhÞ≡
Z � Y

j∈J n

LðdjjhjÞ
�
πðδ0nÞdδ0n

¼
� Y

j∈J n

jdjj
2πPj

�
exp

�X
j∈J n

−
1

2

jdjj2 þ jhjj2
P̃j

�Z
2π

0

exp

�X
j∈J n

jdjjjhjj
P̃j

cosðφj − δ0nÞ
�
πðδ0nÞdδ0n

¼
� Y

j∈J n

jdjj
2πPj

�
exp

�X
j∈J n

−
1

2

jdjj2 þ jhjj2
P̃j

�
I0

�����
X
j∈J n

jdjjjhjj
P̃j

e−iφj

����
�

¼
� Y

j∈J n

jdjj
2πPj

�
exp

�X
j∈J n

−
1

2

jdjj2 þ jhjj2
P̃j

�
I0

�����
X
j∈J n

djh�j
P̃j

����
�
; ð15Þ

where φj ¼ ϕj − ðψ j − δ0nÞ, ψ j − δ0n is the relative
phase of h, and h�j is the complex conjugate of hj. The
integral s simplified with

R
2π
0 expðPi ai cosðxþ biÞÞdx ¼

2πI0ðj
P

i aie
ibi jÞ for ai; bi ∈R. Thus, the new margin-

alized log-likelihood normalized by the noise contribution
is given by

lnLnew ≡X
n

½lnLnðdjhÞ − lnLnðdj0Þ�

¼
X
n

ln I0

�����
X
j∈J n

djh�j
P̃j

����
�
−
1

2

X
j

jhjj2
P̃j

: ð16Þ

Compared to the old likelihood in Eq. (14) used in
Ref. [30], the new likelihood in Eq. (16) coherently
combines different frequency bins belonging to one
QNM, and the log-Bessel function acts on the coherent

sum. With the information of relative phases maintained,
the new likelihood depends mainly on SNR2 per mode,
that is, SNR2

mode. For the nth mode, the overlap term isP
j∈J n

djh�j=P̃j≈
P

j∈J n
jhjj2=P̃j¼SNR2

n. When T ≫ τn,
SNR2

n could be considerably larger than SNR2
j for a well-

resolved QNM. Thus, the new likelihood allows for the
detection of these modes at the large T limit.

III. BAYESIAN SEARCH FOR UniEw INJECTIONS

Very compact UCOs may have a large number of long-
lived QNMs that can be excited in the postmerger stage
from the master equation in Eq. (2). Under the approxi-
mation of one-mode dominance, the echowaveform around
each peak resonance is described by at least three para-
meters, i.e., the height, position, and width, even if the
unwanted phases are discarded. Thus, a detailed modeling
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of the full spectrum would still include many search
parameters and may suffer strongly from the Occam
penalty for Bayesian searches. However, it may suffice
to capture the dominant modes within a narrower frequency
range for an efficient and model-independent search. For
this purpose, we consider in Sec. III A a simple periodic
and uniform model of the echo waveform, dubbed
UniEw, as the search templates. We then validate the
search algorithm with the UniEw injections in Gaussian
noise by considering N ¼ 100 different noise realizations
to account for noise uncertainties. Section III B presents
a simple comparison between the two likelihoods.
Section III C examines various factors that may influence
the performance of the Bayesian search.

A. Uniform echo waveform

Under the approximation of one-mode dominance (i.e.,
distinct and well-separated QNMs), we define a simple
periodic and uniform model of echo waveform (UniEw)
within a frequency band ½fmin; fmax� as

hUniEwðfÞ ¼
XNmax

n¼Nmin

�
A 1−e−T=τei2πðf−fnÞT

2πðf−fnÞþi=τ ; jf − fnj ≤ fcut;

0; jf − fnj > fcut;

ð17Þ

where fn ¼ Δfðnþ q0Þ, Nmin ¼ ⌈fmin=Δf⌉, and Nmax ¼
bfmax=Δfc.4 N ≡ Nmax − Nmin þ 1 denotes the number of
QNMs within the frequency band. For frequency bins
sufficiently close to the peak, this accounts for the
amplitude in Eq. (10) and the first phase term in
Eq. (11). The second part δ0n ≡ δn þ 2πfntd is approxi-
mated as a constant and marginalized over in the new
likelihood, Eq. (16). Data points away from the peak are set
to zero to guarantee the one-mode dominance in the simple
model. For UCOs with strong reflection and large compact-
ness, the UniEw model provides a leading-order approxi-
mation to the echo waveform if the amplitude and width of
QNMs vary slowly with frequency. This is possible if the
initial frequency content and interior reflection vary more
slowly than that of the Lorentzian shape around the pole.
The simple model UniEw is fully specified by seven

parameters,

Δf; q0; A; τ; T; fmin; fmax; ð18Þ

denoting the spacing, relative shift, amplitude, damping
time, time duration, and minimum and maximum
frequency, respectively. The mode number is given by
N ¼ ⌈ðfmax − fminÞ=Δf⌉. These parameters capture the

essential features of QNMs associated with echoes and
provide an excellent estimate of the average spacing,
height, width, and frequency range of the dominant QNMs.
The preferred values of the parameters in Eq. (18) are

well motivated by the physics behind the UCOs. The
highest frequency scale is set by the black hole ringdown
frequency (l ¼ m ¼ 2),

MfRD ¼ 0.243 − 0.184ð1 − χÞ0.129: ð19Þ

Above fRD, the reflectivity of light-ring potential barrier
RBH is strongly suppressed, and the QNMs are no longer
long-lived. The average spacing Δf of the quasiperiodic
pattern is roughly the inverse of time delay td in Eq. (1),
with

MΔf ≈
R̄
η
; R̄ ¼ 0.00572

1þ ð1 − χ2Þ−1=2 : ð20Þ

With η ∼Oð1Þ, there is a hierarchy between fRD and Δf
due to the large redshift close to the would-be horizon.
Their radio then indicates the maximal number of long-
lived QNMs to search for, i.e., N ≲ fRD=Δf ∼ 30η − 60η,
which ranges from a few tens to hundreds. The narrow
width of QNMs constitutes another important feature of our
search target. At ω≲ ωH, the combined reflectivity Reff
could approach 1 sufficiently close, and the width-to-
spacing ratio 1=ðτnΔfÞ could be considerably smaller than
1 from Eq. (5). This then produces another hierarchy. Since
the new likelihood (16) would not be deteriorated by the
increasing time duration T, it is good to choose a suffi-
ciently large T to increase the possibility of probing a
strong reflecting interior surface. Considering the limitation
of computational resources, we manually scan over a list of
T for a practical Bayesian search. In this paper, we take
τnΔf and TΔf to be a few tens to hundreds below for
demonstration purposes.

B. Simple comparison of the two likelihoods

To get some insight, we first compare the two likelihoods
by considering a simple search of the maximum log-
likelihood by varying the amplitude A, where all other
parameters are fixed as the injected values. More explicitly,
we search for Amax that maximizes the log-likelihood in
Eqs. (14) and (16) for each noise realization, respectively,
and then produce a distribution of the maximum log-
likelihood lnLmax and the corresponding amplitude Amax
for different noise realizations. The distributions peak
around zero for small signals and are approximately
Gaussian for sufficiently large signals. Below we compare
the two likelihoods from different perspectives.
Figure 1 compares the time duration dependence for a

given injected signal amplitude. The top row shows the
dependence for the maximum log-likelihood lnLmax.
The performances of the two likelihoods are similar at

4Specifically, we define fcut ¼ min fmax ½ ffiffiffi
6

p
=ðπτÞ; 3=T�;

Δf=2g, which is upper bounded by Δf=2. In the high-frequency
resolution limit, it corresponds to cutting at 20% of the peak
height. In the low-resolution limit, we retain six frequency bins.
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low-frequency resolution, i.e., T=τinj ≲ 1, while they differ
significantly when the resonance gets well resolved, i.e.,
T=τinj ≳ 1. This is expected since the difference of
Eqs. (14) and (16) comes down to the number of frequency
bins contributing to one QNM. In the low-frequency
resolution limit, the signal SNR ∝ T1=2 due to the expo-
nential factor in Eq. (B3) and so the mean of lnLmax is
proportional to T approximately. When T=τinj ≳ 1, SNR
per mode approaches the continuous limit, and the new
likelihood becomes quite insensitive to T. On the other
hand, SNR per bin scales as 1=

ffiffiffiffi
T

p
, and the old likelihood

drops quickly with increasing T. The relative error of
lnLmax is inversely related to the mean, which reaches the
minimum around T=τinj ∼ 1 for the old likelihood and
approaches a constant when T=τinj ≫ 1 for the new like-
lihood. The distributions for the search amplitudes Amax are
more similar for the two likelihoods. The mean is around
the injected value, and the error does not vary much.
Figure 2 compares the injected amplitude dependence.

For the new likelihood, the mean value and the relative

error can be nicely fitted by a A2
inj and a0=Ainj (blue dotted

line), respectively, in the large signal limit. The old like-
lihood, on the other hand, is sensitive to the normalized
amplitude and so exhibits a more complicated dependence
on Ainj. For the searched amplitude, it is useful to compare
the 1σ range of Amax distribution to the injected value.
The 1σ range is symmetric around Ainj for a large signal,
while it broadens and becomes asymmetric for decreasing
signal amplitude. For the old likelihood, the upper
boundary is driven large mainly by the noise and thus is
quite insensitive to Ainj. The value becomes larger for
increasing T, corresponding to a constant normalized
value ∼0.6.
In addition, in the high-resolution limit, the old

likelihood exhibits a strong dependence on the QNM
shape. Considering two models with the same SNR per
mode but different τinj, we find distributions not much
changed for the new likelihood, while those for the old
likelihood are drastically different due to varying SNR
per bin.

FIG. 1. The time duration T dependence of the old likelihood (orange) and the new likelihood (blue) for the injected toy signal with
SNR ¼ 7.3. Left: the mean value of the maximum log-likelihood. Right: the mean value (solid) and the range of 68% (shaded) of the
search amplitude Amax compared with Ainj (dashed).

FIG. 2. The injected amplitude Ainj dependence of the new likelihood (blue) and the old likelihood (orange) for two duration T in high-
frequency resolution limit. Left: the mean value of the maximum log-likelihood. The blue dotted lines show a large signal fit for the new
likelihood. The gray vertical lines denote when the normalized value of Ainj is 1. Right: the 1σ range of searched amplitude Amax. The
gray dashed line denotes Amax ¼ Ainj.
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In summary, the new likelihood can significantly improve
the search sensitivity over the old one when the QNMs can
be fully resolved. This comes directly from the coherent
combination of multiple frequency bins belonging to one
QNM. As a result, the performance of the new likelihood is
more directly related to the signal SNR, while previous
searches with the old likelihood [30] are subject to strong
dependence on the time duration and the QNM shape.
This is important for realistic echo searches, where the
QNMs are nonuniform and the width can vary a lot with
frequency. Therefore, the new likelihood not only mitigates
intrinsic uncertainties associated with echo searches, but
also enables a more physical interpretation of the search
results.

C. Bayesian search for the UniEw injections

Now we verify the reliability of the Bayesian search
algorithm for the UniEw injections and examine the
influence of various factors on the search performance.
Since UniEw is uniform, we set fΔf; q0; A; 1=τg as the
search parameters and fix fmin, fmax as their injected
values. Table I summarizes the priors for the four search
parameters. Compared to our previous studies in Ref. [30],
we add the width 1=τ as the fourth search parameter, with
the ratio 1=ðτΔfÞ ranging from 1=ðTΔfÞ to Oð1Þ, where
TΔf ∼Oð100Þ. This enables a more efficient and model-
independent search of the long-lived QNMs with vastly
different τ, while the search performance is not signifi-
cantly affected, as we will show below. The influence of the
frequency band is manifested as the number of QNMs N.
We examine this by considering UniEw injections with
different N.
We use Bilby [35] to analyze data, which utilizes the

nested sampling algorithm (DYNESTY sampler [36]) to
explore the complicated likelihood distributions, as in
Ref. [30]. A proper choice of the sampler settings
is essential for the detection of narrow resonances.
Following Ref. [30], we choose nlive ¼ 1000, walks ¼ 100,
nact ¼ 10, and maxmcmc ¼ 10000 as the default setting for
the following search. At the end of this section, we will
comment on the influence of the sampler settings. Since the
background search results are relatively insensitive to

various parameter settings, we focus on the search results
for the injected signals below. The details of the back-
ground search are presented in Appendix D.
We begin by examining the influences of the time

duration T and the QNMs number N for examples with
a relatively small spacing-to-width ratio τinjΔfinj ¼ 23. For
the time duration, we consider two cases with T=τinj ≫ 1

and T=τinj ≪ 1 for the high- and low-frequency resolution
limits, respectively. For the number of QNMs, we choose
N ∼ 50 to account for excitation of a large number of
modes and N ¼ 10 for the case where only a subset of
QNMs dominates the SNR. The former is bounded by the
maximum total number of modes ∼fRD=Δf. The latter
corresponds to a lower bound set previously for the real
data analysis [30], which helps to avoid contamination
from large spectral lines in detector noise. Figures 3 and 4
display the Bayesian search results for the four cases:
(a) T=τinj ¼ 13, N ¼ 49, (b) T=τinj ¼ 1=4, N ¼ 49,
(c) T=τinj ¼ 13, N ¼ 10, (d) T=τinj ¼ 1=4, N ¼ 10.
As expected, the new likelihood brings in significant

improvements in the high-frequency resolution limit, while
not much difference can be seen when the QNMs are not
well resolved. Specifically, for the T=τinj ¼ 13 case, the log
Bayes factor distributions for new likelihoods in Fig. 3 are
well separated from noise and approximately Gaussian.
The old likelihood ones are much worse, in particular for
the N ¼ 49 case, where the SNR per bin is significantly
smaller than 1. This case is very similar to the example
considered in Ref. [30]. Although the performance
degrades slightly with the additional search parameter,
the new likelihood brings in much more significant
improvement, demonstrating the efficiency of this search
method. In the low-resolution limit, i.e., T=τinj ¼ 1=4, the
overall shape of log Bayes factor distributions for two
likelihoods is quite similar, with a slightly longer tail for the
new likelihood only. This is expected because the SNR per
mode is dominated by only one bin.
Regarding the numbers of QNM dependence, we

choose the SNRs such that the two N cases have similar
maximum log-likelihood distributions for the new like-
lihood in high-frequency resolution limit. The SNR per
mode is then larger for the N ¼ 10 case, although its total
SNR is smaller. As a result, the old likelihood performs
better for the N ¼ 10 case in the high-frequency limit, with
the SNR per bin ∼1. The performance at low-frequency
limit is also better than the N ¼ 49 case for both
likelihoods.
To account for noise uncertainties, the posteriors for

N ¼ 100 different noise realizations are averaged with
equal weights to obtain the overall distributions [37],

pðθjdÞ¼
XN
k¼1

pðθjdkÞpðdkÞ; with pðdkÞ¼1=N : ð21Þ

TABLE I. The parameter settings for the four-parameter
Bayesian search for the UniEw injections. The range of A is
specified in terms of the normalized PSD hP̃i for noise. The last
line denotes the T range over which we scan.

Parameters Priors

Δf Uniform in ½0.2; 2�Δfinj
q0 Uniform in [0, 1]
A Uniform in ½10−2; 10�hP̃i1=2
1=τ Log-uniform in ½1=T;maxf2=τinj; 2=Tg�
T f1=4; 1=2; 3=4; 1; 2; 3; 6; 13gτinj
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Figure 4 displays the overall posterior distributions of the
spacing Δf and the width 1=τ with respect to the injected
values. Specifically, we list the inferred parameters with
symmetric 90% credible intervals for the new likelihood as
follows:

ðaÞΔf=Δfinj≈1.0000þ0.0003
−0.6665 ; log10τinj=τ≈0.00þ0.09

−0.11 ;

ðbÞΔf=Δfinj≈1.0þ0.4
−0.3 ; log10τinj=τ≈0.67þ0.17

−0.06 ;

ðcÞΔf=Δfinj≈1.0000þ0.0009
−0.0009 ; log10τinj=τ≈0.00þ0.10

−0.10 ;

ðdÞΔf=Δfinj≈1.00þ0.01
−0.01 ; log10τinj=τ≈0.66þ0.16

−0.05 : ð22Þ

A key feature of the search is the ability to estimate the
spacing Δf with high precision, particularly when N is
large. This is due to the periodic nature of the UniEw
model, where a small change in Δf can cause a significant
mismatch of the entire template, resulting in a relative error
of Δf that is suppressed by a factor of 1=N. This can be
observed by comparing the cases N ¼ 49 and N ¼ 10 with
the new likelihood. In the high-frequency resolution limit,
the relative error of Δf for the case N ¼ 49 is reduced by a
factor of a few compared to the case N ¼ 10, reaching an
order of magnitude of 0.01%.5 For the old likelihood, the
difference in spacing errors is mainly determined by the log

Bayes factor. For the inferred width, the distributions peak
well around the injected values in the high-resolution limit.
Since the width error is insensitive to N, we observe very
similar width errors for both N cases with the new like-
lihood. In the low-resolution limit, the width distributions
peak around the lower end ∼1=T for both cases. This is
expected because the mode has been smeared out and the
SNR is dominated effectively by one bin with the
width 1=T.6

For a generic search, we scan over a list of time durations
fTig for a given UniEw injection. For each Ti, we perform
the Bayesian search with the two phase-marginalized
likelihoods and the priors listed in Table I. The search
results for the previous example with τinjΔfinj ¼ 23 and
N ¼ 49 are presented in Fig. 5. The two likelihoods are
comparable at small T < τinj, and their performance
improves as T increases. When T exceeds τinj, the perfor-
mance of the new likelihood saturates and varies less with
T, while the performance of the old likelihood degrades
significantly as T increases. This change in behavior also
provides an estimate of the injected value of τ. In the high-
resolution limit, i.e., T ≫ τinj, the sampling uncertainties
increase, yielding a larger error of log Bayes factor

(a) (b)

(c) (d)

FIG. 3. The log Bayes factor distributions with the new (blue) and old (orange) likelihoods for the UniEw injection with τinjΔfinj ¼ 23

inN ¼ 100 noise realizations. The panels (a) and (b) represent theN ¼ 49 case with SNR ≈ 16 in the continuous limit, while (c) and (d)
represent the N ¼ 10 case with SNR ≈ 13 in the continuous limit. Panels (a) and (c) are for high-frequency resolution limit, and panels
(b) and (d) are for the low-frequency resolution limit.

5The large lower error for case (a) corresponds to non-
negligible probability of the average spacing at half of the
best-fit value due to the partial overlap between the template
and the injected signal [28,30].

6As for a test, we consider a different prior 1=τ∈ ½0.1=T; 1=T�
(log-uniform) for this case, with the injected value included. It
turns out that the likelihood is quite insensitive to the variation of
small τ in this range, and the sensitivity worsens for both
likelihoods.
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distribution. Regarding the inferred SNR, the median
value of the posterior distributions agrees well with the
injected value, except for the large T case for the old
likelihood with very poor sensitivity. The relative error also
remains stable with respect to T. The combination τΔf is
useful because it provides an estimate of the combined
reflectivity Reff for long-lived QNMs through Eq. (5), i.e.,
τnΔf ≈ 1=jlnReffðfnÞj. Specifically, the median value of
this quantity traces well the combination fτinj; TgΔfinj.
When the frequency resolution is insufficient, i.e., T < τinj,
its posterior distribution is less informative and tends to
concentrate around the upper boundary TΔfinj. Only when
the mode becomes resolved at T > τinj, the posterior
distribution becomes more symmetric and informative
inferences are possible.
The search performances are also sensitive to the injected

value of spacing-to-width ratio, i.e., τinjΔfinj. As τinjΔfinj

increases, the peak region takes a smaller fraction of the
total number of frequency bins, making it numerically more
challenging to find the signal. The sampler settings for the
Bayesian search then have to be adjusted accordingly. The
left panel of Fig. 6 displays the correlation between
τinjΔfinj and the number of live points nlive of nested
sampling in the high-resolution limit. Performance
degrades significantly if we increase τinjΔfinj from 23 to
100 but with the sampler setting unchanged, that is,
nlive ¼ 1000. The peak of the log Bayes factor distribution
around zero corresponds to a large number of failed
searches that miss the narrow resonances. The search is
efficient only for a small number of cases where the
injected signal is found. The situation is greatly improved
if we increase nlive to 2000 for τinjΔfinj ¼ 100. The missed
cases are then largely eliminated, making the search results
more similar to that for τinjΔfinj ¼ 23. Since τinjΔfinj is

(a) (b)

(c) (d)

FIG. 4. Corner plots for the overall posterior distributions for the spacing Δf and the width 1=τ for the UniEw injection with
τinjΔfinj ¼ 23. The blue and orange are for new and old likelihoods, respectively. The contours in the 2D posteriors for the spacing and
width represent the 1σ and 2σ ranges. Similar to Fig. 3, (a) and (b) are forN ¼ 49, while (c) and (d) are forN ¼ 10. (a) and (c) represent
high-frequency resolution, and (b) and (d) represent low-frequency resolution.
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directly related to the combined reflectivity of the cavity
Reff , as shown in Eq. (5), this reveals that a sufficiently fine
setting of the stochastic sampler is required to efficiently
probe the strong reflectivity case. In the low-resolution
limit, the effective width of the resonance is limited by 1=T,
and thus the sampler setting is mainly based on TΔfinj. As
shown in the right panel of Fig. 6, the old likelihood
performs slightly better in the case of inefficient sampling,
i.e., TΔfinj ¼ 100, nlive ¼ 1000. This is reasonable
because the new likelihood incorporates more information,
allowing for more possibilities. Both likelihood perfor-
mances improve as nlive increases to 2000. In particular, the
performance of the old likelihood for this case becomes
comparable to that for the low TΔfinj case in Fig. 5.
Therefore, choosing the right sampler settings is crucial for
an efficient search. Given that the choice of nlive relies on

the quantity minfT; τinjgΔfinj, for a generic search that
scans over a list of Ti, it is safe to choose nlive according to
TiΔfmax, which represents the maximum number of pulses
included in the segment of strain data.7

As a final note, we perform injections of the
UniEw model given by Eq. (17) in the frequency domain,
assuming a constant phase δ0n per mode that can be
properly marginalized. To examine the impact of QNM
interference on the Bayesian search performance, we
discuss the superposition of QNMs in the time domain

FIG. 5. The log Bayes factor distributions (top), the overall posterior distributions of the inferred SNR (middle), and the combination
τΔf (bottom) for the UniEw injection with τinjΔfinj ¼ 23 and N ¼ 49, as a function of the time duration T=τinj. For all panels, the blue
and orange colors represent the results obtained using the new and old likelihoods, respectively. The upper and lower bars represent the
symmetric 90% credible intervals, and the dots denote the median values. Top: the gray band represents the 90% credible interval of the
noise distributions. Middle and bottom: the green dashed lines denote the theoretical prediction of the SNR and the combination
fτinj; TgΔfinj, respectively.

7Another approach to address the challenge of finding narrow
resonances within a wide frequency range is to manually scan
over the peak location (e.g., Δf), similar to the continuous wave
search [38]. However, this method requires additional computa-
tional resources, and we leave it for future investigation.
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in Appendix B. By considering a uniform and periodic
model of QNMs in the waveform given by Eq. (B1), we
have verified that the search algorithm’s performance
remains robust as long as the spacing-to-width ratio is
considerably larger than 1.

IV. BAYESIAN SEARCH FOR ECHO WAVEFORM
INJECTIONS

A. Benchmarks for echo waveforms

With the generic construction of echo waveforms in
Sec. II A, the main uncertainties come down to the effective
reflection from the interior boundary and the frequency
content of the initial pulse. To validate our search algo-
rithm, we consider a few benchmarks below to demonstrate
its ability to recover echo waveforms of different shapes.
For interior reflection, the inputs are the energy flux

reflection of the interior boundary RwallðωÞ and the phase
δðωÞ. A toy model is utilized as a reference, with constant
Rwall and δðωÞ ¼ tdω̃. Subsequently, two more represen-
tative and complementary examples are explored, which are
more physically realistic. The first comes from an explicit
model of UCOs, the 2-2-hole in quadratic gravity [39–42].
Since this object is extremely compact, with η ∼ 2 in Eq. (1),
the phase is dominated by the time delay contribution.
In addition, a perfect reflecting boundary condition is
naturally defined at the origin of 2-2-holes. Thus, the
effective energy flux reflection for this case is fully deter-
mined by the energy loss experienced by gravitationalwaves
traveling through the matter source inside 2-2-holes. The
prediction of this model is found as [43]

RdampðωÞ ¼ exp

�
−4πVðαÞζ

�
1þ

�
8πω̃

ζ

α2

�
2
�
−1

×
Z

td=2M

0

ŝðx̃Þeðω̃; x̃Þdx̃
�
; δðωÞ ¼ tdω̃;

ð23Þ

where α is the dimensionless coupling,VðαÞ is the viscosity-
to-entropy density ratio for the matter source, and ζ ¼ 2 is a
parameter characterizing the entropy of the 2-2-hole. ŝðx̃Þ is
the entropy density at position x̃. eðω̃; x̃Þ is the energy
density profile of thegravitationalwave. Thismodel features
strong energy absorption near the special frequency ωH,
while the damping becomes negligible away from ωH.
The second model considers a reflection following the

Boltzmann distribution, motivated by assuming that black
holes are quantum systems that satisfy either thermody-
namic detailed balance, CP symmetry, or (a version of)
the fluctuation-dissipation theorem [9,44,45]. Specifically,
using the fluctuation-dissipation theorem, the general form
of the Boltzmann reflection is given by

RBoltzðωÞ ¼ exp

�
−

jω̃j
2TQH

�
; δðωÞ ¼ −

ω̃

πTH
lnðγjω̃jÞ;

ð24Þ

where TQH denotes the quantum horizon temperature and
TH is the Hawking temperature. γ is a constant that
determines the energy scale of exotic physics responsible
for the reflection. In this paper, we assume γ ¼ 1, which is
equivalent to assuming that the relevant energy scale at the
would-be horizon is the Planckian energy. With no definite
prediction for the latter, we leave TQH as a free parameter
here. The energy reflection reaches its maximum at the
special frequency ωH and is exponentially suppressed away
from ωH. The phase is not exactly linear in ω due to the log
correction term, yielding a frequency-dependent spacing for
the QNMs and a small deviation for the periodicity of ωn.
For both models, the ergoregion instability can be easily

quenched by the absorption around ωH with a proper choice
of the parameters, i.e., ReffðωÞ ≤ 1 with a sufficiently large
Vα4 in Eq. (23) or a sufficiently small TQH in Eq. (24).
Figure 7 displays the quantity 1=j lnReffðωÞj, which is

approximately the spacing-to-width ratio τΔf (or quality

FIG. 6. Four-parameter Bayesian search results of the injected UniEw signal with N ¼ 49. Left: the log Bayes factor distribution for
the new likelihood in the high-frequency limit, with T=τinj ¼ 3, SNR ≈ 16, and different choices of τinjΔfinj and nlive. Right: the log
Bayes factor distributions for both new and old likelihoods in the low-frequency limit, with T=τinj ¼ 1=2, SNR ≈ 14, TΔfinj ¼ 100, and
different choices of nlive.
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factor) for narrow QNMs as a function of their real
frequency, as given in Eq. (5). In addition to the strong
absorption case for the Boltzmann reflection model, the

main difference of these models appears at ω≲ ωH. The
constant reflection has roughly τΔf ≈ 1=ð1 −RwallÞ for
ω≲ ωH. The damping model, on the other hand, predicts
an increase τΔf as ω decreases. The Boltzmann model is
the opposite, where narrow resonances with τΔf ≫ 1 only
appear around ωH.
For the frequency content of the initial pulse, in addition

to the inside and outside prescriptions in the geometric
optics limit as given in Eq. (3), we also consider the case of
infalling particles with heffðωÞ extracted from the numeri-
cal results of a recent analysis [11]. For the outside case,
heffðωÞ is suppressed by T 2

BH at low frequency and
enhanced by 1=R2

BH at high frequency, compared to that
for the inside one. The resulting echoes are thus dominated
by quickly damped modes at high frequencies, which are
not the focus of our search. The prediction of the “infalling
particle” case lies between the inside and outside prescrip-
tions, with a relatively larger contribution from QNMs at
higher frequencies, but not significantly so. This provides
another example to illustrate the variability of initial
conditions, in addition to the commonly used inside
scenario.
Given the above choices for the interior reflection and

initial condition, we then define four benchmarks for the
echo waveforms,

B1: Constant reflection þ inside: RwallðωÞ ¼ 0.99, heffðωÞ ¼ hRDðωÞ.
B2: Damping 2-2-hole þ inside: RwallðωÞ ¼ RdampðωÞ in Eq. (23) with V ¼ 0.2;α4 ¼ 0.01, heffðωÞ¼hRDðωÞ.
B3: Boltzmann reflection þ inside: RwallðωÞ ¼ RBoltzðωÞ in Eq. (24) with TQH ¼ 10TH, heffðωÞ ¼ hRDðωÞ.
B4: Constant reflection þ infalling particle: RwallðωÞ ¼ 0.99, heffðωÞ given by Ref. [11].

The properties of four benchmarks are displayed in Fig. 8.
The relative echo amplitude in the left panel demonstrates a
significant degree of complementarity. The spectrum is
dominated by the positive frequency component for the
first three benchmarks, while the negative frequency com-
ponent is larger for the last one. Compared to the constant
reflection case B1, the damping model B2 exhibits a
significantly broader spectrum, with the exception of a
slight drop aroundωH. Notably, there exists a larger number
of narrow modes at lower frequencies that grow larger as
time increases. In contrast, the spectrumwith the Boltzmann
reflection (B3) exhibits a peak around the special frequency
ωH, which rapidly decreases as ω deviates from ωH.
The spectrum associated with the infalling particle (B4)
features strong modes at high frequencies. Since the current
search algorithm is designed to detect either the positive or
negative frequency component of the echo spectrum, as we
explain below, we present the ratio of the total SNR of the
dominant echo component to that of the ringdown as a
function of NE in the right panel for the four benchmarks.
The ratio for B2 grows the fastest with T due to the
dominance of low-frequency modes with much longer

lifetime. In contrast, the ratio for B4 saturates at very early
time due to the dominance of quickly dampedmodes at high
frequency.8 Our method is most effective for models such as
B1 and B2, which are dominated by a large number of long-
lived QNMs with comparable heights. However, as we will
demonstrate below, it is still capable of detectingmodels like
B3 and B4, albeit with a lower probability.

B. Search results for the benchmarks

Now we are ready to carry out the model-independent
search for the four complementary benchmarks designed
above. To account for the detector response, we consider a
simple constant effective impulse response, and the wave-
form can be written as hdetðfÞ ¼ 1

2
ðhechoðfÞ þ h�echoð−fÞÞ

with the impulse response absorbed in the amplitude. More
generally, as long as the detector response varies slowly

FIG. 7. The frequency dependence of 1=j lnReffðωÞj for the
combined reflectivity Reff ¼ RBHRwall for the three representa-
tive models ofRwall andRBH with χ ¼ 0.69. The gray solid curve
is for the constant reflectivity Rwall ¼ 0.99. The purple curves are
for the damping model, with V ¼ 0.2 (solid) and V ¼ 1 (dashed)
in Eq. (23) (α4 ¼ 0.01 for both cases). The red curves are for the
Boltzmann reflection model, with TQH ¼ 10TH (solid) and
TQH ¼ 2TH (dashed) in Eq. (24). The ergoregion instability is
successfully quenched for all these cases. The two vertical dashed
lines are for MωH ¼ 0.40 and MωRD ¼ 0.53.

8To find this ratio for B4, we fit the surrogate model
“NRSur7dq4” [46] used in Ref. [11] with the ringdown waveform
as dominated by the fundamental mode. A nice fit can be obtained
with the ringdown initial time larger than 15=M. We then use this
earliest initial time to evaluate SNRRD with jMωj < 1.
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with frequency, our current search strategy for narrow
QNMs would not be significantly affected. Also, consid-
ering the narrow widths of the QNMs targeted, it is unlikely
that the positive and negative frequency components in
hdetðfÞ are overlapping in general. The search algorithm
will then look for the dominant component of the echoes
with the signal-to-noise ratio SNRecho.
For a given benchmark, we inject the waveform in N ¼

100 Gaussian noise realizations and analyze the resulting
data with a series of time duration fTig. For each data
sample, we conduct a six-parameter Bayesian search with
the two likelihoods. The parameter settings for the searches
are summarized in Table II. Δf denotes the spacing with
η ∼Oð1Þ. The duration is chosen such that the number of
pulses included in the data segment, i.e., NE ≈ TΔf, ranges
from Oð10Þ to Oð100Þ. The prior range of width corre-
sponds to setting the ratio 1=ðτΔfÞ from 1=ðTΔfÞ toOð1Þ.

The upper and lower ends of the frequency band are
determined by fRD and fcut, respectively. For studies with
Gaussian noises, we set fcut ¼ 0, while a larger value of
fcut might be needed for real data analysis. Additionally, we
require the frequency band to include a sufficiently large
number of QNMs to avoid contamination from spectral
lines in detector noise [30].
To enable a fair comparison of different models and their

search efficiencies, we fix the amplitude of the injected
signals by requiring SNRecho ≈ 16 for NE ≈ 100 (i.e.,
TΔfmax ≈ 200) for all four benchmarks. It is worth noting
that the expected value of SNRecho strongly depends on the
models under consideration. Taking the four benchmarks as
examples, for a typical binary black hole event with
SNRRD ≈ 8, such as GW150914, we would anticipate
SNRecho ≈ 20, 24, 13, 11 for NE ≈ 100 for models B1,
B2, B3, B4, respectively, as indicated in the right panel of
Fig. 8. Thus, for fast-damping models like B3 and B4,
SNRecho is smaller than 16, while for models featuring
long-lived QNMs like B1 and B2, it can be significantly
larger. Given that our search method specifically targets the
latter case, a SNRecho of approximately 16 is a reasonable
choice. This choice also allows for a direct comparison of
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FIG. 8. Left: the relative echo amplitude jhðTÞechoðωÞj for the four benchmarks with the dimensionless spin χ ¼ 0.69 and the number of
pulses NE ¼ 200. The gray, purple, red, and blue lines are for B1, B2, B3, and B4, respectively. The two vertical black dashed lines are
forMωH ¼ 0.40 andMωRD ¼ 0.53. Right: the ratio of SNRs as a function of NE for the four benchmarks, with the same legends as the
left. The symbol SNRecho represents the total SNR of echoes within either the range 0 < ω < ωRD or −ωRD < ω < 0, depending on
which range yields a higher SNR value.

TABLE II. The parameter settings for the echo search with
UniEw. Δf, q0, A, 1=τ, fmin, fmax are search parameters and the
priors are given. R̄ ¼ 0.0024 is given by Eq. (20) for χ ¼ 0.69.
ηmax ¼ 4 and ηmin ¼ 1. The range of A is specified in terms of the
normalized PSD hP̃i for noise. fRD is given in Eq. (19) and fcut ¼
0 is used for this study with Gaussian noise. The frequency band
satisfies an additional constraint fmax − fmin > 10Δf. We scan
over a list of T=M with TΔfmax ranging from 20 to 400 and
varying nlive.

Parameters Priors and scan values

MΔf Uniform in ½R̄=ηmax, R̄=ηmin�
q0 Uniform in [0, 1]
A Uniform in ½10−2; 10�hP̃i1=2
1=τ Log-uniform in ½1=T;Δfmax�
fmin, fmax Uniform in ½fcut; fRD�

With fmax − fmin > 10Δf

TΔfmax f20; 40; 100; 200; 300; 400g
nlive f1000; 1000; 1000; 2000; 2000; 2000g

FIG. 9. The log Bayes factor distribution with the new like-
lihood for the four benchmark injections in N ¼ 100 Gaussian
noise realizations, with SNRecho ≈ 16 and TΔfmax ≈ 200.

WU, GAO, REN, and AFSHORDI PHYS. REV. D 108, 124006 (2023)

124006-14



the search results with those for UniEw injections of similar
SNR presented in Sec. III C.
As an initial exploration, let us closely examine the search

results for the four benchmarks at a specific time duration,
i.e., TΔfmax ≈ 200. Figures 9 and 10 present the results with

the new likelihood (seeTable III inAppendixD for all results
of the inferred parameters). In all cases, the log Bayes factor
distributions are approximately Gaussian, with mean values
considerably greater than zero. This indicates a high
detection probability of the injected signals.

FIG. 10. The four benchmarks and search results for their injections with SNRecho ≈ 16 and TΔfmax ≈ 200. Left column: SNR2 per
frequency bin with a bin resolution ofM=T ≈ 10−5 (blue lines) and SNR2 per QNM (orange bars). Awell-resolved QNM has the orange
bar much higher than the blue line. The two green bands (dashed vertical lines) denote the symmetric 90% credible intervals (median
values) of fmin and fmax from the overall posterior distributions. Right column: the corner plots for the spacing MΔf and the width
log10 M=τ with the overall posterior distributions. The vertical gray lines present the best-fit values ofMΔf from the injected spectrum
within the inferred frequency ranges.
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The search performance for B1 injections outperforms
the other three, but due to the mismatch with the search
template and increasing number of search parameters, its
log Bayes factor distribution is slightly worse than that of
the UniEw injections with similar SNR in Fig. 5 at

T ≳ τinj. Its overall posterior distributions of width and
spacing closely resemble those in Fig. 4. Specifically,
the inferred parameters with the symmetric 90% credible
interval from the overall posterior distribution are
found as

MΔf ≈ 11492þ3
−5746 × 10−7; q0 ¼ 0.83þ0.01

−0.16 ; A=hP̃i1=2 ≈ 3.3þ1.3
−1.2 ;

log10M=τ ≈ −4.8þ0.2
−0.1 ; Mfmin ≈ 0.046þ0.010

−0.013 ; Mfmax ≈ 0.076þ0.005
−0.003 : ð25Þ

FIG. 11. The log Bayes factor distributions for the four benchmarks as a function of the time duration TΔfmax. The signal amplitude is
selected such that SNRecho ≈ 16 at TΔfmax ≈ 200. The blue and orange colors represent the results obtained using the new and old
likelihoods, respectively. The upper and lower bars represent the symmetric 90% credible intervals, and the dots denote the median
values. The gray band represents the 90% credible interval of the noise distributions.
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The average spacing MΔf accurately peaks at the best-fit
value of the injected spectrum within the inferred frequency
range, suggesting a small variation in mode spacing within
this range. This parameter is also determined with excep-
tional precision, demonstrating a tiny relative error of
Oð0.01%Þ as in the case for UniEw injections in
Eq. (22). The average width, height, and frequency range
of the dominant QNMs are determined less accurately, with
relative errors of ∼Oð10%Þ. This information allows for the
inference of a variety of interesting physical quantities. The
number of pulses included in the data segment is
NE ≈ TΔf ≈ 100. The template SNR is found to be
SNR ≈ 14.3þ2.6

−2.8 , which is only slightly below SNRecho
for the injected signal, indicating that the majority of
QNMs have been captured by the template. The combined
reflectivity within the searched frequency band can be
inferred with 1=j lnReff j ≈ τΔf ≈ 70þ26

−34 , which exactly
recovers the theoretical prediction in Fig. 7. These results
suggest that the simple UniEw template can effectively
capture B1-like echo signals and allow for extracting
valuable information about the underlying physics.
The performance for B2 is slightly worse, with a few

failed cases where the log Bayes factor hovers around zero.
This can be attributed to the unresolved QNMs at low
frequency, where the current setting of nlive may not be
sufficient. This observation is further supported by the
overall posterior distribution of the width, which peaks at
the lower end (i.e., 1=T) of the prior range. B3 exhibits the
poorest performance due to the sharp decline in mode SNR

away from ωH. Since this model is dominated by only a
small number of QNMs, the average spacing cannot be
determined as accurately as for B1 and B2. The search
performance is also somewhat deteriorated by our require-
ment of no less than ten modes. The final example B4 is
distinct from the other three due to the dominant presence
of wide QNMs at high frequency, as illustrated in Fig. 10.9

Although these wide modes were not the target of our
search algorithm, they can still significantly overlap with
the UniEw template. As a result, the evidence for the
signal model is strong, as indicated by large log Bayes
factors, but this comes at the cost of much longer search
times and poorer parameter estimation, especially for the
spacing.
Figures 11–13 summarize the full search results for the

four benchmarks, revealing their distinct features from
different perspectives (see Appendix D for additional
search results). The results of B1 again closely resemble
those of the UniEw injections shown in Fig. 5. As the time
duration increases, the signal model becomes more
evident for both likelihoods due to an increase in
SNRecho. When SNRecho saturates the continuous limit
for TΔfmax ≳ 200, the new likelihood’s performance
remains stable as T increases, while the old likelihood’s

FIG. 12. The overall posterior distributions ofMΔf and log10 M=τ (top);Mfmax −Mfmin andMfmax (bottom) for one representative case
of each benchmark, i.e., B1 with TΔfmax ¼ 200 (first column), B2 with TΔfmax ¼ 400 (second column), B3 with TΔfmax ¼ 400 (third
column), B4 with TΔfmax ¼ 20 (fourth column), respectively. The full prior ranges are shown. The contours denote the 1σ and 2σ ranges.

9This is possible because we set the frequency band upper end
by ωRD for l ¼ m ¼ 2 mode, while B4 is dominated by the
negative frequency component with a smaller fundamental mode
frequency (l ¼ −m ¼ 2).
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FIG. 13. The overall posterior distributions of the inferred SNR (left) and the combined reflectivity 1=j lnReff j ≈ τΔf (right) of the
four benchmarks as a function of TΔfmax. The green dashed line (left) denotes the theoretical prediction of SNRecho. Other notations
follow the same conventions as those in Fig. 11.

WU, GAO, REN, and AFSHORDI PHYS. REV. D 108, 124006 (2023)

124006-18



performance deteriorates rapidly. The median value of the
template SNR traces well the injected value of SNRecho for
all T. The inferred combined reflectivity 1=j lnReff j peaks
around the maximum value TΔf for the small time
duration case, as the frequency resolution is insufficient
to resolve the dominant QNMs. When TΔfmax ≳ 200, its
posterior distribution is more symmetric and the median
value reaches a saturation point, offering a reliable
estimate of the average 1=j lnReff j for the detected
QNMs. For B2, both likelihoods show a faster increase
in the log Bayes factor as T increases, which is associated
with the increasing SNRecho shown in Fig. 8. The new
likelihood is particularly effective when TΔfmax ≳ 300,
allowing for the detection of narrower modes at low
frequency and the recovery of strong reflectivity associ-
ated with UCOs. The presence of a long tail of log Bayes
factor distribution extending toward zero suggests that
there may be insufficient sampling of the narrower QNMs
at low frequency. For B3, both likelihoods show stable
performance with respect to T. However, due to the sharp
decline of mode SNR away from ωH and the requirement
of ten modes within the band, the template SNRs tend to
deviate more from the injected SNRecho. The old like-
lihood is more influenced by the highest modes, resulting
in a larger inferred amplitude. The inferred 1=j lnReff j is
not much different and is more sensitive to the subdomi-
nant wider modes. Thus far, the two likelihoods have
captured almost the same QNMs for the first three
benchmarks. However, this does not hold true for B4,
where the differences between the QNMs identified by the
two likelihoods become more pronounced. The new
likelihood prefers wider modes at higher frequency,
resulting in a stable performance for the list of T.
Particularly, a much smaller value of spacing is allowed
due to the large overlap for the wider modes. In contrast,
the old likelihood tends to capture narrower modes at
lower frequency, and its performance quickly deteriorates
as T increases. This is also evident from the larger inferred
values of 1=j lnReff j with the old likelihood. This high-
lights the complementary roles played by the two like-
lihoods in capturing different subsets of QNMs in the
spectrum.
As a final remark, while our discussions have centered

around a specific choice of the echo SNR, i.e., SNRecho ≈
16 for NE ≈ 100, it is straightforward to generalize the
analysis to benchmarks with a range of SNRecho values. For
models incorporating long-lived QNMs such as B1 and B2,
a GW150914-like event with SNRRD ≈ 8 would predict a
higher SNRecho than the current choice from Fig. 8, thus
indicating an increased detection probability with our
method. On the other hand, SNRecho with only the first
few pulses would be significantly smaller, rendering the
existing model-independent methods in Refs. [22–24]
inefficient. This highlights the advantage of our method
in capturing long-lived QNMs associated with echoes.

V. SUMMARY

The identification of characteristic quasinormal modes in
the postmerger signal is essential for discerning the nature
of ultracompact objects, otherwise known as the quantum
black hole seismology. When UCOs have a strong interior
reflection and high compactness, they feature distinct
quasiperiodic and long-lived QNMs that differentiate them
from those expected in classical black holes. The super-
position of these modes then results in slowly damped
echoes at a timescale much longer than that for the typical
ringdown. In this study, building upon our previous work
that targeted these characteristic modes [30], we incorpo-
rate phase information to further optimize the Bayesian
search algorithm. This approach complements the existing
model-independent searches for quasiperiodic bursts that
rapidly decay in the time domain [22–24].
We begin with a generic discussion of the echo wave-

form in Sec. II A and find that the phase for one QNM can
be accurately approximated by the Lorentzian shape con-
tribution up to a constant. A new phase-marginalized
likelihood is then derived in Eq. (16) by only marginalizing
a constant phase per mode. Compared to the old likelihood
in Eq. (14) that discarded all phase information, the relative
phases are now maintained without adding new parameters.
Consequently, the new method can significantly improve
the search sensitivity for fully resolved QNMs. A simple
periodic and uniform model of echo waveform (UniEw),
defined in Eq. (17), is then adopted as the search template.
This model, which involves only seven parameters, allows
for an efficient detection of the variety of echo waveforms.
By considering a four-parameter search for a list of time
duration, we verify the reliability of the Bayesian algorithm
for the UniEw injections with the two likelihoods in
Sec. III C. The influence of different noise realizations is
also taken into account. As shown in Fig. 5, the perfor-
mance of the two likelihoods at low-frequency resolution is
similar due to the limited number of useful frequency bins.
However, they exhibit different behaviors when the modes
start to be resolved. Specifically, the new likelihood
remains stable as the time duration increases, while the
old likelihood deteriorates rapidly in the high-resolution
limit. Thus, incorporating the relative phases allows for the
detection of QNMs with amplitudes well below the noise
level. Efficient detection of long-lived QNMs also requires
appropriate sampler settings. Because of limited computa-
tional resources, the old likelihood can outperform the new
one occasionally by reducing the occurrence of failed
searches, as illustrated in Fig. 6.
Finally, in Sec. IV, we validate our search algorithm using

representative benchmarks of echo waveforms. The main
uncertainties for echo waveforms arise from the effective
reflection from the interior boundary and the frequency
content of the initial pulse. To address these uncertainties,
we construct four complementary benchmarks based on
physical models, as depicted in Fig. 8. We then perform a
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more generic six-parameter Bayesian search with the two
likelihoods for their injections, with the parameter settings
specified in Table II. The main search results are summarized
in Figs. 11–13, which display distinct features for various
benchmarks with respect to the variations of time duration of
thedata segment. Theuse ofboth likelihoods can significantly
increase the detection probability for echoes by capturing
different subsets of QNMs, given that a real spectrum
incorporates QNMs with different shapes and heights. If
the detection probability is sufficiently large,we can claim the
detection of QNMs of UCOs and infer the credible interval of
their average width, spacing, height, and frequency range.
Otherwise, we can impose an upper limit on the SNR or the
emitted GW energy of the dominant QNMs.
These results demonstrate the robustness of our

improved search algorithm in detecting the variety of
long-lived QNMs associated with echoes. Furthermore,
when considering more realistic UCO models beyond a
truncated Kerr black hole, we anticipate that the search
algorithm will continue to perform effectively, as long as
the timescales fall within the capabilities of the current
dataset. However, it is important to note that due to the
intrinsic contributions arising from the UCO’s interior, the
priors for different parameters will need to be adjusted
accordingly. Additionally, the inference of underlying
physics for UCOs will become less straightforward.
Our next step is to apply the proposed search to strain

data of the confirmed gravitational wave events from
Advanced LIGO, Virgo, and KAGRA. Having validated
the search algorithm with the old likelihood in real detector
noise by notching out prominent instrumental lines [30], we
will then closely examine this procedure with the new
likelihood. We will also investigate whether the additional
information provided by the relative phases can help to
further distinguish the signal from the instrumental lines.
This endeavor will serve as a valuable complement to the
ongoing model-independent search for echoes by the
LIGO, Virgo, and KAGRA Collaborations, where only
the BayesWave algorithm has been implemented [48].
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APPENDIX A: GENERIC CONSTRUCTION OF
THE ECHO WAVEFORM

The spin weight s ¼ −2 perturbations on a Kerr back-
ground spacetime are described by the Teukolsky equation.
After separation of variables, the asymptotic solutions of
the radial equation at the horizon and the spatial infinity are
described by amplitudes Bi,

R →

�
BtransΔ2e−iω̃x þ Brefeiω̃x; x → −∞;

Bin
1
r e

−iωx þ Boutr3eiωx; x → ∞;
ðA1Þ

where we suppress the lmω dependence for various vari-
ables for simplicity. x is the tortoise coordinate
with dx=dr ¼ ðr2 þ a2Þ=Δ, Δ ¼ r2 þ a2 − 2Mr, and
a ¼ J=Mð¼ χMÞ. ω̃ ¼ ω − ωH denotes the frequency close
to inner boundary, where ωH ¼ mΩH, and ΩH ¼
a=ð2MrþÞ is the horizon angular frequency. Since the
potential of the radial Teukolsky equation is not short
ranged, the asymptotic behavior above take strange forms.
To facilitate the numerical computation, it is convenient

to transform to the Sasaki-Nakamura (SN) equation with
the following transformation for the radial variable [49]:

X ¼ ðr2 þ a2Þ1=2r2J−J−
�
1

r2
R

�
; ðA2Þ

where J− ¼ ðd=drÞ − iðK=ΔÞ and K ¼ ðr2 þ a2Þω −ma.
With a short-ranged potential located around x ∼ 0, the
asymptotic form of the SN equation at spatial infinity and
horizon simplifies as

d2X
dx2

− VX ¼ S0; ðA3Þ

where V → −ω2 and −ω̃2 when x → ∞ and −∞, respec-
tively. S0 denotes the source term in the SN formalism. The
asymptotic solutions then take pure sinusoidal forms,

X →

�
Atranse−iω̃x þ Arefeiω̃x; x → −∞;

Aine−iωx þ Aouteiωx; x → ∞;
ðA4Þ

with amplitudes Ai. Given the transformation in Eq. (A2),
the two sets of amplitudes are linearly related by [49]

Bin ¼ −
1

4ω2
Ain; Bout ¼ −

4ω2

c0
Aout;

Btrans ¼
1

d
Atrans; Bref ¼

1

g
Aref ; ðA5Þ

with c0 ¼ λðλ þ 2Þ − 12aωðaω − mÞ − i12ωM, d¼
−4ð2MrþÞ5=2½ðk2H − 8ϵ2Þ þ i6kHϵ�, ϵ¼ðrþ−MÞ=ð4MrþÞ,
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g ¼ −b0=ð4kHð2MrþÞ3=2ðkH þ i2ϵÞÞ, and b0 ¼ λ2 þ 2λ−
96k2HM

2 þ 72kHMrþω − 12r2þω2 − i½16kHMðλ þ 3 −
3M=rþÞ − 12Mω − 8λrþω�.
For a given source, we look for solutions that are

outgoing at infinity and satisfy the corresponding boundary
conditions of BHs and UCOs near the horizon, namely,

RBH ¼
�
Z−
BHΔ2e−iω̃x; x → −∞;

Zþ
BHr

3eiωx; x → ∞;

RUCO ¼
�
Ztrans
UCOΔ2e−iω̃x þ Zref

UCOe
iω̃x; x → −∞;

Zþ
UCOr

3eiωx; x → ∞;
ðA6Þ

in the Teukolsky formalism, and

XBH ¼
�
ξ−BHe

−iω̃x; x → −∞;

ξþBHe
iωx; x → ∞;

XUCO ¼
�
ξtransUCOe

−iω̃x þ ξrefUCOe
iω̃x; x → −∞;

ξþUCOe
iωx; x → ∞;

ðA7Þ

in the SN formalism. The gravitational wave strain at
infinity is directly related to the Newman-Penrose scalar
curvature ψ4. If ignoring the mode mixing in the spin-
weighted spheroidal harmonics, the GW strain at distance
D can be mapped to the UCO response at infinity for the
Teukolsky variable as

hUCO ðBHÞ ¼ −
2

D
1

ω2
Zþ
UCO ðBHÞ: ðA8Þ

With the Green’s function method, the response of UCO
at infinity can be written as

ξþUCO ¼ ξþBH þKξ−BH: ðA9Þ
The BH responses to the source S0 in the SN formalism are
given by [28,50]

ξ�BHðωÞ ¼
Z þ∞

−∞
dx

1

WBHðω; xÞ
S0ðω; xÞX∓ðω; xÞ; ðA10Þ

where the Wronskian WBH is defined as WBH ¼ dXþ
dx X−−

Xþ dX−

dx . X
� are two independent solutions of the homo-

geneous SN equation

Xþ ¼
�
Aþ
transe

−iω̃x þ Aþ
refe

iω̃x; x → −∞;

eiωx; x → ∞;

X− ¼
�
e−iω̃x; x → −∞;

A−
ine

−iωx þ A−
outeiωx; x → ∞;

ðA11Þ

which satisfy the out- and ingoing boundary conditions at
infinity and horizon, respectively. Here, the two solutions
are normalized with Aþ

out ¼ 1 and A−
trans ¼ 1.

The transfer function K is given by

K ¼ TBHRwall

1 − RBHRwall
; ðA12Þ

where Rwall ¼ ξrefUCO=ξ
trans
UCO is the reflection coefficient at the

inner boundary given in Eq. (A7). RBH ¼ Aþ
trans=A

þ
ref and

TBH ¼ 1=Aþ
ref are the reflection and transmission coeffi-

cients of BH for waves coming from the left from
Eq. (A11). The response ξþUCO reduces to the BH counter-
part ξþBH when interior reflection is absent, i.e., KðωÞ ¼ 0.
For a merger product, ξþBH and Kξ−BH thus give rise to the
ringdown signal and echoes, respectively.
Now,wedefine the counterpart ofX� for the homogeneous

Teukolsky equation with the transformation Eq. (A5),

Rþ ¼
�
Bþ
transΔ2e−iω̃x þ Bþ

refe
iω̃x; x → −∞;

Bþ
outr

3eiωx; x → ∞;

R− ¼
�
B−
transΔ2e−iω̃x; x → −∞;

B−
in

1
r e

−iωx þ B−
outr3eiωx; x → ∞:

ðA13Þ

In terms of the Teukolsky variables, the master equation
Eq. (A9) then becomes Zþ

UCO ¼ Zþ
BH þ Zþ

echo, with

Zþ
echo ¼KBþ

out
Aþ
trans

Bþ
trans

Z−
BH ¼ TBHRwall

1−RBHRwall

RBH

TBH

Bþ
out

Bþ
trans

Z−
BH

≡ RBHRwall

1−RBHRwall
Zþ
eff ; with Zþ

eff ≡ ðBþ
out=B

þ
transÞZ−

BH;

ðA14Þ

where Zþ=ξþ ¼ Bþ
out, Z

−=ξ− ¼ Bþ
trans=A

þ
trans, and Aþ

trans ¼
RBH=TBH are used. Zþ

eff can be viewed as the counterpart of
Z−
BH at infinity.
With Eq. (A8), the observed GW strain can be put as

hUCO ¼ hRD þ hecho, where

hecho ¼
RBHRwall

1 − RBHRwall
hþeff ; with hþeff ¼ −

2

D
1

ω2
Zþ
eff :

ðA15Þ

Thus, the theoretical modeling of the echo waveform
reduces to two parts: the reflection of cavity RBHRwall

and the source related term hþeff .
For certain cases, the BH response ξ−BH at horizon can be

further simplified. If the source S0 has the support only in the
interior, i.e., x ≪ 0, from Eqs. (A10) and (A11), we have

ξ−BH ≈
Z þ∞

−∞
dx

S0

WBH

�
RBH

TBH
e−iω̃x þ 1

TBH
eiω̃x

�

≈
RBH

TBH
ξþBH þ 1

TBH
ξ̂þBH ðinsideÞ; ðA16Þ
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where in the last step we have used ξþBH ≈
Rþ∞
−∞ dx S0

WBH
e−iω̃x

and defined

ξ̂þBH ≡
Z þ∞

−∞
dx

S0

WBH
eiω̃x ≈

Z þ∞

−∞
dx

Ŝþ

WBH
X−; ðA17Þ

which is the BH response at infinity to an effective source
Ŝþ ¼ S0e2iω̃x within the cavity. On the other hand, if the
source is far away from the object and the support is mainly

in the exterior, i.e., x ≫ 0, we have ξþBH ¼ A−
outξ

−
BH þ

A−
inξ̂

−
BH ¼ R0

BH
T 0
BH
ξ−BH þ 1

T 0
BH
ξ̂−BH similar from Eqs. (A10)

and (A11). Here, T 0
BH ¼ 1=A−

in and R0
BH ¼ A−

out=A−
in are

the BH reflection and transmission coefficients for waves
coming from the right. ξ̂−BH is defined as

ξ̂−BH ≡
Z þ∞

−∞
dx

S0

WBH
e−iωx ≈

Z þ∞

−∞
dx

Ŝ−

WBH
Ψ̃þ; ðA18Þ

which is the BH response at horizon to an effective source
Ŝ− ¼ S0e−2iωx outside the cavity. Thus, we have

ξ−BH ≈
T 0
BH

R0
BH

ξþBH −
1

R0
BH

ξ̂−BH ðoutsideÞ: ðA19Þ

Using the relation T 0
BHTBH=ðR0

BHRBHÞ ¼ −T 2
BH=R

2
BH,

10

where R2
BH and T 2

BH denote the energy flux reflection
and transition for the BH, and substituting Eqs. (A16) and
(A19) into Eq. (A14), we obtain the source related term for
the two cases,

Zþ
eff ≈

8><
>:

Zþ
BH þ 1

RBH
Ẑþ
BH; inside;

− T 2
BH

R2
BH

	
Zþ
BH − 1

T 0
BH
Ẑ−
BH



; outside;

ðA20Þ

where Ẑ�
BH are proportional to ξ̂�BH.

To further simply Eq. (A20), let us consider the
special cases in which echoes are produced by an in-
or outgoing pulse inside or outside the cavity. The
source term for the SN equation is then obtained from
the initial condition of the pulses through a Laplace
transform of the homogeneous equation in the time
domain. More specifically, the equation at jxj ≫ M is
approximately

∂
2
xψ − ∂

2
tψ − 2iω0∂tψ þ ω2

0ψ ¼ 0; ðA21Þ

where ω0 ¼ 0 for x → ∞ and ω0 ¼ ωH for x → −∞,
respectively. The Laplace transform from a starting time t0
is Xðω; xÞ ¼ R∞

t0
ψðt; xÞeiωtdt at s ¼ −iω. Applying the

Laplace transform to Eq. (A21), the source term in
Eq. (A3) can be obtained as

S0ðω; xÞ ¼ iðω − 2ω0Þψðt0; xÞ − ψ 0ðt; xÞjt¼t0 : ðA22Þ

Considering the initial pulse sufficiently away from the
light-ring potential barrier, we can write ψðt; xÞ ¼R
∞
−∞ fðωÞe−iωðt−t0Þ�iðω−ω0Þðx−xsÞdω at t≳ t0. Here, � cor-
responds to the out- and ingoing pulse, fðωÞ denotes its
frequency content, and xs is the initial position with
jxsj ≫ M. The source term is then given by

S0�ðω; xÞ ¼ i
Z

∞

−∞
ðω̃þ ω̃0Þfðω0Þe�iω̃0ðx−xsÞdω̃0; ðA23Þ

where we have defined ω̃≡ ω − ω0 and ω̃0 ≡ ω0 − ω0.
If the pulse starts from the interior, from Eq. (A17), we
have

ξ̂þBH ≈
1

WBHðω;−∞Þ
Z þ∞

−∞
dxS0�eiω̃x

¼
� 0 outgoing;

4πω̃fðωÞi
WBHðω;−∞Þ e

þiω̃xs ingoing;
ðA24Þ

where we take WBHðω; xÞ ≈WBHðω;−∞Þ for −x ≫ M.
Similarly, if the pulse starts from the exterior,
we have

ξ̂−BH ≈
1

WBHðω;þ∞Þ
Z þ∞

−∞
dxS0�e−iωx

¼
� 4πωfðωÞi

WBHðω;þ∞Þ e
þiωxs outgoing;

0 ingoing;
ðA25Þ

with WBHðω; xÞ ≈WBHðω;þ∞Þ for x ≫ M. Notably, as
long as the pulse is sufficiently localized in space, the
additional contribution ξ̂þBH for the outgoing pulse from
inside and ξ̂−BH for the ingoing pulse from outside vanish,
regardless of the frequency content of the pulses.
Thus, ξ−BH in Eqs. (A16) and (A19) are fully specified
by ξþBH. This means that the Teukolsky variable Zþ

eff
in Eq. (A20) can be uniquely determined by Zþ

BH, and
Eq. (A15) becomes

hecho ≈
RBHRwall

1 − RBHRwall

8<
:

hRD; inside;

− T 2
BH

R2
BH
hRD; outside:

ðA26Þ

These match exactly the inside and outside prescriptions
in the geometric optics picture [9].
At sufficiently late time of the ringdown stage, the

waveform can be modeled as a linear superposition of
two polarization modes of the fundamental QNM
(l ¼ m ¼ 2), with [10]

10The lhs is invariant under different perturbation variables.
Using the Chandrasekhar-Detweiler expression of the lhs one can
easily obtain the rhs.
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hRDðωÞ ¼
Z þ∞

−∞

dtffiffiffiffiffiffi
2π

p eiωtΘðtÞðAþ cos ðωRDtþ ϕþÞ þ iA× sin ðωRDtþ ϕ×ÞÞe−t=τ

¼ 1

2
ffiffiffiffiffiffi
2π

p
�
α1þAþ − α1×A×

ω − ωQNM
þ α2þAþ þ α2×A×

ωþ ω�
QNM

�
; ðA27Þ

where ωQNM ¼ ωRD − i=τRD;α1þ;× ¼ ie−iϕþ;× , α2þ;× ¼
−α�1þ;×, and the start time is at t ¼ 0.11 For simplicity,
we consider only the plus mode in the main text.

APPENDIX B: SUPERPOSITION OF QNMs
IN THE TIME DOMAIN

In the context of quantum black hole seismology, the
postmerger echoes can be described as a linear super-
position of the characteristic QNMs of UCOs, with the time
domain waveform

h̃ðtÞ ¼
X
n

h̃nðtnÞe−iωnðt−tnÞe−ðt−tnÞ=τnΘðt − tnÞ; ðB1Þ

where we suppress the subscript of hecho in this section for
simplicity. Here, the overall amplitude and phase are
encoded in h̃nðtnÞ, and ωn, τn, tn denote the angular
frequency, damping time, and start time for the nth mode.
In the frequency domain, the waveform is given by

hðfÞ ¼
Z

∞

−∞
h̃ðtÞei2πftdt

¼
X
n

h̃nðtnÞei2πftn
i

2πðf − fnÞ þ i=τn
: ðB2Þ

It is a sum over Lorentzians for QNMs with location
fn ¼ ωn=ð2πÞ and width 1=τn [32]. The start time brings in
an additional phase 2πftn.
In practice, we usually analyze a finite segment of strain

data. Suppose the start and finish times of the segment are t0
and tT , with the duration tT − t0 sufficiently longer than the
time delay td, the frequency domain waveform becomes

FIG. 14. Examples of time domain waveforms with 200 pulses. Top: the benchmark B1 considered in Sec. IV. Bottom: our search
template model (UniEw) with tn=M ¼ 0.1 and δn randomly sampled in ½0; 0.2π�. Red and blue lines correspond to the real and
imaginary parts of h̃ðtÞ. Insets: the profiles of the 3rd, ∼20th, and ∼100th pulse from left to right, respectively.

11The abrupt change at the start time t0 in Eq. (A27) may bring
in artificial changes for the high-frequency modes above ωRD, but
these modes will quickly transmit to the outside and are irrelevant
to our echo search that targets low-frequency modes with long
lifetimes.
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hðTÞðfÞ ¼
Z

tT

t0

h̃ðtÞei2πftdt

¼
X
n

Aneiδnei2πft
0
n

1

2πðf − fnÞ þ i=τn

×
h
1 − e−Tn=τnei2πðf−fnÞTn

i
; ðB3Þ

where An¼jh̃ðt0nÞj, δn¼ argðh̃ðt0nÞÞþπ=2, t0n ≡maxðt0; tnÞ,
and Tn ≡ tT − t0n ≫ td denote the possibly different start
time and time duration for the nthmode. The correction term
1 − e−Tn=τnei2πðf−fnÞTn compared to Eq. (B2) denotes the
finite duration effects. For demonstration purposes, we
present in Fig. 14 the time domain waveforms for a bench-
mark example and the search template being discussed in the
main text.
When the UCO has high compactness and features

strong combined reflectivity, the QNMs are well separated
in the frequency space with 1=τn ≪ Δf. The peak region
around each mode is then expected to be dominated by this
one mode, where the contributions from other modes are

safely negligible. To justify this approximation, we study
the influence of QNMs interference around the resonance
peak by considering a simple model of periodic and
uniform QNMs, with An ¼ A, τn ¼ τ, fn ¼ nðΔf þ q0Þ
and different choices of ftn; δng for the waveform in
Eq. (B3). A sufficiently long time duration is used to
ensure that the peak region is well resolved.
For our improved QNM search, the main task is

to examine the influence of mode interference on the
constant phase assumption. For this purpose, we use
Δϕn ≡maxðargðhðfn;iÞÞÞ −minðargðhðfn;iÞÞÞ to measure
the phase variation for each mode n, where fn;i ∈ ½fn −
Oð1Þ=τ; fn þOð1Þ=τ� is the frequency bin around the
resonance. We then evaluate Δϕn for a large number of
QNMs and derive the fraction of QNMs with Δϕn=π larger
than some threshold. Here, π denotes the phase variation for
the pole contribution in Eq. (11). We find that this fraction
is most sensitive to the dimensionless quantity τΔf, i.e., the
spacing-to-width ratio, and varies little with either the
duration T or total number N. Figure 15 shows the τΔf
dependence of the fraction for various choices of the start

FIG. 15. The fraction of QNMs with Δϕn=π larger than 0.5 (blue), 0.2 (orange), 0.1 (green) as a function of τΔf under different
assumptions of tn and δn. Top: tn ¼ 0, δn ¼ 0 fixed. Middle: tn ¼ 0 fixed, δn randomly sampled in ½0; π�. Bottom: tn randomly sampled
in ½0; td�, δn randomly sampled in ½0; π�.
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time tn and overall phase δn. The phase varies a lot when
the width is comparable to the spacing, i.e., τΔf ∼ 1.
As the spacing-to-width ratio increases, different
QNMs interfere less and the fraction drops significantly
at some typical value of τΔf ≫ 1. This typical value
relies on the choice of tn and δn, and a more random
sampling of these two parameters pushes the typical value
larger. The interference of QNMs then adds more uncer-
tainties to a simple modeling of the phase around the
resonance.
To determine the influence of phase variation on the

Bayesian search, we consider injections of periodic and
uniform QNMs in the time domain for various choices of
tn and δn and compare the results with those obtained for
injections of UniEw in the frequency space. Figure 16
presents the overall posterior of the spacing for
various cases using the new likelihood. We find that,
when τinjΔfinj ¼ 5, the search results are relatively
stable, although one-third of the QNMs have
Δϕn=π ≳ 0.5. Only for τinjΔfinj ¼ 1 do we observe a
strong deviation, with Δϕ= ∼ π for most cases. This
demonstrates the limited impact of phase variations on
search performance, particularly when τnΔf is consid-
erably larger than 1.
Thus, the assumption of one-mode dominance is a good

approximation for the majority of cases. The nth mode
contribution in Eq. (B3) is then directly related to the

theoretical prediction of hðTÞecho in Eq. (8) at f ∼ fn. In
particular, the finite term corrections in Eq. (8) match
exactly the finite range effects for the Fourier transform in
Eq. (B3). The free parameters in Eq. (B3) are then
determined as follows:

An ≈ jheffðfnÞjReffðfnÞ=td; δn ≈ δ0 − 2πfntd þ π;

t0n ≈ td þ t0; Tn ≈ T; ðB4Þ

where argðheffðfÞÞ ≈ δ0 þ 2πft0. Under this approxima-
tion, all modes are excited at a time td after the initial time
t0 defined by heff.

APPENDIX C: ECHO SNR AND NEW
LIKELIHOOD DEPENDENCE

The optimal SNR of echoes within a frequency band

½fmin; fmax� is given by SNR2
echo ¼

R fmax
fmin

jhechoðfÞj2
PðfÞ df, where

PðfÞ is the one-sided power spectral density. Under the
approximation of one-mode dominance around each res-
onance peak, the total SNR2

echo is roughly a sum of SNR2
n

over modes. In the high-frequency resolution limit, it is
approximately

SNR2
echo≈

XNmax

n¼Nmin

Z
fnþΔf=2

fn−Δf=2

jhnðfÞj2
PðfÞ df≈

1

2PRD

XNmax

n¼Nmin

rnA2
nτn;

ðC1Þ
where hnðfÞ denotes the waveform for the nth mode. In the
last step, we assume PðfÞ does not vary much for one mode
and put PðfnÞ ¼ PRD=rn, where PRD is the PSD at ring-
down frequency and rn is the weight for each mode. Taking
into account the effect of finite time duration effect in
Eq. (B3), the mode sum in Eq. (C1) will be suppressed
by 1 − e−2T=τn.
Given the theoretical prediction of QNM in Eqs. (5)

and (B4), we find

FIG. 16. The overall posterior of the spacing for injections of the periodic and uniform model of QNMs with the new likelihood. For
the injected signal, we set TΔfinj ¼ 250, N ¼ 49, and τinjΔfinj ¼ 5 (left), τinjΔfinj ¼ 1 (right). The green is for the UniEw injections in
the frequency space. The orange is for injections of periodic and uniform QNMs in the time domain with tn and δn set to zero. The
blue is for the time domain injections with a pair of nonzero ftn; δng saturating the largest value of Δϕ=π in the bottom panel
of Fig. 15.
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SNR2
echo ≈

1

2PRD

XNmax

n¼Nmin

rnjh1ðfnÞj2Δf
1 − e−2T=τn

j lnReffðfnÞj

≈
XNmax

n¼Nmin

SNR2
1;n

minfτn; Tg
td

; ðC2Þ

where SNR2
1;n ≡ ðjh1ðfnÞj2=PðfnÞÞΔf in the last step. In

the case of very compact UCOs with a small Δf, the sumPNmax
n¼Nmin

SNR2
1;n gives approximately SNR2 for the first

pulse within the band (i.e., SNR2
1). The enhancement

SNR2
echo=SNR

2
1 resulting from the long-term accumulation

of the echo signal is then governed by ∼minfτn; Tg=td.
The SNR is also closely related to the energy emitted

associated with echoes. The leading-order GW flux for the
QNMs in Eq. (B1) is given as [19,51]

ĖGWðtÞ≈
1

8G
D2

Lhj ˙̃hðtÞj2i≈
1

8G
D2

L

����
XNmax

n¼Nmin

ω2
nh̃nðtÞ

����
2

; ðC3Þ

where DL is the luminosity distance and ωnτn ≫ 1 is
assumed in the last expression. The emitted energy is then

ΔEecho ¼
Z

∞

0

ĖGWdt ≈
D2

L

8G

Z
∞

0

����
XNmax

n¼Nmin

ω2
nh̃nðtÞ

����
2

dt

¼ D2
L

8G

Z
∞

0

����
XNmax

n¼Nmin

ω2
nhnðfÞ

����
2

df

≈
D2

L

8G

XNmax

n¼Nmin

Z
∞

0

ω2
njhnðfÞj2df

¼ D2
L

16G

XNmax

n¼Nmin

ð2πfnÞ2A2
nτn; ðC4Þ

which assumes negligible overlap of QNMs in the fre-
quency domain.
It is useful to compare the GW energy emitted through

echoes with that emitted during the ringdown stage.
Because of the dominance of the fundamental mode, the
latter is given approximately as

FIG. 17. Search results as a function of the injected signal SNRinj (per mode). The cross points include the simple one-parameter
search in Sec. III B and Bilby searches in Sec. III C. The gray band denotes the rough range of scattered points. Top left: the 68% range of
maximum log-likelihood per mode [gray band defined by 1

2
x and ln I0ðxÞ − 1

2
x]. Top right: maximum log-likelihood error normalized by

its mean [gray band defined by ð1.9; 2.5Þ=x]. Bottom left: the 68% range of SNRmax to SNRinj ratio [gray band defined by 1� 0.8=x],
where SNRmax denotes SNR at the maximum log-likelihood. Bottom right: SNRmax error normalized by SNRinj [gray band defined by
ð0.7; 1.3Þ=x].
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ΔERD≈
D2

L

16G
A2
RDτRDð2πfRDÞ2≈

D2
LPRD

16G
ð2πfRDÞ2SNR2

RD;

ðC5Þ

where fRD is the fundamental mode frequency in Eq. (19).
For echoes, we can rewrite Eq. (C4) in a similar form

ΔEecho ≈
D2

LPRD

16G
ð2πfechoÞ2SNR2

echo; ðC6Þ

by defining f2echo ≡ ðPNmax
n¼Nmin

f2nA2
nτnÞ=ð

PNmax
n¼Nmin

rnA2
nτnÞ.

Taking the ratio of these two expressions, we obtain

ΔEecho

ΔERD
¼ f2echo

f2RD

SNR2
echo

SNR2
RD

; ðC7Þ

where DL and PRD dependences are factorized out. If
echoes carry away a similar amount of energy as the
detected ringdown, SNRecho could be larger than SNRRD
since the frequencies of the trapped QNMs fn is smaller
than fRD in general, i.e., fecho ≲ fRD. Taking into account
the finite time duration effect, the mode sum in Eq. (C4)
will be suppressed by 1 − e−2T=τn. The energy ratio then
takes the same expression as in Eq. (C7), but with a more
general definition of the echo frequency,

f2echo ≡
PNmax

n¼Nmin
f2nA2

nτnð1 − e−2T=τnÞPNmax
n¼Nmin

A2
nτnð1 − e−2T=τnÞ : ðC8Þ

Poorly resolved QNMs with τn ≫ T make negligible
contribution to both SNR and ΔEecho.

Finally, we discuss the injected signal-to-noise
ratio dependence of the new likelihood. As detailed in
Sec. II B, the new likelihood in Eq. (16) is mostly sensitive
to SNRinj per mode. To demonstrate the robustness of this
dependence, we consider the search of UniEw injections
with Gaussian noise. Figure 17 shows the SNRinj depend-
ence of the maximum log-likelihood and the corresponding
SNR for the generic searches, where we vary all parameters
in Eq. (18) that may influence the SNRinj and also the
number of search parameters.
With the uniform contribution for all modes, the maxi-

mum log-likelihood lnLnew per mode and the searched
SNR over injected SNR ratio exhibit a simple dependence
on the SNR per mode. In the large signal limit, the searched
SNR (amplitude) approaches the injected values, i.e.,
SNRmax ≈ SNRinj, and the maximum log-likelihood per
mode 1

N lnLnew is approximately half of the SNR2
inj per

mode. The relative errors for lnLnew and SNRmax are more
sensitive to the total injected SNRinj. As shown by the right
columns, they scale roughly as 2=SNRinj and 1=SNRinj,
regardless of the parameter settings.

APPENDIX D: ADDITIONAL BAYESIAN SEARCH
RESULTS

We begin by discussing the Bayesian search results for
Gaussian noises. Figure 18 shows the log Bayes factor
distributions forN ¼ 100 noise realizations with different
settings. For both likelihoods, the log Bayes factor is
negative, indicating that the data prefer the model without
QNMs associated with echoes. The results obtained using
the new likelihood are generally more negative than those

FIG. 18. The log Bayes factor distributions for Gaussian noises with the two likelihoods. Top: four-parameter search in Sec. III C with
parameter settings in Table I. Bottom: six-parameter search in Sec. IV B with parameter settings in Table II.
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obtained using the old one, and the difference
becomes more pronounced as the time duration or the
number of frequency bins increases. Furthermore, the
distribution shifts toward zero as the time duration
increases. Despite these variations, the background search
results stay relatively stable for different parameter
settings.
To provide a comprehensive analysis, we also present

additional results for the Bayesian search of the four
benchmarks discussed in Sec. IV B. The full search results
for the new and old likelihoods are summarized in
Tables III and IV, respectively. As a demonstration,
Fig. 19 shows the corner plot of all six search parameters

for one case with a high detection probability. Both
likelihoods allow us to accurately determine the spacing
Δf, width 1=τ, relative shift q0, and amplitude A in general.
The spacing, in particular, can be measured with very high
precision because of the large number of QNMs captured.
In contrast, the frequency band is less accurately deter-
mined due to its minor impact on the total SNR.
Furthermore, we did not observe significant degeneracy
among the six parameters, indicating their effectiveness in
capturing the essential features of the dominant QNMs
associated with echoes. These general discussions are
consistent with our previous results obtained using the
old likelihood in [30].

TABLE III. Search results for the four benchmarks with the new likelihood. The first column denotes the median value and the
symmetric 90% credible interval of the log Bayes factor distribution. The remaining columns indicate the median values and the 90%
credible regions [47] of the six search parameters from the overall posterior distributions.

TΔfmax logB MΔf q0 A=hP̃i1=2 log10 M=τ Mfmin Mfmax

B1 20 −1.6þ6.4
−1.1 0.0012þ0.0011

−0.0005 0.6þ0.4
−0.5 1.3þ2.0

−1.2 −3.7þ0.9
−0.2 0.04þ0.02

−0.04 0.077þ0.007
−0.042

40 1þ14
−3 0.0011þ0.0011

−0.0004 0.8þ0.2
−0.7 2.5þ1.5

−2.2 −4.14þ0.95
−0.09 0.05þ0.02

−0.04 0.080þ0.005
−0.037

100 20.8þ15.6
−23.1 0.0011þ0.0006

−0.0004 0.83þ0.05
−0.64 3.3þ1.2

−2.6 −4.56þ0.58
−0.07 0.05þ0.01

−0.03 0.078þ0.005
−0.008

200 40þ20
−20 11492þ3

−574610
−7 0.83þ0.01

−0.16 3.3þ1.3
−1.2 −4.8þ0.2

−0.1 0.046þ0.010
−0.013 0.076þ0.005

−0.003
300 40þ20

−40 11493þ3
−574610

−7 0.83þ0.01
−0.20 3.0þ1.2

−1.4 −4.9þ0.3
−0.2 0.04þ0.01

−0.02 0.076þ0.005
−0.005

400 40þ20
−30 11493þ4

−574610
−7 0.831þ0.010

−0.188 2.5þ1.0
−1.3 −4.9þ0.4

−0.2 0.04þ0.01
−0.02 0.075þ0.006

−0.005

B2 20 −2.1þ2.8
−0.8 0.0012þ0.0010

−0.0006 0.5þ0.4
−0.5 0.9þ1.7

−0.8 −3.6þ0.8
−0.3 0.03þ0.03

−0.03 0.07þ0.01
−0.04

40 −1.7þ8.2
−1.0 0.0012þ0.0010

−0.0005 0.7þ0.2
−0.6 1.4þ2.0

−1.3 −4.0þ1.0
−0.2 0.04þ0.03

−0.03 0.077þ0.007
−0.042

100 4þ21
−7 0.0011þ0.0010

−0.0006 0.82þ0.06
−0.70 2.7þ1.2

−2.4 −4.55þ0.94
−0.09 0.04þ0.02

−0.04 0.078þ0.006
−0.032

200 30þ30
−40 0.0011þ0.0001

−0.0006 0.831þ0.009
−0.392 3.4þ1.0

−2.1 −4.87þ0.40
−0.06 0.04þ0.01

−0.02 0.076þ0.005
−0.004

300 50þ20
−50 0.0011þ0.0006

−0.0006 0.830þ0.005
−0.596 3.6þ1.0

−3.0 −5.05þ0.88
−0.06 0.03þ0.02

−0.02 0.076þ0.005
−0.012

400 60þ30
−60 0.0011þ0.0007

−0.0006 0.831þ0.005
−0.535 3.7þ1.0

−2.9 −5.18þ0.69
−0.05 0.03þ0.02

−0.02 0.074þ0.007
−0.005

B3 20 7þ12
−8 110.9þ109.6

−1.4 10−5 0.5þ0.5
−0.4 3.0þ1.3

−2.1 −3.86þ0.39
−0.07 0.057þ0.009

−0.033 0.079þ0.005
−0.009

40 12.8þ13.0
−11.6 110.7þ1.4

−1.510
−5 0.5þ0.5

−0.4 3.3þ1.7
−1.9 −4.1þ0.5

−0.1 0.059þ0.006
−0.015 0.076þ0.007

−0.007
100 12.9þ14.3

−10.4 110.5þ2.4
−1.610

−5 0.6þ0.4
−0.5 2.6þ2.2

−1.4 −4.2þ0.4
−0.4 0.059þ0.005

−0.013 0.075þ0.007
−0.007

200 11þ10
−8 110.1þ1.9

−1.410
−5 0.5þ0.4

−0.5 1.8þ2.0
−1.1 −4.2þ0.6

−0.6 0.059þ0.006
−0.015 0.074þ0.009

−0.006
300 11þ11

−9 110.0þ1.9
−1.310

−5 0.5þ0.4
−0.4 1.6þ1.7

−0.9 −4.2þ0.6
−0.6 0.059þ0.006

−0.008 0.073þ0.010
−0.005

400 15þ13
−10 109.8þ1.5

−1.210
−5 0.5þ0.4

−0.5 1.3þ1.6
−0.6 −4.1þ0.4

−0.7 0.059þ0.005
−0.006 0.073þ0.008

−0.004

B4 20 32.0þ17.5
−13.9 0.0008þ0.0004

−0.0002 0.5þ0.5
−0.4 1.3þ0.6

−0.3 −3.1þ0.2
−0.3 0.044þ0.009

−0.012 0.0839þ0.0005
−0.0027

40 27.4þ15.2
−12.7 0.0008þ0.0004

−0.0002 0.5þ0.4
−0.5 0.9þ0.4

−0.2 −3.2þ0.2
−0.2 0.043þ0.009

−0.012 0.0837þ0.0007
−0.0105

100 24.8þ11.6
−10.5 0.0008þ0.0004

−0.0002 0.4þ0.5
−0.4 0.6þ0.2

−0.2 −3.2þ0.3
−0.2 0.043þ0.010

−0.012 0.083þ0.001
−0.010

200 24.6þ11.7
−11.4 0.0008þ0.0004

−0.0002 0.4þ0.5
−0.4 0.4þ0.2

−0.1 −3.2þ0.3
−0.3 0.042þ0.010

−0.012 0.083þ0.002
−0.016

300 24.0þ13.6
−12.0 0.0009þ0.0003

−0.0003 0.4þ0.5
−0.4 0.34þ0.20

−0.09 −3.2þ0.3
−0.3 0.04þ0.01

−0.02 0.083þ0.002
−0.015

400 24.2þ16.1
−11.0 0.0008þ0.0004

−0.0002 0.4þ0.5
−0.4 0.29þ0.15

−0.08 −3.2þ0.2
−0.3 0.043þ0.008

−0.012 0.083þ0.001
−0.010
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TABLE IV. Search results for the four benchmarks with the old likelihood. The first column denotes the median value and the
symmetric 90% credible interval of the log Bayes factor distribution. The remaining columns indicate the median values and the 90%
credible regions [47] of the six search parameters from the overall posterior distributions.

TΔfmax logB MΔf q0 A=hP̃i1=2 log10 M=τ Mfmin Mfmax

B1 20 −1.1þ6.1
−1.1 0.0012þ0.0010

−0.0005 0.6þ0.4
−0.5 1.3þ1.8

−1.1 −3.5þ0.7
−0.4 0.04þ0.02

−0.04 0.078þ0.006
−0.040

40 0þ10
−3 0.0012þ0.0010

−0.0004 0.7þ0.2
−0.7 1.7þ1.6

−1.4 −3.8þ0.9
−0.4 0.05þ0.02

−0.04 0.079þ0.005
−0.030

100 10.0þ13.5
−11.1 1149þ15

−3 10−6 0.83þ0.08
−0.47 2.4þ1.5

−1.5 −4.2þ0.6
−0.4 0.05þ0.01

−0.03 0.078þ0.005
−0.007

200 31.3þ17.6
−20.2 11493þ5

−510
−7 0.83þ0.02

−0.03 3.5þ1.3
−1.2 −4.8þ0.3

−0.1 0.04þ0.01
−0.02 0.076þ0.005

−0.004
300 26.1þ13.6

−22.5 11492þ5
−410

−7 0.83þ0.02
−0.03 3.1þ1.6

−1.2 −4.8þ0.4
−0.3 0.05þ0.01

−0.02 0.075þ0.005
−0.005

400 14.2þ18.6
−16.5 0.0011þ0.0006

−0.0001 0.83þ0.03
−0.49 2.4þ1.6

−1.9 −4.8þ1.0
−0.4 0.05þ0.01

−0.03 0.075þ0.007
−0.012

B2 20 −1.8þ3.6
−0.7 0.0012þ0.0010

−0.0006 0.5þ0.4
−0.5 1.0þ1.7

−0.9 −3.5þ0.7
−0.4 0.03þ0.03

−0.03 0.075þ0.009
−0.042

40 −1.2þ5.0
−1.2 0.0012þ0.0011

−0.0005 0.6þ0.3
−0.6 1.2þ1.7

−1.0 −3.7þ0.9
−0.5 0.04þ0.03

−0.03 0.077þ0.007
−0.041

100 4þ12
−6 0.0011þ0.0008

−0.0004 0.82þ0.09
−0.65 1.9þ1.5

−1.5 −4.2þ1.2
−0.4 0.04þ0.02

−0.03 0.078þ0.006
−0.023

200 33.1þ18.1
−23.5 11493þ4

−410
−7 0.83þ0.01

−0.14 3.2þ1.1
−1.3 −4.8þ0.4

−0.1 0.03þ0.01
−0.02 0.076þ0.006

−0.004
300 42.6þ18.2

−24.0 11492.2þ2.3
−1.810

−7 0.834þ0.007
−0.010 3.2þ1.1

−1.0 −4.9þ0.3
−0.2 0.03þ0.01

−0.01 0.076þ0.005
−0.004

400 47.0þ17.6
−24.6 11493.0þ1.6

−2.110
−7 0.830þ0.007

−0.008 3.0þ1.4
−1.0 −4.9þ0.3

−0.3 0.03þ0.01
−0.02 0.075þ0.006

−0.004

B3 20 7þ12
−8 0.0011þ0.0011

−0.0001 0.5þ0.5
−0.4 2.6þ1.5

−1.6 −3.7þ0.7
−0.2 0.056þ0.008

−0.030 0.079þ0.005
−0.008

40 11þ15
−9 110.4þ1.3

−1.410
−5 0.5þ0.5

−0.4 3.1þ1.8
−1.6 −4.0þ0.6

−0.3 0.058þ0.005
−0.012 0.075þ0.007

−0.006
100 13.9þ12.8

−12.0 109.8þ1.3
−1.010

−5 0.5þ0.4
−0.5 2.7þ2.0

−1.1 −4.0þ0.4
−0.5 0.059þ0.004

−0.006 0.072þ0.008
−0.004

200 10þ10
−9 109.4þ1.8

−1.210
−5 0.6þ0.4

−0.5 2.3þ1.8
−1.1 −4.1þ0.5

−0.6 0.058þ0.004
−0.007 0.071þ0.008

−0.004
300 12.6þ11.2

−10.3 109.2þ1.3
−1.110

−5 0.6þ0.4
−0.5 2.2þ1.6

−1.1 −4.2þ0.5
−0.7 0.058þ0.003

−0.006 0.070þ0.007
−0.004

400 7þ12
−7 109þ50

−2 10−5 0.6þ0.3
−0.5 2.0þ2.1

−1.0 −4.3þ0.6
−0.8 0.058þ0.004

−0.011 0.070þ0.007
−0.004

B4 20 13þ11
−9 0.0011þ0.0007

−0.0005 0.5þ0.5
−0.4 1.4þ1.1

−0.4 −3.0þ0.3
−0.7 0.04þ0.01

−0.01 0.0837þ0.0007
−0.0197

40 5þ8
−5 0.0012þ0.0009

−0.0005 0.5þ0.5
−0.5 1.1þ1.6

−0.5 −3.2þ0.5
−0.9 0.03þ0.02

−0.02 0.080þ0.004
−0.027

100 1þ6
−2 0.0012þ0.0011

−0.0005 0.4þ0.6
−0.4 0.9þ1.5

−0.6 −3.5þ0.8
−1.0 0.03þ0.03

−0.03 0.07þ0.01
−0.03

200 −1.3þ4.1
−1.0 0.0013þ0.0010

−0.0006 0.5þ0.5
−0.4 0.7þ1.6

−0.5 −3.7þ0.9
−1.2 0.03þ0.03

−0.02 0.07þ0.02
−0.03

300 −1.9þ2.0
−0.7 0.0013þ0.0009

−0.0007 0.5þ0.5
−0.4 0.7þ1.2

−0.5 −3.9þ1.1
−1.1 0.03þ0.03

−0.02 0.07þ0.02
−0.03

400 −2.0þ1.2
−0.6 0.0014þ0.0008

−0.0007 0.5þ0.5
−0.4 0.6þ1.2

−0.5 −4.1þ1.2
−1.1 0.02þ0.03

−0.02 0.06þ0.02
−0.03
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