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Different extended objects can fall in different ways, depending on their internal structures. Some
motions are nevertheless impossible, regardless of internal structure. This paper derives universal
constraints on extended-body motion, both in Newtonian gravity and in general relativity. In both
theories, we identify a weak notion of “local symmetry” which precludes certain force and torque
combinations. Local symmetries imply that certain components of a body’s quadrupole moment cannot
affect its motion. They also imply that some forces can arise only in combination with appropriate torques.
Many of these symmetries are shown to be determined by the algebraic structure of the tidal tensor. In
general relativity, we thus relate qualitative features of extended-body motion to the Petrov type of the
spacetime. Doing so shows that local symmetries are in fact ubiquitous. In general relativity, there are at
least two such symmetries in all algebraically special spacetimes. Some of these are generated by Killing
vectors, and some are generated by conformal Killing-Yano tensors. However, many local symmetries do
not fall into either of these classes.
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I. INTRODUCTION

One of the most fundamental results in general relativity
is that freely falling objects move on geodesics [1–4].
However, geodesic motion is only an approximation. Real
objects have finite mass and are therefore affected by self-
interaction [5–7]. Real objects also have finite size and are
thus affected by internal structure [8,9]. Regardless, geo-
desic motion has the property that all future trajectories are
uniquely determined by initial positions and initial veloc-
ities. To the extent that objects do move along geodesics,
free fall is therefore “universal”: every object with the same
initial conditions falls on the same trajectory.
Expanding in powers of an object’s size, the first extended-

body correction to geodesic motion involves an object’s
angular momentum. However, taking this into account does
not spoil the universality of free fall. Once an appropriate
center-of-mass definition has been fixed, a unique trajectory
follows from a given position, a given linear momentum, and
a given angular momentum at some initial time. While more
initial data is required than in the geodesic case, all bodies
with the same initial conditions still follow the same trajec-
tories. We may thus view this as a refinement rather than a
failure of universal free-fall. Failure occurs when expanding
through one higher order in an object’s size.
More precisely, the universality of free-fall breaks down

once quadrupole moments are taken into account. Although
the trajectories of some objects can be uniquely predicted
given, e.g., their initial positions, initial linear momenta,

initial angular momenta, and initial quadrupole moments,
equations of motion can still differ from one object to
another. Moreover, many bodies can be said only to satisfy
laws of motion rather than equations of motion: Although
trajectories are constrained by the laws of motion, they may
fail to be uniquely determined from any reasonable initial
dataset.1 Regardless, different bodies can fall in different
ways, depending on the evolution of their quadrupole and
higher-order moments. Our goal here is to constrain these
differences, both in general relativity and in Newtonian
gravity. For simplicity, we focus only on quadrupolar effects.
Although extended-body effects are instantaneously

small in most astrophysical systems, their effects can grow
over time. Perhaps the best-known Newtonian example is
the phenomenon of tidal locking [10–13]; another is the
chaotic tumbling of Saturn’s moon Hyperion [11,14,15].
Indeed, tidal effects are known to produce secular
changes in, e.g., orbital eccentricities, inclinations, and
radii [10,11,16]. In general relativity, tidal effects are often
studied as something which affects the late-stage evolution
of inspiraling binaries, potentially allowing gravitational

1One generally expects that unique predictions are always
possible given a sufficiently detailed model and sufficiently
detailed initial data. However, the question addressed here is
whether or not the future can be uniquely predicted, to adequate
precision, using only the small amount of initial data which might
be ascribed to an “effective point particle” (possibly with
structure).
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wave observations to probe the composition of neutron star
interiors [17–19].
Regardless, the primary goal here is not to model

any particular astrophysical system. Instead, we identify
fundamental, model-independent limitations on extended-
body motion: what is possible and what is not? From this
perspective, it is useful to imagine a hypothetical spacecraft
which has been designed to be able to control its internal
mass distribution. Changes in that distribution can then be
used to modulate extended-body forces, and thus to control
a spacecraft’s motion. Such systems have been analyzed
before, both in Newtonian gravity [20–24] and in general
relativity [25–33]. In both contexts, shape-changing
spacecraft have been found to be able to produce large
orbital changes simply by modulating extended-body
forces over many orbits. Roughly speaking, this is accom-
plished by exchanging internal energy with orbital energy.
It is also possible (and in fact simpler) for a spacecraft to
control its rotation by similarly manipulating its internal
mass distribution.
There are limitations, however. Certain course corrections

cannot be produced, no matter how cleverly a spacecraft has
been engineered. This can be seen most easily in a uniform
Newtonian gravitational field, where internal structure
has no effect whatsoever; all objects fall identically.
Relativistically, the same is true in all maximally symmetric
spacetimes [8,34]. Different objects can fall differently only
when there is some inhomogeneity to “grab onto.” This can
be made more precise in general relativity by noting that for
each Killing field which may exist, certain force and torque
combinations are impossible, regardless of an object’s
internal structure [8,34–36]. Analogous results are also
known in Newtonian gravity [24]. However, it is natural
to ask if these are the only fundamental constraints on
extended-body forces and torques.
They are not. At least in vacuum spacetimes which

are of Petrov type D, certain torques are known to be
impossible even when there are no Killing fields which
exclude them [32]. Such constraints can in fact be related to
the presence of conformal Killing-Yano tensors, which
describe a different kind of symmetry. Indeed, we show
below that any conformal Killing-Yano tensor in a (not
necessarily type D) vacuum spacetime precludes certain
torque components. However, even this does not exhaust all
fundamental restrictions on extended-body motion.
We find that constraints due to Killing vectors and

constraints due to conformal Killing-Yano tensors are both
special cases of a certain type of “local symmetry.”
Crucially, these symmetries are very common. In general
relativity, we show that local symmetries exist in all
algebraically special spacetimes, and in many algebraically
general ones as well. We also find that every Newtonian
gravitational field admits at least one local symmetry.
A related theme in this paper is to describe how

extended-body effects depend qualitatively on the algebraic

structure of the relevant tidal tensor. In general relativity,
we derive local symmetries and discuss quadrupolar forces
and torques, in each of the Petrov types which can be
associated with four-dimensional vacuum spacetimes.
There are essentially three types of result. First, what is
the space of possible torques which can arise due to
extended-body effects? This is either four or six dimen-
sional, depending on the Petrov type (where the six-
dimensional case allows any torque whatsoever). Our
second type of result asks for the space of possible forces
which can be varied without simultaneously varying the
torque. This lies between zero and four dimensions. Our
third type of result asks how many of a body’s ten
quadrupole components can affect its motion. The answer
here lies between 4 and 10. In some Petrov type I space-
times, an appropriately engineered spacecraft could vary its
ten quadrupole components in order to arbitrarily control
all four force components and all six torque components. In
other spacetimes, considerably less is possible.
Although our main motivation here is to understand

motion in general relativity, the Newtonian case is already
rich and largely unexplored. In fact, all of the conceptswhich
appear in general relativity are already present in Newtonian
gravity. We thus begin in Sec. II by describing Newtonian
extended bodies. Newtonian tidal tensors are classified in
terms of their algebraic structure, and the corresponding
constraints on extended-bodymotion are derived. A concept
of local symmetry is introduced as well. Section III performs
the same analysis for extended bodies in general relativity,
introducing local symmetries in that context and explaining
how extended-body motion depends on the Petrov type.
Appendix A summarizes our notational conventions and
provides a table of symbols. Appendix B reviews some
material on principal null directions and the Petrov classi-
fication. Appendix C describes objects with tidally induced
quadrupole moments.

II. EXTENDED BODIES IN NEWTONIAN
GRAVITY

Before analyzing extended-body motion in general
relativity, we first discuss motion in Newtonian gravity.
This is partially because model-independent features of
Newtonian extended-body motion do not appear to have
been explored before and are interesting in their own right.
However, a thorough understanding of the Newtonian
problem also allows us to better understand which effects
are “fundamentally” relativistic and which are not.
Regardless, Sec. II A reviews the Newtonian theory of

extended-body motion in a form which emphasizes the role
of symmetry and which easily carries over into general
relativity. Section II B considers the effects of symmetry on
objects with arbitrary quadrupole moments. Section II C
then classifies different tidal tensors according to their
eigenvalues and discusses how extended-body motion
differs in each case. Lastly, Section II D applies our
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formalism in order to describe motion in certain example
gravitational fields.

A. Generalized momentum and generalized force

We begin by reviewing a perspective on Newtonian
motion which was developed in [6,24,37] and which grew
out of Dixon’s formulation of extended-body motion in
general relativity [8,34,35,38]. The central object of study is
the “generalized momentum,” which unifies a body’s linear
momentum and angular momentum into a single object. If an
extended Newtonian body has momentum density ρa, its
generalized momentum at time t is defined to be

PξðtÞ≡
Z

ρaðx; tÞξaðxÞdV; ð2:1Þ

where ξaðxÞ is any Euclidean Killing field. At fixed t, the
generalized momentum may be viewed as a linear map from
the space of Killing fields into R and may therefore be
interpreted as a vector in the six-dimensional space which is
dual to the space of Euclidean Killing fields. Three of those
six dimensions describe a body’s linear momentum; the
remaining three describe its angular momentum.
Extracting linear and angular momenta from the gener-

alized momentum requires a choice of origin which is not
required for Pξ itself. Letting γt be such an origin at time t,
the associated linear momentum paðt; γtÞ and angular
momentum Sab ¼ S½ab�ðt; γtÞ are implicitly defined by

PξðtÞ ¼ paðt; γtÞξaðγtÞ þ
1

2
Sabðt; γtÞ∇aξbðγtÞ: ð2:2Þ

In this Euclidean context, ∇a∇bξc ¼ 0 so ∇apb ¼ 0.
The angular momentum does, however, depend on the
choice of origin, as is familiar even from elementary
discussions of Newtonian mechanics. In fact, the linear
and the angular momenta defined by (2.1) and (2.2) are
essentially2 equivalent to elementary textbook definitions:
using Cartesian coordinates xi,

piðt; γtÞ ¼
Z

ρiðx; tÞd3x; ð2:3aÞ

Sijðt; γtÞ ¼ 2

Z
ðx − γtÞ½iρj�ðx; tÞd3x: ð2:3bÞ

The generalized momentum may be viewed as describ-
ing a body’s “bulk” state. Mass and momentum conserva-
tion constrain the evolution of that state and therefore the
evolution of the generalized momentum: differentiating
(2.1) may be shown to yield the “generalized force” [6,37]

F ξðtÞ≡ d
dt

PξðtÞ ¼ −
Z

ρðx; tÞLξΦðx; tÞdV; ð2:4Þ

where ρ denotes the body’s mass density andΦ denotes the
Newtonian gravitational potential. Like the generalized
momentum, the generalized force is, at fixed t, a six-
dimensional vector in the space which is dual to the space
of Euclidean Killing fields.
In the same way that generalized momentum can be

decomposed into a linear momentum and an angular
momentum, the generalized force can be decomposed into
an ordinary force Faðt; γtÞ and a torque Nab ¼ N½ab�ðt; γtÞ,
both of which satisfy

F ξðtÞ ¼ Faðt; γtÞξaðγtÞ þ
1

2
Nabðt; γtÞ∇aξbðγtÞ: ð2:5Þ

Comparing this expression to the time derivative of (2.2)
recovers the laws of motion

D
dt

pa ¼ Fa;
D
dt

Sab ¼ 2p½aγ̇b�t þ Nab: ð2:6Þ

The time derivatives here act on both arguments of paðt; γtÞ
and Sabðt; γtÞ. Also note that the p½aγ̇b�t term which affects
the angular momentum is purely kinematic and is therefore
natural to separate from the “dynamical” torque Nab. It
vanishes when, e.g., γt is placed at an object’s center of
mass. Although the force and the torque which appear here
are equivalent to elementary expressions, we find it
convenient to work with the more-abstract concepts of
generalized momentum and generalized force. One reason
for this is that doing so allows forces and torques to be
considered simultaneously in a single calculation. Another
advantage is that the Lie derivative in (2.4) provides an
immediate connection with symmetries and conserva-
tion laws.
Regardless, the gravitational potential Φ which appears

in the generalized force is, a priori, the sum of an external
field and a self-field. The gravitational self-field may
nevertheless be shown not to contribute to the generalized
force [6,37]. The Φ which appears there can thus be
reinterpreted as a purely external potential. Doing so while
further assuming that all length scales associated with the
external field are large compared with the size of the body,
it becomes useful to Taylor expand LξΦ in the generalized
force (2.4). Doing so around γt results in

F ξðtÞ ¼ −MLξΦðγt; tÞ −Daðt; γtÞLξ∇aΦðγt; tÞ

þ 1

2
Q̃abðt; γtÞLξEabðγt; tÞ þ…; ð2:7Þ

where M is the body’s mass,

2The only difference is that it is more conventional to consider
the angular momentum vector Sa ≡ 1

2
ϵabcSbc in place of the

bivector Sab. Both Sa and Sab nevertheless encode the same
information in Newtonian mechanics.
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Diðt; γtÞ≡
Z

ðx − γtÞiρðx; tÞd3x ð2:8Þ

is its mass dipole moment, and

Q̃ijðt; γtÞ≡
Z

ðx − γtÞiðx − γtÞjρðx; tÞd3x ð2:9Þ

is its “full” (not necessarily trace-free) quadrupole moment.
We have also used

Eabðx; tÞ≡ −∇a∇bΦðx; tÞ ð2:10Þ

to denote the Newtonian tidal tensor. This tensor is
always symmetric and trace free, where the latter property
follows from the vacuum field equation ∇2Φ ¼ 0. The
definition (2.10) also implies that

∇½aEb�c ¼ 0; ð2:11Þ

which may be viewed as a Newtonian analog of the Bianchi
identity.
Our focus here is on the quadrupolar contribution to the

force and torque, which is given by the second line of (2.7).
That term can, however, be simplified by noting that, since
Eab is trace free and Lξgab ¼ 0, where gab denotes the
Euclidean metric, arbitrary multiples of gab can be added to
Q̃ab without affecting Q̃abLξEab. The quadrupole moment
in that expression may therefore be replaced by its trace-
free counterpart

Qab ≡
�
δacδ

b
d −

1

3
gabgcd

�
Q̃cd: ð2:12Þ

From now on, we refer to Qab (and not Q̃ab) as the
quadrupole moment. Like Eab, this moment is symmetric
and trace free. In terms of it, the quadrupolar contribution to
the generalized force is

F ðqÞ
ξ ¼ 1

2
QabLξEab: ð2:13Þ

Quadrupolar forces and torques therefore arise only when
the tidal field fails to share the same symmetries as the
background Euclidean space. Combining (2.5) and (2.13),
the ordinary force and torque are given by

FðqÞ
a ¼ 1

2
Qbc∇aEbc; NðqÞ

ab ¼ 2Qc½aEb�c ð2:14Þ

at quadrupolar order.
A body which does not eject or absorb mass has no

control over the monopolar generalized force −MLξΦ.
Moreover, the dipolar force −DaLξ∇aΦ can always be set
to zero by placing γt at the center of mass. The first
nontrivial contribution to “nonuniversal” free fall therefore

arises at quadrupolar order, which is our focus. In astro-
physical contexts, it is often assumed that all quadrupole
moments are induced by the tidal field. Such cases are
discussed briefly in Appendix C, where it is shown that
introducing an effective potential which depends on EabEab
can allow the quadrupolar force to be absorbed into the
monopole. However, our goal here is not to model any
particular system; unless otherwise noted, we allow for
arbitrary quadrupole moments below.

B. Constraints from symmetry

Intuitively, extended-body effects arise from inhomo-
geneities in the gravitational field. Depending on a body’s
internal mass distribution, different parts of it may interact
with slightly different gravitational fields, resulting in
different net effects. Indeed, no extended-body effects
are possible in a uniform gravitational field where
∇aΦ ¼ constant. This suggests that extended-body effects
should be constrained by any symmetries which may exist.
The simplest such constraints arise from symmetries of

the potential. It is immediately clear from (2.2) and (2.4)
that if there exists a Killing field ΞaðxÞ such that3

LΞΦðx; tÞ ¼ 0 ð2:15Þ

throughout the body of interest, one component of the
generalized momentum must be conserved:

PΞ ¼ paΞa þ 1

2
Sab∇aΞb ¼ constant: ð2:16Þ

This is in fact not restricted to the quadrupole approxima-
tion. It is exact. As a consequence,

FΞ ¼ FaΞa þ 1

2
Nab∇aΞb ¼ 0: ð2:17Þ

This too is exact. It implies that when Φ shares a symmetry
with the background Euclidean space, certain force and
torque combinations are impossible, regardless of a body’s
internal structure. Such constraints hold regardless of
whether or not γt lies at the center of mass.
One simple example concerns the motion of an object in

a spherically symmetric gravitational field. In that case,
three generalized momentum components are conserved,
one for each of the three rotational symmetries. Similarly,
three generalized force components vanish. In more
elementary language, the angular momentum 3-vector
which is associated with motion around the origin is
conserved. As a consequence, nonradial forces—which
affect an object’s orbital angular momentum—can arise

3We use ξa here to denote a generic Killing field
but Ξa to denote a specific Killing field which also generates
a symmetry of Φ.
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only in combination with torques which produce compen-
sating changes in the spin angular momentum. Certain
linear combinations of force and torque components there-
fore vanish, and these are precisely the generalized force
components which are associated with the rotational
symmetries.
Returning to our discussion of generic gravitational

fields (which are not necessarily spherically symmetric),
symmetry in the sense of (2.15) is a fairly strong require-
ment. It is therefore interesting to ask if that requirement
can be weakened while still retaining interesting physical
consequences. Can constraints such as (2.17) continue to
hold even when LΞΦ ≠ 0? Indeed they can. If there is a
one-parameter family of Killing fields Ξa

t ðxÞ such that

LΞt
Eabðγt; tÞ ¼ −∇a∇bLΞt

Φðγt; tÞ ¼ 0; ð2:18Þ

inspection of (2.13) shows that at least the quadrupolar
contribution to the generalized force must vanish:

F ðqÞ
Ξt

¼ FðqÞ
a Ξa

t þ
1

2
NðqÞ

ab∇aΞb
t ¼ 0: ð2:19Þ

The quadrupolar component of the constraint (2.17) there-
fore generalizes in three ways. First, we may consider
Killing fields which are symmetries of the tidal field but not
of the potential. Second, we may consider Killing fields
which preserve the tidal field only at γt. Third, we may
consider different Killing fields at different times. Although
these generalizations are straightforward, they considerably
weaken our notion of symmetry while still implying that
certain force and torque combinations are impossible. We
describe a one-parameter family of Killing fields Ξa

t which
satisfy (2.18) as the generators of a local symmetry.
Somewhat more precisely, these are local symmetries
of the tidal field. The “ordinary” symmetries which satisfy
(2.15) are special cases. We refer to local symmetries which
do not preserve Φ as “proper.”
Unlike ordinary symmetries of the potential, proper local

symmetries are not necessarily associated with conserva-
tion laws. A natural candidate for a potentially conserved
conserved quantity in this context is PΞt

. However, the rate
of change of this quantity is not quite given by the
generalized force FΞt

, since now the Killing fields may
depend on time. Instead,

d
dt

PΞt
¼ FΞt

þ PΞ̇t
: ð2:20Þ

The first term on the right-hand simplifies due to (2.19) but
does not necessarily disappear. In some cases, both terms
simplify when γt is placed at an object’s center of mass; one
such example is given in Sec. II D 2 below.
What is interesting here is not so much that local

symmetries imply force and torque constraints; that much
is obvious from (2.13). What is more important is that

proper local symmetries are ubiquitous. We show below
that at least one (not necessarily proper) local symmetry
exists in every Newtonian gravitational field, and in many
cases, there are more. Local symmetries therefore play an
important role in constraining extended-body motion. We
now identify these symmetries and their consequences in
different types of tidal fields.

C. Constraints from algebraic structure

Any nonzero Newtonian tidal tensor can be classified, at
each point, in terms of its eigenvalues. These tensors must
be real, symmetric, and trace free, and therefore admit three
real eigenvalues (counting multiplicity) which sum to zero.
There are three possibilities:
(1) Eab has three distinct and nonzero eigenvalues.
(2) Eab has two distinct nonzero eigenvalues and one

vanishing eigenvalue.
(3) Eab has one doubly degenerate nonzero eigenvalue

and one nondegenerate nonzero eigenvalue.
Depending on which of these descriptions hold, we
describe Eab as being of algebraic type 1, 2, or 3. Type
3 tidal tensors can be described as “algebraically special.”
Type 1 and type 2 tidal tensors are instead “algebraically
general.” It is shown in Appendix B that the algebraically
special Newtonian tidal tensors may be viewed as approx-
imations to Petrov type D spacetimes in general relativity.
Type 1 and 2 tidal fields instead correspond to Petrov type I
spacetimes, which are conventionally described as alge-
braically general.
Regardless, the three eigenvalues Eþ, E−, and −Eþ − E−

of the tidal tensor can all be encoded in the complex “tidal
scalar”

E ≡ ðEþ þ E−Þ þ iðEþ − E−Þ; ð2:21Þ

which is analogous to the Weyl scalars used in general
relativity.4 However, E depends on the ordering of the
eigenvalues. If Eþ and E− are swapped, E ↦ Ē; if Eþ and
−Eþ − E− are swapped, E ↦ − 1

2
i½E þ ð2 − iÞĒ�; if E− and

−Eþ − E− are swapped, E ↦ 1
2
i½E þ ð2þ iÞĒ�. The eigen-

values of a type 3 tidal tensor may nevertheless be ordered
such that E is real. For type 2 tidal tensors, the eigenvalues
may be ordered such that E is imaginary. In the generic type
1 case, E must have both real and imaginary components.
One order-independent way to determine the algebraic

type of the tidal tensor is to compute the dimensionless ratio

4A four-dimensional Weyl tensor is associated, in general, with
five complex Weyl scalars. Without aligning the triad, a New-
tonian tidal tensor would be associated with two complex scalars
and one real scalar. In both cases, however, certain scalars can be
made to vanish by appropriately aligning the basis vectors. In the
Newtonian case, doing so leaves only E. In the relativistic case,
simplifications which arise when aligning the tetrad are discussed
in Sec. III C 1 below.
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4ðdet EabÞ2
ðEcdEcdÞ3 ¼ ½ðE þ ĒÞðE2 þ Ē2Þ�2

ðE2 þ 4jEj2 þ Ē2Þ3 : ð2:22Þ

If this vanishes, the tidal tensor is of type 2; if it is equal to
2=27, the tidal tensor is of type 3; in all other cases, the tidal
tensor is of type 1.
Forces and torques which arise in gravitational fields

with each of the three algebraic types may be understood by
diagonalizing Eab. If eaþ and ea− are real orthonormal
eigenvectors associated with the eigenvalues Eþ and E−,
it will be useful to define the complex null vector

ma ≡ 1ffiffiffi
2

p ðeaþ þ iea−Þ: ð2:23Þ

Also defining la ≡ iϵabcmbm̄c ¼ ϵabcebþec−, which is an
eigenvector of Eab with eigenvalue −Eþ − E−, the triad
ðla; ma; m̄aÞ forms a convenient basis with inner products

mama ¼ mala ¼ 0; mam̄a ¼ lala ¼ 1: ð2:24Þ

Using it, the tidal tensor can be written as

Eab ¼
1

2
ðgab − 3lalbÞRe E þ ReðmambÞIm E: ð2:25Þ

The triad here is adapted to the tidal tensor, not the
quadrupolemoment, so the latter can lookmore complicated
when written in an analogous form: introducing the three
“quadrupole scalars,” Qlm ≡Qablamb, Qmm ≡Qabmamb,
and Qll ≡Qablalb,

Qab ¼
1

2
Qllð3lalb − gabÞ

þ 2Re
h
ðQmmm̄ða þ 2QlmlðaÞm̄bÞ

i
: ð2:26Þ

While Qll is real, both Qlm and Qmm can be complex.
Together, these scalars encode all five real components
of Qab.
Equations (2.25) and (2.26) can now be substituted

into (2.13) in order to show that the quadrupolar general-
ized force is

F ðqÞ
ξ ¼ ðImQmmÞðIm EÞim̄aLξma − Re½Qlmð3m̄aRe E

þmaIm EÞ�Lξla −
1

4
Re½ð3Qll þ 2iReQmmÞLξE�:

ð2:27Þ

This holds for all tidal tensors and for all quadrupole
moments. Using it and (2.5) shows that

FðqÞ
a ¼ ðImQmmÞðIm EÞim̄b∇amb − Re½Qlmð3m̄bRe E

þmbIm EÞ�∇alb −
1

4
Re½ð3Qll þ 2iReQmmÞ∇aE�;

ð2:28Þ

and

Nab
ðqÞ ¼ 2Re ½Qlml½að3m̄b�Re E þmb�Im EÞ�

þ 2ðImQmmÞðIm EÞim̄½amb�: ð2:29Þ

Although the quadrupole componentsQll and ReQmm can
(at least sometimes) affect the force, these expressions show
that they can never affect the torque. By contrast, both the
force and the torque can depend on Qlm and on ImQmm.
This shared dependence on Qlm and on ImQmm can be

used to write the force partially in terms of the torque.
From (2.29), first note that

Re½Qlmð3m̄aRe E þmaIm EÞ� ¼ −Nab
ðqÞlb; ð2:30aÞ

ðImQmmÞIm E ¼ −iNab
ðqÞmam̄b: ð2:30bÞ

Substituting these expressions into (2.27) then results in

FðqÞ
a ¼ ðld∇alc þ m̄bmcm̄d∇ambÞNðqÞ

cd þ Re½Q∇aE�;
ð2:31Þ

where

Q≡ −
1

4
ð3Qll þ 2iReQmmÞ ð2:32Þ

is a complex quadrupole component which does not affect
the torque. The quadrupolar force is therefore an affine
function of the quadrupolar torque. Furthermore, the space
of forces which can be varied independently of the torque is
spanned by the real and the imaginary components of ∇aE.
These forces are all that can be produced if, e.g., the torque
vanishes.
One interesting implication of this is that if the torque

vanishes, and if γt is chosen such that Da ¼ 0, the total
force, up to quadrupolar order, may be viewed as a purely
monopolar force in the effective potential

Φeff ¼ Φ − Re½ðQ=MÞE�: ð2:33Þ

Even in this restricted regime, a shape-changing spacecraft
can exert considerable control over its motion simply by
modulating Q at appropriate points in its orbit [24]. It may
also be noted that this Φeff is “physically equivalent” (but
not equal) to the effective potential (C3) which naturally
arises when the quadrupole moment is tidally induced.
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1. Type 3 tidal tensors

We have now determined the quadrupolar contributions
to the generalized force (2.27), the torque (2.29), and the
ordinary force (2.31). These expressions hold for any
extended body in any gravitational field, but can now be
specialized to discuss extended-body motion in each of the
three types of tidal field discussed above. Type 3 tidal
tensors are the simplest, so we begin with them.
Every type 3 tidal tensor admits a degenerate eigenvalue,

and the orthonormal eigenvectors ea� may be chosen to span
the associated eigenspace. Then, Eþ ¼ E− and E ¼ 2Eþ.
The eigenvector la is associated with the nondegenerate
eigenvalue −2Eþ, and the tidal tensor (2.25) reduces to

Eab ¼ ðgab − 3lalbÞEþ: ð2:34Þ

It follows from (2.31) that at fixed torque, the quadrupolar
force in a type 3 field can be modulated only in the
direction parallel to ∇aEþ.
Assuming that the tidal tensor remains type 3 in a

neighborhood of the relevant point, Eq. (2.27) reduces to

F ðqÞ
ξ ¼ −

3

2
QllLξEþ − 6EþReðQlmm̄aÞLξla: ð2:35Þ

The motion is therefore unaffected by Qmm; at least two of
the five (real) quadrupole components are irrelevant in type
3 tidal fields. It can also be observed that the torque (2.29)
reduces to

Nab
ðqÞ ¼ −12EþReðQlmm̄½aÞlb�; ð2:36Þ

which is controlled only by Qlm.
As Qlm encodes only two real control parameters, it is

not possible for an extended body to use its quadrupole
moment in order to control all three torque components; for
any such moment,

Nab
ðqÞm½am̄b� ¼ 0: ð2:37Þ

In terms of a vector torqueNcwhich satisfiesNab ¼ ϵabcNc,
this is equivalent to

Na
ðqÞla ¼ 0: ð2:38Þ

Regardless, quadrupole moments cannot affect a body’s
torque within the degenerate eigenplane of the tidal tensor.
They do, however, affect the other two torque components.
One way to understand this torque constraint, and also

the fact that forces depend in part on torques, is via local
symmetries. Type 3 tidal fields admit at least three local
symmetries with the properties discussed in Sec. II B
above. To find them, first use (2.5), (2.31), and (2.37) to
note that

F ðqÞ
ξ ¼1

2

�ð2ξalc∇albþ∇bξcÞNðqÞ
bc −3QllLξEþ

�
: ð2:39Þ

Equation (2.19) implies that we would like to find a
one-parameter family of Killing fields Ξa

t ðxÞ such that
FΞt

ðtÞ ¼ 0 for all possible quadrupole moments. Varying
Qll while noting that that quadrupole component cannot
affect the torque, one necessary condition is clearly

Ξa
t ðγtÞ∇aEþðγtÞ ¼ 0: ð2:40Þ

Moreover, since the torque can be varied throughout the
two-dimensional space which is not excluded by (2.37), the
other necessary condition is that

∇aΞb
t ðγtÞ ¼ 2Ξc

t ðγtÞl½a∇clb� þ iλtm½am̄b�; ð2:41Þ

where λt is real but otherwise arbitrary. Each Killing field
which satisfies these constraints preserves the tidal tensor at
γt, and therefore generates a local symmetry. Choosing
Ξa
t ðγtÞ ¼ 0 while varying λt produces a family of pure

rotations about γt; these imply the torque constraint (2.37).
Setting λt ¼ 0while varying Ξa

t throughout the space which
is consistent with (2.40) generates at least two more local
symmetries; these imply that there are at least two force
components which cannot arise without accompanying
torques.
Our discussion thus far has assumed only that Eab is

given by (2.34). However, somewhat more can be said by
recalling that a tidal tensor must arise as two derivatives of a
scalar field. That implies the “Bianchi identity” (2.11),
which may be used to show that for type 3 tidal fields,

∇aEþ ¼ −
3

2
Eþð∇ · lÞla; ð2:42aÞ

∇alb ¼ ð∇ · lÞmðam̄bÞ: ð2:42bÞ

The nondegenerate eigenvector is therefore geodesic, shear
free, and twist free, which is reminiscent of the Goldberg-
Sachs theorem for repeated principal null directions in a
four-dimensional spacetime. Regardless, applying these
expressions to (2.31) shows that

FðqÞ
a ¼ 1

4
ð∇ · lÞ½9QllEþla þ 2NðqÞ

ab l
b�: ð2:43Þ

The force component which is independent of the torque
must therefore be parallel to the nondegenerate eigenvector
la. Although force components which are orthogonal to la

can be controlled as well (at least when∇ · l ≠ 0), they can
arise only with accompanying torques.

2. Type 2 tidal tensors

By definition, one of the eigenvalues of a type 2 tidal
tensor must vanish. Identifying la with the unit eigenvector
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which corresponds to that eigenvalue, Eþ ¼ −E− and
E ¼ 2iEþ. Equation (2.25) then reduces to

Eab ¼ 2EþReðmambÞ: ð2:44Þ

Inspection of (2.27) shows that in a type 2 field,Qll cannot
affect the motion; up to four (out of five) real quadrupole
components matter in these cases. It also follows from
(2.29) that the quadrupolar torque can be controlled
arbitrarily in type 2 fields. However, the force can be
varied in only one direction without also varying the torque.
These are consequences of the fact that there are at least

two local symmetries in each type 2 tidal field. To identify
them, note from (2.31) that

F ðqÞ
ξ ¼ 1

2
½ξað2ld∇alc þ m̄bmcm̄d∇ambÞ þ∇cξd�NðqÞ

cd

þ ReQmmLξEþ: ð2:45Þ

As ReQmm cannot affect the torque, ensuring that this
vanishes for all possible quadrupole moments implies that
the local symmetries are given by all Killing fields which
satisfy

Ξa
t ðγtÞ∇aEþðγtÞ ¼ 0; ð2:46aÞ

∇aΞb
t ðγtÞ¼2Ξc

t ðγtÞðl½a∇clb� þm½am̄b�md∇cm̄dÞ: ð2:46bÞ

This space is at least two dimensional.

3. Type 1 tidal tensors

Type 1 tidal tensors admit three distinct and nonzero
eigenvalues. In these cases, the quadrupolar torque can be
varied arbitrarily. It also follows from (2.31) that at fixed
torque, forces can be varied through the space spanned by
∇aEþ and by ∇aE−. That space is at most two dimensional,
so quadrupolar effects can never be used to fully control all
force and torque components. At least one force component
cannot be varied without an accompanying torque. This is a
consequence of the fact that type 1 tidal fields admit at least
one local symmetry. Indeed, all Newtonian tidal tensors
admit at least one local symmetry. This symmetry can be
found by determining all Killing fields which satisfy

Ξa
t ðγtÞ∇aEþðγtÞ ¼ Ξa

t ðγtÞ∇aE−ðγtÞ ¼ 0; ð2:47aÞ

∇aΞb
t ðγtÞ¼2Ξc

t ðγtÞðl½a∇clb� þm½am̄b�md∇cm̄dÞ: ð2:47bÞ

The impossibility of completely controlling all forces
and torques could have been anticipated by a counting
argument: the five components of the quadrupole moment
are not sufficient to independently control all six general-
ized force components. Nevertheless, there are cases in
which all force and torque components can be independ-
ently controlled using octupole and higher-order moments.

The situation is different in general relativity, where there
are ten quadrupole components and also ten generalized
force components. We shall see in Sec. III C below that
complete control of all relativistic forces and torques is
possible in the quadrupole approximation, at least in some
spacetimes. This suggests that there may be a sense in
which, at quadrupolar order, some “essentially Newtonian”
force or torque components can be controlled only
relativistically, via a body’s current (rather than mass)
quadrupole.

4. Summarizing the Newtonian constraints

We may now summarize our Newtonian results by
describing how much control would be available to a
spacecraft which has been engineered to arbitrarily control
its quadrupole moment. First, we have found that in a type
n tidal field, there are at least n local symmetries (with
n ¼ 1, 2, 3). In algebraically general tidal fields, which are
of types 1 or 2, appropriate spacecraft have complete
control over the quadrupolar torques which are exerted
upon them. In the algebraically special type 3 case, torque
vectors can instead be controlled only within the 2-plane
which is orthogonal to the nondegenerate eigenvector of
Eab. How such a spacecraft can control the quadrupolar
forces which act upon it is more complicated. However, one
general statement is that without changing the torque,
suitable spacecraft can arbitrarily control forces only
throughout the space which is spanned by the gradients
of the eigenvalues E�. For tidal tensors of types 2 and 3,
this space is at most one dimensional. For tidal tensors of
type 1, it is at most two dimensional. These and related
results are collected in Table I.

D. Examples of Newtonian tidal fields

In order to illustrate our results, we now discuss some
simple examples of Newtonian tidal fields, including their
local symmetries.

TABLE I. Forces, torques, and local symmetries in Newtonian
tidal fields with different algebraic types. The second column
displays the number of local symmetries Ξa

t . The third column
specifies the number of real quadrupole components which can
affect the force or torque. The fourth column specifies the
dimension of the space of possible quadrupolar torques. The
rightmost column displays the dimension of the space of
quadrupolar forces which can be varied at fixed torque. Starred
numbers are used to indicate that there is no constraint. All ranges
which appear here depend on the dimension of the space which is
spanned by ∇aEþ and ∇aE−.

Algebraic type fΞa
t g fQabg fNðqÞ

ab g fFðqÞ
a jNðqÞ

bc g
1 1–3 3–5� 3� ≤ 2
2 2–3 3–4 3� ≤ 1
3 3–4 2–3 2 ≤ 1
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1. Type 3 examples

The prototypical example of a type 3 tidal tensor is
generated by the spherically symmetric potentialΦ ¼ −k=r,
where k is a constant and r is a radial coordinate. Then,

Eab ¼
k
r3

ð3r̂ar̂b − gabÞ; ð2:48Þ

where r̂a ≡∇ar denotes the radial unit vector and gab is
again the Euclideanmetric. The vector r̂a is a nondegenerate
eigenvector of Eab, so we may identify it with la. Doing so,
the tidal scalar (2.21) reduces to E ¼ −2k=r3. At
fixed torque, only the radial force can thus be controlled
using extended-body effects. Additionally, the torque con-
straint (2.38) implies that there can be no quadrupolar torque
along the radial direction. These constraints are intuitively
clear given the conservation of angular momentum. What is
perhaps less clear is that, even with these conservation laws,
an object which controls its quadrupole moment can still
exert considerable control over its orbit [24]. In this case, the
three local symmetries determined by (2.40) and (2.41) are
in fact the ordinary rotational symmetries ofΦ. They are not
proper local symmetries.
Another type 3 example is provided byΦ ¼ kðr2 − 3z2Þ,

where z is a Cartesian coordinate and k is again a constant.
This describes a constant tidal field and is essentially the
r → ∞ limit of the spherically symmetric example above.
Although quadrupolar forces vanish in this case, torque
vectors can be arbitrarily controlled in all directions which
are orthogonal to the z axis. Also, since ∇aE ¼ 0, there are
four local symmetries rather than three—three translations
and a rotation around the z axis. Only the rotation is,
however, a symmetry of Φ. Each translation ∂i is a proper
local symmetry, and the corresponding generalized
momentum varies according to

d
dt

P∂i
¼ dpi

dt
¼ −M∂iΦ −Dj

∂i∂jΦ; ð2:49Þ

at least through quadrupolar order. The linear momentum
pa is therefore unaffected by a body’s quadrupole moment;
its behavior is (at least instantaneously) “universal.”

2. Type 2 examples

The simplest example of a nonconstant type 2 tidal
tensor is generated by the cylindrically symmetric potential
Φ ¼ k ln r, where k is another constant and r is now the
distance away from the axis of symmetry. Let la be a unit
eigenvector of Eab with eigenvalue 0, which must be
parallel to the symmetry axis. Also defining r̂a ≡∇ar,

Eab ¼
k
r2
ð2r̂ar̂b þ lalb − gabÞ; ð2:50Þ

and E ¼ 4ik=r2. The two local symmetries which can be
found by solving (2.46) are in fact the ordinary translational

and azimuthal symmetries of Φ. The translational sym-
metry along la clearly precludes any force in that direction.
The azimuthal symmetry instead requires that any azimu-
thal force be accompanied by a torque along the symmetry
axis; one cannot exist without the other. Moreover, because
∇aE is radial, only the radial force can be controlled
independently of the torque.
More interesting type 2 examples can be found by

superposing the potentials from multiple long, parallel
cylinders. Although doing so breaks the azimuthal sym-
metry of Φ, a proper local symmetry takes its place. The
geometric significance of this symmetry is, however,
difficult to visualize.
We therefore consider a simpler example instead: letting

y and z denote Cartesian coordinates, and letting k and a be
constants, suppose that

Φ ¼ kez=a sinðy=aÞ: ð2:51Þ

The corresponding tidal tensor is then

Eab ¼
k
a2

ez=a½ð∇ay∇by −∇az∇bzÞ sinðy=aÞ
− 2∇ðay∇bÞz cosðy=aÞ�; ð2:52Þ

which clearly admits la ¼ ϵabc∇by∇cz as an eigenvector
with vanishing eigenvalue. That eigenvector generates an
ordinary translational symmetry of Φ, which implies that it
is not possible to produce a quadrupolar force orthogonal to
the yz plane. The other two eigenvectors of Eab may be
arranged such that E ¼ 2ikez=a=a2, which implies that the
force can be controlled independently of the torque only in
the z direction. Quadrupolar forces in the y direction can be
controlled as well, but only at the cost of accompanying
torques.
This last statement is a consequence of the proper local

symmetry

Ξi
tðxÞ ¼ ϵijkðx − γtÞjlk þ 2a∇iy; ð2:53Þ

which may be found by applying (2.46) to (2.52). It may be
verified that, although LΞt

EabðxÞ vanishes when x ¼ γt, it
does not vanish more generally. Geometrically, Ξa

t corre-
sponds to a rotation in the yz plane, with origin γt, together
with a translation in the y direction. Alternatively, it may be
interpreted as a pure rotation around a point which is
displaced from γt by a distance 2a in the z direction.
Regardless, the combination of translational and rotational
components here is what links forces to torques.
While proper local symmetries are not necessarily

associated with conservation laws, we can again see how
close they can get. Using the local symmetry (2.53)
together with (2.7), (2.19), and (2.20),
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d
dt

PΞt
ðtÞ ¼ −MLΞt

Φ −DaLΞt
∇aΦ − ϵabcpaγ̇bt lc ð2:54Þ

through quadrupolar order. If γt is chosen to lie at the
body’s center of mass, the last two terms here vanish,
leaving only the monopolar contribution −MLΞt

Φ. While
PΞt

can change, it does so only in the same way as for a
monopolar particle. In this sense, its behavior is universal.

III. EXTENDED-BODY EFFECTS IN GENERAL
RELATIVITY

We now move on to discussing extended-body con-
straints in general relativity. Following essentially the same
steps as in the Newtonian theory, we begin in Sec. III A by
reviewing the generalized momentum and the generalized
force in a relativistic context. Section III B applies these
concepts to determine how symmetries constrain extended-
body motion. It focuses on local symmetries in general
relativity and shows that some of these are generated by
conformal Killing-Yano tensors. Section III C then ana-
lyzes quadrupolar forces and torques in vacuum space-
times, deriving local symmetries and their physical
consequences for each of the possible Petrov types.
Lastly, Sec. III D uses pp-wave and Kasner spacetimes
as examples with which to illustrate our results.

A. Generalized momentum and generalized force

As in Newtonian theory, the bulk state of an extended
body in general relativity can be described in terms of a
generalized momentum PξðsÞ [6,37,39,40]. At least for a
test body with stress-energy tensor Tab, it is useful to define
this as

PξðsÞ≡
Z
Σs

Ta
bðxÞξbðxÞdSa ð3:1Þ

at “time” s, where the hypersurfaces Σs are chosen to foliate
the body’s worldtube. Since there may not be any Killing
fields here, the vector fields ξa must be chosen more
broadly than in the Newtonian setting: They are “gener-
alized Killing fields” (GKFs). A complete definition for the
GKFs may be found in [6,39], but for our purposes, it
suffices to note that they require for their specification the
aforementioned hypersurfaces Σs, as well as a reference
worldline which we parametrize by γs. Both of these
structures can, e.g., be fixed using center-of-mass con-
ditions [8,36,41,42]. In that case, γs would be regarded as a
point on the body’s center-of-mass worldline. Regardless,
any GKF is uniquely determined by its value and that
of its first derivative anywhere on the reference worldline—
both of which can be chosen arbitrarily so long as
∇ðaξbÞðγsÞ ¼ 0. The space of possible choices for ξaðγsÞ
and ∇½aξb�ðγsÞ is ten dimensional, so the space of GKFs is
also ten dimensional. Noting that Pξ is linear in the GKFs,

the generalized momentum may be viewed as an
s-dependent vector in the ten-dimensional space which is
dual to the space of generalized Killing fields.
These ten dimensions encode the four components of a

body’s linear momentum pa and the six components of its
angular momentum Sab ¼ S½ab�, both of which are tensors
on the reference worldline. As in the Newtonian setting, the
linear and the angular momenta can be defined implicitly
by using (2.2) to relate them to Pξ. For extended test
bodies, doing so results in the same momenta as those
found by Dixon [8,34,35,38]. When self-fields are signifi-
cant, those fields finitely renormalize the generalized
momentum (3.1), and therefore pa and Sab as well [6,40].
Whether or not self-interaction is significant, we may

again introduce the generalized forceF ξ ≡ dPξ=ds in order
to describe changes in a body’s generalized momentum.
Both an ordinary force Fa and a torque Nab ¼ N½ab� can be
extracted from F ξ using (2.4). However, the force and the
torque are not simply the rates of change of pa and Sab. To
see this, first note that all GKFs satisfy Killing’s equation at
least through first order on the reference worldline [6,39]:

LξgabðγsÞ ¼ ∇cLξgabðγsÞ ¼ 0: ð3:2Þ

Applying this and (2.4) while differentiating (2.2) results in
the Mathisson-Papapetrou-Dixon equations

D
ds

pa ¼ −
1

2
Rabcdγ̇

b
sScd þ Fa; ð3:3aÞ

D
ds

Sab ¼ 2p½aγ̇b�s þ Nab: ð3:3bÞ

The force and the torque, or equivalently F ξ, encode
only dynamical contributions to the evolution. The terms

− 1
2
Rabcdγ̇

b
sScd and 2p½aγ̇b�s which appear in (3.3) are instead

kinematical. They are related to the fact that the approximate
Poincaré symmetry which is encoded in (3.2) mixes trans-
lations, rotations, and boosts from onemoment in time to the
next. This mixing of approximate symmetries physically
manifests as a mixing of linear and angular momenta over
time. However, our focus here is only on understanding
dynamical contributionswhich can differ from one extended
body to another, all of which are encoded in Fa and in Nab.
Assuming that ∇aTab ¼ 0, differentiation of (3.1) shows

that, at least for test bodies,

F ξ ¼
1

2

Z
Σs

TabLξgabwcdSc; ð3:4Þ

wherewc is a time evolution vector field for the foliation Σs.
The generalized force component which is associated with
a particular GKF ξa therefore measures the degree by which
that GKF fails to be a genuine Killing field. However, this
“measurement” is weighted by Tab, which can vary from
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one extended body to another. Different weightings allow
different objects to experience different forces and different
torques in the same spacetime.
It is inconvenient to analyze these differences using an

integral expression for F ξ. We instead assume that all
bodies we consider are sufficiently small that multipolar
expansions can be employed. Since Lξgab vanishes through
first order around γs, the first nontrivial contribution in such
an expansion arises at second—i.e., quadrupolar—order. A
calculation shows that in fact [6,34,35,43]

F ðqÞ
ξ ¼ −

1

6
J̃abcdLξRabcd; ð3:5Þ

where J̃abcd denotes the body’s full (not necessarily trace-
free) quadrupole moment. This moment has all of the same
algebraic properties as a Riemann tensor. For a test body, it
is the quadrupole moment derived by Dixon; see Eq. (9.12)
of [35] or Eq. (2.8) of [32]. If self-interaction is significant,
the relevant J̃abcd is finitely renormalized with respect to
Dixon’s definition [6,40]. Also, the Rabcd which appears in
the generalized force must then be understood as the
Riemann tensor which is associated with a certain effective
metric. Although the details are not important here, we
assume that the metric which appears in all of our equations
is this effective one. It reduces to the physical metric when
considering test bodies but more generally includes both
“external” and “self-field” contributions. In a Newtonian
limit, it incorporates only the external gravitational field.
Regardless, all of our discussion is confined to spacetimes

which satisfy the vacuum Einstein equation, perhaps with a
cosmological constant5 Λ. The Ricci tensor is therefore

Rab ¼ Λgab; ð3:6Þ

and the Weyl tensor is related to the Riemann tensor by

Cabcd ¼ Rabcd þ
1

6
Λga½dgc�b: ð3:7Þ

Substituting this into (3.5) while using (3.2) shows that
LξRabcdðγtÞ ¼ LξCabcdðγtÞ for every GKF ξa. Similarly,
J̃abcd may be replaced in (3.5) by its trace-free counterpart

Jabcd ≡ ðJ̃abcdÞTF without affecting F ðqÞ
ξ [32,43,44]. The

quadrupolar generalized force in any vacuum spacetime
may therefore be written as

F ðqÞ
ξ ¼ −

1

6
JabcdLξCabcd: ð3:8Þ

Using (2.4), the corresponding force and torque are

FðqÞ
a ¼ −

1

6
Jbcde∇aCbcde; ð3:9aÞ

NðqÞ
ab ¼ −

4

3
J½acdeCb�cde: ð3:9bÞ

Much of our discussion below is focused on these
expressions.
In astrophysical contexts, it is often assumed that Jabcd

vanishes for isolated and nonspinning bodies but that
nonzero quadrupole moments can be induced either by
external tidal fields or by rotation. The former case is
briefly discussed in Appendix C, where the simplest
models are shown to result in very simple forces and
torques. Although the mass

M ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−papa

p
ð3:10Þ

can vary in these (and other) models, a certain effective
mass is conserved at least for some bodies with tidally
induced quadrupole moments; see (C8). That is in turn
analogous to the existence of the Newtonian effective
potential (C3). Nevertheless, our main goal here is to
understand model-independent features of the extended-
body problem. We therefore make no assumptions below
regarding the specific form of the quadrupole moment.
One model-independent feature which can already be

deduced is that in a vacuum spacetime, many objects with
differing internal structures can experience identical forces
and torques. To see this, first note that Jabcd has all of the
same algebraic properties as a Weyl tensor and therefore
has ten independent components. This contrasts with the 20
independent components of J̃abcd. Einstein’s equation thus
implies that at least ten components of the full quadrupole
moment cannot affect an object’s motion.6 Depending on
the Petrov type of the spacetime, we shall see below that
even more quadrupole components can fail to affect the
motion. As our focus is only on vacuum spacetimes, we
now refer only to Jabcd (and not to J̃abcd) as the quadrupole
moment in relativistic contexts.

B. Constraints from symmetry

If there exists a Killing field Ξa, it is clear from (3.4) that,
regardless of an object’s internal structure, PΞ is conserved
and FΞ ¼ 0. Killing fields therefore place universal con-
straints on extended-body effects. In fact, these constraints
hold not only for the full generalized force but also for each
term in its multipole expansion. This much has been known
since at least the 1970s [8,34–36]. What is new here is the
concept of a local symmetry.

5The cosmological constant has no direct influence on
extended-body effects, so there is no downside to including it.

6As noted in Sec. II A above, the Newtonian analog of this
statement is that the vacuum field equation implies that one of the
six components of Q̃ab cannot affect the motion.
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1. Local symmetries

A Killing field in a curved spacetime is analogous, in
Newtonian gravity, to a vector field which preserves not
only the Euclidean metric but also the potential Φ.
However, we found in Sec. II B above that it was useful
to generalize this by considering symmetries of the tidal
tensor Eab which are not necessarily symmetries of Φ. We
also found it useful to allow the tidal tensor to perhaps be
preserved at only a single point.
Applying these ideas in a relativistic context, we now

define the generator of a local symmetry to be a one-
parameter family of generalized Killing fields Ξa

s which
locally preserve the curvature:

LΞs
RabcdðγsÞ ¼ 0: ð3:11Þ

If such a family exists, it follows from (3.5) that

F ðqÞ
Ξs

¼ FðqÞ
a Ξa

s þ
1

2
NðqÞ

ab∇aΞb
s ¼ 0 ð3:12Þ

at time s. Conversely, a family of GKFs generates a local

symmetry whenever F ðqÞ
Ξs

¼ 0 for all possible quadrupole
moments.
As noted in Sec. III A above, GKFs always satisfy

Killing’s equation through first order along the reference
worldline. Equation (3.11) asks if it is possible to extend
this through one higher order, in which case (3.2) is
supplemented by

∇a∇bLΞs
gcdðγsÞ ¼ 0: ð3:13Þ

This is not possible in general. However, cases where it is
possible are not uncommon and are physically interesting.
It is clear that every Killing field which may exist

generates a local symmetry, and each of these is associated
with a conservation law. A proper local symmetry, which is
a local symmetry which is not generated by a Killing field,
might fail to be associated with any conservation law.

2. Conformal Killing-Yano tensors as local symmetries

We now show that some proper local symmetries are
generated by conformal Killing-Yano (CKY) tensors. By
definition, a CKY tensor fab ¼ f½ab�ðxÞ must satisfy

∇ðafbÞc ¼ gabfc − fðagbÞc; ð3:14Þ

where fa ≡ 1
3
∇bfba. A CKY tensor for which fa ¼ 0 is

called a Killing-Yano tensor. Regardless, the vacuum
Einstein equation implies that ∇ðafbÞ ¼ 0 [45]. Using this
as well as (3.14) and the Ricci identity, every CKY tensor
may be shown to satisfy

∇c∇dfab ¼ −∇a∇bfcd þ 2Rca½defb�e þ∇að2gbcfd
− gcdfbÞ þ∇cð2gadfb − gabfdÞ: ð3:15Þ

Antisymmetrizing over the index pairs ab and cd, it then
follows that

Rab½cefd�e ¼ −Rcd½aefb�e: ð3:16Þ

This can be viewed as an integrability condition for the
existence of a CKY tensor. Introducing the one-parameter
family of GKFs which are determined by

Ξa
s ðγsÞ ¼ 0; ∇aΞb

s ðγsÞ ¼ fabðγsÞ; ð3:17Þ

it implies that LΞs
RabcdðγsÞ ¼ 0. Every CKY tensor there-

fore generates a local symmetry. Since Ξa
s ðγsÞ ¼ 0, these

symmetries have no translational components. They may
be viewed as generating a family of curvature-preserving
Lorentz transformations on the reference worldline.
It follows from (3.12) and (3.17) that the physical

consequence of such a symmetry is that one component
of the quadrupolar torque must vanish. In fact, since the
Hodge dual f�ab ≡ 1

2
ϵab

cdfcd of any CKY tensor is also a
CKY tensor [45], two real torque components must vanish

Nab
ðqÞfab ¼ Nab

ðqÞf
�
ab ¼ 0: ð3:18Þ

These constraints have previously been derived in Petrov
type D spacetimes [32], although it was not clear then
whether or not the connection with CKY tensors was
anything more than coincidence. Our derivation here shows
that it was not a coincidence, that these constraints are not
restricted only to type D spacetimes, and also that they can
be related to curvature-preserving vector fields.
CKY tensors have seen a number of other applications in

the literature, perhaps most prominently in the Kerr space-
time. There, the square of a Killing-Yano tensor can be used
to construct a quadratic conserved quantity for geodesics:
the Carter constant. Nontrivial Killing-Yano tensors never-
theless exist in spacetimes which are not Kerr, and Carter-
like constants may be constructed in those cases as well.
Killing-Yano tensors can also be used in order to construct
conserved quantities—or at least conserved currents—for
various field equations [45–52]. However, there are reasons
to expect that exact generalizations of the Carter constant do
not exist for generic compact objects [53].
In the context of this paper, it is interesting to ask if the

torque constraint (3.18) can nevertheless be used to con-
struct a quantity which is at least approximately conserved.
In the pole-dipole approximation where quadrupole and
higher-order moments are neglected, the existence of
conserved quantities which are either linear or quadratic
in the momenta have been investigated [54–56] at least in
combination with the Tulczyjew spin supplementary (or
center-of-mass) condition
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paSab ¼ 0: ð3:19Þ

In that context, an approximate conservation law was
found which directly generalized the Carter constant.
Additionally, the quantity

PΞs
¼ 1

2
Sabfab ð3:20Þ

was found to be conserved when f�ab is Killing-Yano and
when it satisfies certain other conditions as well. These
extra conditions are not satisfied in Kerr [54,57], although
their failure there merely reduces PΞs

to a quantity which is
approximately conserved within the pole-dipole approxi-
mation: in powers of the spin, dPΞs

=ds ¼ OðS2Þ. If
quadrupole moments are included, but are assumed to be
spin-induced and with the deformability which is expected
for black holes, this quantity is instead conserved up to
terms of order S3 [58]. However, PΞs

is not so well
preserved for objects with any other deformabilities.
Our comment on this is that the situation may differ with

different spin supplementary conditions. Relaxing the
Tulczyjew condition (3.19) while also allowing for an
arbitrary angular momentum and an arbitrary (not neces-
sarily spin-induced) quadrupole moment, the torque con-
straint (3.18) implies that for an arbitrary CKY tensor fab,

d
ds

PΞs
¼ PΞ̇s

¼ γ̇bs

�
pafab þ

1

2
Sac∇bfac

�
; ð3:21Þ

at least if the octupole and higher-order moments are
neglected. It follows that PΞs

is conserved whenever γ̇bs
is orthogonal to pafab þ 1

2
Sac∇bfac. It may be possible to

construct spin supplementary conditions in which this is
guaranteed to occur. If so, we would have a new conserved
quantity for objects with arbitrary quadrupole moments.
Another point to note is that, although PΞs

is the
most obvious guess for a conserved quantity associated
with the local symmetry Ξa

s, it is not necessarily optimal.
In the Schwarzschild spacetime, one of the torque con-
straints which is associated with a conformal Killing-Yano
tensor can in fact be derived from ordinary Killing
symmetries [32]. That implies that there is an associated
conservation law. However, the quantity which is con-
served in that case does not coincide withPΞs

, except at one
moment in time. We find a similar result when discussing
motion in plane wave spacetimes in Sec. III D 1 below.

C. Constraints from algebraic structure

The majority of local symmetries we consider are not
related either toKilling vector fields or to conformal Killing-
Yano tensors. We now use the algebraic structure of the
Weyl tensor to identify these symmetries and to determine
their physical consequences. We consider general vacuum

spacetimes and determine how extended-body motion
depends on the Petrov type of the spacetime in which it
moves. No spin supplementary condition is assumed, and
there might not be any Killing vectors or CKY tensors.

1. A convenient basis

Simple expressions for forces and torques require
decompositions which are adapted to the spacetime geom-
etry, and not, e.g., to an object’s rest frame. Mathematically,
this corresponds to expressing forces and torques in terms
of a basis which is adapted to the principal null directions
(PNDs) of the spacetime’s Weyl tensor. As reviewed in
Appendix B, Weyl tensors can be classified according to
their Petrov type, which is determined by the numbers of
PNDs with different multiplicities; see the second column
in Table II. Although it is possible for the Petrov type to
vary from point to point, we assume below that it does not.
In order to introduce an appropriate basis, first let

ðla; na; ma; m̄aÞ be a null tetrad where la and na are real,
m̄a is the complex conjugate of ma, and the only non-
vanishing scalar products are

mam̄a ¼ −lana ¼ 1: ð3:22Þ

Many such tetrads exist. However, the space of possibilities
can be reduced by aligning la and na with PNDs of the
Weyl tensor. More precisely, we choose la and na to be
parallel to the PNDs with the largest and the second-largest
multiplicities, respectively7; see the third column of
Table II.
Given an arbitrary null tetrad, the Weyl tensor can be

described in terms of the five Weyl scalars Ψ0;…;Ψ4

TABLE II. The Petrov classification and theWeyl scalars which
vanish with an appropriately aligned tetrad. The second column
summarizes the multiplicities of all principal null directions
which are associated with a given Weyl tensor. The third column
gives the respective multiplicities of the PNDs which are tangent
to la and na when these vectors are chosen as described in the
text. The fourth column lists all Weyl scalars which necessarily
vanish with this alignment.

Petrov type PNDs Multiplicities Vanishing ΨI

I 1, 1, 1, 1 1, 1 Ψ0, Ψ4

II 2, 1, 1 2, 1 Ψ0, Ψ1, Ψ4

D 2, 2 2, 2 Ψ0, Ψ1, Ψ3, Ψ4

III 3, 1 3, 1 Ψ0, Ψ1, Ψ2, Ψ4

N 4 4, − Ψ0, Ψ1, Ψ2, Ψ3

7Even if rescalings of la and na are ignored, this prescription is
not necessarily unique. In the type N case, la is aligned with the
sole PND, while na is essentially free. In type I spacetimes where
there are four PNDs with equal multiplicity, 12 alignments are
possible. Two possible alignments are possible in type D and in
type II spacetimes.
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which are defined by (B7) in Appendix B. However, some
of these scalars vanish when la and na are aligned as
described in the previous paragraph. In type D spacetimes,
onlyΨ2 can be nonzero; in type III spacetimes, it is onlyΨ3

which fails to vanish; in type N spacetimes, it is only Ψ4; in
type II spacetimes, both Ψ2 and Ψ3 are nonzero; in type I
spacetimes, Ψ1, Ψ2, and Ψ3 can all fail to vanish. These
simplifications justify our choices for la and na and are
summarized in the final column of Table II.
Further simplifications can sometimes be performed by

employing the type III tetrad transformations which are
described in Appendix B. These rescale la and na while
rotating ma and m̄a. Referring to (B6) and (B7), a type III
transformation which is generated by the complex scalar c
transforms the Weyl scalars via

ΨI ↦ c2−IΨI; I ¼ 0;…; 4: ð3:23Þ

In the Petrov type D case, where aligning la and na with
the two PNDs leaves only Ψ2 nonzero, type III tetrad
transformations have no effect. In the Petrov type III case, a
type III tetrad transformation can be used to set Ψ3 equal to
any nonzero constant. Similarly, Ψ4 can be made constant
in any Petrov type N spacetime. In the Petrov type I case, a
type III tetrad transformation can be used to ensure that
Ψ1 ¼ Ψ3. Although the simplifications afforded by type III
transformations are occasionally useful, we employ them
below only in type I spacetimes.
However a particular tetrad has been fixed, it is con-

venient to define from it the complex bivectors

Xab ≡ 2l½amb�; Yab ≡ 2n½am̄b�;

Zab ≡ 2ðl½anb� −m½am̄b�Þ: ð3:24Þ
These and their complex conjugates form a basis for all
bivectors. The basis elements Xab, Yab, and Zab are self-
dual, meaning that, e.g., X�ab ¼ iXab. Their complex
conjugates are instead anti-self-dual. It can also be shown,
using (3.22), that the nonvanishing antisymmetrized
products between members of this basis are

X½a
cYb�c ¼ 1

2
Zab; X½a

cZb�c ¼ −Xab; Y ½a
cZb�c ¼ Yab:

ð3:25Þ

If both pairs of indices are contracted, the only non-
vanishing inner products are

ZabZab ¼ 2XabYab ¼ −4: ð3:26Þ
The main motivation for introducing this bivector basis is
that it allows the curvature and the quadrupole moment to
be written down and manipulated without having to
perform coordinate computations; see, e.g., Eq. (B8).
These bivectors also provide a convenient basis for the
torque which is experienced by an extended body.

2. Quadrupolar forces and torques
in general vacuum spacetimes

The vector and bivector bases which have just been
described can now be used to compute forces and torques.
We allow for general vacuum spacetimes which are not
conformally flat and also for arbitrary quadrupole moments
(but no octupole or highermoments). As observed in [32], the
trace-free quadrupole moment Jabcd has the same algebraic
properties as aWeyl tensor andmay therefore be described in
terms of five complex scalars J0;…; J4 which are analogous
to the five Weyl scalars. Comparing with (B7) and (B8), any
quadrupole moment can thus be written as

Jabcd ¼ 2Re½J0YabYcd þ J1ðYabZcd þ ZabYcdÞ
þ J2ðZabZcd − XabYcd − YabXcdÞ
− J3ðXabZcd þ ZabXcdÞ þ J4XabXcd�; ð3:27Þ

where

J0 ≡ 1

4
JabcdXabXcd; J1 ≡ 1

8
JabcdXabZcd; ð3:28aÞ

J2 ≡ −
1

4
JabcdXabYcd ¼ 1

16
JabcdZabZcd; ð3:28bÞ

J3 ≡ −
1

8
JabcdYabZcd; J4 ¼

1

4
JabcdYabYcd: ð3:28cÞ

At quadrupolar order, the generalized force may now be
computed by substituting these equations and the Weyl
expansion (B8) into (3.8). As la has already been assumed
to have been aligned with one of the PNDs, Ψ0 will always
vanish. Contributions from the other Weyl scalars are

F ðqÞ
ξ ¼ 4

3
Re

n�
Ψ1ðJ4Xab − 3J2YabÞLξZab − 2J3XabLξðΨ1YabÞ

�þ 3
�
Ψ2ðJ1Yab − J3XabÞLξZab − 2J2LξΨ2

�

þ �
Ψ3ð3J2Xab − J0YabÞLξZab − 2J1YabLξðΨ3XabÞ

�þ �
Ψ4ðJ0Yab þ J1ZabÞLξXab − J0LξΨ4

�o
: ð3:29Þ

The terms here which involveΨ2 andΨ4 were already obtained in [32]; the others are new. Much of the remainder of this
paper analyzes the implications of this expression. One consequence which is already apparent is that each Weyl scalar can
couple only to certain quadrupole scalars, as summarized in Table III.
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3. Type N spacetimes

The simplest nontrivial Weyl tensors are of Petrov type
N. In that case, aligning la with the sole PND results in
only Ψ4 being nonzero. Equation (3.29) then reduces to

F ðqÞ
ξ ¼ 4

3
Re

h
Ψ4ðJ0Yab þ J1ZabÞLξXab − J0LξΨ4

i
:

ð3:30Þ

Equivalently, Eqs. (2.4) and (3.25) can be used to convert
this into the force

FðqÞ
a ¼ 4

3
Re

�
Ψ4ðJ0Ybc þ J1ZbcÞ∇aXbc − J0∇aΨ4

�
;

ð3:31Þ

and the torque

NðqÞ
ab ¼ 8

3
Re½Ψ4ð2J1Xab − J0ZabÞ�: ð3:32Þ

At most, J0 and J1 can thus affect the motion, meaning that
there are only four real quadrupole components which must
be considered in type N spacetimes (rather than the ten
components which might affect motion in a general
vacuum spacetime).
It also follows from (3.26) and (3.32) that, regardless of

the quadrupole moment,

NðqÞ
ab X

ab ¼ 0: ð3:33Þ

The real and the imaginary components of this constraint
imply that there is a two-dimensional space of real torques
which cannot be produced by any quadrupole moment in a
type N spacetime. Torques can, however, be controlled
throughout the four-dimensional space which is spanned by
real combinations of Xab, Zab, and their complex con-
jugates. Moreover, given any torque within this space, the
quadrupole scalars J0 and J1 which produce it are uniquely
determined. This can be used to show that the force is a
linear function of the torque:

FðqÞ
a ¼ 3

4
Re

�ðZbcYdf − YbcZdfÞ∇aXdf

− Zbc∇a lnΨ4

�
NðqÞ

bc : ð3:34Þ

It is therefore impossible to vary the force without
simultaneously varying the torque.
Both (3.33) and (3.34) are consequences of local

symmetries. One way to identify these symmetries is to
note that the generalized force can be written as

F ðqÞ
ξ ¼ 1

4

�
3ξaRe

�ðZbcYdf − YbcZdfÞ∇aXdf

− Zbc∇a lnΨ4

�þ 2∇bξc
�
NðqÞ

bc ; ð3:35Þ

where ξa is any GKF. Recalling that local symmetries are
generated by families of GKFs Ξa

s whose associated
generalized forces vanish for all possible quadrupole
moments, it follows that

∇aΞb
s ¼

3

2
Ξf
sRe

�ðYabZcd − ZabYcdÞ∇fXcd

þ Zab∇f lnΨ4

�þ λ̄sXab þ λsX̄ab ð3:36Þ

at γs, where λs is any family of complex scalars and Ξa
s ðγsÞ

is arbitrary. Setting Ξa
s ðγsÞ ¼ 0 while varying λs recovers

the two real symmetries which generate the torque con-
straint (3.33). Setting λs ¼ 0while varying Ξa

s ðγsÞ results in
four more local symmetries; these imply that forces and
torques must be linked via (3.34). In total, there are six local
symmetries in each type N spacetime.

4. Type III spacetimes

In Petrov type III spacetimes, we align the tetrad such
that Ψ3 is the only nonvanishing Weyl scalar. The gener-
alized force (3.29) then reduces to

F ðqÞ
ξ ¼ 4

3
Re

�
Ψ3ð3J2Xab − J0YabÞLξZab

− 2J1YabLξðΨ3XabÞ
�
; ð3:37Þ

which depends only on J0, J1, and J2. Six real quadrupole
components can therefore affect motion in type III space-
times. Converting the generalized force into an ordinary
force and a torque,

FðqÞ
a ¼ 4

3
Re

�
Ψ3ð3J2Xbc − J0YbcÞ∇aZbc

− 2J1Ybc∇aðΨ3XbcÞ
�
; ð3:38Þ

and

NðqÞ
ab ¼ 16

3
Re

�
Ψ3ðJ1Zab − J0Yab − 3J2XabÞ

�
: ð3:39Þ

TABLE III. Summary of which quadrupole scalars can couple
to which Weyl scalars in the generalized force (3.29). The scalar
Ψ0 has been omitted as it always vanishes with our tetrad choice.

Weyl scalar Quadrupole scalars

Ψ1 J2, J3, J4
Ψ2 J1, J2, J3
Ψ3 J0, J1, J2
Ψ4 J0, J1

LOCAL SYMMETRIES AS CONSTRAINTS ON THE MOTION OF … PHYS. REV. D 108, 124005 (2023)

124005-15



Any torque whatsoever can thus be generated by an
appropriately structured object.
In fact, a given torque uniquely determines J0, J1, and

J2. That may be used to show that the force is again a linear
function of the torque:

FðqÞ
a ¼ 1

4
Re

�ðXbcYdf − YbcXdfÞ∇aZbc þ Zdf

× ðYbc∇aXbc − 2∇a lnΨ3Þ
�
NðqÞ

df : ð3:40Þ

It is therefore impossible to control the force independently
of the torque in type III spacetimes.
Local symmetries may be found in type III spacetimes by

first writing the generalized force which is associated with a
generic GKF ξa as

F ðqÞ
ξ ¼ 1

4
Re

	
ξa
�ðXbcYdf − YbcXdfÞ∇aZbc þ Zdf

× ðYbc∇aXbc − 2∇a lnΨ3Þ
�þ 1

2
∇dξf



NðqÞ

df :

ð3:41Þ

This vanishes for all quadrupole moments when we choose
a one-parameter family of GKFs which satisfy

∇aΞb
s ¼ 2Ξf

s
�ðXabYcd − YabXcdÞ∇fZcd þ Zab

× ð2∇f lnΨ3 − Ycd∇fXcdÞ
� ð3:42Þ

at γs, whereΞa
s is arbitrary. It follows that there are four local

symmetries in type III spacetimes. Physically, these imply
that the force and the torque must be linked by (3.40).

5. Type D spacetimes

In Petrov type D spacetimes, we align the tetrad such that
Ψ2 is the only nonvanishing Weyl scalar. The generalized
force then reduces to

F ðqÞ
ξ ¼ 4Re

�
Ψ2ðJ1Yab − J3XabÞLξZab − 2J2LξΨ2

�
;

ð3:43Þ

which depends only on J1, J2, and J3. Up to8 six real
quadrupole components therefore contribute to the motion
in type D spacetimes.
This statement can be refined by first using (2.5) to

extract the force

FðqÞ
a ¼ 4Re

�
Ψ2ðJ1Ybc − J3XbcÞ∇aZbc − 2J2∇aΨ2

�
;

ð3:44Þ

and the torque

NðqÞ
ab ¼ 16Re

�
Ψ2ðJ3Xab þ J1YabÞ

�
: ð3:45Þ

The torque therefore depends on J1 and J3, but not J2. It is
also apparent that, regardless of the quadrupole moment,

NðqÞ
ab Z

ab ¼ 0: ð3:46Þ

Quadrupolar torques can therefore be varied only within the
four-dimensional space which is spanned by real combi-
nations of Xab, Yab, and their complex conjugates.
Unlike in type N or type III spacetimes, the force in a

type D spacetime is not necessarily a linear function of the
torque. Instead,

FðqÞ
a ¼ 1

4
Re

�ðXbcYdf − YbcXdfÞ∇aZbc

�
NðqÞ

df

− 8Re
�
J2∇aΨ2

�
: ð3:47Þ

Unless Ψ2 is constant, this implies that the force can be
varied independently of the torque. In particular, the space
of forces which can be controlled at fixed torque is spanned
by the real and the imaginary components of ∇aΨ2.
If Ψ2 is constant, the force is instead linear in the torque,

and J2 disappears from the laws of motion. Such an
example (necessarily with a nonzero cosmological constant
Λ) is provided by the Nariai or anti-Nariai spacetimes9 [59]
with line elements

ds2 ¼ −2dudvþ Λv2du2 þ dy2 þ dz2

½1þ 1
4
Λðy2 þ z2Þ�2 : ð3:48Þ

In fact, FðqÞ
a ¼ 0 in these spacetimes; extended-body effects

can influence only the torque, at least at quadrupolar order.
In more complicated type D spacetimes where Ψ2 is not

constant, the space of forces which can be produced at fixed
torque is either one or two dimensional. In Kerr spacetimes
with nonzero angular momentum, forces may be varied
throughout a two-dimensional space without also varying
the torque. In the Schwarzschild limit where the angular
momentum goes to zero, forces can instead be varied in
only one direction without also varying the torque [32].
Local symmetries may be derived in arbitrary type D

spacetimes by first writing the generalized force as
8In the type N and type III cases discussed above, we were able

to say exactly how many quadrupole components contribute to
the motion. In the type D case, the answer varies depending on
the properties of ∇aΨ2.

9This is described as a Bertotti-Robinson spacetime in [59] but
as a Nariai or anti-Nariai spacetime (depending on the sign of Λ)
in Sec. 18.6 of [60].
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F ðqÞ
ξ ¼ 1

4
Re

�
ξa
�ðXbcYdf − YbcXdfÞ∇aZbc

�

þ 2∇dξf
�
NðqÞ

df − 8Re
�
J2LξΨ2

�
: ð3:49Þ

This vanishes for all quadrupole moments when we
construct a one-parameter family of GKFs which satisfy

∇aΞb
s ¼

1

2
Ξf
sRe

�ðXabYcd − YabXcdÞ∇fZcd

�
þ λ̄sZab þ λsZ̄ab ð3:50Þ

at γs. Here, λs is arbitrary and Ξa
s must be orthogonal

to ∇aΨ2 at γs. Setting Ξa
s ðγsÞ ¼ 0 while varying λs

recovers the two real symmetries which imply the torque
constraint (3.46). These are related to the fact that the real
and the imaginary components of Zab are proportional to
conformal Killing-Yano tensors. If we instead set λs ¼ 0
and vary Ξa

s ðγsÞ, our prescription results in two to four
additional symmetries. These imply that the force compo-
nents which are orthogonal to ∇aΨ2 and its complex
conjugate must be linked to torques via (3.47). In total,
there are between four and six local symmetries in type D
spacetimes. There are, e.g., four such symmetries in Kerr
(with nonzero angular momentum), five in Schwarzschild,
and six in the Nariai and anti-Nariai spacetimes.

6. Type II spacetimes

In Petrov type II spacetimes, we choose the tetrad
such that only Ψ2 and Ψ3 are nonzero. The generalized
force (3.29) then reduces to

F ðqÞ
ξ ¼4

3
Ref4J1LξΨ3−6J2LξΨ2−2Ψ3J1YabLξXab

þ½3ðΨ3J2−Ψ2J3ÞXabþð3Ψ2J1−Ψ3J0ÞYab�LξZabg;
ð3:51Þ

the ordinary force is given by

FðqÞ
a ¼4

3
Ref4J1∇aΨ3−6J2∇aΨ2−2Ψ3J1Ybc∇aXbc

þ½3ðΨ3J2−Ψ2J3ÞXbcþð3Ψ2J1−Ψ3J0ÞYbc�∇aZbcg;
ð3:52Þ

and the torque is given by

NðqÞ
ab ¼ 16

3
Re

�
Ψ3J1Zab þ ð3Ψ2J1 −Ψ3J0ÞYab

þ 3ðΨ2J3 −Ψ3J2ÞXab

�
: ð3:53Þ

These expressions depend on all quadrupole scalars except
for J4, so up to eight quadrupole components can affect
motion in type II spacetimes.

It also follows that any torque whatsoever can be
produced by appropriately varying the quadrupole moment.
However, unlike in the type N, type III, and type D cases
discussed above, a given torque does not uniquely deter-
mine the relevant quadrupole scalars. Instead, fixing NðqÞ

ab
fixes only J0, J1, and Ψ2J3 −Ψ3J2. Using this, the force
can nevertheless be shown to be an affine function of the
torque:

FðqÞ
a ¼ 1

4
Re

�
YbcZdf∇aXbc − 2Zdf∇a lnΨ3

× ðXbcYdf − YbcXdfÞ∇aZbc

�
NðqÞ

df

− 8Re½J2∇aΨ2�: ð3:54Þ

By varying J2 and J3 at fixed Ψ2J3 −Ψ3J2, the quad-
rupolar force can thus be controlled, at fixed torque,
throughout the space which is spanned by the real and
the imaginary components of∇aΨ2. That space has at most
two dimensions. If Ψ2 is constant, which occurs only in
certain Kundt spacetimes [59], the force cannot be con-
trolled independently of the torque, and only six quadru-
pole components affect the motion. If ∇aΨ2 is nonzero and
linearly independent of its complex conjugate, there are
eight quadrupole components which affect the motion.
All local symmetries may be found in type II spacetimes

by first writing the generalized force as

F ξ ¼
1

4
Re

�
ξa
�
YbcZdf∇aXbc − 2Zdf∇a lnΨ3 þ ðXbcYdf

− YbcXdfÞ∇aZbc

�þ 2∇dξf
�
NðqÞ

df − 8Re½J2LξΨ2�:
ð3:55Þ

Ensuring that this vanishes for all possible quadrupole
moments, local symmetries are seen to be generated by the
one-parameter family of GKFs whose gradients satisfy

∇aΞb
s ¼

1

2
Ξf
sRe

�
2Zab∇f lnΨ3 − YcdZab∇fXcd

þ ðXabYcd − YabXcdÞ∇fZcd

� ð3:56Þ

at γs, where Ξa
s ðγsÞ is constrained only to be orthogonal to

∇aΨ2. This implies that there are between two and four
local symmetries. Their presence requires forces which are
orthogonal to ∇aΨ2 and its complex conjugate to be linked
to torques via (3.54).

7. Type I spacetimes

In type I spacetimes, only Ψ0 and Ψ4 can necessarily
be made to vanish by choosing an appropriate tetrad.
However, as noted in Sec. III C 1 above, a type III tetrad
transformation can always be used to ensure that Ψ1 ¼ Ψ3.
Applying such a transformation for simplicity, the gener-
alized force (3.29) reduces to
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F ðqÞ
ξ ¼ 8

3
Re

	
2ðJ1 þ J3ÞLξΨ1 þΨ1ðJ3 − J1ÞYabLξXab

− 3J2LξΨ2 þ
1

2

�ðΨ1ð3J2 þ J4Þ − 3Ψ2J3ÞXab

þ ð3Ψ2J1 −Ψ1ð3J2 þ J0ÞÞYab
�
LξZab



: ð3:57Þ

All five quadrupole scalars J0;…; J4 appear here, so all of a
body’s quadrupole moment can affect its motion in at least
some type I spacetimes.
Using (2.5) to extract the torque from the generalized

force,

NðqÞ
ab ¼ 16

3
Re

�½3Ψ2J3 − Ψ1ð3J2 þ J4Þ�Xab þ ½3Ψ2J1

− Ψ1ð3J2 þ J0Þ�Yab þ Ψ1ðJ1 − J3ÞZab

�
: ð3:58Þ

All torques are therefore possible in type I spacetimes.
However, although all five quadrupole scalars appear here,
fixing the torque fixes only the three combinations

J1 − J3; J0 − J4;

3Ψ2ðJ1 þ J3Þ −Ψ1ð6J2 þ J0 þ J4Þ ð3:59Þ

of quadrupole scalars. This observation allows the force to
again be written as an affine function of the torque:

FðqÞ
a ¼ 1

4
Re

�
YbcZdf∇aXbc þ ðXbcYdf − YbcXdfÞ∇aZbc

�

× NðqÞ
df þ 8

3
Re

�
2ðJ1 þ J3Þ∇aΨ1 − 3J2∇aΨ2

�
:

ð3:60Þ

Noting that J1 þ J3 and J2 can be varied arbitrarily without
affecting the quadrupole components (3.59), forces can
thus be varied, at fixed torque, throughout the space which
is spanned by the real and imaginary components of ∇aΨ1

and ∇aΨ2. If these gradients are all linearly independent,
that space is four dimensional. All ten force and torque
components can then be controlled independently. At the
opposite extreme, Ψ1 and Ψ2 may both be constant [59], in
which case the force is entirely determined by the torque.
Unlike in the algebraically special spacetimes discussed

above, there might not be any local symmetries in type I
spacetimes. Any local symmetries which do exist never-
theless satisfy

∇aΞb
s ¼

1

2
Ξf
sRe

�ðXabYcd − YabXcdÞ∇fZcd

− ZabYcd∇fXcd

� ð3:61Þ

at γs, where Ξa
s can be varied arbitrarily at γs as long as it is

orthogonal to the real and the imaginary components of

both∇aΨ1 and∇aΨ2. This results in between zero and four
local symmetries, depending on which particular type I
spacetime is considered.

8. Summarizing the relativistic constraints

We have now derived quadrupolar forces and torques in
vacuum spacetimes and discussed qualitative differences
which depend on the Petrov type of the relevant spacetime.
As summarized in Table IV, our focus has been on three
characteristics of extended-body motion: the number of
torque components which can be affected by internal
structure, the number of force components which can be
controlled independently of the torque, and the number of
quadrupole components which affect the motion. These
characteristics have also been related to the presence of
local symmetries. Roughly speaking, there are fewer local
symmetries in spacetimes which are “more” algebraically
general, and in those cases, extended bodies can exert more
control over their motion.
Any torque whatsoever can be produced in type I, type II,

and type III spacetimes, but not in type N nor type D
spacetimes. In the latter cases, a two-dimensional space of
torques is inaccessible, regardless of the quadrupole
moment. It is interesting in this context to recall that the
relativistic torque is qualitatively different from its
Newtonian counterpart. The relativistic torque includes
three components which are physically similar to the
Newtonian torque, but it also involves three components
which are fundamentally non-Newtonian. These additional
components may be viewed as controlling the misalign-
ment between the 4-velocity and the 4-momentum: the
“hidden momentum” [26,32,61]. Constraints on the rela-
tivistic torque therefore affect an object’s ability not only to
control its spin but also to directly control its velocity. One
example of this is given in Sec. III D 2 below, where an
object in a Kasner spacetime is shown to be able to move
itself arbitrarily simply by controlling its torque. More

TABLE IV. Qualitative features of quadrupolar forces and
torques in spacetimes with different Petrov types. Column 2
lists the number of local symmetries. The upper bounds there also
provide an upper bound for the number of Killing vectors which
can exist. Column 3 lists the number of real quadrupole
components which affect the motion. The number of controllable
torque components is provided in column 4. Column 5 lists the
number of force components which can be controlled at fixed
torque. Stars are used to indicate that a given number is uncon-
strained.

Petrov type fΞa
sg fJabcdg fNðqÞ

ab g fFðqÞ
a jNðqÞ

bc g
I 0–4 6–10� 6� ≤ 4�
II 2–4 6–8 6� ≤ 2
D 4–6 4–6 4 ≤ 2
III 4 6 6� 0
N 6 4 4 0
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generally, since at least four torque components can be
controlled in every nontrivial vacuum spacetime, the torque
can always be used to control at least some of an object’s
velocity.
Another of our results is that the quadrupolar force can

always be written as an affine function of the quadrupolar
torque: Eqs. (3.34), (3.40), (3.47), (3.54), and (3.60) all
have the form

FðqÞ
a ¼ χa

bcNðqÞ
bc þ Re

X
I

αIJ4−I∇aΨI; ð3:62Þ

where the αI are coefficients and χa
bc depends only on the

geometry (but not on an object’s internal structure). The
first term here describes that portion of the force which is
universally tied to the torque. The second term provides all
portions of the force which can be varied independently of
the torque and is also the only force which remains when

NðqÞ
ab ¼ 0. Interestingly, this latter term is simply a

linear combination of gradients of the Weyl scalars. It
does not depend on, e.g., any gradients of the tetrad.
Recalling (2.31), a similar result holds also for quadrupolar
forces in Newtonian gravity.
One generic feature of extended-body motion is that the

mass (3.10) is not necessarily constant at quadrupolar and
higher orders. Our result (3.62) nevertheless implies that at
least for torque-free, spin-free bodies with constant quadru-
pole scalars, there exists an “effective mass” which is
conserved. As we have discussed already, it is always
possible to arrange for the torque to vanish. Adopting the
Tulczyjew spin supplementary condition (3.19), doing so
implies that if Sab is initially zero, it remains so. Then,
pa ¼ Mγ̇as [36], and it follows from (3.3) that

dM
ds

¼ −Re
X
I

αIJ4−I γ̇as∇aΨI: ð3:63Þ

If all of the relevant quadrupole scalars (i.e., the ones for
which αIJ4−I ≠ 0) are constant, the effective mass

Meff ≡M þ Re
X
I

αIJ4−IΨI ð3:64Þ

is therefore conserved. A special case of this was used
in [32] in order to understand how extended-body effects
can be used to alter orbits in the Schwarzschild spacetime.
Appendix C identifies a somewhat different effective
mass (C8) which is conserved when quadrupole moments
are tidally induced with constant deformabilities. Using
different assumptions on the nature of the quadrupole
moment, certain other effective masses can be found as
well [8,34].

D. Example spacetimes

We now apply the general results derived above to two
specific examples: extended-body motion in pp-wave
spacetimes and extended-body motion in Kasner space-
times. Kasner spacetimes are type I, while pp-waves are
type N, so the Weyl tensors in these examples lie at the two
extremes of algebraic speciality.

1. Motion in pp-wave spacetimes

A pp-wave spacetime describes a plane-fronted gravi-
tational wave with parallel rays [60,62,63]. Besides their
interpretation as idealized gravitational waves, some pp-
waves also arise as ultrarelativistic limits of other (not
necessarily radiative) spacetimes. This can occur both via
“global” boosts [64,65] or via the Penrose limit, which
locally describes the geometry near arbitrary null geodesics
as effective plane waves [66,67].
Regardless of interpretation, any pp-wave spacetime can

be described by the line element

ds2 ¼ −2dudvþHðu; y; zÞdu2 þ dy2 þ dz2; ð3:65Þ

where Hðu; x; yÞ is a dimensionless “waveform,” y and z
are transverse coordinates, and u is a null “phase” coor-
dinate. Imposing the Λ ¼ 0 vacuum Einstein equation
shows that

ð∂2y þ ∂
2
zÞHðu; y; zÞ ¼ 0; ð3:66Þ

so the waveform here must be harmonic10 on each
u ¼ constant hypersurface. Harmonic functions in two real
dimensions can be related to complex analytic functions of
one variable, so the waveform of an arbitrary vacuum
pp-wave can be written as

Hðu; y; zÞ ¼ ReHðu; ζðy; zÞÞ; ð3:67Þ

where H is complex and analytic in the complexified
transverse coordinate ζ ≡ ðyþ izÞ= ffiffiffi

2
p

. A pp-wave is said
to be linearly polarized when argH ¼ constant, and other
properties of H can be used to classify pp-waves as
described in [63]; see also Table 24.2 of [62].
The most important category in this classification are the

vacuum “plane waves,” which satisfy

∂
3
ζH ¼ 0: ð3:68Þ

In any plane wave spacetime, there exist coordinates in
which

10That the nonlinearity of Einstein’s equation disappears in this
class of spacetimes is due to the fact that pp-waves are Kerr-
Schild transformations of Minkowski spacetime [68,69].

LOCAL SYMMETRIES AS CONSTRAINTS ON THE MOTION OF … PHYS. REV. D 108, 124005 (2023)

124005-19



Hðu; ζÞ ¼ hðuÞζ2; ð3:69Þ

where the complex function h determines the curvature as
a function of phase; see Ψ4 in (3.77) below. Einstein’s
equation does not constrain h.
All vacuum pp-waves, whether plane waves or not, are

type N wherever they are not flat. The lone principal null
direction is parallel to

la ¼ −∇au; ð3:70Þ
which physically describes the direction along which the
gravitational wave propagates. Its integral curves are the
“rays” of that wave. A calculation shows that

∇alb ¼ 0; ð3:71Þ
so these rays are geodesic, nonexpanding, shear free, and
twist free. It also follows that la is Killing. For some pp-
waves, la is the only Killing field. In special cases, there
can be up to five more11 [63]. All plane waves admit at least
five Killing fields in total, although some admit six. In this
latter case, all of the local symmetries described by (3.36)
are ordinary Killing fields. In other pp-wave spacetimes,
some local symmetries are Killing, while some are not.
Regardless,Pl ¼ pala is conserved for any extended body
moving in any pp-wave spacetime. Furthermore,

F l ¼ Fala ¼ 0: ð3:72Þ

This constraint holds not only for the full force but also for
its quadrupolar contribution.
In any pp-wave spacetime, it is convenient to use la as

one element of the null tetrad ðla; na; ma; m̄aÞ, where na ≡
−ð∇avþ 1

2
HlaÞ and ma ≡∇aζ. Employing this to con-

struct the Xab defined by (3.24), a calculation shows that

∇cXab ¼ 0: ð3:73Þ

The real and imaginary components of Xab are therefore
Killing-Yano tensors. As described in Sec. III B 2 above,
each such tensor generates a local symmetry. For generic
pp-waves, these symmetries are truly local and are not
necessarily associated with any conservation law. However,
there are special pp-wave spacetimes where the local
symmetries associated with Killing-Yano tensors are
related to ordinary Killing symmetries. In those cases,
there are genuine conservation laws which can be asso-
ciated with Killing-Yano tensors (regardless of, e.g., spin
supplementary conditions).
To see this, consider the special case of a plane wave

spacetime. The waveform H is then given by (3.69).
Letting λðuÞ be any possibly complex solution to the

differential equation χ00ðuÞ ¼ 1
2
hðuÞχ̄ðuÞ and letting ζτ

and uτ be any families of constants, the vector fields

Ξa
τ ðxÞ ¼ Re

�½ζτχ0ðuτÞ − ζðxÞχ0ðuðxÞÞ�laðxÞ
− χðuðxÞÞmaðxÞ� ð3:74Þ

are Killing. At fixed τ, varying over all possible χðuÞ results
in four real Killing fields with this form. In a flat limit, two
of these Killing fields describe translations transverse to the
rays of the gravitational wave. The remaining two describe
mixed boosts together with rotations and are a consequence
of the fact that moving transverse to a plane wave appears
only to rotate it. For all four of these Killing fields,

∇aΞb
τ ¼ Re½χ0ðuÞXab�: ð3:75Þ

If uτ ¼ uðγτÞ and ζτ ¼ ζðγτÞ now denote an object’s phase
and transverse coordinates at some time τ, and if χðuτÞ ¼ 0,
it follows that Ξa

τ ðγτÞ ¼ 0. Also choosing χ0ðuτÞ to be equal
to 1 or to −i reproduces the generalized Killing fields
determined by (3.17), when s ¼ τ, where the CKY tensor
fab which appears there is understood to be either the real
or the imaginary component of Xab. Since Ξa

τ is genuinely
Killing, the generalized momentum component

PΞτ
¼ Re

	�
ζτχ

0ðuτÞ − ζsχ
0ðusÞ

�
Pl − χðusÞpama

þ 1

2
λ0ðusÞSabXab



ð3:76Þ

is conserved for any fixed τ; it is independent of s. Given
the aforementioned initial conditions for χðuÞ, the first
line here necessarily vanishes when s ¼ τ, implying
that PΞτ

¼ 1
2
Re½χ0ðuτÞXab�SabðτÞ. However, the first line

in (3.76) must be retained when s ≠ τ. It is interesting to
note that in this case, where the symmetries associated with
Killing-Yano tensors can definitively be associated with
conservation laws, the quantities which are conserved do
not coincide with the real and the imaginary components of
SabXab, except at one moment in time. The situation here is
similar to the one in the Schwarzschild spacetime, where
the local symmetry associated with one (but not both) of
the conformal Killing-Yano tensors can be derived from
ordinary Killing symmetries [32]. In that case as well, the
associated conservation law is not trivial.
Returning to the case of a general pp-wave spacetime,

use of (B7) shows that with the above tetrad, the only
nonvanishing Weyl scalar is

Ψ4 ¼
1

4
ð∂2z − ∂

2
y þ 2i∂y∂zÞH ¼ −

1

4
∂
2
ζH: ð3:77Þ

Substituting this and (3.73) into the generic type N
force (3.31) shows that the quadrupolar force which acts
on an arbitrary extended body is

11If the vacuum restriction is relaxed, there can be up to seven
Killing vectors in total [70].
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FðqÞ
a ¼ −

4

3
Re½J0∇aΨ4�;

¼ 1

3
Re

�
J0ðma∂ζ − la∂uÞ∂2ζH

�
: ð3:78Þ

This is clearly consistent with the Killing constraint (3.72).
It may also be seen that, although the torque (3.32) depends
on the quadrupole components J0 and J1, the force here
depends only on J0. This suggests that there are two real
control parameters with which to control the force (at least
if the torque is allowed to vary as well). However, these two
parameters do not necessarily have independent effects. If a
pp-wave is linearly polarized, for example, the quadrupolar
force can be varied only in the one direction parallel to
∇ajΨ4j. The force can also be varied in only one direction
in a plane wave spacetime—whether it is linearly polarized
or not. In fact, the force is always proportional to la plane
wave spacetimes; it is longitudinal.

2. Motion in Kasner spacetimes

The vacuum Kasner spacetimes may be viewed as
describing homogeneous but anisotropic (and empty) uni-
verses [60,62,71]. They have the line elements

ds2 ¼ −dt2 þ
X3
i¼1

t2uiðdxiÞ2; ð3:79Þ

where u1, u2, and u3 are constants.12 Applying the Λ ¼ 0
vacuum Einstein equation results in

X3
i¼1

ui ¼
X3
i¼1

u2i ¼ 1; ð3:80Þ

which implies that the space of vacuum Kasner spacetimes
may beviewed, inR3, as the intersection of a unit spherewith
a plane. This leaves a one-parameter family of solutions.
Except in special cases which we do not consider, the

Kasner spacetimes are of Petrov type I. Being spatially
homogeneous, they admit the three translational Killing
fields ∂i. Since the Weyl scalars in an appropriately adapted
tetrad can at most depend on t, there is a three-dimensional
space of local symmetries described by (3.61). However,
these three symmetries are simply the three translational
Killing fields. There are no proper local symmetries.
As in all type I spacetimes, the torque which acts on an

extended body in a Kasner spacetime is unconstrained.
However, the force can be varied only along ta ≡ −∇at
without simultaneously varying the torque. Homogeneity
implies that the three spatial components

P∂i
¼ pi þ uit2ui−1Sti ð3:81Þ

of the generalized momentum are conserved, where no
sum over i is implied. Similarly, the force and the torque
are related via F ∂i

¼ Fi þ uit2ui−1Nti ¼ 0, where, again,
no sum is implied.
One interesting feature of motion in Kasner spacetimes is

that, despite their spatial homogeneity, it is still possible for
an extended body to exert essentially arbitrary control over
its trajectory. To see this in a special case, first fix a centroid
using the spin supplementary condition

Sabtb ¼ 0; ð3:82Þ

which demands that γs be chosen such that the mass dipole
moment vanishes in the frame which is associated with the
background homogeneity. Given (3.81), this spin supple-
mentary condition implies that the three momentum
components pi must be conserved. However, the velocity
is not necessarily proportional to the momentum and is
not necessarily conserved: Differentiating (3.82) while
using (3.3) instead shows that

ð−p · tÞγ̇as ¼ ð−γ̇s · tÞpa − Na
btb − Sabγ̇cs∇ctb: ð3:83Þ

Suppose for simplicity that pi ¼ 0. Choosing the body’s
quadrupolemoment such thatNij

ðqÞ ¼ 0, it is then possible to

arrange for the angular momentum to vanish for all time, at
least through quadrupolar order. Doing so, the spatial
velocity becomes proportional to Nit

ðqÞ, which can be

controlled arbitrarily. An extended body with vanishing
spatial momentum and vanishing angular momentum may
therefore translate itself arbitrarily, simply by controlling its
quadrupole moment. This takes advantage of the fact that,
although Kasner spacetimes are spatially homogeneous,
they are not boost invariant. A similar phenomenon has been
discussed before in flat Friedmann-Robertson-Walker
spacetimes [26], which are both homogeneous and isotropic
(though not vacuum). Torques may be used to control
translations in other spacetimes as well, but then changes
in the momentum can complicate the interpretation.

IV. CONCLUSION

We have derived universal constraints on the gravita-
tional forces and torques which can be produced by an
object’s quadrupole moment, both in Newtonian gravity
and in general relativity. Depending on the algebraic
structure of the relevant tidal tensor, certain quadrupole
moments can be irrelevant, certain torques can be impos-
sible, and only certain forces can be produced without an
accompanying torque. These results are summarized at the
ends of Secs. II C and III C and particularly by Tables I
and IV. We have also found that the quadrupolar force can
be viewed as an affine function of the quadrupolar torque;
see (2.31) and (3.62). These results are independent of any
spin supplementary conditions.

12These are more commonly denoted by p1, p2, and p3. We
use a different notation in order to avoid confusion with the
momentum.
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Fundamentally, our results are explained by the existence
of local symmetries. In the Newtonian case, local sym-
metries correspond to EuclideanKilling fields which locally
preserve the tidal tensor. In general relativity, local sym-
metries are generalized Killing fields which locally preserve
the Riemann tensor. Regardless, each local symmetry
precludes certain force and torque combinations. This
generalizes the well-known fact that Killing fields constrain
motion in general relativity. In fact, no further generalization
is possible; every universal constraint on extended-body
motion is associated with a local symmetry, at least at
quadrupolar order. Any generalized force which is not
forbidden by local symmetries may be experienced by a
suitably structured object.
The local symmetries we have introduced are an essen-

tially geometric concept and may thus be of interest not
only in the theory of motion. Roughly speaking, the
generalized Killing fields introduced in [39] provide a
sense in which full Poincaré symmetry can exist around a
given worldline in a curved spacetime. This results in
Killing’s equation being satisfied at least through first order
on the reference worldline. Additionally, certain geometric
structures (though not the metric) are preserved even away
from that worldline. However, it is natural to ask if Killing’s
equation can be made to hold through one higher order, at

least at one point along the reference worldline. When this
occurs, we have a local symmetry. Perhaps surprisingly,
examples are common and have the physically interesting
consequences described above. We have shown explicitly
how to construct all local symmetries, both in general
relativity and in Newtonian gravity. Their number depends,
in part, on the algebraic structure of the tidal tensor and is
summarized in the second columns of Tables I and IV. All
ordinary Killing fields generate a local symmetry in a
curved spacetime, and we have shown that conformal
Killing-Yano tensors do so as well. Many local symmetries
are, however, unrelated either to Killing vectors or to
conformal Killing-Yano tensors.

APPENDIX A: NOTATION

We use the same sign conventions as Wald [72], so, e.g.,
the Riemann tensor satisfies Rabc

dωd ¼ 2∇½a∇b�ωc for any
covector ωa. The letters a; b;… are used to denote abstract
indices in both three and four dimensions; i; j;… are used to
denote three-dimensional coordinate components; α; β;…
are used to denote four-dimensional coordinate compo-
nents; I; J;… are used for numerical indices which are not
associated with any coordinates. Hodge duals are indicated
by � and overbars are used to denote complex conjugates.

TABLE V. Table of symbols. The first group of symbols are used in both Newtonian and relativistic contexts. The second group lists
Newtonian symbols, while the third lists relativistic ones.

Symbol Description Reference

x Generic point
xi Spatial (usually Cartesian) coordinates
γt, γs Reference point for object’s location at time t (or s)
gab Metric
ξa Generalized or ordinary Killing vector (3.2)
Ξa
t , Ξa

s Local symmetry generator (2.18), (3.11), (3.13)
M Mass (3.10)
Pξ Generalized momentum associated with ξa (2.1), (2.2), (3.1)
F ξ Generalized force associated with ξa (2.4), (2.6), (3.3), (3.4)
pa, Sab Linear and angular momenta (2.2), (2.3)
Fa, Nab Force and torque (2.5), (2.6), (3.3)

la, ma, m̄a Newtonian semi-null triad (2.24)
Φ, Eab Newtonian potential and tidal tensor (2.10), (2.25)
E�, E Real eigenvalues of Eab and complex tidal scalar (2.21), (2.25)
Q̃ab, Qab Full and trace-free Newtonian quadrupole moments (2.9), (2.12), (2.26)
Qll, Qlm, Qmm Quadrupole scalars (2.26)

la, na, ma, m̄a Relativistic null tetrad (3.22)
Xab, Yab, Zab Bivector basis elements (3.24)
Λ Cosmological constant (3.6)
Rabcd, Cabcd Riemann and Weyl tensors (3.7), (B8)
Ψ0;…;Ψ4 Weyl scalars (B7), (B8)
J̃abcd, Jabcd Full and trace-free relativistic quadrupole moments (3.27)
J0;…; J4 Quadrupole scalars (3.27), (3.28)
fab Conformal Killing-Yano tensor (3.14)
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Symbols which are commonly used in the text are
summarized in Table V. Generalized forces, as well as
ordinary forces and torques, are often supplemented with a
“(q)” superscript to refer only to quadrupolar contributions.
We use the abbreviations “GKF” (generalized Killing
field), “PND” (principal null direction), and “CKY” (con-
formal Killing-Yano). Three classification schemes are also
used: the algebraic structure of Newtonian tidal tensors is
summarized in Sec. II C, the analogous Petrov classifica-
tion for four-dimensional Weyl tensors is summarized in
Appendix B, and that Appendix also specifies the three
types of tetrad transformations which may be performed in
four spacetime dimensions.

APPENDIX B: TETRAD TRANSFORMATIONS,
PRINCIPAL NULL DIRECTIONS, AND THE

PETROV CLASSIFICATION

It is convenient in a four-dimensional spacetime
to introduce a complex null tetrad ðla; na;ma; m̄aÞ, and
using (3.24), any such tetrad can be used to construct the
bivector basis ðXab; Yab; Zab; X̄ab; Ȳab; Z̄abÞ. However, dif-
ferent tetrads are possible, and different choices result in
different bivectors. This Appendix reviews some facts
regarding the admissible tetrad transformations, as well
as their application to the construction of principal null
directions and to the Petrov classification. We also com-
ment on relations between the algebraic classifications of
relativistic and Newtonian tidal tensors.
It is explained in, e.g., Sec. 1.8(g) of [73] that all null

tetrads which are normalized according to (3.22) can be
generated from a single example using three types of
transformation. Type I transformations preserve la, and
in terms of an arbitrary complex scalar a, these are given by

la ↦ la; ma ↦ ma þ ala; ðB1aÞ

na ↦ na þ āma þ am̄a þ jaj2la: ðB1bÞ

Type II transformations instead preserve na, and in terms of
an arbitrary complex scalar b, they are given by

na ↦ na; ma ↦ ma þ bna; ðB2aÞ

la ↦ la þ b̄ma þ bm̄a þ jbj2na: ðB2bÞ

Lastly, the type III transformations

la ↦ jcjla; na ↦
1

jcj n
a; ma ↦

c
jcjm

a ðB3Þ

preserve the directions (though not the scales) of both la

and na and can be applied for any nonzero complex scalar
c. All three types of tetrad transformation affect the bivector
basis defined by (3.24). Type I transformations do so via

Xab ↦ Xab; Yab ↦ Yab − āZab − ā2Xab; ðB4aÞ

Zab ↦ Zab þ 2āXab; ðB4bÞ

type II transformations do so via

Xab ↦ Xab þ bZab − b2Yab; Yab ↦ Yab; ðB5aÞ

Zab ↦ Zab − 2bYab; ðB5bÞ

and type III transformations do so via

Xab ↦ cXab; Yab ↦ c−1Yab; Zab ↦ Zab: ðB6Þ

The bivector basis may be used to decompose a Weyl
tensor Cabcd into the five Weyl scalars [62,73]

Ψ0 ≡ 1

4
CabcdXabXcd; Ψ1 ≡ 1

8
CabcdXabZcd; ðB7aÞ

Ψ2 ≡ 1

16
CabcdZabZcd ¼ −

1

4
CabcdXabYcd; ðB7bÞ

Ψ3 ≡ −
1

8
CabcdYabZcd; Ψ4 ≡ 1

4
CabcdYabYcd; ðB7cÞ

which are in general complex. Working in the opposite
direction, one can instead write the Weyl tensor in terms of
the Weyl scalars and the given bivectors:

Cabcd ¼ 2Re
�
Ψ0YabYcd þ Ψ1ðYabZcd þ ZabYcdÞ

þΨ2ðZabZcd − XabYcd − YabXcdÞ
−Ψ3ðXabZcd þ ZabXcdÞ þ Ψ4XabXcd

�
: ðB8Þ

Regardless, it follows from (B4), (B5), and (B6) that type I
tetrad transformations preserve Ψ0, type II transformations
preserve Ψ4, and type III transformations preserve Ψ2.
The algebraic structure of a Weyl tensor largely depends

on its PNDs. Recall that each PND may be defined
as parallel to a nonzero real null vector field ka which
satisfies [62,72,74]

k½aCb�cd½ekf�kckd ¼ 0: ðB9Þ

Noting that la is tangent to a PND if and only if Ψ0 ¼ 0,
PNDs may be generated by using type II tetrad trans-
formations to rotate la until the zeroth Weyl scalar
vanishes. If na is not already aligned with a PND, which
would occur only when Ψ4 ¼ 0, this method can in fact be
used to identify all PNDs. Applying it, Eqs. (B2), (B5),
and (B7) show that any b satisfying

Ψ0 þ 4bΨ1 þ 6b2Ψ2 þ 4b3Ψ3 þ b4Ψ4 ¼ 0 ðB10Þ

is associated with a PND which is tangent to
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ka ¼ la þ b̄ma þ bm̄a þ jbj2na: ðB11Þ

Assuming thatΨ4 ≠ 0, Eq. (B10) is a quartic polynomial in
b. This implies that there are at most four distinct PNDs.
The multiplicity of each PND is defined to be equal to the
algebraic multiplicity of the relevant root. Equivalently,
multiplicities can be determined by checking whether
or not (B9) can be strengthened according to the Bel
criteria [60,74] which are listed in the second column of
Table VI. The final column of that table describes how
multiple Weyl scalars must vanish when la is aligned with
a degenerate PND; we take advantage of this in Sec. III C in
order to eliminate as many Weyl scalars as possible.
The Petrov type of the Weyl tensor is determined by the

multiplicities of its PNDs. Assuming that Cabcd ≠ 0, there
are five possibilities [60,62,73,74], described as Petrov
types I, II, D, III, and N:

I. Four multiplicity-1 PNDs.
II. One multiplicity-2 and two multiplicity-1 PNDs.
D. Two multiplicity-2 PNDs.
III. One multiplicity-3 and one multiplicity-1 PND.
N. One multiplicity-4 PND.

These cases are summarized in the second column of
Table II on page 13. “Generic” (or algebraically general)
spacetimes are of Petrov type I; all other possibilities are
referred to as algebraically special.
The Kerr family of spacetimes are all type D, and the two

PNDs which appear there are associated with shear-free
families of ingoing and outgoing null geodesics. In the
Schwarzschild case, these geodesics are purely radial and
twist free; more generally, they are twisted by the rotation
of the black hole. Type N solutions include, e.g., gravita-
tional plane waves, where the lone PND is parallel to the
rays of the gravitational wave. Although many solutions are
known with Petrov types II and III [60,62], most of their
interpretations are physically obscure. Nevertheless, there
is a sense in which all Petrov types appear generically when
expanding the Weyl tensor at large distances in an asymp-
totically flat spacetime: The peeling property states that as
one approaches future null infinity along an outgoing null
geodesic with increasing affine parameter r,

Cabcd¼
Nabcd

r
þIIIabcd

r2
þIIabcd

r3
þIabcd

r4
þOðr−5Þ; ðB12Þ

where Nabcd is of Petrov type N, IIIabcd is of Petrov type
III, IIabcd is either of Petrov type II or Petrov type D, and
Iabcd is of Petrov type I; see Sec. 11.1 of [72].
The Petrov classification may be related to the classi-

fication of Newtonian tidal tensors which is presented in
Sec. II C above. First recall that a Newtonian gravitational
potential Φ can be associated with the approximate line
element [12,72]

ds2¼−ð1þ2ΦÞdt2þð1−2ΦÞðdx2þdy2þdz2Þ: ðB13Þ

If ∇2Φ ¼ 0, the corresponding Weyl tensor is

Cabcd ¼ 2½Ed½aðηb�c þ 2tb�tcÞ − Ec½aðηb�d þ 2tb�tdÞ� ðB14Þ

through first order in Φ, where ta ≡ −∇at and Eab ≡
−∇a∇bΦ again denotes the Newtonian tidal tensor. If that
tidal tensor is of type 3, meaning that it admits a doubly
degenerate eigenvalue, and if la corresponds to the
unit spacelike eigenvector of Eab which is associated with
the nondegenerate eigenvalue, the two null vectors
ka� ≡ ta � la both satisfy

ka�k
c
�Cabc

½dke�� ¼ 0: ðB15Þ

Referring to Table VI, this is the Bel criterion for a
multiplicity-2 PND. Type 3 Newtonian tidal fields are
therefore associated with approximate Petrov type D space-
times. Newtonian tidal tensors with types 1 and 2 instead
correspond to approximate Petrov type I spacetimes.

APPENDIX C: TIDALLY INDUCED
QUADRUPOLE MOMENTS

Although this paper is concerned primarily with model-
independent constraints on extended-body motion, the
formalism can easily be applied to specific models. This
Appendix describes a simple class of models which
describe what happens when an object’s quadrupole
moment is quasistatically induced by the applied tidal
field. We begin with the Newtonian case and then discuss
its relativistic counterpart.

1. Newtonian motion

Introducing a tidal deformability parameter κ, which is
proportional to an object’s Love number, one of the
simplest nontrivial models for a Newtonian extended body
supposes that

Qab ¼ κEab: ðC1Þ

This can describe the approximate structure of a self-
gravitating, near-equilibrium fluid which is in a slowly
varying tidal field. Regardless, substitution into the gen-
eralized force (2.13) shows that

TABLE VI. Summary of Bel criteria and vanishing Weyl
scalars when la is aligned with PNDs of differing multiplicities.

Multiplicity Weyl constraint Vanishing ΨI

1 l½aCb�cd½elf�lcld ¼ 0 Ψ0

2 l½aCb�cdelcld ¼ 0 Ψ0, Ψ1

3 Cbcdelcld ¼ 0 Ψ0, Ψ1, Ψ2

4 Cbcdelc ¼ 0 Ψ0, Ψ1, Ψ2, Ψ3
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F ðqÞ
ξ ¼ 1

4
κLξðEabEabÞ: ðC2Þ

Since the Lie derivative here is acting on a scalar, the
quadrupolar torque vanishes. The quadrupolar force is
instead proportional to the gradient of EabEab, so these
bodies act as though they were monopolar particles moving
in the effective potential

Φeff ¼ Φ −
κ

4M
EabEab: ðC3Þ

In a spherically symmetric gravitational field where Φ falls
off like 1=r, extended-body effects thus contribute a 1=r6

correction when all quadrupole moments are tidally
induced.
Regardless of Φ, the effective potential (C3) is closely

related—but not identical to—the more general effective
potential (2.33). Using (2.32) and (C1), the quadrupolar
term in that latter potential reduces to

−
κðtÞ
2M

Eabðγt; tÞEabðx; tÞ ðC4Þ

when the quadrupole moment is tidally induced. This
appears to differ by a factor of 2 from the quadrupolar term

−
κðtÞ
4M

Eabðx; tÞEabðx; tÞ; ðC5Þ

which appears in (C3). Nevertheless, the gradients of both
potentials agree when evaluated at x ¼ γt. This means that
they are physically equivalent. In the context of tidally
induced quadrupole moments, it is awkward for the two
tidal tensors in (C4) to have different arguments. But in the
more general context from which that potential arises, it
makes sense to assume that the quadrupole component Q
depends only on time.
The quadrupole moment (C1) is, in any case, highly

idealized, even for the astrophysically relevant case of a
self-gravitating fluid. Somewhat more realistically, internal
dissipation can result in the quadrupole moment depending
not only on the current value of Eab but also on its past
history; see, e.g., Sec. 2.5 of [12]. Allowing for this makes
it possible to obtain a nonzero torque. Indeed, refinements
of this sort are necessary to explain tidal locking and other
astrophysical phenomena [10–12,16].

2. Relativistic motion

It is also possible to construct relativistic models for
bodies with tidally induced quadrupole moments. Unlike in
the Newtonian case, however, we can easily introduce two
deformability (or “Love-type”) parameters here: suppose
that

Jabcd ¼ κþCabcd þ κ−C�
abcd; ðC6Þ

where κ� are two deformability parameters which describe
the body’s even and odd parity responses. Recalling (3.2),
substitution into the generalized force (3.8) shows that

F ðqÞ
ξ ¼ −

1

12
½κþLξðCabcdCabcdÞ þ κ−LξðCabcdC�

abcdÞ�:
ðC7Þ

Since this involves only Lie derivatives of scalars,
bodies whose quadrupole moments are described by (C6)
cannot experience any torque. Forces are, however, deter-
mined by gradients of the curvature scalars CabcdCabcd

and CabcdC�
abcd. This is similar to the Newtonian case

described above.
In the Schwarzschild spacetime, CabcdC�

abcd vanishes,
while CabcdCabcd does not, implying that only κþ can affect
the motion. By contrast, both κþ and κ− contribute to the
force in Kerr spacetimes with nonzero angular momentum.
In some curved backgrounds, CabcdCabcd and CabcdC�

abcd
both vanish, implying that there is no force or torque at all.
This occurs in, e.g., all “vanishing-scalar-invariant” space-
times, which are known to be in the Kundt class [75]. All
pp-waves are special cases.
Regardless of the spacetime, at least some effects of

deformability can be related to changing masses. To see
this, suppose that κ� are both constant and that the centroid
has been chosen by enforcing the Tulczyjew spin supple-

mentary condition (3.19). Since NðqÞ
ab ¼ 0 here, we may

focus on nonspinning objects for which Sab ¼ 0. The
momentum-velocity relation derived in [36] then reduces
to the trivial pa ¼ Mγ̇as . However, Eq. (3.3) implies that,
although the mass M is not necessarily constant, the
effective mass

Meff ¼ M −
1

12
ðκþCabcdCabcd þ κ−CabcdC�

abcdÞ ðC8Þ

is. The constancy of Meff for relativistic deformable bodies
is closely analogous to the appearance of the effective
potential (C3) for deformable Newtonian bodies. Some
related senses in which conserved Newtonian energies are
interpreted relativistically as conserved masses have been
discussed in [32]. We also note that this effective mass
differs from (3.64). The latter assumes that the relevant
quadrupole scalars are constant along the object’s world-
line, which is not typically the case for an object with a
tidally induced quadrupole moment.
Although our model (C6) for tidally induced quadrupole

moments is simple, it differs from what is commonly
considered in the literature. There, one first introduces a
unit timelike vector ua which is interpreted as describing
the body’s instantaneous rest frame—perhaps the 4-veloc-
ity of its centroid. The Weyl tensor is then decomposed into
its electric and magnetic components via Eab ≡ Cacbducud

and Bab ≡ C�
acbdu

cud, and one assumes that there are
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electric and magnetic deformabilities κE and κB such
that

Jabcd ¼ κEu½aEb�½cud� − κBðu½aBb�eϵcdef

þ u½cBd�eϵabefÞuf: ðC9Þ

See, e.g., Eq. (2.14) of [76] and references therein. While
this model differs from (C6) in general, there is overlap
when κ− ¼ 0. Regardless, the model involving κþ and κ−
results in considerably simpler force expressions than the
one involving κE and κB.
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