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The Lorentz symmetry of gravity is spontaneously broken when the nonminimally coupled Kalb-
Ramond field acquires a nonzero vacuum expectation value. In this work, we present exact solutions for
static and spherically symmetric black holes in the framework of this Lorentz-violating gravity theory. In
order to explore the physical implications of Lorentz violation, we analyze the thermodynamic properties
of the obtained solutions and evaluate the impact of Lorentz violation on some classical gravitational
experiments within the Solar System. Furthermore, the Lorentz-violating parameter is constrained by using
the measured results of these experiments.

DOI: 10.1103/PhysRevD.108.124004

I. INTRODUCTION

As a fundamental concept in modern physics, Lorentz
symmetry states that the laws of physics are the same in all
inertial reference frames. Although Lorentz symmetry is
widely believed to be a fundamental symmetry of nature and
has been confirmed by numerous experiments and observa-
tions, it has been revealed that Lorentz symmetry may be
broken at some energy scale in plenty of theories, such as
string theory [1], loop quantum gravity [2], Horava-Lifshitz
gravity [3], noncommutative field theory [4], Einstein-æther
theory [5], massive gravity [6], fðTÞ gravity [7], very special
relativity [8], and so on. The study of Lorentz symmetry
breaking (LSB) is important for understanding fundamental
physical processes in high-energy physics and gravity.
LSB can occur either explicitly or spontaneously. The

explicit LSB occurs when the Lagrange density is not
Lorentz invariant, i.e., the physical laws have different
forms in certain reference frames. However, the sponta-
neous LSB occurs when Lagrange density is Lorentz
invariant, but the ground state of a physical system does
not exhibit Lorentz symmetry. A general framework for
studying the spontaneous LSB is the Standard-Model
extension [9]. The simplest field theories proposed within
this framework are known as bumblebee models [1,10–13].
In bumblebee models, a vector field known as the bumble-
bee field acquires a nonzero vacuum expectation value
(VEV). The nonzero VEV selects a specific direction,
leading to the violation of particle local Lorentz invariance.
An exact solution for a static and spherically symmetric

spacetime in the bumblebee gravity model was reported by
Casana et al. in Ref. [14]. This Schwarzschild-like solution
has been extensively studied in various aspects, such as
the gravitational lensing [15], Hawking radiation [16],

accretion process [17,18], and quasinormal modes [19].
Subsequently, Maluf et al. obtained an (A)dS-
Schwarzschild-like solution by relaxing the vacuum con-
ditions [20]. Xu et al. found new classes of static spherical
bumblebee black holes by incorporating a background
bumblebee field with a nonvanishing temporal component
[21]. The associated thermodynamic properties and obser-
vational implicationswere studied inRefs. [22–24]. Rotating
bumblebee black holes were investigated by Ding et al. in
Refs. [25,26]. The shadow [27], accretion process [28],
quasinormal modes [29], and quasiperiodic oscillations [30]
were discussed in these rotating bumblebee black holes. An
exact rotating Bañados-Teitelboim-Zanelli-like black hole
solution was obtained in Ref. [31] and its quasinormal modes
were studied analytically in Ref. [32]. A Schwarzschild-like
black holewith a globalmonopolewas presented inRef. [33],
and its quasinormal modes were analyzed in Refs. [34,35].
Moreover, other black hole solutions in the framework of the
bumblebee gravity model were investigated in Refs. [36–38].
A traversable bumblebee wormhole solution was found in
Ref. [39]. In addition, the gravitational waves in bumblebee
gravity were analyzed in Refs. [40,41].
Instead of a vector field, a rank-two antisymmetric tensor

field, called the Kalb-Ramond (KR) field, has also been
considered as a source for LSB [42]. The KR field emerges
in the spectrum of bosonic string theory [43], and its
properties have been extensively studied in various con-
texts, such as black hole physics [44–46], cosmology [47],
and the braneworld scenario [48,49]. When the KR field
nonminimally couples to gravity and acquires a nonzero
VEV, the Lorentz symmetry is spontaneously broken. An
exact static and spherically symmetric solution was reported
by Lessa et al. under the VEV background of the KR field
[50]. Subsequently, the motion of massive and massless
particles in the vicinity of this static spherical KR black hole
was studied in Ref. [51]. The gravitational deflection of light*Corresponding author: keyang@swu.edu.cn
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and shadow cast by the rotating KR black holes were further
investigated in Ref. [52]. Moreover, traversable wormhole
solutions were constructed in this theory [53,54], and the
implications of the VEV background on Bianchi type I
cosmology were explored [55].
In this work, we focus on the construction of new exact

solutions for the static and spherically symmetric spacetime
in the presence and absence of the cosmological constant
under the nonzero VEV background of the KR field. The
layout of the paper is as follows: InSec. II, we solve the theory
to obtain analytic solutions for the static and spherically
symmetric spacetime, considering both the cases with and
without the cosmological constant. In Sec. III, some basic
thermodynamic properties of the obtained KR black holes
are analyzed. In Sec. IV, we impose constraints on the
theoretical parameter associated with Lorentz-breaking
effects through classical Solar System tests. Finally, brief
conclusions are given.

II. KR BLACK HOLE SOLUTIONS

We start from the Einstein-Hilbert action nonminimally
coupled to a self-interacting KR field in the form [42,50]

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

6
HμνρHμνρ − VðBμνBμνÞ

þ ξ2BρμBν
μRρν þ ξ3BμνBμνR

�
þ
Z

d4x
ffiffiffiffiffiffi
−g

p
LM; ð1Þ

where κ ¼ 8πG with G the Newtonian constant of gravi-
tation, ξ2 and ξ3 are the coupling constants between the
gravity and the KR field, Hμνρ ≡ ∂½μBνρ� is the strength of
the KR field, and Λ is the cosmological constant. The self-
interaction potential VðBμνBμνÞ depends on BμνBμν in order
to maintain the theory invariant upon observer local
Lorentz transformations. As the cosmological constant Λ
is accounted for separately in the action, the potential is
chosen to be zero at its minimum.
By varying the action (1) with respect to the metric gμν,

one obtains the gravitational field equations

Rμν −
1

2
gμνRþ Λgμν ¼ TKR

μν þ TM
μν; ð2Þ

where TM
μν is the energy-momentum tensor of matter fields,

and

TKR
μν ¼ 1

2
HμαβHν

αβ −
1

12
gμνHαβρHαβρ þ 2V0ðXÞBαμBα

ν

− gμνVðXÞ þ ξ2

�
1

2
gμνBαγBβ

γRαβ − Bα
μBβ

νRαβ

− BαβBνβRμα − BαβBμβRνα þ
1

2
∇α∇μðBαβBνβÞ

þ 1

2
∇α∇νðBαβBμβÞ −

1

2
∇α∇αðBμ

γBνγÞ

−
1

2
gμν∇α∇βðBαγBβ

γÞ
�
; ð3Þ

where the prime represents the derivative with respect to the
argument of the corresponding functions. With the Bianchi
identities, it is clear that the total energy-momentum tensor
T tot
μν ¼ TKR

μν þ TM
μν is conserved.

In order to generate a nonvanishing VEV for the KR
field, hBμνi ¼ bμν, we assume a potential with a general
form given by V ¼ VðBμνBμν � b2Þ, where the sign � is
chosen such that b2 is a positive constant [42,50,56].
Consequently, the VEV is determined by the constant
norm condition bμνbμν ¼ ∓b2. Upon the vacuum con-
densation, the gauge invariance Bμν → Bμν þ ∂½μΓν� of the
KR field is spontaneously broken. Due to the nonminimal
coupling of the KR field to gravity, the symmetry-breaking
VEV background leads to the violation of particle local
Lorentz invariance. Furthermore, the term ξ3BμνBμνR in the
action (1) transforms to ∓ξ3b2R in the vacuum, which can
be absorbed into Einstein-Hilbert terms through a redefi-
nition of variables.
It is convenient to decompose the antisymmetric tensor

Bμν to be Bμν ¼ Ẽ½μvν� þ ϵμναβvαB̃β with vα a timelike
4-vector [42,50]. The pseudofields Ẽμ and B̃μ are spacelike,
satisfying Ẽμvμ ¼ B̃μvμ ¼ 0. Analogous to Maxwell
electrodynamics, these fields can be interpreted as the
pseudoelectric and pseudomagnetic fields, respectively.
Assuming that the only nonvanishing terms are b10 ¼
−b01 ¼ ẼðrÞ in the VEV, or equivalently, b2 ¼ −ẼðrÞdt ∧
dr in terms of differential forms, it follows that the vacuum
field exhibits a pseudoelectric configuration. Consequently,
this configuration automatically vanishes the KR field
strength, i.e., Hλμν ¼ 0 or H3 ¼ db2 ¼ 0.
Here, our focus is on investigating a static and spheri-

cally symmetric spacetime under the nonzero VEV back-
ground of the KR field. The metric ansatz is given by

ds2 ¼ −AðrÞdt2 þ BðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2: ð4Þ

Correspondingly, the pseudoelectric field ẼðrÞ can be
rewritten as ẼðrÞ ¼ jbj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞBðrÞ=2p
, such that the con-

stant norm condition bμνbμν ¼ −b2 is satisfied.
Under the VEV configuration, it is advantageous to

reformulate the field equation as

Rμν ¼ Λgμν þ V 0ð2bμαbνα þ b2gμνÞ þ ξ2

�
gμνbαγbβγRαβ

− bαμbβνRαβ − bαβbμβRνα − bαβbνβRμα

þ 1

2
∇α∇μðbαβbνβÞ þ

1

2
∇α∇νðbαβbμβÞ

−
1

2
∇α∇αðbμγbνγÞ

�
: ð5Þ

With the metric ansatz, the field equations (5) can be
written explicitly as
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2A00

A
−
A0

A
B0

B
−
A02

A2
þ 4

r
A0

A
þ 4Λ
1 − l

B ¼ 0; ð6aÞ

2A00

A
−
A0

A
B0

B
−
A02

A2
−
4

r
B0

B
þ 4Λ
1 − l

B ¼ 0; ð6bÞ

2A00

A
−
A0B0

AB
−
A02

A2
þ 1þ l

lr

�
A0

A
−
B0

B

�

− ð1 − Λr2 − b2r2V 0Þ 2B
lr2

þ 2ð1 − lÞ
lr2

¼ 0; ð6cÞ

where l≡ ξ2b2=2.

A. Absence of cosmological constant Λ= 0

First, by considering the spacetime without the cosmo-
logical constant, wewould like to construct a Schwarzschild-
like black hole in the theory. In this case, we take the
assumption thatV 0 ¼ 0, which corresponds to the casewhere
the VEVis located at the local minimum of the potential. For
instance, it can be simply realized by a potential of quadratic
form, V ¼ 1

2
λX2, with X ≡ BμνBμν þ b2 and λ a coupling

constant [56].
By subtracting Eq. (6b) from Eq. (6a), the following

relation is obtained:

A0

A
þ B0

B
¼ 0: ð7Þ

It simply yields

AðrÞ ¼ 1

BðrÞ : ð8Þ

After subtracting Eq. (6c) from Eq. (6a) and substituting the
relation (8) into it, one obtains

AðrÞ ¼ 1

1 − l
−
c1
r
; ð9Þ

where the integration constant c1 can be determined using
the Komar integral.
Utilizing the time-translation Killing vector Kμ ¼

ð1; 0; 0; 0Þ, the current can be constructed as Jμ ¼ KνRμν.
From the modified Einstein equations (2), the current can be
expressed as Jμ ¼ KνðTμν

tot − 1
2
gμνT tot þ ΛgμνÞ as well. It can

be observed that the only distinction from general relativity is
the replacement of the energy-momentum tensor of thematter
fields TM

μν with the total energy-momentum tensor T tot
μν. With

the Bianchi identity and the Killing’s equation, it can be
proven that the current is conserved, i.e., ∇μJμ ¼
∇μðKνRμνÞ ¼ ð∇μKνÞRμν þ 1

2
Kνð∇νRÞ ¼ 0 [57]. By using

the relation ∇μ∇νKμ ¼ KμRμν of the Killing vector, the
current can be further written as a total derivative,
Jμ ¼ KνRμν ¼ ∇ν∇μKν. By applying Stokes’s theorem,

the Komar mass M can be calculated as

M ¼ 1

4π

Z
Σ
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
nμJμ ¼

1

4π

Z
Σ
d3x

ffiffiffiffiffiffiffi
γð3Þ

q
nμ∇ν∇μKν

¼ 1

4π

Z
∂Σ
d2x

ffiffiffiffiffiffiffi
γð2Þ

q
nμσν∇μKν

¼ −
1

4π

Z
∂Σ
d2x

ffiffiffiffiffiffiffi
γð2Þ

q
∇tKr ¼ c1

2
; ð10Þ

where Σ represents a three-dimensional spacelike hypersur-
facewith the unit normal vectornμ ¼ ð− ffiffiffiffiffiffiffiffiffi

AðrÞp
; 0; 0; 0Þ, and

∂Σ denotes the boundary of Σ, which is a two-sphere at
infinity with the unit normal vector σμ ¼ ð0; 1= ffiffiffiffiffiffiffiffiffi

AðrÞp
; 0; 0Þ

and the induced metric γð2Þij ¼ r2ðdθ2 þ sin2 θdϕ2Þ.
Thus, the metric function AðrÞ is determined as

AðrÞ ¼ 1

1 − l
−
2M
r

: ð11Þ

It is straightforward to verify that this set of solutions (8)
and (11) satisfies all the equations of motion (6).
Consequently, a Schwarzschild-like metric is obtained1

ds2 ¼ −
�

1

1 − l
−
2M
r

�
dt2 þ dr2

1
1−l −

2M
r

þ r2dθ2

þ r2sin2θdϕ2: ð12Þ

The dimensionless parameter l characterizes the effect of
Lorentz violation caused by the nonzero VEV of the KR
field on spacetime. Due to strong constraints from
experimental observations on Lorentz-violating effects in
gravitational fields, which will be discussed later, the
Lorentz-violating parameter l is supposed to be very small.
Note that, due to the nonvanishing of the Riemann tensor in
the limit r → ∞, the spacetime is not asymptotically
Minkowski in this case. Furthermore, the Kretschmann
scalar for the current spacetime is given by

RαβγδRαβγδ ¼
48M2

r6
−

16lM
ð1 − lÞr5 þ

4l2

ðl − 1Þ2r4 : ð13Þ

This implies that the Lorentz-violating effects cannot be
eliminated by mere coordinate transformations.
It is interesting that the black hole described by the

metric (12) possesses a horizon radius rh ¼ 2ð1 − lÞM,
which is shifted by the Lorentz-violating parameter l. This
is different from the case of a bumblebee black hole, where
the horizon radius is identical to that of a Schwarzschild
black hole [14]. At the horizon, the Kretschmann scalar is

finite, given by RαβγδRαβγδ ¼ 3−ð2−lÞl
4ð1−lÞ6M4, indicating that the

1Note that the solution we obtained differs from that presented
in the Ref. [50].
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singularity at the horizon can be removed through a
coordinate transformation. However, the Kretschmann
scalar diverges at the center r ¼ 0, signifying an intrinsic
and nonremovable singularity at that point.

B. Presence of cosmological constant Λ ≠ 0

When the cosmological constant is present, it is found
that the assumption V 0 ¼ 0 does not support a self-
consistent solution that satisfies all the equations of motion.
Therefore, following the approach in Ref. [20], the vacuum
condition is relaxed to be V ¼ 0 but V 0 ≠ 0. The most
commonly considered potential form that satisfies the
condition is a linear form, given by V ¼ λX, where λ is
a Lagrange multiplier field [56]. Consequently, the deriva-
tive of the potential with respect to X is V 0ðXÞ ¼ λ. The
equation of motion of the Lagrange-multiplier λ restricts
the theory to the extrema of the potential, satisfying X ¼ 0,
such that bμν is the VEVof the KR field for the on-shell λ.
Note that the off-shell value of the Lagrange multiplier
should have the same sign as X to keep the positivity of
the potential V [56]. In principle, the Lagrange-multiplier
field λ can also be expanded around its vacuum value, i.e.,
λ ¼ hλi þ λ̃, and hλi could vary with spacetime position.
However, it is convenient to fix λ̃ ¼ 0 by choosing the
initial conditions and to assume that hλi is a real constant,
then the on-shell value λ≡ hλi is determined by the field
equations completely [20,56].
Now, by subtracting Eq. (6b) from Eq. (6a), one obtains

the same relation as in the previous case,

AðrÞ ¼ 1

BðrÞ : ð14Þ

Furthermore, by subtracting Eq. (6c) from Eq. (6a) and
substituting the relation (14) into it, one arrives at

AðrÞ ¼ 1

1 − l
−
2M
r

−
ð1 − 3lÞΛþ ð1 − lÞb2λ

3ð1 − lÞ2 r2: ð15Þ

Finally, by substituting Eqs. (14) and (15) into (6a), the on-
shell value of λ is determined by

λ ¼ 2lΛ
ð1 − lÞb2 : ð16Þ

It is evident that the theory supports a solution with a
nonvanishing cosmological constant if only V 0ðXÞ ¼ λ ≠ 0.
After inserting the on-shell value of λ into (15), an (A)

dS-Schwarzschild-like metric is obtained

ds2 ¼ −
�

1

1 − l
−
2M
r

−
Λr2

3ð1 − lÞ
�
dt2

þ dr2

1
1−l −

2M
r − Λr2

3ð1−lÞ
þ r2dθ2 þ r2 sin2θdϕ2: ð17Þ

The solution reduces to the Schwarzschild-like metric (12)
when the cosmological constant vanishes. Likewise, it
degenerates to the (A)dS-Schwarzschild metric when the
Lorentz-violatingparameterl is set to zero. Furthermore, it is
easy to demonstrate that the relation Rμνρσ ¼ Λeff

3
ðgμρgνσ −

gμσgνρÞ holds in the limit r → ∞, where the effective
cosmological constant reads Λeff ≡ Λ

1−l. It indicates that
the spacetime approaches (A)dS at infinity. This behavior
is also evident from the metric (17), where the metric
functions approximate AðrÞ ¼ 1=BðrÞ → −r2Λeff=3 as
r → ∞ tends to infinity, exhibiting the same asymptotic
behavior as the (A)dSmetric. Note that the truly contributing
cosmological constant is the effective one Λeff ≡ Λ=ð1 − lÞ
due to the additional contributions from the modified
Einstein equations when V 0ðXÞ is nonzero.
When the cosmological constant is negative, Λ < 0, the

event horizon exists for any parameter, and thus the metric
(17) always supports black hole solutions in this case.
However, as shown inFig. 1,when the cosmological constant
is positive, Λ > 0, the black hole solutions exist only for the
parametersl andΛM2 satisfying 9ð1 − lÞ2ΛM2 ≤ 1, where
the equality sign represents the case when the event horizon
and the cosmological horizon coincide with each other.

III. THERMODYNAMICS

Research on black hole thermodynamics has shown that
they not only possess the four laws of black hole thermo-
dynamics [58,59], but they also exhibit phase structures akin
to that of “every day thermodynamics” [60–62]. This
fascinating discovery provides insights into the nature of
black holes and gravity. Asymptotically AdS black holes are
well known for their close relationship with AdS=CFT
duality and diverse thermodynamic behaviors, including
various phase transitions. However, the presence of two
distinct temperatures in asymptotically dS black holes
renders the system in a nonequilibrium state. Although some
attempts have been made to investigate the thermodynamics
of these black holes [63], our understanding in this area

FIG. 1. The parameter space ðl;ΛM2Þ for black hole solutions
and nonblack hole solutions, where the light blue region
represents the parameter space of black hole solutions.
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remains limited. For the sake of simplicity, we primarily
focus on analyzing some fundamental thermodynamic prop-
erties of the obtained AdS-Schwarzschild-like black hole in
this section.
By solving AðrhÞ ¼ 0 in Eq. (17), the black hole mass

can be expressed with the radius of the event horizon rh,

M ¼ ð3 − Λr2hÞrh
6ð1 − lÞ : ð18Þ

Since we consider a static spherical spacetime with an
effective cosmological constant Λeff , the black hole mass
M is associated with the black hole’s enthalpy. In this case,
the effective cosmological constant plays the role of a
thermodynamic pressure, given by P ¼ − Λeff

8π ¼ − Λ
8πð1−lÞ.

Considering that the Lorentz-violating parameter l is a
dimensionless constant, the enthalpy can be expressed as
a function of entropy S and pressure P, i.e., M ¼ MðS; PÞ.
Consequently, the first law of the AdS-Schwarzschild-like
black hole reads

dM ¼ T dSþ VdP; ð19Þ
where T is the Hawking temperature and V the thermody-
namic volume.
By employing the metric (17) and Eq. (18), the Hawking

temperature is given by

T ¼ −
1

4π

∂gtt
∂r

����
rh

¼ 1 − Λr2h
ð1 − lÞ4πrh

: ð20Þ

It is observed that the Lorentz-violating parameter l has an
impact on the temperature of the black hole. Specifically,
the temperature is higher compared to that of an AdS-
Schwarzschild black hole for a positive l, while it is lower
for a negative l.
Further, by utilizing the first law (19) and the Hawking

temperature (20), the entropy can be obtained as

S ¼
Z �

dM
T

�
P
¼

Z
1

T

�
∂M
∂rh

�
P
drh

¼ πr2h ¼
Ah

4
; ð21Þ

where Ah ¼ 4πr2h is the horizon area. It is evident that the
entropy of the black hole still satisfies the Bekenstein-
Hawking area-entropy relation.
Correspondingly, the thermodynamic volume is calcu-

lated as

V ¼
�
∂M
∂P

�
S
¼

�
∂M
∂Λ

�
S

�
∂Λ
∂P

�
S
¼ 4πr3h

3
: ð22Þ

Further, utilizing the aforementioned results, the Smarr
formula is obtained as

M ¼ 2ðT S − VPÞ: ð23Þ

Therefore, the fist law and Smarr formula are identical to
the results obtained for the AdS-Schwarzschild black hole.
The specific heat is useful for analyzing the local

stability of a black hole solution. Specifically, a black hole
is stable when its specific heat is positive, while it is
unstable when its specific heat is negative. The specific heat
is computed by

CP ¼
�
∂M
∂T

�
P
¼

�
∂M
∂rh

�
P

�
∂rh
∂T

�
P

¼ 2πr2h

�
Λr2h − 1

Λr2h þ 1

�
: ð24Þ

Interestingly, although both the mass and temperature of
the black hole contain the Lorentz-violating parameter l,
the specific heat is independent of it. Consequently, the
AdS-Schwarzschild-like black hole is locally stable only if
its radius is sufficiently large, satisfying rh >

ffiffiffiffiffiffiffiffiffiffiffiffi
−1=Λ

p
.

However, for the Schwarzschild-like black hole withΛ ¼ 0,
the negative specific heat indicates its locally instability.
Furthermore, a black hole is globally stable if its Gibbs

free energy is negative, but it is globally unstable if its
Gibbs free energy is positive. Hence, in order to investigate
the global stability of the black hole, we further evaluate its
Gibbs free energy in the canonical ensemble, which is
expressed as

F ¼ M − T S ¼ ð3þ Λr2hÞrh
12ð1 − lÞ : ð25Þ

It is evident that the free energy is negative only when rh >ffiffiffiffiffiffiffiffiffiffiffiffi
−3=Λ

p
, indicating that only large AdS-Schwarzschild-

like black holes are globally stable. For the Schwarzschild-
like black hole, its free energy is always positive and hence
it is globally unstable. It is worth noting that despite the
presence of the Lorentz-violating parameter l in the free
energy, it does not affect the critical size that determines the
stability of the black holes.

IV. SOLAR SYSTEM TESTS

General relativity (GR) has undergone extensive testing,
especially in the weak field regime, such as within the Solar
System. So far, no evidence contradicting the theory has
been found. However, it would be helpful to evaluate the
impact of the present Lorentz-violating theory by testing
the derived solutions within the Solar System. The theo-
retical parameter l can be constrained by comparing the
experimental results with the predictions of the theory.
Since the influence of the cosmological constant can be
neglected at the scale of the Solar System, we focus solely
on considering the Schwarzschild-like metric (12).
The motion of a test particle along its geodesics can be

described by the Lagrangian

L ¼ −
1

2
gαβẋαẋβ; ð26Þ
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where the dot represents the derivative with respect to the
affine parameter λ. From the normalization conditions for the
four-velocity of timelike and null particles, one can express
the Lagrangian density as L ¼ η=2. Accordingly, for mass-
less photons, η ¼ 0, while for massive particles, η ¼ 1when
the affine parameter λ is chosen to be the proper time τ.
By substituting the metric (12) into the Lagrangian (26),

one obtains

L ¼ 1

2

�
AðrÞṫ2 − AðrÞ−1ṙ2 − r2θ̇2 − r2sin2θϕ̇2

	
: ð27Þ

The Euler-Lagrange equation corresponding to θ is
given by

r2θ̈ þ 2rṙ θ̇−r2ϕ̇2 sin θ cos θ ¼ 0: ð28Þ

With the initial condition θ ¼ π
2
and θ̇ ¼ 0, one has θ̈ ¼ 0. It

indicates that the particle will be restricted to motion within
the equatorial plane. In this case, the Lagrangian density
(26) is rewritten as

AðrÞ
�
dt
dλ

�
2

− AðrÞ−1
�
dr
dλ

�
2

− r2
�
dϕ
dλ

�
2

¼ η: ð29Þ

Since the spacetime is static and spherically symmetric,
the Lagrangian is independent of t and ϕ. As a result, there
are two conserved quantities: the energy E and the angular
momentum L, given by

E ¼ ∂L
∂ṫ

¼ AðrÞ dt
dλ

; ð30Þ

L ¼ −
∂L

∂ϕ̇
¼ r2

dϕ
dλ

: ð31Þ

Now that we have all the required equations, we can
proceed to examine three classical tests within the Solar
System: the perihelion precession of Mercury, the deflec-
tion of light by the Sun, and the Shapiro time delay.

A. Perihelion precession of Mercury

Mercury can be viewed as a test particle, allowing us to
choose the affine parameter λ as the proper time τ. By
utilizing Eqs. (29)–(31), the orbital equation is derived as

�
d
dϕ

�
1

r

��
2

¼ E2

L2
−
AðrÞ
L2

�
1þ L2

r2

�
: ð32Þ

After redefining u ¼ L2

Mr and differentiating the equation
with respect to ϕ, we have

d2u
dϕ2

þ u
1 − l

− 1 ¼ 3M2

L2
u2: ð33Þ

It is observed that the coefficient of the second term has
been modified by the Lorentz-violating parameter l, which
is supposed to be very small, l ≪ 1. The equation can be
solved using a perturbative method. Noting that the last
term, represented as 3G2M2

c4L2 in the International System of
Units, is a first-order small quantity and would be absent in
the Newtonian limit [57]. Therefore, by expanding the
exact solution u as u ≈ u0 þ u1, where u0 and u1 are
respectively the zeroth-order and first-order approxima-
tions, satisfying [57]

d2u0
dϕ2

þ u0
1 − l

− 1 ¼ 0; ð34Þ

d2u1
dϕ2

þ u1
1 − l

¼ 3M2

L2
u20: ð35Þ

The solution of zeroth-order equation (34) is given by

u0 ¼ ð1 − lÞ
�
1þ e cos

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
��

; ð36Þ

where the integration constants are chosen such that the
initial value is ϕ0 ¼ 0 and the orbital eccentricity is e. If
l ¼ 0, this solution describes a closed ellipse, which is
precisely the orbit predicted by Newtonian mechanics.
However, due to the appearance of the Lorentz-violating
parameter l in the phase, the elliptical orbit is not closed
any more.
By substituting the zeroth-order solution into Eq. (35), it

is straightforward to check that the first-order solution is
given by

u1 ¼
3ð1 − lÞ3M2

L2

��
1þ e2

2

�
−
e2

6
cos

�
2ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
�

þ eϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
��

: ð37Þ

It is noted that the first term in the square bracket is simply a
constant displacement, and the second term oscillates
around zero. However, the third term accumulates over
successive orbits and contributes the important effect
during rotation. We therefore only consider the contribution
of this term in the first-order solution.
Combining the zeroth-order and first-order solutions, we

finally arrive at

u ≈ ð1 − lÞ
�
1þ e cos

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
�

þ 3ð1 − lÞ32M2

L2
eϕ sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
��

: ð38Þ

For convenience, it can be further approximated and
rewritten in the form of an elliptical equation,
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u ≈ ð1 − lÞ
�
1þ e cos

��
1 −

3ð1 − lÞ2M2

L2

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
��

:

ð39Þ

The period of ϕ of the orbits reads

Φ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffi
1 − l

p

1 − 3ð1−lÞ2M2

L2

≈ 2π
ffiffiffiffiffiffiffiffiffiffiffi
1 − l

p �
1þ 3ð1 − lÞ2M2

L2

�
: ð40Þ

During each orbit of the planet, the perihelion advances by
an angle ΔΦ ¼ Φ − 2π, which is obtained by taking the
lowest order in the expansion of l, yielding

ΔΦ ≈
6πM2

L2
− lπ: ð41Þ

The first term ΔGR ¼ 6π M2

L2 is exactly the estimation
derived from GR, while the second term ΔLV ¼ −lπ
represents the contribution arising from the effect of LSB.
For Mercury, the predicted value of its perihelion

precession in GR is 42.981400=century, while the observed
value is measured as ΔΦEx ¼ ð42.9794� 0.0030Þ00=
century [14]. The precession value can be converted into
the precession per orbit by using the period of Mercury,
which is approximately 87.969 days. By requiring that the
theoretical prediction of the present theory is consistent
with the experimental value, i.e., ΔΦMin

Ex ≤ ΔΦ ≤ ΔΦMax
Ex ,

we obtain the constraints on the Lorentz-violating param-
eter as −3.7 × 10−12 ≤ l ≤ 1.9 × 10−11.

B. Deflection of light

For photons with η ¼ 0, the orbital equation can be
obtained from Eqs. (29)–(31), given by

�
d
dϕ

�
1

r

��
2

¼ E2

L2
−
AðrÞ
r2

: ð42Þ

By redefining u ¼ 1=r and differentiating the equation with
respect to ϕ, we have

d2u
dϕ2

þ u
1 − l

¼ 3Mu2: ð43Þ

Following the approach in the previous subsection, we
employ a perturbative method to solve the equation and
expand the exact solution u as u ≈ u0 þ u1. Once again, the
last term, represented as 3GMc2 u2 in the International Systemof
Units, is a small first-order quantity and therefore can be
neglected in the zeroth-order calculation. As a result, the
zeroth-order solution satisfies a homogeneous equation, i.e.,

d2u0
dϕ2

þ u0
1 − l

¼ 0: ð44Þ

The solution is given by

u0 ¼ b−1 sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
�
; ð45Þ

where the integration constants have been chosen appropri-
ately so that b represents the impact parameter and the
incident angle isϕ0 ¼ 0. When l ¼ 0, the solution describes
a straight line, which is exactly the Newtonian prediction.
However, in the presence of Lorentz-violating effect, it is
evident that the exit angle of the light is no longerϕ ¼ π, but is
instead given by ϕ ¼ ffiffiffiffiffiffiffiffiffiffiffi

1 − l
p

π ≈ π − πl
2
. Consequently, the

Lorentz-breaking effect will induce an additional deflection
angle of δLV ¼ − πl

2
.

By substituting the zeroth-order solution into the first-
order equation

u001 þ
u1

1 − l
¼ 3Mu20; ð46Þ

we obtain the solution

u1 ¼
ð1 − lÞM

b2

�
1þ cos2

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
��

: ð47Þ

Therefore, we arrive at the final solution

u ¼ 1

b
sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
�
þ ð1 − lÞM

b2

�
1þ cos2

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
��

:

ð48Þ
When a ray of light is incident from infinity and exits to

infinity, we have r → ∞ or u → 0. Then, by solving the
above equation with u ¼ 0, we obtain the expression

sin

�
ϕffiffiffiffiffiffiffiffiffiffiffi
1 − l

p
�
¼ b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 8ð1 − lÞ2M2

p
2ð1 − lÞM : ð49Þ

Taking into account l ≪ 1 and M ≪ 1, the incident angle
at lowest order can be approximated as

ϕin ¼ −
2M
b

: ð50Þ

Furthermore, the exit angle at the lowest order can be
expressed as

ϕex ¼ π þ 2M
b

−
πl
2
: ð51Þ

Here, the second term precisely represents the Lorentz-
violating effect observed in the zeroth-order solution, as
discussed earlier.
So the total angle of deflection is obtained as

δ ¼ 4M
b

−
πl
2
: ð52Þ
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The first term, δGR ¼ 4M
b , arises from the prediction of GR,

while the second term, δLV ¼ − πl
2
, stems from the effect

of LSB.
For a light ray that grazes the surface of the Sun, with

M ¼ M⊙ and b ¼ R⊙, GR predicts δGR ¼ 1.751668700.
The observed value of light deflection on the solar surface
is given by θ ¼ 1

2
ð1þ γÞ1.751668700 with γ ¼ 0.99992�

0.00012 [64]. Finally, the constraints on l is given by
−1.1 × 10−10 ≤ l ≤ 5.4 × 10−10.

C. Time delay of light

The Shapiro time-delay effect is observed by measuring
the travel time of a light ray between two stations located at
large distances from a massive object, such as the Sun. To
simplify the analysis, we consider the motion of light on the
equatorial plane (θ ¼ π=2) of a central celestial object.
Since the light is moving along a null geodesic, we have
ds2 ¼ 0, i.e.,

−AðrÞdt2 þ AðrÞ−1dr2 þ r2dϕ2 ¼ 0: ð53Þ

After applying the solution in Eq. (48) and performing
some simple algebra, we obtain the relation

r2dϕ2 ¼ b2

ð1 − lÞðr2 − b2ÞAðrÞ2 dr
2: ð54Þ

Substituting it into Eq. (53) and considering that the
Lorentz-violating parameter l and M=r (represented as
2GM
c2r in the International System of Units) are both small
quantities, we have

dt ≈� 1 − lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − b2

p
�
1þ 2M

r
þ b2M

r3

�
rdr: ð55Þ

where the plus (minus) sign refers to the outgoing (infal-
ling) light ray.
Considering a light ray (or radar signal) that travels from

an emitter situated at rE to a receiver at rR, the time taken
for the travel can be calculated as

T ¼ ð1 − lÞ
�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2E − b2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R − b2

q �

þM

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R − b2

p
rR

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2E − b2

p
rE

�

þ 2M

�
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2E − b2

p
þ rE

b

�

þ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R − b2

p
þ rR

b

���
: ð56Þ

It is evident that when the Lorentz-violating parameter l is
absent, this result reduces to the prediction of GR. The first

term inside the square bracket represents the time required
for the light to propagate along a straight line from rE to rR
in a flat spacetime, while the remaining terms represent
Shapiro gravitational time delay.
As the most precise test of time delay currently comes

from the data obtained by the Cassini mission during its
journey to Saturn [65], we consider the scenario where a
radar signal is emitted from Earth at rE ¼ r⊕, then grazes
near the Sun and travels to the spacecraft located at rR
before returning to Earth along the same path. Then, due to
the impact parameter b ≪ r⊕; rR, the total round-trip time
delay T tol ¼ 2T can be approximated as

T tol ≈ ð1 − lÞ
�
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2⊕ − b2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2R − b2

q �

þ 4M⊙

�
log

�
4r⊕rR
b2

�
þ 1

��

≡ ð1 − lÞðT0 þ δTGRÞ; ð57Þ

where T0 represents the round-trip time in flat spacetime
and δTGR represents the round-trip time delay caused by
the curved spacetime. By noticing that lT0 ≪ T0 and
δTGR ≪ T0, the total excess time delay is given by

δT tol ¼ T tol − T0 ≈ δTGR − lT0: ð58Þ

Therefore, the time delay resulting from Lorentz violation
is δTLV ¼ −lT0.
For the 2002 superior conjunction of Cassini, the

spacecraft was at rR ≈ 8.43 AU from the Sun and the
radar grazes near the Sun with an impact parameter
b ≈ 1.6R⊙. Using Eq. (57), we obtain T0 ¼ 9411.2 s
and δTGR ¼ 2.8 × 10−4 s. The measured value of the

post-Newtonian parameter γ in the formula δT ¼ 2ð1þ
γÞM⊙ log

�
4r⊕rR
b2

	
is reported as γ¼ 1þð2.1�2.3Þ×

10−5 [65]. Therefore, we obtain the constraints on the
Lorentz-violating parameter l as −6.1 × 10−13 ≤ l ≤
2.8 × 10−14.

V. CONCLUSIONS

The static and spherically symmetric spacetime was
investigated in the context of a gravity theory featuring
LSB induced by a nonzero VEV of the KR field. By
considering both the presence and absence of the cosmo-
logical constant, we derived the exact solutions that exhibit
new properties resulting from the Lorentz-violating effect.
Furthermore, the thermodynamic properties of the AdS-
Schwarzschild-like black hole were examined, revealing
that the standard first law of thermodynamics and Smarr
formula hold as usual. Interestingly, it was observed that
the Lorentz-violating parameter l does not impact the
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critical size, which determines the local and global stability
of the black holes.
In order to investigate the physical implications of the

obtained solutions, we analyzed several classical gravi-
tational experiments within the Solar System, including
the perihelion precession of Mercury, deflection of light,
and Shapiro time delay. Our analysis revealed that the
Lorentz-violating effect does contribute to the corrections
observed in these experiments. By utilizing the measured
results from these experiments, we were able to constrain
the value of the Lorentz-violating parameter l. The
resulting constraints are listed in Table I. It shows
that the Shapiro time delay imposes the most stringent

constraints on the Lorentz-violating effect, with the range
of −6.1 × 10−13 ≤ l ≤ 2.8 × 10−14.
The Lorentz violation effect is also heavily constrained

through Solar System tests in the bumblebee gravity model.
Specifically, the perihelion precession of Mercury provides
an upper bound of Lorentz-violating parameter l <
1.1 × 10−11, the bending of light gives an upper bound
of l < 3.2 × 10−10, and the Shapiro time-delay effect
observed during the Cassini mission establishes an upper
bound of l < 6.2 × 10−13 [14]. These constraints exhibit
magnitudes similar to the limits presented in Table I,
indicating that the possible Lorentz-violating effect is
highly restricted in nature.
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