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We study extreme-mass-ratio systems in theories admitting the Schwarzschild solution and propagating
a massive graviton. We show that, in addition to small corrections to the quadrupolar and higher-order
modes, a dipolar mode is excited in these theories, and we quantify its excitation. While LIGO-Virgo-
KAGRA observations are not expected to impose meaningful constraints in the dipolar sector, future
observations by the Einstein Telescope or by LISA, together with bounds from dispersion relations, can
rule out theories of massive gravity admitting vacuum General Relativistic backgrounds. For the bound to
be circumvented, one needs to move away from Ricci-flat solutions and enter a territory where constraints
based on wave propagation and dispersion relations are not reliable.
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I. INTRODUCTION

There are compelling reasons to include massive degrees
of freedom in the description of fundamental interactions.
To begin with, massive fields provide a framework to test a
massless theory, for example, by using observations to
place upper bounds on the mass of the interaction carrier. In
addition, the introduction of another scale in the theory can
potentially be used to solve some of the outstanding
problems, namely, the dark matter and dark energy puzzles
[1–3]. Accordingly, a consistent modification of Maxwell’s
equations preserving the invariance of electrodynamics
under transformations of special relativity, yet endowing
the photon with a mass, was considered by Proca in 1936
[4–7]. Massive spin-2 fields were studied shortly afterward
by Fierz and Pauli [8], and a nonlinear massive completion
of General Relativity (GR) has been pursued ever since
[9,10].
Bounds on the mass of the graviton can be obtained in a

variety of ways. A gravitonmass adds a Yukawa-like term to
the strength of the gravitational interaction [11], and either
table-top experiments or the motion of planets in the solar
system can be used to search for such deviations, within a
mass range scaling inversely to the size of the laboratory
[12,13]. So far, bounds based on gravitational-wave (GW)
emission belong to two categories. Superradiant-based
bounds use the fact that Kerr black holes (BHs) are unstable
and shed spin away in a two-step process (first condensing a
cloud of gravitons in their exterior and then eventually
releasing all rotational energy as GWs) [14–17]. Thus,
observations of highly spinning massive BHs yield a con-
straint on the graviton mass μ ≲ 5 × 10−23 eV [18]. Perhaps

the best-studied constraints are derived from dispersion
relations as a GW propagates [19]. For massive gravitons,
their propagation speed vg depends on their frequency ω,
as v2g=c2 ¼ 1 − c2=ðωλ̄gÞ2, with λ̄g ¼ G=ðμc2Þ being the
reduced graviton Compton wavelength. Dispersion changes
the phase morphology of the GWas it propagates, producing
changes with respect to predictions fromGR. Current LIGO-
Virgo-KAGRA (LVK) results yield the bound μ ≲ 1.27 ×
10−23 eV [20]. Dispersion-relation-based bounds always
assume that the waveform obtained in the local wave zone
of the system is the same as that in (massless) GR, produced
by the same BHs.
The full dynamical content of the field equations is not

explored via dispersion relations. Here, we point out that
the underlying assumption that sources are the same as in
vacuum GR allows us to calculate rigorously GW gen-
eration effects and to uncover a dipolar mode which
dominates emission at small graviton mass μ. We now
show that sources that resemble those of GR (their structure
and motion) lead to a massive GW spectrum that can be
ruled out by observations of future Earth- and space-based
detectors. Hereafter, we use units such that the speed of
light and Newton’s constant c ¼ G ¼ 1.

II. SETUP

Propagation of massive spin-2 fields is strongly con-
strained by requiring the absence of ghosts [8]. The
equations of motion governing massive spin-2 fluctuations
hμν on a Ricci-flat background metric gμν are unique and
read [21–25]
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Gð1Þ
μν ½h� þ μ2

2
ðhμν − hgμνÞ ¼ 8πTμν; ð1Þ

whereGð1Þ
μν ½h� is the linearized Einstein tensor and Tμν is the

energy-momentum tensor of matter. This means that any
theory that admits Ricci-flat solutions and contains a
massive graviton is governed by Eq. (1). To circumvent
Eq. (1), one should allow for radical departures from
standard vacuum GR, such as breaking Lorentz symmetry
[26,27], including additional (dynamical) metrics [28], etc.
We focus on the minimal extension of GR and consider
exclusively Eq. (1). We also assume that the energy and
momentum of matter sources is conserved, that is,

∇μTμν ¼ 0: ð2Þ

Then, from (1) and (2), it follows that hμν satisfies the
constraints

∇μhμν −∇νh ¼ 0; h ¼ −
16π

3μ2
T; ð3Þ

and the dynamical equation

½ΔL þ μ2�hμν ¼ Sμν ð4Þ

where ΔL is the Lichnerowicz operator and Sμν is deter-
mined by the source energy-momentum tensor

Sμν ≡ 16πTμν þ
16π

3μ2
∇μ∇νT −

16π

3
Tgμν: ð5Þ

Some terms in (3) and (5) are singular as μ → 0. For gauge
theories of lower spin, this class of small-mass divergences
is not present as long as the theory is coupled to conserved
sources (e.g., one recovers Maxwell’s theory in taking the
massless limit of a massive spin-1 vector or Proca field).
Quite remarkably, it was established decades ago that the
same is not true for spin-2 fields such as the graviton, where
the coupling of conserved sources to some of the massive
degrees of freedom (the helicity-0 mode in particular)
persists in the massless limit. This is known as the van
Dam, Veltman and Zakharov (vDVZ) discontinuity
[29,30], which in essence is the statement that GR is not
recovered from the μ → 0 limit of massive gravity.
Arguments based on the so-called Vainshtein mechanism
[31] suggest that nonlinearities of the massive theory could
suppress the new degrees of freedom within certain scales
[9]. Therefore, we expect that a viable theory of massive
gravity displays a Vainshtein mechanism for stars (thereby
circumventing solar system constraints). Nevertheless, such
a theory can still contain BH solutions identical to those of
GR, and known examples abound [32]. Such solutions are
the subject of this work.

III. DIPOLAR MODES

Linearmassive gravity (1), unlike itsmassless counterpart,
does not enjoy the gauge symmetry hμν → hμν þ 2∇ðμXνÞ.
Thus, some degrees of freedom that are pure gauge in GR
becomephysical anddynamical in themassive theory and are
excited in astrophysical scenarios. In particular, we now
show that dipolar gravitational radiation can be dominant for
binaries, including extreme mass ratio inspirals (EMRIs),
which evolve in the millihertz LISA band [33].
The equations governing the dynamics of massive

fluctuations are most conveniently derived using a fully
covariant approach, inspired by Refs. [34–39]. We shall
write the Schwarzschild’s metric in the general form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ

¼ gabdyadyb þ r2ðyÞΩABdθAdθB; ð6Þ

where fðrÞ ¼ 1–2M=r, ya are any coordinates parametriz-
ing the “t − r” plane, θA parametrize the round 2-sphere
with metricΩAB, and it will be useful to introduce the radial
vector ra ≡ ðdrÞa. Consider a metric fluctuation hμν of
dipolar structure, that is, of the form

h ¼ pabðyÞYðθÞdyadyb þ 2qaðyÞZAðθÞdyadθA
þ r2ðyÞKðyÞUABðθÞdθAdθB; ð7Þ

where YðθÞ, ZAðθÞ, andUABðθÞ are the dipolar (l ¼ 1) even
harmonic tensors on the sphere [36] and pabðyÞ; qaðyÞ, and
KðyÞ are tensors in the space spanned by ya (the “t − r”
plane). In GR, such a mode is pure gauge, and consequently
there is no dipolar radiation. In massive gravity, however,
the lack of gauge symmetry makes (7) physical, and its
dynamical evolution, governed by (3) and (4), leads to
dipole emission. In terms of the variables

X ≡ rðrarbpabÞ; Y ≡ raqa; Z≡ rK; ð8Þ

the equations of motion (3) and (4) for the mode (7) can be
reduced (as explained in Appendix A) to the system of
equations

ð□ − VÞ

0
B@

X

Y

Z

1
CA ¼

0
B@

ΣX

ΣY

ΣZ

1
CA; ð9Þ

where □ denotes the d’Alembertian of gab; the matrix
potential reads
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V ¼

0
BB@

μ2 − 10M
r3 þ 6

r2
24M−8r

r3 − 4ð15M2−9Mrþr2Þ
r4

− 2
r2 μ2 − 16M

r3 þ 6
r2

2ðr−3MÞ
r3

− 2
r2

4
r2 μ2 − 10M

r3 þ 4
r2

1
CCA;

ð10Þ

and ΣX, ΣY , and ;ΣZ are terms associated to the source,
whose general expression for arbitrary Tμν is reported in
Appendix A. In the case in which the source is a point
particle, these scale as ΣX;Y;Z ¼ ð1=μ2ÞΣ̃X;Y;Z, with Σ̃X;Y;Z

being regular as μ → 0 [see (15)]. Thus, the variables
ðX̃; Ỹ; Z̃Þ≡ μ2ðX; Y; ZÞ satisfy a system of partial differ-
ential equations (PDEs) that can be solved numerically and
are unproblematic as μ → 0.
The new massive degrees of freedom contribute to the

power radiated during astrophysical processes, like EMRI
coalescences. In flat space, far from the sources, there is a
well-defined notion of energy-momentum tensor of a
massive spin-2 field, which reads [40,41]

tμν ¼
1

32π
h∇μhαβ∇νhαβ −∇μh∇νhi; ð11Þ

and in terms of this, the power radiated at infinity is

Ė ¼ dE
dt

¼ −
Z
S
tμrνtμνdΩS; ð12Þ

where tμ ¼ ð∂tÞμ, and S denotes a very distant spherical shell
that encloses all sources. A dipolar wavewith frequencyΩ is
described by ðX; Y; ZÞ ¼ e−iΩtðXðrÞ; YðrÞ; ZðrÞÞ, and
evaluating (12) on shell gives

Ė ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − μ2

p
16πjΩj ½2μ2jY∞j2 þ 3Ω2jZ∞j2�; ð13Þ

whereY∞ andZ∞ are the asymptotic values ofYðrÞ andZðrÞ
(more details can be found in Appendix A). Equation (13)
holds so long as μ < jΩj. For graviton masses μ > jΩj, the
energy emission of the massive modes is exponentially
suppressed. The excitation of Y∞ and Z∞ depends on the
details of the source.
Finally, it is illustrative to explore the effect of dipole

waves on nearby geodesics at infinity. Consider an inertial
observer at distance d from a source, and associate to its
worldline a parallely propagated frame [42]. In such a
frame, and to leading order in 1=d, the components of the
geodesic deviation vector ðS1; S2Þ transverse to the direc-
tion of wave propagation of a dipole mode read

�
S1
S2

�
¼

0
B@Sð0Þ1 − jY∞j

2d ðμΩÞ2
ffiffiffiffi
3
2π

q
½Sð0Þ3 cosðΩτ−φ0Þ�

Sð0Þ2 − jY∞j
2d ðμΩÞ2

ffiffiffiffi
3
2π

q
½Sð0Þ3 sinðΩτ−φ0Þ�

1
CA; ð14Þ

where Sð0Þi and φ0 are constants defined in Appendix A and
τ is the proper time of the inertial observer. The relative
motion of free-falling test particles immersed on a GW is,
therefore, different from the usual one GR. In particular, a
free-falling observer would see that free-falling test par-
ticles move in circles warping the direction of wave
propagation. This motion, in addition, exhibits some
longitudinal oscillation, even though there is no relative
time dilation. We notice that a massive spin-2 wave would,
in general, exhibit more polarizations than those described
in (14), but here we focus on the waves that are excited by
an EMRI. See Appendix A for more details.

IV. DIPOLE RADIATION FROM EMRIs

We now focus on astrophysical scenarios provided by
EMRIs, in which the source terms in Eq. (9) describe a
point particle of mass mp in circular motion around a
Schwarzschild BH, with orbital radius rp. For the dipole
m ¼ 1 mode, the GW frequency is then fixed by the
geodesic equation to be Ωp ¼ ðMr−3p Þ1=2, and the source
terms in (9) read

0
B@

ΣX

ΣY

ΣZ

1
CA ¼ e−iΩpt

mp=M2

r2pμ2

0
B@

Σ̃XðrÞ
Σ̃YðrÞ
Σ̃ZðrÞ

1
CA; ð15Þ

where Σ̃X;Y;ZðrÞ are dimensionless distributions that depend
smoothly on μ and whose explicit form can be found in the
Appendix B. We solved this problem numerically with two
independent codes, one in the frequency and the other in
the time domain, based on methods employed in Refs. [43–
45]. In both codes, the point particle is approximated by a
smoothed distribution δðr − rpÞ ¼ exp½−ðr − rpÞ2=ð2σ2Þ�=
ð ffiffiffiffiffiffi

2π
p

σÞ, where the value of σ is chosen to guarantee
numerical convergence of the solution. The two codes

FIG. 1. Energy flux emitted in the dominant dipolar mode l ¼
m ¼ 1 as a function of the graviton massMμ, for different radius
rp of the particle in circular orbit. The mass ratio q≡mp=M. For
small Mμ, the flux follows a dipolar behavior given by Eq. (16).
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agree within the numerical error when varying σ, the
extraction radius of the fields, and the location of the BH
horizon.Our results confirmand extend those ofRef. [41], by
pushing them to the limits with two independent codes.
Our findings are summarized in Fig. 1, showing the

energy flux carried by the dipolar mode as a function of the
graviton massMμ for different orbital radii rp. For fixed rp,
the energy flux peaks around Mμ ∼ ðM=rpÞ3=2 and van-

ishes for μ > jΩj. Formally, the wave functions X; Y; Z ∼
ei

ffiffiffiffiffiffiffiffiffiffi
Ω2−μ2

p
r at large distances, so large μ fluctuations are not

propagating waves but are exponentially suppressed
instead. For μ < jΩj, the flux is nonzero, and the dipolar
sector is excited.
The numerical solution is challenging to obtain at very

small μ [see Eq. (15)]: the source term diverges as μ → 0,
so one needs to work with high arithmetic precision. In
addition to that, the convergence of the asymptotic values
of the field Y∞, Z∞ with the extraction radius becomes
slower. Nonetheless, our results are consistent with a finite
flux in the μ → 0 limit. Numerically, we find that Y∞μ goes
to zero, while Z∞ is the quantity that contributes to the
nonzero flux at graviton masses. We obtain a behavior
consistent with a dipolar scaling given by

Ėl¼1 ≈
μ→0

10−2
q2M4

r4p
; ð16Þ

where the mass ratio q≡mp=M. This is only an approxi-
mation to our results, valid for μ ≪ Ω and rp ≫ M. In other
words, the μ → 0 limit gives rise to important dipolar
radiation, but to negligible dispersion as the graviton
propagates. This is a crucial point of our results.

V. BOUNDS ON THE GRAVITON MASS

For small Mμ, and including the dominant quadrupolar
term ĖN ¼ 32=5q2ðM=rpÞ5, we can express the total
luminosity as (Θ is the Heaviside function)

Ė ¼ ĖN

�
1þ B

rp
M

�
; ð17Þ

B ¼ 2 × 10−3ΘðΩ − μÞ: ð18Þ

There are a few interesting aspects of this result. The first is
that the dipolar contribution competes with the next-to-
leading-order correction to the Newtonian result, which
takes the form Ė ¼ ĖNð1 − 1247Ω2r2p=336Þ [46]. Already
for rp ≈ 40M, the dipolar term in massive gravity is of the
same order and opposite sign.
Expression (18) is in the form used by Ref. [47] to bound

dipolar emission. LISA can bound B≲ 10−5 or better for
EMRIs, thus being able to exclude practically all the
interesting region of parameter space μ < jΩj. From

Fig. 1, a rough estimate is then that LISA-type instruments
would excludeMμ ≲ 0.03, 0.01 for systems which enter the
LISA band at rp ¼ 10M; 20M, respectively. In other words,

the constraint for EMRIs is of order μ≳ 10−15
15M⊙
M eV.

Current LVK constraints, however, imply that μ ≲ 1.27 ×
10−23 eV [20] and are based on the same assumption (that
BHs belong to the vacuum GR family), together with
dispersion-relation bounds. In other words, LISA has the
ability to exclude massive gravity altogether, or then force
one to go beyond the Ricci-flat paradigm when studying
massive gravity from aGWperspective. Note that the central
BH for an EMRI is expected to be spinning, while our results
only describe nonspinning geometries, but we do not expect
any qualitative difference with respect to the above.
The extrapolation of our results to nearly equal-mass

systems requires moving away from the regime of validity
of result (18). In GR, the extrapolation yields sensible
results when the mass ratio q is promoted to a symmetric
mass ratio, q → q=ð1þ qÞ2 [48,49]. For dipolar contribu-
tions, a geometric correction term 1 − q appears when
computing the source; see the Appendix B for details.
Thus, we expect Ė ¼ ĖNð1þ Bð1 − qÞ2 rp

MÞ. The extrapo-
lation is not unique, and full numerical relativity simu-
lations are required in this regime, but we can take it as a
rough guide. LVK can constrain Bð1 − qÞ2 ≲ 10−3 for
stellar-like BHs [47] and is thus below the threshold of
placing constraints for GW150914-like systems (q is too
close to unity). Note also that LVK constrains B≲ 10−5

from the GW170817 event [50], but it involves neutron
stars and therefore is outside of our (vacuum) framework.
However, the Einstein Telescope (ET) promises far better
forecasts. Figure 2 shows the constraints on B that can be

FIG. 2. 1 − σ uncertainty on the dipole parameter B inferred by
ET observations of BH binaries with total detector-frame mass
Mtot, at d ¼ 500 Mpc from the detector, assuming average
orientation. Left, center, and right panels show results for mass
ratio q ¼ 0.9, 0.5, and 0.2, while colored dots represent binaries
with different spin χ1;2 configurations. For all calculations, we
assumed two aligned L-shaped Einstein Telescope detectors in
their ET-D configuration [56].
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inferred by ET through GW observations of comparable
mass sources on circular orbits with different configura-
tions. We compute errors using a Fisher matrix approach
[51,52], adopting for the GW signals a TaylorF2 waveform
model describing the inspiral phase of the binary in the
frequency domain [53–55] (technical details on the error
calculations are discussed in the Appendix C). The uncer-
tainties strongly depend on the mass components, which
determine the timescale of the binary evolution in the
detector band. While errors on B deteriorate as q → 1, we
expect for q≲ 0.5 and Mtot ≲ 100M⊙ that ET can deter-
mine B≲ 10−4, placing constraints on massive gravity
competitive with those inferred by LISA.

VI. DISCUSSION

Dipolar emission of GWs in theories of massive gravity
is a compelling mechanism to bound the graviton mass or
to exclude the theory altogether. We find, with a fully
relativistic analysis, that dipolar emission is so strong that it
can possibly rule out theories of massive gravity. To realize
completely the potential of this analysis, a proper handling
of extreme-mass-ratio systems needs to be obtained. Our
conclusions are based on the analysis of Ref. [47], but
EMRIs are complex systems, and their understanding is far
from being under control. Likewise, our results suggest that
Earth-based experiments may impose equally impressive
constraints, but a proper data analysis with the full inspiral-
merger-ringdown should be studied.
We assume that Tμν is conserved, but it suffices that

∇μTμν → 0 as μ → 0 [9]. However, steering away from this
condition would also change the motion of point particles,
invalidating dispersion-relation-based bounds. Similarly, it
can be argued that the perturbative approach in powers of
mass ratio q may not be well defined at very small μ (a
strong coupling problem). The structure of higher-order
terms depends on the particular nonlinear completion of the
theory. Nevertheless, (i) our bounds refer to masses Mμ
which can be much larger than q, leading one to suspect
that for some theories there is a well-defined perturbative
hierarchy, and (ii) failure to converge at small Mμ would
again imply that wave generation cannot be assumed to
occur as in GR, invalidating also previous LVK bounds. A
main goal in our work is to show that sources that resemble
those of GR (their structure and motion) lead to a massive
GW spectrum that is incompatible with observations. It
should be noted also that in some massive gravity theories
Schwarzschild BHs are afflicted by a linear instability
mechanism [18,57,58]. Nevertheless, the instability acts on
a spherically symmetric mode and is expected to play no
important role in the dynamics of the dipolar mode. In fact,
its nonlinear development—in a specific theory—leads to a
hairy BH, which can be made arbitrarily close to a
Schwarzschild BH, where backreaction is never important
[18,59,60]. We do not expect this mechanism to change in
any relevant way the bounds we derived for the dipolar

mode. In addition, the instability is long wavelength in
nature, and its timescale is pushed to large values for small
enough graviton mass. Dipolar quasinormal modes and
bound states of BHs in such theories were computed in
Ref. [18], but their excitation amplitude is yet to be
calculated.
Our results are very general, and constrain any theory of

massive gravity admitting a Schwarzschild (and possibly
Kerr) background. Arbitrarily small graviton masses are not
allowed, as they would lead to GW emission that can be
ruled out by observations. There are two important lessons
which should be learned:
(a) The dynamical content of the theory—beyond simple

dispersion relations—is important. We find that most
of the emission takes place in a dipolar mode which is
absent in vacuum GR and which requires the relativ-
istic calculation of fluxes and metric perturbations.

(b) Constraints based on dispersion relations are oblivious
to wave generation; they assume that GWs are
generated “as in vacuum General Relativity” and then
change the propagation properties of the waves.
However, we show that the assumption that the
background is the same as General Relativity leads
to a nonperturbative behavior at small graviton masses
and consequent strong lower bounds on its mass.

To evade the bounds we establish here, one needs to
change completely the background and/or the inertial
motion of fields. Thus, wave generation will radically
depart from vacuum General Relativity, rendering an
analysis on dispersion relation invalid. In summary, GW-
based constraints on the mass of the graviton should be
based on the full dynamical equations rather than just on
dispersion relation arguments. Our results highlight the
need to perform full numerical relativity simulations of
theories beyond GR.
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APPENDIX A: DIPOLAR MODES

This section contains the additional details about dipolar
modes that are referred to in the main text. First, we
consider aspects related to the master wave equations and
then discuss in more detail the asymptotic energy flux and
geodesic deviation by dipolar waves.

1. Equations of motion

A dipolar (even) gravitational mode is described by a
metric fluctuation of the form1

h ¼ pabYðθÞdyadyb þ 2qaZAðθÞdyadθA
þ r2KUABðθÞdθAdθB; ðA1Þ

where pab, qa, and K are tensors in the “t − r” plane (in
arbitrary coordinates) and YðθÞ, ZAðθÞ, and UABðθÞ are the
usual (even) tensor harmonics with harmonic number l ¼ 1
[36]. Plugging (A1) into the equations of motion (3) and (4)
and using the orthogonality properties of tensor harmonics
[36], the angular dependence is factored out, and the
equations become a system of coupled linear PDEs on
the “t − r” plane. More precisely, Eq. (3) gives the first-
order PDEs on the “t − r” plane

Σ ¼ pa
a þ 2K; ðA2Þ

0 ¼ r−2Daðr2pa
bÞ −

2

r
DbðrKÞ −Dbpc

c −
2

r2
qb; ðA3Þ

0 ¼ r−2Daðr2qaÞ − K − pc
c; ðA4Þ

where Da is the covariant derivative of gab, while the
dynamical equation (4) gives (we recall that f ¼ 1–2M=r)

Σab ¼ −□pab −
2

r
DdrDdpab þ

4

r2
pcðbDaÞrDcrþ

�
2

r2
− f00 þ μ2

�
pab þ f00pc

cgab

−
8

r3
qðaDbÞrþ

�
2
f0

r
gab −

4

r2
DarDbr

�
K; ðA5Þ

Σa ¼ −□qa þ
�
f þ 1

r2
þ μ2

�
qa þ

4

r2
qbDbrDar −

2

r
pabDbrþ 2

Dar
r

K; ðA6Þ

ΣL ¼ −Daðr2DaKÞ þ ð4f þ μ2r2ÞK þ 4

r
qaDar − 2pabDarDbrþ rf0pa

a; ðA7Þ

where a prime denotes a radial derivative, and the source terms Σ, Σab, Σa, and ΣL are given by

Σ≡ −
16π

3μ2

Z
dΩȲT; Σab ≡

Z
dΩȲSab; Σa ≡ 1

2

Z
dΩZ̄AΩABSaB; ΣL ≡ 1

2

Z
dΩŪABSCDΩACΩBD; ðA8Þ

where T is the trace of the energy-momentum tensor Tμν, and Sμν is given by Eq. (5). To obtain the wave equations (9) for
the metric variables X, Y, and Z introduced in Eq. (8), consider the following combinations of source terms:

ΣX ≡ −rðrarbΣabÞ þ 2rf0raDaΣþ r

�
ðff0Þ0 − 1

2
ðf0Þ2

�
Σ; ðA9Þ

ΣY ≡ −raΣa þ f0Σ; ðA10Þ

ΣZ ≡ −r−1ΣL þ f0Σ: ðA11Þ

Then, using the equations of motion to write Σab, Σa, Σ, and ΣL in terms of the metric fluctuation and its derivatives [that is,
the right-hand sides of (A2)–(A7)], one obtains precisely the system of equations (9), relating the source terms ΣX, ΣY , and
ΣZ to the metric fluctuations X, Y, and Z.

1Odd dipolar modes are not relevant for the class of sources we are concerned with in this work.
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The above derivation is valid for any conserved energy-momentum tensor Tμν. Here, we are interested in a point particle
source of mass mp which follows a circular geodesic of radius rp at the equator. The specific energy E, angular momentum
L per unit rest mass, and orbital frequency Ωp read

E ¼
�
1 −

3M
rp

�
−1=2

�
1 −

2M
rp

�
; L ¼

�
1 −

3M
rp

�
−1=2

ðMrpÞ1=2; Ωp ¼ ðMr−3p Þ1=2; ðA12Þ

while the particle’s 4-velocity is uμ ¼ ð−E; 0; 0; LÞ and its energy-momentum tensor reads

Tμν ¼ mpfðrpÞ
r2pE

uμuνδðr − rpÞδðθ − π=2Þδðϕ −ΩptÞ:

Using this energy-momentum tensor, the source terms (ΣX, ΣY , and ΣZ) can be evaluated straightforwardly and reduce to

ΣX ¼ e−iΩpt
mp

r2pμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðrp − 3MÞ

3rp

s
½X0δðr − rpÞ þ X1ðrÞδ0ðr − rpÞ þ X 2ðrÞδ00ðr − rpÞ�; ðA13Þ

ΣY ¼ e−iΩpt
mp

r2pμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðrp − 3MÞ

3rp

s
½Y0δðr − rpÞ þ Y1ðrÞδ0ðr − rpÞ�; ðA14Þ

ΣZ ¼ e−iΩpt
mp

r2pμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðrp − 3MÞ

3rp

s
½Z0δðr − rpÞ þ Z1ðrÞδ0ðr − rpÞ�; ðA15Þ

where

X0 ¼ −
40M2

r3p
− 8μ2M þ 16M

r2p
þ 4μ2rp; X1ðrÞ ¼

20Mð2M − rÞ
r2

; X2ðrÞ ¼ −
4ðr − 2MÞ2

r
; ðA16Þ

Y0 ¼
4ðrp − 4MÞ

r2p
; Y1ðrÞ ¼

8M
r

− 4; ðA17Þ

Z0 ¼ −
8M
r2p

−
6μ2Mrp
3M − rp

þ 4μ2rp þ
4

rp
; Z1ðrÞ ¼

8M
r

− 4: ðA18Þ

2. Energy flux and geodesic deviation at infinity

Far from the sources, the solution for ðX; Y; ZÞ of Eq. (9) describing outgoing waves reads

X ¼ e
−iΩptþir

ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

−i
Mðμ2−2Ω2pÞffiffiffiffiffiffiffiffi

Ω2p−μ
2

p log ðr=2MÞ�
X∞ þ

X∞
i¼1

Xir−i
�
; ðA19Þ

Y ¼ e
−iΩptþir

ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

−i
Mðμ2−2Ω2pÞffiffiffiffiffiffiffiffi

Ω2p−μ
2

p log ðr=2MÞ�
Y∞ þ

X∞
i¼1

Yir−i
�
; ðA20Þ

Z ¼ e
−iΩptþir

ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

−i
Mðμ2−2Ω2pÞffiffiffiffiffiffiffiffi

Ω2p−μ
2

p log ðr=2MÞ�
Z∞ þ

X∞
i¼1

Zir−i
�
; ðA21Þ
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where the only free parameters are the amplitudes
ðX∞; Y∞; Z∞Þ, while the coefficients ðXi; Yi; ZiÞ are fixed
in terms of the latter by requiring that Eq. (9) hold order by
order. Imposing the remaining equations of motion (3) and

(4) fixes X∞ ¼ − 2Ω2
p

μ2
Z∞, while Y∞ and Z∞ remain

independent. Finally, plugging this solution into the
energy-flux formula (12) gives the expression in Eq. (13).
It is also possible to compute the geodesic deviation

induced by such dipolar waves. Let ðt; x; y; zÞ be almost

inertial coordinates at some large distance d from the
source and for simplicity fix their origin at the axis defined
by ∂ϕ (the fixed points of ∂ϕ) so the orbital plane of the
particle is perpendicular to the observer’s line of sight that
points toward the source. We can always align the z axis
with the (positive sense of the) axis of ∂ϕ so that the ðx; yÞ
plane is “parallel” to the orbital plane. In these coordinates,
and to leading order in 1=d, the wave is described by

hμν ¼
Y∞

2d

ffiffiffiffiffiffi
3

2π

r
0
BBBBBBBBB@

0

ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

Ωp

i
ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

Ωp
0ffiffiffiffiffiffiffiffiffiffi

Ω2
p−μ2

p
Ωp

0 0 −1

i
ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

Ωp
0 0 −i

0 −1 −i 0

1
CCCCCCCCCA
eið−Ωptþz

ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

þd
ffiffiffiffiffiffiffiffiffiffi
Ω2

p−μ2
p

Þ: ðA22Þ

As one would expect, we obtain a wave that propagates
outwards along the z axis. It induces some rotation in the
transverse ðx; yÞ plane, while it is polarized in the ðx; zÞ and
ðy; zÞ planes. The amplitude that governs the leading order
in 1=d (i.e., the plane wave behavior) is Y∞, while Z∞ is
relevant only for subleading terms Oðd−2Þ. However, both
Y∞ and Z∞ contribute to the energy flux per unit of solid
angle [see Eq. (13) of the main text]. Now, we can use (the
real part of) (A22) to obtain the effect of the wave on nearby
geodesics. Consider a free-falling observer with 4-velocity
uμ, and let eμA ¼ ðeμ0; eμ1; eμ2; eμ3Þ ¼ ðuμ; eμi Þ be a parallely
propagated orthonormal frame along the observer’s world-
line; that is, it satisfies

uμ∇μeνA ¼ 0; uμe
μ
i ¼ 0; eiμe

μ
j ¼ δij: ðA23Þ

Then, the geodesic deviation equation reads [42]

d2SA
dτ2

¼ RA00BSB; ðA24Þ

where τ is the observer’s proper time and SA and RABCD are
the components of the (infinitesimal) deviation vector and
Riemann tensor relative to the frame eA. Assume now that
uμ is initially at the origin of our almost inertial coordinates
ðt; x; y; zÞ at infinity introduced above. Then, eA ≈
ð∂t; ∂x; ∂y; ∂zÞ and τ ≈ t, so one can solve (A24) by working
perturbatively on the amplitude Y∞. Choosing the integra-
tion constants such that the nearby geodesics would be at
rest (relative to each other) when there is no wave
(Y∞ ¼ 0), we obtain the solution

S0 ¼ 0; ðA25Þ

S1 ¼ Sð0Þ1 −
jY∞j
2d

�
μ

Ωp

�
2

ffiffiffiffiffiffi
3

2π

r
½Sð0Þ3 cos ðΩpτ − φ0Þ�; ðA26Þ

S2 ¼ Sð0Þ2 −
jY∞j
2d

�
μ

Ωp

�
2

ffiffiffiffiffiffi
3

2π

r
½Sð0Þ3 sin ðΩpτ − φ0Þ�; ðA27Þ

S3 ¼ Sð0Þ3 −
jY∞j
2d

�
μ

Ωp

�
2

ffiffiffiffiffiffi
3

2π

r
½Sð0Þ1 cos ðΩpτ − φ0Þ þ Sð0Þ2 sin ðΩpτ − φ0Þ�; ðA28Þ
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where the phase φ0 is given by

φ0 ¼ ArgðY∞Þ þ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

p − μ2
q

: ðA29Þ

That is, the free-falling observer would see that close-by
free-falling test particles move in circles warping the
direction of wave propagation. This motion, in addition,
exhibits some longitudinal oscillation, too, even though
there is no relative time dilation, in the sense that S0 ¼ 0
along the observer’s worldline.

APPENDIX B: SOURCE TERMS FOR CIRCULAR
NEWTONIAN ORBITS

Here, we work out the source terms not for a black hole
background but for two pointlike particles in a Minkowski
background. We wish to show that the dipolar source
vanishes for equal-mass systems and that it scales as 1 − q
for q ∼ 1 [hence, fluxes scale as ð1 − qÞ2 in this regime].
The energy-momentum tensor in the nonrelativistic limit
reads

Tμν ¼
�
m1

r21
δðr − r1Þδðθ − π=2Þδðϕ −Ω0tÞ þ

m2

r22
δðr − r2Þδðθ − π=2Þδðϕþ π −Ω0tÞ

�
δtμδ

t
ν; ðB1Þ

where

r1 ¼
m2

m1 þm2

r0; r2 ¼
m1

m1 þm2

r0; Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1 þm2

p
r−3=20 : ðB2Þ

Going through the definitions, we find the source terms

ΣX ¼ e−itΩ4

ffiffiffiffiffiffi
2π

3

r
ðm1 þm2ÞfX0;1δðr − r1Þ þ X0;2δðr − r2Þ þ X2;1ðrÞδ00ðr − r1Þ þ X2;2ðrÞδ00ðr − r2Þg ðB3Þ

ΣY ¼ e−itΩ4

ffiffiffiffiffiffi
2π

3

r
ðm1 þm2ÞfY0;1δðr − r1Þ þ Y0;2δðr − r2Þ þ Y1;1δ

0ðr − r1Þ þ Y1;2δ
0ðr − r2Þg ðB4Þ

ΣZ ¼ e−itΩ4

ffiffiffiffiffiffi
2π

3

r
ðm1 þm2ÞfZ0;1δðr − r1Þ þ Z0;2δðr − r2Þ þ Z1;1δ

0ðr − r1Þ þ Z1;2δ
0ðr − r2Þg; ðB5Þ

where

X0;1 ¼ −
m2

m1r0
; X2;1ðrÞ ¼

m2rðm1 þm2Þ
μ2m2

1r
2
0

; ðB6Þ

Y0;1 ¼ −
m2ðm1 þm2Þ2

μ2m3
1r

3
0

; Y1;1 ¼
m2ðm1 þm2Þ

μ2m2
1r

2
0

; ðB7Þ

Z0;1 ¼ −
m2ðm2

1μ
2r20 þ ðm1 þm2Þ2Þ
μ2m3

1r
3
0

; Z1;1 ¼
m2ðm1 þm2Þ

μ2m2
1r

2
0

; ðB8Þ

while ðXi;2;Yi;2;Zi;2Þ¼ð−Xi;1ðm1↔m2Þ;−Yi;1ðm1↔m2Þ;
−Zi;1ðm1↔m2ÞÞ. It is now easy to see that indeed the
source terms can be combined whenm1 ∼m2 and scale like
∝ ð1 − qÞ as advertised.
APPENDIX C: PARAMETER ESTIMATION WITH

THE EINSTEIN TELESCOPE

We provide here technical details on the parameter
estimation performed to compute bounds on the dipolar

amplitude B, shown in Fig. 2 of the main text. We consider
binary BH events observed by two L-shaped Einstein
Telescope detectors, aligned with respect to each other.
We adopt the design ET-D sensitivity curve [56] for the
interferometer noise spectral density.
We model the GW signal emitted by the binary using a

TaylorF2 waveform model which describes the inspiral
evolution of the coalescence. In the frequency domain, the
GW signal is given by
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h̃ðfÞ ¼ CΩAPNeiψPPðfÞþiψppEðfÞ: ðC1Þ

The waveform phase is described by the post-Newtonian
(pN) expansion. In particular ψPP contains terms up to the
3.5PN order [53–55] and depends on (i) the binary chirp
mass M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5; (ii) the symmetric
mass ratio η ¼ m1m2=ðm1 þm2Þ2, with m1;2 being the
binary component masses; (iii) linear spin terms up to
3PN order through the (anti)symmetric combinations
of the individual spin components χs ¼ ðχ1 þ χ2Þ=2 and
χa ¼ ðχ1 − χ2Þ=2, and quadratic spin corrections entering
at 2PN order. Modification of the GR baseline due to
massive gravity are included through the parametrized post-
Einsteinian (ppE) phase

ψppE ¼ −
3

224
η2=5ð1 − qÞ2BðMπfÞ−7=3; ðC2Þ

where q ¼ m1=m2 is the binary mass ratio [47]. We assume
the leading Newtonian term for the amplitude

APN ¼
ffiffiffiffiffi
5

24

r
M5=6f−7=6

π2=3dL
; ðC3Þ

where dL is the luminosity distance. The geometric factor
CΩ depends on the source position in the sky and on its
orientation with respect to the detector. We assume here
average orientation, such that CΩ ¼ 2=5. The overall
waveform model depends on seven parameters θ⃗ ¼ fM; η;
χs; χa; tc;ϕc; Bg, where ðtc;ϕcÞ are the time and phase at
the coalescence, both of which we fix to zero.
We study the detectability of the parameter B using a

Fisher-matrix approach [51], in which the posterior dis-
tribution of θ⃗ can be described by a multivariate Gaussian

distribution centered around the true values ⃗θ̂, with covari-
ance Σ ¼ Γ−1, where

Γij ¼
�
∂h
∂θi

���� ∂h
∂θj

	
θ⃗¼ ⃗θ̂

ðC4Þ

is the Fisher information matrix, and we have introduced
the scalar product over the detector noise spectral density
SnðfÞ between two waveforms h1;2 as

hh1jh2i ¼ 4ℜ
Z

fmax

fmin

h̃1ðfÞh̃⋆2 ðfÞ
SnðfÞ

df; ðC5Þ

where ⋆ denotes complex conjugation. The integral (C5) is
performed assuming fmin ¼ 3 Hz, while fmax is given by
the innermost stable circular orbit (ISCO) frequency for the
Kerr metric including self-force corrections [52]. We have
varied the maximum frequency to assess the stability of our
calculations and computed errors on the parameter B
scaling fmax → fmax=2. Overall, we find very small
changes with respect to the results discussed in the main
text, but for the largest masses, we analyze, namely,
for Mtot ≳ 300M⊙.
The Fisher approach provides a reliable approximation of

the real posterior distribution for signals with large signal-to-
noise ratio, as those expected for the Einstein Telescope.
With the Fisher matrix in hand, the statistical error on the ith
parameter is given by the diagonal component σi ¼ Σ1=2

ii .
As a final remark, we note that, while the TaylorF2

approximant is able to capture the (early) inspiral evolution
of a binary coalescence, it is not suited to describe the late
stages before the merger. To bridge this gap, more
sophisticated waveform models need to get informed from
numerical relativity simulations, and perturbation theory, to
provide a full description of the merger and ringdown
phases [61]. Different choices for h̃ðfÞ would affect the
forecasts on the parameter’s errors. However, we expect
such a choice to not change dramatically bounds we infer
on B. Indeed, the pre-Newtonian dipole term introduced in
Eq. (C2) modifies the waveform in a low-frequency range
where the TaylorF2 approximant is indistinguishable from
other models [62].
Finally, we note that the use of the Fischer information

matrix calls for large signal-to-noise ratios, and there are
subtleties that should be taken into account when establish-
ing precise bounds [51].
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