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I derive a smooth and global Kruskal-Szekeres coordinate chart for the maximal extension of the
Reissner-Nordström geometry that provides a generalization to the standard inner and outer Kruskal-
Szekeres coordinates. The Kruskal-Szekeres diagram associated to this coordinate chart, whose existence is
an interesting fact in and of itself, provides a simple alternative to the conformal diagram of the spacetime.
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I. INTRODUCTION

The Reissner-Nordström geometry [1,2] describes the
gravitational field of an electrically charged spherically-
symmetric static black hole. The global causal structure of
this spacetime is considerably different from the causal
structure of Schwarzschild spacetime, which describes the
gravitational field of an electrically neutral spherically-
symmetric static black hole, and it is strongly dependent
on the relative strength of its gravitational mass m and its
electric charge q.1 A Reissner-Nordström black hole with
m2 > q2 is called nonextremal and, instead of a spacelike
curvature singularity hidden behind a single horizon, it
features a timelike curvature singularity concealed behind
two separate horizons. A Reissner-Nordström black hole
with m2 ¼ q2 is called extremal and it features a timelike
curvature singularity concealed behind a single horizon. In
both cases, given the timelike nature of the singularity, a
massive observer falling inside the black hole is not bound to
end their wordline at the singularity, and so spacetime must
continue in the future of the singularity. In fact, the conformal
diagram of the maximal extension of both the extremal and
the nonextremal Reissner-Nordström geometry consists of
an infinitely periodic tower of asymptotically flat exterior
regions connected to each other by black hole interiors.
Focusing for the moment on the nonextremal case,

several coordinate charts can be used to cover part or
the entirety of the maximal extension of the nonextremal
Reissner-Nordström geometry. Some of the most renowned
ones, that will also be relevant in the following, are the
Eddington-Finkelstein coordinates [3,4], the Kruskal-
Szekeres coordinates [5,6] and the global coordinate
chart of the conformal diagrams defined in [7–11]. The
Eddington-Finkelstein charts use coordinates that are
adapted to either ingoing or outgoing null geodesics in
order to penetrate the horizons and simultaneously cover

one of the infinitely many asymptotically flat exterior
regions, the trapped region between the two horizons
separating the exterior region from the interior region,
and the region inside the inner horizon down to the
curvature singularity. They are not global coordinates,
but multiple ingoing and outgoing Eddington-Finkelstein
charts can be used to tessellate the complete spacetime of
the maximal extension of Reissner-Nordström geometry.
The Kruskal-Szekeres charts provide a different set of

horizon-penetrating coordinates. One way to derive them,
as I will do later on, is by studying the behavior of null
geodesics in Eddington-Finkelstein coordinates and to use
the results of this analysis to define new coordinates that
will be well behaved where the Eddington-Finkelstein
coordinates are not. This standard procedure results in
the construction of two coordinate charts: The outer and
the inner Kruskal-Szekeres charts. The former is able to
simultaneously cover one of the infinitely many asymp-
totically flat exterior regions, the trapped and antitrapped
regions between the two horizons respectively in the future
and in the past of this exterior region, and its mirror
asymptotic region. The latter is able to simultaneously
cover one of the infinitely many interior regions containing
a curvature singularity, the antitrapped and trapped regions
between the two horizons respectively in the future and in
the past of this interior region, and its mirror interior region.
Differently from the Kruskal-Szekeres coordinates in the
maximal extension of Schwarzschild spacetime, where they
provide a global coordinate chart, the standard Kruskal-
Szekeres coordinate charts in nonextremal Reissner-
Nordström spacetime are adapted to a specific horizon
and fail to cover any region beyond the other horizon.
The coordinates that are used to draw the conformal

diagram of the maximal extension of nonextremal
Reissner-Nordström geometry provide a global chart for
the spacetime. However, differently from the coordinate
charts already mentioned, which are all smooth ðC∞Þ,
the coordinates of the conformal diagram only provide a
C2 chart.

1Planck units c ¼ G ¼ ℏ ¼ 1 will be used throughout the
article.
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In this article I derive a smooth Kruskal-Szekeres
coordinate chart that covers the complete maximal exten-
sion of the nonextremal Reissner-Nordström geometry.
This coordinate chart can be considered as a smooth
generalization of the C1 global Kruskal-Szekeres coordi-
nate chart derived in [12]. The same construction can be
carried out also in the extremal case, thus defining a smooth
Kruskal-Szekeres coordinate chart that covers the complete
maximal extension of the extremal Reissner-Nordström
geometry. The only other smooth (analytic in fact) and
global coordinate chart for the maximal extension of both
extremal and nonextremal Reissner-Nordström geometry is
the (Israel-)Klösch-Strobl coordinate chart2 [13,15].
The global Kruskal-Szekeres coordinate chart I derive

here is not specific to the Reissner-Nordström spacetime
but it can be straightforwardly generalized to any static
spherically symmetric black hole spacetime whose geom-
etry include multiple horizons. It has indeed been recently
used in [16] to draw the global Kruskal-Szekeres diagram
of the geometry of a quantum modification of the
Oppenheimer-Snyder model.
The article is structured in the following way. In Sec. II

I briefly review the nonextremal Reissner-Nordström geom-
etry and its causal structure, and I introduce the ingoing and
outgoing Eddington-Finkelstein coordinate charts. Inner
and outer Kruskal-Szekeres coordinate charts are derived
in Sec. III. The smooth and global Kruskal-Szekeres coor-
dinate charts for the nonextremal and the extremal Reissner-
Nordströmgeometry arederived respectively in Sec. IVand in
Sec. V. Finally, I make a few closing remarks in Sec. VI.

II. THE REISSNER-NORDSTRÖM GEOMETRY

The Reissner-Nordström metric reads

ds2 ¼ −hðrÞdt2 þ h−1ðrÞdr2 þ r2dΩ2; ð1Þ

hðrÞ ¼ 1 −
2m
r

þ q2

r2
; ð2Þ

where m and q are the mass and the electric charge of the
black hole, dΩ2 ¼ dθ2 þ sin2ðθÞdϕ2 is the metric of a
unit two-sphere and ðt; r; θ;ϕÞ is the spherical coordinate
system adapted to static observers moving along the
asymptotically timelike Killing vector field ∂t. I will focus
on the nonextremal case of m2 > q2 up to Sec. V, where
instead the extremal case will be discussed.

The maximal extension of this geometry, whose con-
formal diagram is reported in Fig. 1, is well known and
studied in the literature. For m2 > q2, the function hðrÞ has
two zeros r� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − q2

p
, which result in two differ-

ent horizons of the black hole: an outer horizon at r ¼ rþ
and an inner horizon at r ¼ r−. The killing vector field ∂t is
timelike for r > rþ and r < r−, spacelike for r− < r < rþ
and null for r ¼ r�. Inside the inner horizon there is a
timelike curvature singularity at r ¼ 0. Differently from
Schwarzschild spacetime, an observer that falls inside the
outer horizon is not bound to hit the curvature singularity
but can instead exit the black hole interior into a second
asymptotic region in the future of the first one. In fact, there
is an infinite tower of asymptotically flat exterior regions
connected to each other by black hole interiors. The
spacetime can then be subdivided in different regions
separated by the horizons as shown in Fig. 1:

FIG. 1. Conformal diagram of the maximal extension of
nonextremal Reissner-Nordström spacetime.

2The Israel coordinate chart firstly introduced in [13] provides
a not widely known analytic and global covering of the maximal
extension of the Schwarzschild geometry. The same coordinate
chart was later rediscovered by Pajerski and Newman in [14]
and by Klösch and Strobl in [15]. In [13] Israel also provides
a generalization of this chart to the nonextremal Reissner-
Nordström geometry. However, as explained in [15], this coor-
dinate chart does not provide a global covering of the maximal
extension of nonextremal Reissner-Nordström geometry.
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Asymptotic regions Ai where r > rþ, innermost regions Ci
where r < r−, and trapped or anti-trapped regions Bi where
r− < r < rþ. The index i takes values in Z.
The static coordinate system ðt; r; θ;ϕÞ can separately

cover each one of the infinitely many regions Ai, Bi, andCi,
with the time coordinate t going to infinity on every
horizon. Horizon-penetrating coordinates can be con-
structed introducing the tortoise coordinate r� satisfying

dr� ¼ dr
hðrÞ : ð3Þ

The solution r�ðrÞ of this equation is

r� ¼ rþ 1

2κþ
log

���� r
rþ

− 1

����þ 1

2κ−
log

���� r
r−

− 1

����þ C; ð4Þ

where C is a constant of integration and

κ� ¼ � rþ − r−
2r2�

ð5Þ

is the surface gravity associated to the horizon r�. It is then
possible to introduce the retarded and advanced time null
coordinates u and v by

u ¼ t − r�; v ¼ tþ r�: ð6Þ

The coordinate chart ðv; r; θ;ϕÞ is known as ingoing
Eddington-Finkelstein chart and the Reissner-Nordström
metric in these coordinates reads

ds2 ¼ −hðrÞdv2 þ 2dvdrþ r2dΩ2: ð7Þ

The advanced time coordinate v is well behaved on all the
horizons that are represented as 45° lines in the diagram
in Fig. 1, but it goes to infinity on the others. The ingoing
Eddington-Finkelstein coordinate system is then able to
separately cover all the spacetime regions between two
consecutive −45° lines in Fig. 1. Namely, it can be used
to simultaneously cover regions A1, B1, and C1, or regions
A2, B2, and C2, etc.
Analogously, the retarded time coordinate u is well

behaved on all −45° line horizons and it goes to infinity
on the others. Thus, the outgoing Eddington-Finkelstein
coordinates ðu; r; θ;ϕÞ separately covers all the spacetime
regions between two consecutive 45° lines in Fig. 1. E.g., it
can be used to simultaneously cover regions A1, B2, andC3,
or regions A4, B3, and C2, etc.
Interestingly, although the coordinates u and v are

separately well defined on several horizons, one or the
other is ill defined on every given horizon, and thus the
null coordinate system ðu; v; θ;ϕÞ does not improve
the spacetime coverage of the static coordinate system
ðt; r; θ;ϕÞ. The Reissner-Nordström metric in the double-
null coordinate system ðu; v; θ;ϕÞ reads

ds2 ¼ −hðrÞdudvþ r2dΩ2; ð8Þ

where r ¼ rðu; vÞ is implicitly defined by

r�ðrÞ ¼ v − u
2

: ð9Þ

III. INNER AND OUTER KRUSKAL-SZEKERES
COORDINATES

A different set of horizon-penetrating coordinates is the
Kruskal-Szekeres coordinates. One way to derive them,
that will prove useful also for the global Kruskal-Szekeres
chart, is to study the behavior of null geodesics in
Eddington-Finkelstein coordinates.
Consider then the spacetime regions A2, B2 and C2 in

Fig. 1 in ingoing Eddington-Finkelstein coordinates. Given
the metric in Eq. (7), radial null geodesics must satisfy the
equations

hðrÞv̇2 − 2v̇ ṙ ¼ 0 ð10Þ

(normalization of 4-velocity) and

hðrÞv̇ − ṙ ¼ E ð11Þ

(due to v-translation invariance), where the overdot means
differentiation with respect to an affine parameter λ and E
is the constant of motion associated with the v-translation
invariance. A first set of solutions is given by geodesics
satisfying

v̇ ¼ 0; ṙ ¼ −E; ð12Þ

that is

vðλÞ ¼ v0; rðλÞ ¼ r0 − Eλ: ð13Þ

For E > 0 these solutions, valid for λ∈ ð−∞; r0=EÞ,
describe future-oriented ingoing radial null geodesics
starting out at past null infinity in A2, diagonally crossing
regions A2, B2, C2 and then finally hitting the r ¼ 0
curvature singularity at λ ¼ r0=E.
A different set of solutions, which by exclusion will

describe outgoing radial null geodesics, satisfy

v̇ ¼ 2E
hðrÞ ; ṙ ¼ E: ð14Þ

If we are interested in future-oriented geodesics, E must be
taken negative in B2 and positive in A2 and C2. Focusing
our attention on region B2, and taking E ¼ −1 and r0 ¼ 0
for simplicity, outgoing radial null geodesics are given by

rðλÞ ¼ −λ; λ∈ ð−rþ;−r−Þ; ð15Þ
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vðλÞ ¼ −2λþ 1

κþ
log

���� λrþ þ 1

����þ 1

κ−
log

���� λr− þ 1

����þK; ð16Þ

whereK is a constant identifying different geodesics. These
curves start at the past outer horizon between regions B2

and A1, that is r → rþ and v → −∞ for λ → ð−rþÞþ, cross
diagonally region B2 and end at the future inner horizon
between regions B2 and C3, that is r → r− and v → þ∞
(notice that κ− < 0) for λ → ð−r−Þ−. Naturally, these geo-
desics do not end at the two horizons, but the null
coordinate v is not able to follow them past the horizons.
This analysis perfectly displays the physics of ingoing

Eddington-Finkelstein coordinates. They are able to cover
the full range of the affine parameter of ingoing radial null
geodesics, as they are adapted to them, but they cover only
a finite interval λ∈ ð−rþ;−r−Þ of the affine parameter of
outgoing radial null geodesics in the full coordinate interval
v∈ ð−∞;þ∞Þ. The analysis itself however suggests a
solution to this issue: the affine parameter λ is the natural
coordinate to extend v beyond the horizons.
The same analysis performed in outgoing Eddington-

Finkelstein coordinates covering regions A1, B2, and C3

shows that future-oriented outgoing radial null geodesics
are given by

uðσÞ ¼ u0; rðσÞ ¼ r0 þ Eσ; ð17Þ

for affine parameter σ ∈ ð−∞;−r0=EÞ and E < 0, while
future-oriented ingoing radial null geodesics (E ¼ 1 and
r0 ¼ 0) in region B2 are given by

rðσÞ ¼ −σ; σ ∈ ð−rþ;−r−Þ; ð18Þ

uðσÞ ¼ 2σ −
1

κþ
log

���� σrþ þ 1

����− 1

κ−
log

���� σr− þ 1

����þK0; ð19Þ

where K0 is a constant identifying different geodesics.
Thus, only a finite interval σ ∈ ð−rþ;−r−Þ of the affine
parameter of ingoing radial null geodesics in region B2 is
covered in the full coordinate interval u∈ ð−∞;þ∞Þ and
the affine parameter σ is the natural coordinate to extend u
beyond the horizons.
So, starting from region B2 in the null coordinate system

ðu; v; θ;ϕÞ, in order to obtain coordinates that are well
defined on both the outer horizons, the discussion above
suggests to make the following change of coordinates
(keeping only the leading term near the outer horizon in
Eqs. (16) and (19):

uðUþÞ ¼ −
1

κþ
log jUþj; ð20Þ

vðVþÞ ¼
1

κþ
log jVþj; ð21Þ

where Uþ and Vþ are adimensional null coordinates such
that Uþ > 0 and Vþ > 0 in B2 and the position of the
outer horizons has been set to Uþ ¼ 0 and Vþ ¼ 0. The
nonextremal Reissner-Nordström metric in ðUþ; Vþ; θ;ϕÞ
coordinates, also known as outer Kruskal-Szekeres null
coordinates, reads

ds2 ¼ 1

κ2þ

hðrÞ
UþVþ

dUþdVþ þ r2dΩ2; ð22Þ

where r ¼ rðUþ; VþÞ is implicitly defined by Eqs. (9),
(20), and (21). It is straightforward to check that the metric
tensor is indeed well-defined on all outer horizons and that
the outer Kruskal-Szekeres null coordinates simultaneously
cover regions A1, B1, A2, and B2, going to infinity on all
inner horizons. These coordinates can in fact be used to
separately cover all the blocks of spacetime regions divided
by outer horizons such as A3, B3, A4, and B4, etc.
If we take the outer Kruskal-Szekeres null coordinates to

simultaneously cover regions A1, B1, A2, and B2, then the
transformation in Eqs. (20) and (21) separately gives a
well-defined diffeomorphism between ðUþ; Vþ; θ;ϕÞ and
ðu; v; θ;ϕÞ in each of the regions A1, B1, A2, and B2. Being
the null coordinate system ðu; v; θ;ϕÞ singular on the
horizons, also the transformation in Eqs. (20) and (21) is
ill defined there.
Analogously, in order to obtain coordinates that are well

defined on both the inner horizons, inner Kruskal-Szekeres
null coordinates ðU−; V−Þ should be defined as

uðU−Þ ¼ −
1

κ−
log jU− − 1j; ð23Þ

vðV−Þ ¼
1

κ−
log jV− − 1j; ð24Þ

where U− < 1 and V− < 1 in B2 and the position of the
inner horizons has been set to U− ¼ 1 and V− ¼ 1. The
nonextremal Reissner-Nordström metric in inner Kruskal-
Szekeres coordinates ðU−; V−; θ;ϕÞ reads

ds2 ¼ 1

κ2−

hðrÞ
ðU− − 1ÞðV− − 1Þ dU−dV− þ r2dΩ2; ð25Þ

where r¼ rðU−;V−Þ is implicitly defined by Eqs. (9), (23),
and (24). This metric tensor is well-defined on all inner
horizons and the inner Kruskal-Szekeres coordinates simul-
taneously cover regions B2, C2, B3, and C3 (or any block of
spacetime regions divided by inner horizons), going to
infinity on all outer horizons.
If we take the inner Kruskal-Szekeres null coordinates to

simultaneously cover regions B2, C2, B3, and C3, then
the transformation in Eqs. (23) and (24) separately gives a
well-defined diffeomorphism between ðU−; V−; θ;ϕÞ and
ðu; v; θ;ϕÞ in each of the regions B2, C2, B3, and C3.
Being the null coordinate system ðu; v; θ;ϕÞ singular on the
horizons, also the transformation in Eqs. (23) and (24) is ill
defined there.
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While very interesting coordinate systems, these
Kruskal-Szekeres coordinate charts for the nonextremal
Reissner-Nordström metric are not as convenient as the
Kruskal-Szekeres coordinates for the Schwarzschild met-
ric, as the latters provide a global covering of spacetime.
In the next Sec. I generalize the construction given in this
section in order to define a Kruskal-Szekeres coordinate
chart covering the complete maximal extension of the
nonextremal Reissner-Nordström geometry.

IV. GLOBAL KRUSKAL-SZEKERES CHART

Let me start with finding a Kruskal-Szekeres coordinate
system covering region B2 that is well behaved on both inner
and outer horizons. From the discussion in the previous
section, the natural choice for such coordinates would be

uðŪÞ ¼ −
1

κþ
log jŪj − 1

κ−
log jŪ − 1j; ð26Þ

vðV̄Þ ¼ 1

κþ
log jV̄j þ 1

κ−
log jV̄ − 1j; ð27Þ

where Ū and V̄ are adimensional null coordinates such that
the outer horizons have been set to Ū ¼ 0, V̄ ¼ 0, and the
inner horizons have been set to Ū ¼ 1, V̄ ¼ 1. It is however
straightforward to see that this is not a well-defined change
of coordinate, as the function vðV̄Þ [uðŪÞ] is not separately
monotonic in each of the regions

V̄ < 0 ðŪ < 0Þ;
0 < V̄ < 1 ð0 < Ū < 1Þ;
V̄ > 1 ðŪ > 1Þ:

Focusing on the behavior ofvðV̄Þ shown in the top panel of
Fig. 2 for a specific choice ofm and q, the problem is that the
logarithm associated to the outer horizon at V̄ ¼ 0 dominates
the asymptotic behavior of vðV̄Þ in both V̄ < 0 and V̄ > 1,
while it should only dominate in V̄ < 0, with the other
logarithmdominating the asymptotic behavior in V̄ > 1. This
issue can be taken care of with a smooth transition function
that interpolates between 0 and 1 in such a way that, when
multiplied to the logarithms, it ensures that their contribution
is only restricted to the desired regions.
Consider in fact the function

g↑ðXÞ ¼
FðXÞ

FðXÞ þ Fð1 − XÞ ; ð28Þ

with

FðXÞ ¼
�
0 X ≤ 0;

e−1=X X > 0:
ð29Þ

The function g↑ðXÞ is smooth, it satisfies g↑ðXÞ ¼ 0 for
X ≤ 0 and g↑ðXÞ ¼ 1 for X ≥ 1, and its derivatives of all
orders in X ¼ 0 and X ¼ 1 are vanishing. It is thus a

function that smoothly interpolates between 0 and 1 in the
interval X∈ ½0; 1�. A function that smoothly interpolates
between 1 and 0 in the interval X∈ ½0; 1� is given by

g↓ðXÞ ¼ 1 − g↑ðXÞ: ð30Þ

These functions, whose behavior is plotted in Fig. 3,
can be used to modify the change of coordinate in
Eqs. (26), (27) in the following way:

uðŨÞ ¼ −
1

κþ
g↓ðŨÞ log jŨj − 1

κ−
g↑ðŨÞ log jŨ − 1j; ð31Þ

vðṼÞ ¼ 1

κþ
g↓ðṼÞ log jṼj þ

1

κ−
g↑ðṼÞ log jṼ − 1j: ð32Þ

The function vðṼÞ [uðŨÞ] is now separately monotonic in
each of the regions

–4 –2 0 2 4
–20

–10

0

10

20

–4 – 2 0 2 4
–20

–10

0

10

20

–4 –2 0 2 4
–20

–10

0

10

20

FIG. 2. Plot of vðV̄Þ in Eq. (27) (top), vðṼÞ in Eq. (32)
(center), and vðVÞ in Eq. (36) (bottom) with m ¼ 1 and
q ¼ 0.98 (Planck units).
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Ṽ < 0 ðŨ < 0Þ;
0 < Ṽ < 1 ð0 < Ũ < 1Þ;
Ṽ > 1 ðŨ > 1Þ;

as it can be checked from the plot of vðṼÞ in the center
panel of Fig. 2. The nonextremal Reissner-Nordström
metric in these double-horizon-penetrating Kruskal-
Szekeres coordinates ðŨ; Ṽ; θ;ϕÞ reads

ds2 ¼ hðrÞf̃ðŨÞf̃ðṼÞdŨdṼ þ r2dΩ2; ð33Þ

where r ¼ rðŨ; ṼÞ is implicitly defined by Eqs. (9), (31),
and (32) and

f̃ðXÞ ¼ 1

κþ
g0↓ðXÞ log jXj þ

1

κþ

g↓ðXÞ
X

þ 1

κ−
g0↑ðXÞ log jX − 1j þ 1

κ−

g↑ðXÞ
X − 1

: ð34Þ

Exactly as in the case of outer and inner Kruskal-Szekeres
coordinates, it is easy to check that the metric tensor in
Eq. (33) is indeed well-defined on all outer and inner
horizons bounding region B2, and that this Kruskal-
Szekeres null coordinate chart simultaneously cover regions
A1, B1, A2, B2, C2, B3, andC3, going to infinity on the inner
horizons bounding B1 and the outer horizons bounding B3.
They can in fact be used to separately cover all the blocks of
spacetime regions such as the one just described.
The transformation in Eqs. (31) and (32) separately gives

a well-defined diffeomorphism between ðŨ; Ṽ; θ;ϕÞ and
ðu; v; θ;ϕÞ in each spacetime region covered by the latter,
even if an analytical expression for the inverse trans-
formation cannot be given. In fact, restricting our attention
to one of these regions, e.g., B2 ð0<Ũ<1;0<Ṽ <1Þ, the
strictly monotonicity of uðŨÞ and vðṼÞ in this region
ensures the invertibility of the transformation and the
inverse function theorem ensures the differentiability of
its inverse.3 Being the null coordinate system ðu; v; θ;ϕÞ
singular on the horizons, also the transformation in
Eqs. (31) and (32) is ill defined there.
We thus succeeded in constructing a Kruskal-Szekeres

coordinate chart able to simultaneously cover two succes-
sive outer and inner horizons. A Kruskal-Szekeres coor-
dinate chart able to simultaneously cover two successive
inner and outer horizons can be constructed analogously.
However, not much would be gained by this. What we want
to find now is a global Kruskal-Szekeres coordinate chart
covering the entirety of the maximal extension of nonex-
tremal Reissner-Nordström spacetime with its infinite
tower of asymptotic regions and black hole interiors.
The way to accomplish this is to use the same con-

struction used to cover two successive horizons multiple
times, in such a way to cover the infinite tower of horizons.
Consider in fact the following change of coordinates:

uðUÞ ¼

8>>><
>>>:

∶
− 1

κþ
g↑ðU; 2n − 1; 2nÞ log jU − 2nj − 1

κ−
g↓ðU; 2n − 1; 2nÞ log jU − ð2n − 1Þj 2n − 1 < U < 2n;

− 1
κþ
g↓ðU; 2n; 2nþ 1Þ log jU − 2nj − 1

κ−
g↑ðU; 2n; 2nþ 1Þ log jU − ð2nþ 1Þj 2n < U < 2nþ 1;

∶

ð35Þ

vðVÞ ¼

8>>><
>>>:

∶
1
κþ
g↑ðV; 2n − 1; 2nÞ log jV − 2nj þ 1

κ−
g↓ðV; 2n − 1; 2nÞ log jV − ð2n − 1Þj 2n − 1 < V < 2n;

1
κþ
g↓ðV; 2n; 2nþ 1Þ log jV − 2nj þ 1

κ−
g↑ðV; 2n; 2nþ 1Þ log jV − ð2nþ 1Þj 2n < V < 2nþ 1;

∶

ð36Þ

with n∈Z and g↑↓ðX; a; bÞ ¼ g↑↓ðX−ab−aÞ. The function vðVÞ is plotted in the bottom panel of Fig. 2. The position of the
horizons in the ðU;VÞ coordinates is arbitrary. I made the choice U ¼ n and V ¼ n for n∈Z.

–0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Plot of the functions g↑ðXÞ and g↓ðXÞ defined in
Eqs. (28) and (30).

3In the general case the statement of the inverse function theorem holds true only locally. However, for real functions of one real
variable the statement holds true globally.
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Defining the function fðXÞ in such a way that v0ðVÞ ¼
fðVÞ and u0ðUÞ ¼ −fðUÞ, the nonextremal Reissner-
Nordström metric in the Kruskal-Szekeres coordinates
ðU;V; θ;ϕÞ reads

ds2 ¼ hðrÞfðUÞfðVÞdUdV þ r2dΩ2; ð37Þ

where r ¼ rðU;VÞ is implicitly defined by Eqs. (9), (35),
and (36). These equations can then be used to study the
regularity of both the function rðU;VÞ itself and of the
metric tensor near the horizons. The analysis is carried out
exactly as it is carried out for the standard inner and outer
Kruskal-Szekeres null coordinates, and it shows that the
metric tensor is well behaved on all spacetime horizons and
that the Kruskal-Szekeres null coordinates ðU;V; θ;ϕÞ
provide a smooth and global chart for the maximal extension
of the nonextremal Reissner-Nordström geometry.
The transformation in Eqs. (35) and (36) separately gives

a well-defined diffeomorphism between ðU;V; θ;ϕÞ and
ðu; v; θ;ϕÞ in each spacetime region covered by the latter,
even if an analytical expression for the inverse trans-
formation cannot be given. Once again, this is ensured
by the strictly monotonicity of uðUÞ and vðVÞ (see Fig. 2)
in each spacetime region covered by the ðu; v; θ;ϕÞ
coordinate system and by the inverse function theorem.
Being the double-null coordinates ðu; v; θ;ϕÞ singular on
the horizons, also the transformation in Eqs. (35) and (36)
is ill defined there.
Kruskal-Szekeres spatial xKS and temporal tKS coordi-

nates can be defined as

tKS ¼ V þ U; xKS ¼ V −U: ð38Þ

The Kruskal-Szekeres diagram of the maximal extension of
nonextremal Reissner-Nordström spacetime is reported in
Fig. 4. This diagram is very similar to the conformal
diagram in Fig. 1. The main reason for this is that future
and past null infinity of the asymptotic regions are located
at the same Eddington-Finkelstein coordinate value, either
v → �∞ or u → �∞, of the inner horizons. So, since
the inner horizons are at a finite coordinate value in the
global Kruskal-Szekeres coordinates, so are future and past
null infinity of the asymptotic regions, as in a conformal
diagram.
Equivalently, the same result can also be obtained with

the more compact change of coordinates

uðUÞ ¼ −
X
n∈Z

�
BðU; 2nÞ log jU − 2nj

κþ

þ BðU; 2nþ 1Þ log jU − ð2nþ 1Þj
κ−

�
; ð39Þ

vðVÞ ¼
X
n∈Z

�
BðV; 2nÞ log jV − 2nj

κþ

þ BðV; 2nþ 1Þ log jV − ð2nþ 1Þj
κ−

�
; ð40Þ

where BðX; aÞ is the bump function

BðX; aÞ ¼
(

exp
�
− 1

1−ðX−aÞ2
�

a − 1 < X < aþ 1;

0 otherwise:

–2 –1 0 1 2

–2

0

2

4

6

FIG. 4. Kruskal-Szekeres diagram of the maximal extension
of nonextremal Reissner-Nordström geometry with m ¼ 1 and
q ¼ 0.98 (Planck units). In light blue curves of constant t and in
violet curves of constant r.
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V. EXTREMAL CASE

The exact same construction can be carried out also in
the extremal case m2 ¼ q2, resulting in a global Kruskal-
Szekeres coordinate chart covering the entirety of the
maximal extension of the extremal Reissner-Nordström
spacetime.
The extremal Reissner-Nordström metric in the static

coordinate system ðt; r; θ;ϕÞ still reads

ds2 ¼ −hðrÞdt2 þ h−1ðrÞdr2 þ r2dΩ2; ð41Þ

but now

hðrÞ ¼
	
1 −

m
r



2

: ð42Þ

This function has only a single (double) zero at r ¼ m,
which means that an extremal Reissner-Nordström black
hole only have a single horizon. The maximal extension of
this geometry is shown in Fig. 5.
The tortoise coordinate r� satisfying Eq. (3) is now

given by

r� ¼ rþ 2m log

���� rm − 1

���� − m
r
m − 1

þ C0; ð43Þ

where C0 is a constant of integration. Retarded and
advanced time null coordinates u and v are defined as
in Eq. (6). Ingoing ðv; r; θ;ϕÞ and outgoing ðu; r; θ;ϕÞ
Eddington-Finkelstein coordinates and double-null coor-
dinates ðu; v; θ;ϕÞ can then be used to cover different
regions of the maximal extension of the extremal Reissner-
Nordström spacetime.
The analysis of the behavior of null geodesics in

Eddington-Finkelstein coordinates for the extremal geom-
etry closely follow the analysis of the nonextremal case
discussed in Sec. III. Outgoing radial null geodesics in
ingoing Eddington-Finkelstein coordinates satisfy

v̇ ¼ 2E
hðrÞ ; ṙ ¼ E; ð44Þ

where hðrÞ is now given by Eq. (42). Focusing our attention
to one of the asymptotically flat exterior regions, and taking
r0 ¼ 0 and E ¼ 1 (future-oriented geodesics have E > 0)
for simplicity, outgoing radial null geodesics are given by

rðλÞ ¼ λ; λ∈ ðm;∞Þ; ð45Þ

vðλÞ ¼ 2λþ 4m log

���� λm − 1

���� − 2m
λ
m − 1

þ K; ð46Þ

whereK is a constant identifying different geodesics. These
curves start at the past horizon of the exterior region, that is

r → m and v → −∞ for λ → mþ, cross diagonally this
exterior region and end at future null infinity Iþ.
Similarly, future-oriented ingoing radial null geodesics

(E ¼ 1 and r0 ¼ 0) in outgoing Eddington-Finkelstein
coordinates are given by

rðσÞ ¼ −σ; σ ∈ ð−∞;−mÞ; ð47Þ

uðσÞ ¼ 2σ − 4m log

���� σmþ 1

���� − 2m
σ
m þ 1

þ K0; ð48Þ

where K0 is a constant identifying different geodesics.
These curves start at past null infinityI −, diagonally cross
the exterior region and end at the future horizon, that is
r → m and u → þ∞ for σ → ð−mÞ−.
Naturally, these outgoing and ingoing null geodesics do

not abruptly start or end at the past or future horizon, but the
null coordinates u and v are not able to follow them past the
horizons. However, the leading behavior of Eqs. (46), (48)

0.0 0.5 1.0 1.5 2.0

0

1

2

3

4

FIG. 5. Kruskal-Szekeres diagram of the maximal extension of
the extremal Reissner-Nordström geometry with m ¼ 1 (Planck
units). In light blue curves of constant t and in violet curves of
constant r.
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near the horizons once again suggest a natural change of
coordinates to extend u and v beyond the horizons.
Starting from the leading behavior of Eqs. (46), (48)

near the horizons, and skipping all the intermediate steps
detailed in Sec. IV for the nonextremal case, a global
Kruskal-Szekeres coordinate chart for the maximal exten-
sion of the extremal Reissner-Nordström spacetime can be
defined by the following transformation:

uðUÞ¼

8>>>>><
>>>>>:

∶
−g↓ðU;n−1;nÞ

U−ðn−1Þ − g↑ðU;n−1;nÞ
U−n n−1<U<n

−g↓ðU;n;nþ1Þ
U−n − g↑ðU;n;nþ1Þ

U−ðnþ1Þ n<U<nþ1

∶

ð49Þ

vðVÞ¼

8>>>>><
>>>>>:

∶
−g↓ðV;n−1;nÞ

V−ðn−1Þ − g↑ðV;n−1;nÞ
V−n n−1<V<n;

−g↓ðV;n;nþ1Þ
V−n − g↑ðV;n;nþ1Þ

V−ðnþ1Þ n<V<nþ1;

∶

ð50Þ

with n∈Z. The position of the horizons in the ðU;VÞ
coordinates is arbitrary. I made the choice U ¼ n and
V ¼ n for n∈Z.
Defining the function fðXÞ in such a way that u0ðUÞ ¼

fðUÞ and v0ðVÞ ¼ fðVÞ, the extremal Reissner-Nordström
metric in the Kruskal-Szekeres coordinates ðU;V; θ;ϕÞ
reads

ds2 ¼ −hðrÞfðUÞfðVÞdUdV þ r2dΩ2; ð51Þ

where r ¼ rðU;VÞ is implicitly defined by Eqs. (9), (43),
(49), and (50). These equations can then be used to study
the regularity of both the function rðU;VÞ itself and of the
metric tensor near the horizons. The analysis is carried out
exactly as it is carried out for the nonextremal case, and it
shows that the metric tensor in Eq. (51) is well behaved on
all spacetime horizons and that the Kruskal-Szekeres null
coordinates ðU;V; θ;ϕÞ provide a smooth and global
coordinate chart for the maximal extension of extremal
Reissner-Nordström geometry.
The transformation in Eqs. (35) and (50) separately

gives a well-defined diffeomorphism between ðU;V;θ;ϕÞ
and ðu; v; θ;ϕÞ in each spacetime region covered by the
latter, even if an analytical expression for the inverse
transformation cannot be given. Once again, this is
ensured by the strictly monotonicity of uðUÞ and vðVÞ
in each spacetime region covered by the ðu; v; θ;ϕÞ
coordinate system and by the inverse function theorem.
Being the null coordinates ðu; v; θ;ϕÞ singular on the
horizons, also the transformation in Eqs. (49) and (50) is
ill defined there.
Kruskal-Szekeres spatial xKS and temporal tKS coordi-

nates can be defined as in Eq. (38). The Kruskal-Szekeres

diagram of the maximal extension of extremal Reissner-
Nordström spacetime is reported in Fig. 5.

VI. CONCLUSIONS

I have derived a smooth Kruskal-Szekeres coordinate
chart covering the full maximal extension of the nonex-
tremal Reissner-Nordström geometry. This coordinate chart
provides a global generalization to the standard inner and
outer Kruskal-Szekeres coordinates and a smooth gener-
alization to the C1 global Kruskal-Szekeres coordinate
chart derived in [12]. The same construction has been
applied also to the extremal case, obtaining a smooth and
global Kruskal-Szekeres coordinate chart for the maximal
extension of the extremal Reissner-Nordström geometry.
The existence of this coordinate chart, which is an

interesting fact in and on itself, provides a simple alternative
to the standard coordinate chart [7–11] for the conformal
diagram of the Reissner-Nordström spacetime. Both of these
coordinate charts have the property of bringing “infinity” to a
finite coordinate value, thus making them a valuable resource
to visualize and study the global causal structure of the
spacetime. The standard coordinates of the conformal dia-
gram achieve this by performing any generic coordinate
transformation that matches the divergence pattern of the
different double-null coordinates ðu; vÞ patches and that
brings their boundary at a finite coordinate value. This
construction leads to a metric which is at most C2. By using
a transformation that exactlymatches the divergence behavior
of the null geodesics near the horizons, the global Kruskal-
Szekeres coordinates defined here leads to a C∞ metric.
Together with the (Israel-)Klösch-Strobl coordinate

chart [15], they provide the only smooth and global coor-
dinate chart for themaximal extensionofReissner-Nordström
geometry. Contrary to the global Kruskal-Szekeres coordi-
nates defined here and the standard coordinates of the
conformal diagram, in which the metric contains implicitly
defined functions, the metric in (Israel-)Klösch-Strobl coor-
dinates is completely explicit. Thismakes themmore suitable
for analytic investigations. These coordinates however do not
have the property of bringing “infinity” to a finite coordinate
value, thusmaking the diagrammatic representation of global
properties less transparent.
Finally, the fact that the global Kruskal-Szekeres coor-

dinates defined here can be straightforwardly generalized
to any static spherically-symmetric black hole spacetime
whose geometry include multiple horizons makes it an
appealing coordinate chart also in different contexts. It was
in fact recently used in [16] to draw the Kruskal-Szekeres
diagram of the geometry of a quantum modification of the
Oppenheimer-Snyder model.
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