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We introduce a class of new inflation models within the waterfall region of a generalized hybrid inflation
framework. The initial conditions are generated in the valley of hybrid preinflation. Both single-field and
multifield inflationary scenarios have been identified within this context. A supersymmetric realization of
this scenario can successfully be achieved within the tribrid inflation framework. To assess the model’s
viability, we calculate the predictions of inflationary observables using the δN formalism, demonstrating
excellent agreement with the most recent Planck data. Furthermore, this model facilitates successful
reheating and nonthermal leptogenesis, with the matter-field component of the inflaton identified as a
sneutrino.
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I. INTRODUCTION

The paradigm of accelerated expansion in the early
Universe [1] has been a very interesting idea because it
elegantly resolves the horizon and the flatness problems in
the standard big-bangmodel of cosmology [2,3]. Numerous
models have been proposed to describe this inflationary
phase in the early Universe [4–7]. One prominent model in
this context is the “new inflation” model [2–4], which
belongs to the category of small-field inflation models
and aligns well with the effective field theory description.
This model typically emerges as a result of spontaneous
symmetry breaking, usually associated with a grand unified
theory [2,8,9] or a flavor symmetry [10]. Moreover, the
prospect of achieving a low reheat temperature is an
appealing aspect, particularly in the context of a super-
gravity realization of new inflation [11], as it helps avoid the
gravitino overproduction problem [12,13].
Nonetheless, the new inflation model faces a serious

challenge. In order for new inflation to last long enough, the
initial condition must be extremely fine-tuned. Essentially,
the inflaton field ϕ must be smooth over a substantial
region with an average value that is very close to a local
maximum of the potential VðϕÞ. There should be some

dynamical mechanism guiding the Universe to select such a
specific value for the inflaton field ϕ. In simpler terms, this
is a quest to find the answer to the question: “Who put it
there?” [14].
In order to dynamically elucidate the initial conditions

for new inflation, a prior inflationary phase known as
“preinflation” can be introduced before the onset of new
inflation. This idea of preinflation was successfully realized
within the framework of supergravity in [11,15–18], where
it typically entails the incorporation of a new set of gauge
singlet fields. For a specific realization of preinflation
within the context of the supersymmetric tribrid inflation
models, where the inflaton is primarily coupled to matter
fields, please refer to [19].
A new inflationary phase has been recently identified

within the waterfall region of a hybrid inflation model
[20,21], where the standard hybrid inflation [22] is employed
as a preinflationary phase. The initial conditions for this
new inflationary phase, commonly known as “waterfall
inflation,” are dynamically generated through quantum
fluctuations occurring in thewaterfall field around the critical
point of the waterfall transition. It is worth noting that while
this waterfall inflation model does yield a scalar spectral
index that is red tilted, it does not align with the latest Planck
data [23].
In the present article, we have developed a model of new

inflation as a generalization of the original waterfall
inflation model [20]. This model is designed to yield
predictions for inflationary observables that are consistent
with the latest Planck data. The initial conditions for this
waterfall inflation are generated via a diffusion boundary,
which arises from quantum fluctuations in the waterfall
field around the critical point of the waterfall transition.
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In the nonsupersymmetric version of our model, the scalar
potential’s form can be constrained by a global symmetry
denoted as Zp × Zq. Furthermore, for a potential super-
symmetric realization, we employ the waterfall region
within the tribrid inflation model. A scalar matter field,
such as the sneutrino, can play the role of the inflaton here.
We calculate the inflationary predictions for a generic grand
unified theory (GUT) model, incorporating a consistent
framework for reheating and leptogenesis.
The paper is structured as follows: In Sec. II, we provide

a brief overview of the original hybrid inflation model,
focusing on waterfall inflation. We also derive analytical
expressions for inflationary observables within the new
inflation limit, which will be essential for our subsequent
discussions. In Sec. III, we introduce a generalized version
of the model aimed at addressing the challenges encoun-
tered in the original model. Building on the insights from
Sec. II, we analyze our model by predicting inflationary
observables consistent with the range of measured data.
Section V delves into the supersymmetric realization of the
model. We provide a comprehensive analysis of this
realization along with a coherent scenario for reheating
and leptogenesis. Finally, in Sec. VI, we summarize our
findings and conclusions.

II. ORIGINAL HYBRID INFLATION

In this section, we provide a quick overview of the
original hybrid inflation model as initially proposed in [22],
followed by a discussion of the subsequent advancements
in the waterfall inflationary phase [20], which aligns with
our suggested generalization. The scalar potential for this
model can be written as

Vðϕ;ψÞ¼Λ4

��
1−

�
ψ

M

�
2
�

2

þ
�
ϕ

μ

�
2

þ2

�
ϕ

ϕc

�
2
�
ψ

M

�
2
�
;

ð1Þ

where the scalar fields ϕ and ψ represent the inflaton and
waterfall-Higgs fields, while M and μ denote the mass
parameters. The potential parameter Λ determines the
energy scale of inflation. The above form of the potential
can be constrained by a discrete symmetry Z2 where both ϕ
and ψ are odd under this symmetry. This scalar potential is
displayed in Fig. 1 where a flat valley with ψ ¼ 0 and
ϕ > ϕc, suitable for inflation, is clearly visible.
In the original version of the model, inflation takes place

within the ψ ¼ 0 valley when ϕ > ϕc, where ϕc represents
the critical value of ϕ below which the mass of ψ becomes
tachyonic. Within the framework of this effective single-
field paradigm, inflation is assumed to terminate abruptly
when the inflaton field falls below its critical value, ϕc.
Following this, both fields rapidly stabilize at their respec-
tive global minima, ϕ ¼ 0 and ψ ¼ M. This version is

commonly referred to as the original hybrid inflation, also
known as valley inflation [22].
The end of the inflationary epoch and the subsequent

breaking of the underlying symmetry can potentially give
rise to topological defects, such as domain walls when the
Z2 symmetry is broken. The model’s initial prediction for
the spectral index ns tends to exhibit a blue tilt. However,
by including one-loop radiative corrections originating
from inflaton couplings, which are essential for reheating,
the value of ns can be adjusted to be consistent with
observations [24,25]. For a supersymmetric realization of
this standard version, please refer to Refs. [18,26–44]. For a
similar waterfall structure in the tribrid inflation models,
see [45–48]. It is pointed out in [20] that the waterfall
dynamics of hybrid inflation might change for some cases,
and the inflation can still occur with a large number of
e-folds even during the waterfall regime (ϕ < ϕc with
ψ ≠ 0). For a more detailed analytical study, see Ref. [21].
The waterfall phase can be further divided into two

distinct regimes: the mild waterfall and the longer waterfall.
The mild waterfall requires a multifield treatment and
corresponds to a relatively small number of e-folds,
typically when N ≳ 60. However, a recent finding [49]
suggests that it is challenging to attain the correct values for
both the spectral index and the amplitude of the scalar
power spectrum simultaneously while remaining consistent
with observational constraints.
The longer waterfall phase emerges as an effective

single-field inflationary model, encompassing a substantial
number of e-folds, N ≫ 60. This characteristic aligns it
with inflationary scenarios such as new inflation or type-I
hilltop inflation [2,10,50,51]. In this regime, the topological
defects resulting from symmetry breaking are rapidly
inflated away. It is important to note that in this new
inflation limit, a red-tilted scalar spectral index [49]
given by ns ≃ 1 − 4

N0
is obtained. This is in contrast to

the blue-tilted spectral index predicted by the original
hybrid inflation model. However, for a realistic range of
N0 spanning from 50 to 60, its value remains around

FIG. 1. The normalized scalar potential V=V0 as a function of
x ¼ ϕ=ϕc and y ¼ ψ=M for ϕc ¼ M. Here, V0 ¼ Λ4.
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≃0.92–0.94, which does not align with observational data.
This is briefly reviewed in this section.

A. Fields dynamics and initial conditions

The background equations of motion for the scalar
fields are

ϕ̈þ 3Hϕ̇þ ∂ϕV ¼ 0; ψ̈ þ 3Hψ̇ þ ∂ψV ¼ 0; ð2Þ

with

H2 ¼ 1

3

�
ϕ̇2

2
þ ψ̇2

2
þ Vðϕ;ψÞ

�
; ð3Þ

where ∂ϕV ≡ ∂V=∂ϕ, ∂ψV ≡ ∂V=∂ψ . Throughout the text,
both here and in subsequent sections, we will employ
Planckian units, where the reduced Planck mass is taken
as unity, mP ¼ 1. Under the slow-roll approximation
[ϕ̇2; ψ̇2 ≪ Vðϕ;ψÞ; ϕ̈ ≪ 3Hϕ̇; ∂ϕV, and ψ̈ ≪ 3Hψ̇ ; ∂ψV],
the equations of motion presented above can be simplified
for the scalar potential defined in Eq. (1) as

ϕ0ðNÞ ≃ −
2ϕ

μ2

�
1þ 2μ2

ϕ2
c

�
ψ

M

�
2
�
; ð4Þ

ψ 0ðNÞ ≃ 4ψ

M2

��
1 −

�
ϕ

ϕc

�
2
�
−
�
ψ

M

�
2
�
; ð5Þ

where primes are derivatives with respect to the number of
e-folds with ϕ̇ ¼ H dϕ

dN and H2 ≃ Λ4

3
.

To delve into the initial conditions of the “new infla-
tionary phase,” our first step is to examine the field dynamics
preceding the waterfall transition, where ϕ > ϕc. In this
particular regime, wemake the assumption that thewaterfall
field remains settled at zero far from the critical point at ϕc.
The field dynamics in this region primarily remain classical
until we approach the quantum diffusion region near the
waterfall point, where quantum fluctuations in the waterfall
field eventually dominate over its classical motion.
To describe this quantum diffusion process, the Langevin

equation [52] can be employed to calculate the quantum
dispersion denoted as hψ2i in the waterfall field. The square
root of this dispersion is taken as the initial value of ψ
around the critical point ϕ ≃ ϕc with hψi ¼ 0 [20],

ψ i ≡
ffiffiffiffiffiffiffiffiffi
hψ2i

q
≃
�
Λ8μM

96π
3
2

�1
2

: ð6Þ

Consequently, the system gets off the valley and starts
rolling down in the waterfall region. This generic quantum
displacement in the waterfall field generates the initial
conditions of the new inflationary phase in the waterfall
region as discussed below.

B. New inflation limit

As outlined in the Refs. [20,21], the evolution of the scalar
fields in thewaterfall region can be divided into three distinct
phases, aptly named phase 0, phase 1, and phase 2, following
a chronological sequence. In phase 0, whichmarks the initial
stage of the waterfall regime, the field ϕ is approximately
equal to ϕc, and ψ is significantly smaller. To be more

specific, we have
ffiffi
2

p
μψ

ϕcM
≪ 1. During this phase, the number of

e-foldsN0 ≃
μ2

4
ðψ i
MÞ2 is very small and thephase ends quickly.

After the end of phase 0, ϕ undergoes a gradual decrease
and begins to deviate from ϕc. This transition marks the
onset of phase 1, where the first term in Eq. (5) becomes
dominant. While ψ experiences an increase in this phase, the
second term in Eq. (4) remains sufficiently small to be
disregarded. A mild waterfall inflation with N ≳ 60 can be
readily achieved in this phase by selecting a sufficiently large
value for μ, given a specific value for M and ϕc. By opting

for an even greater value of μ but still keeping
ffiffi
2

p
μψ

ϕcM
< 1, it

becomes possible to achieve long waterfall inflation with
N ≫ 60. Nonetheless, the scalar power spectrum adopts a
Gaussian shape with its peak at ϕc, making it challenging to
meet both the amplitude and tilt constraints imposed by the
latest Planck data [23] simultaneously.
In phase 2, the equations of motion (4) and (5) are

primarily described by their respective second and first
terms. The critical value ψ2 ¼ ϕcMffiffi

2
p

μ
serves as the boundary

between phase 1 and phase 2. Given a GUT scale value of
ϕc ∼M, achieving phase 2 typically requires a large trans-

Planckian value for μ, deep within phase 2, when
ffiffi
2

p
μψ

ϕcM
≫ 1,

a phase of effective single-field inflation emerges and is
recognized as new inflation. While this phase has been
previously discussed in [21,49,53], our presentation
here describes the “new inflation limit” in a manner
that aligns with our subsequent discussions and potential
generalizations.
The equations of motion for scalar fields in phase 2 can

be simplified as

ϕ0ðNÞ≃−
4ϕ

ϕ2
c

�
ψ

M

�
2

; ψ 0ðNÞ≃ 4

M

�
ψ

M

��
1−

ϕ2

ϕ2
c

�
: ð7Þ

Combining these two equations, we arrive at the following
equation:

dX
dχ

≃ −
�

X
1 − X2

�
χ; ð8Þ

where, for convenience, we introduce the normalized fields,
X ¼ ϕ=ϕc and χ ¼ ψ=ϕc. In the small χ limit, the above
equation admits the following approximate solution:

X ≃
�
1 −

1ffiffiffi
2

p ðX − X2Þ
�
; ð9Þ
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where X2 ¼ ψ2=ϕc. This expression exhibits an effective
single-field behavior, particularly in the regime of new
inflation, where ψ ≫ ψ2, making the influence of ψ2

negligible in subsequent calculations. Therefore, we con-
sider the following expression for our later discussion:

ϕ ≃ ϕc

�
1 −

1ffiffiffi
2

p
�
ψ

ϕc

��
: ð10Þ

The joint dynamics of the fields ϕ and ψ can be
effectively described in terms of an adiabatic field σ defined
by the equation

σ̇ ¼ cos θϕ̇þ sin θψ̇ ; ð11Þ

where the coefficients cos θ and sin θ are determined as
follows:

cos θ ¼ ϕ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̇2 þ ψ̇2

p ; sin θ ¼ ψ̇ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ̇2 þ ψ̇2

p : ð12Þ

From Eq. (10), we can approximate dϕ
dψ ≃ − 1ffiffi

2
p , and we have

cosθ≃− 1ffiffi
3

p and sin θ ≃
ffiffi
2
3

q
. Consequently, Eq. (11) implies

that σ ≃
ffiffi
3
2

q
ψ . This identification allows us to express the

potential in (21) in terms of the adiabatic field σ as follows:

VðσÞ ≃ Λ4

�
1 −

αffiffiffi
2

p σ3
�
; ð13Þ

where α≡ 4

M2ϕcð
ffiffi
3
2

p
Þ3. With this parametrization, the poten-

tial in Eq. (1) assumes a standard new inflation model form.
In the subsequent subsection, we will derive its predictions
within the framework of the slow-roll approximation.

C. The slow-roll predictions

The first and second slow-roll parameters are

ϵ ≃
1

2

�
−
3αffiffiffi
2

p σ2
�

2

; η ≃ −3
ffiffiffi
2

p
ασ: ð14Þ

As ϵ is negligibly small, the inflation ends when
ηðσeÞ ≃ −1. Solving for the field value at the end of
inflation, we find

σe ≃
1

3
ffiffiffi
2

p
α
: ð15Þ

The number of e-folds N0 before the end of inflation is
given by

N0 ≃
Z

σ0

σe

�
V
Vσ

�
dσ; ð16Þ

where σ0 corresponds to the field value that normalizes the
scalar power spectrum

Asðk0Þ ¼
1

24π2
V

ϵðσ0Þ
≃

1

54π2
Λ4

α2σ40
ð17Þ

to Planck’s measurement Asðk0Þ ¼ 2.4 × 10−9 at the pivot
scale k0 ¼ 0.05 Mpc−1. Using Planck’s normalization, the
value of Λ can be calculated in terms of σ0, which can, in
turn, be expressed in terms of N0 using (15),

σ0 ≃
ffiffiffi
2

p

3α

1

N0 þ 2
: ð18Þ

The scalar spectral index ns can now be written in terms
of the e-folds N0 using Eq. (39),

ns ≃ 1þ 2η ≃ 1 −
4

N0

; ð19Þ

while the tensor-to-scalar ratio r is given by

r ¼ 16ϵ ≃ 8

�
−

ffiffiffi
2

p

3α

1

ðN0 þ 2Þ2
�2

: ð20Þ

For a typical range of e-folds, N0 ≃ 50–60, we obtain
ns ≃ 0.92–0.94, r ≃ ð3–5Þ × 10−20,Λ ≃ 2 × 10−7, and σ0 ≃
4 × 10−9 assuming ϕc ¼ M ¼ 0.01. However, it is worth
noting that the scalar spectral index value obtained here
appears to be too red tilted to align with the Planck 2018
data [23]. In the subsequent sections, we will extend this
new inflation model to accommodate the Planck constraint
on the scalar spectral index.

III. GENERAL CASE

For a possible generalization of the potential in Eq. (1),
which can lead to single-field inflation in the large μ limit,
we consider the following form of the potential:

Vðϕ;ψÞ¼Λ4

��
1−

�
ψ

M

�
q
�

2

þ
�
ϕ

μ

�
p
þ2

�
ϕ

ϕc

�
p
�
ψ

M

�
q
�
;

ð21Þ

where p and q are integers. In order to have a stable valley
before the waterfall region, q should be even [see, e.g.,
Fig. 2(a) for q ¼ 4], otherwise, the concavity of the valley
for a given value of ϕ changes around the ψ ¼ 0 point
which acts as a point of inflection [see, e.g., Fig. 2(b) for
q ¼ 3]. For increasing values of q, the flatness of the
potential near the critical point increases, which leads to a
large number of e-folds. This particular form of the
potential can be constrained by a global symmetry such
as Zp × Zq. Under this symmetry, ψ (ϕ) carries a unit
charge under Zq (Zp), while ϕ (ψ) is neutral. Any potential
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topological defects resulting from the breaking of the
underlying symmetry are expected to be diluted away.
The extrema of the potential concerning ψ can be

determined by setting ∂V
∂ψ ¼ 0, resulting in the following

condition:

ψq−1 ¼ 0: ð22Þ
In addition, we obtain the temporal minimum,

�
ψ

M

�
q
þ
�
ϕ

ϕc

�
p
¼ 1: ð23Þ

The qth derivative of the potential is given by

1

Λ4

∂
qV
∂ψq≃−2

q!
Mqþ

ð2qÞ!
q!

1

Mq

�
ψ

M

�
q
þ2

�
ϕ

ϕc

�
p q!
Mq : ð24Þ

In the valley region, this expression simplifies to

1

Λ4

�
∂
qV
∂ψq

�
ψ¼0

≃ 2
q!
Mq

��
ϕ

ϕc

�
p
− 1

�
: ð25Þ

For even values of q, Eq. (25) represents a generalized form
of the waterfall transition, where the qth derivative of the
potential changes sign around the critical value ϕc.
In this general case, the equations of motion for the

scalar fields under slow-roll approximation are

ϕ0ðNÞ ≃ −
p
μ

�
ϕ

μ

�
p−1

�
1þ 2

�
μ

ϕc

�
p
�
ψ

M

�
q
�
; ð26Þ

ψ 0ðNÞ ≃ 2q
M

�
ψ

M

�
q−1

��
1 −

�
ϕ

ϕc

�
p
�
−
�
ψ

M

�
q
�
: ð27Þ

In the new inflation limit, the equations of motion (26) and
(27) are, respectively, dominated by second and first terms,
i.e., 2ð μ

ϕc
ÞpðψMÞq≫1 and ð1 − ð ϕϕc

ÞpÞ ≫ ðψMÞq. The equations
of motion for ϕ and ψ in this new inflation limit become

ϕ0ðNÞ ≃ −2p
ϕc

�
ϕ

ϕc

�
p−1

�
ψ

M

�
q
; ð28Þ

ψ 0ðNÞ ≃ 2q
M

�
ψ

M

�
q−1

�
1 −

�
ϕ

ϕc

�
p
�
: ð29Þ

Combining these two equations, we arrive at the following
equation:

dX
dχ

≃ −
p
q

Xp−1

ð1 − XpÞ χ: ð30Þ

In the small χ limit with X ≃ 1, the above equation admits
the following approximate solution:

ϕ ≃ ϕc

�
1 −

1ffiffiffi
q

p
�
ψ

ϕc

��
; ð31Þ

which reduces to Eq. (10) for q¼2. With dϕ=dψ ≃−1= ffiffiffi
q

p
,

the above expression implies that

cos θ ≃ −
1ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p ; sin θ ≃
ffiffiffi
q

pffiffiffiffiffiffiffiffiffiffiffi
1þ q

p : ð32Þ

For the adiabatic field defined in Eq. (11), we arrive at the
following relation:

σ ≃

ffiffiffiffiffiffiffiffiffiffiffi
1þ q
q

s
ψ : ð33Þ

Finally, the potential in (21) can expressed in terms of the
adiabatic field σ as

VðσÞ ≃ Λ4

�
1 −

Affiffiffi
q

p σqþ1

�
; ð34Þ

where A≡ 4

Mqϕcð
ffiffiffiffiffi
qþ1
q

p
Þqþ1.

FIG. 2. The normalized scalar potential V=V0 as a function of
x ¼ ϕ=ϕc and y ¼ ψ=M for (a) q ¼ 4 and (b) q ¼ 3.
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A. The slow-roll predictions

The first and second slow-roll parameters now become

ϵ≃
1

2

�
−
Aðqþ1Þffiffiffi

q
p σq

�
2

; η≃ð−A ffiffiffi
q

p ðqþ1Þσq−1Þ: ð35Þ

The number of e-folds before the end of inflation is

N0 ≃
Z

σ0

σe

�
V
Vσ

�
dσ ≃

ffiffiffi
q

p
σ1−q0

Aðq2 − 1Þ ; ð36Þ

where the field value at the end of inflation is given by

σe ¼
�

1ffiffiffi
q

p ðqþ 1ÞA
� 1

q−1
; ð37Þ

and the field value σ0 before the last N0 number of
e-folds is

σ0 ¼
� ffiffiffi

q
p

Aðq2 − 1ÞN0

� 1
q−1
: ð38Þ

The value of Λ can be obtained as

Λ ≃ ð24π2Asðk0Þϵðσ0ÞÞ1=4: ð39Þ

The scalar spectral index can now be expressed in terms
of e-folds N0 as

ns ≃ 1 −
2q

ðq − 1ÞN0

; ð40Þ

with the tensor-to-scalar ratio r given by

r ¼ 16ϵ ≃ 16

�
−
Aðqþ 1Þffiffiffi

q
p

� ffiffiffi
q

p
Aðq2 − 1Þ

1

N0

� q
q−1
�

2

:

For a typical range of e-folds N0 ≃ 50–60, in the large q
limit, we obtain ns ≃ 0.96–0.967, consistent with the latest
Planck bounds, as shown in Fig. 3. The predictions of
other parameters, for let us say q ¼ 20, are as follows:
r ≃ ð9–13Þ × 10−11, Λ ≃ 5 × 10−5, and σ0 ≃ 4 × 10−3

assuming ϕc ¼ M ¼ 0.01.

B. Quantum diffusion boundary
and initial conditions

In this case, the mass of ψ at ψ ¼ 0 is zero for q > 2, i.e.,
∂
2V
∂ψ2 ¼ 0 for ψ ¼ 0, where V is given in Eq. (21). The

Langevin equation for ψ in the massless limit leads to

dhψ2i
dN

¼
�
H
2π

�
2

: ð41Þ

Here, we have ignored the quantum fluctuations in ϕ. In the
preinflationary phase, when the scalar field ϕ is signifi-
cantly larger than the critical value ϕc, the quantum spread
in the field ψ remains nearly zero. However, as ϕ
approaches the critical instability at ϕ ¼ ϕc, quantum
fluctuations lead to an increase in the value of hψ2i.
When the rate of change of the classical field displacement
δψcl over a Hubble time falls below the rate at which
quantum fluctuations δψqu grow over the same time span
H−1, quantum diffusion becomes important. This condition
defines the boundary of the diffusion region as [19]

δψqu ¼
�
H
2π

�
≥ δψcl ¼ H−1jψ̇ j ¼

���� ∂ψVV
����: ð42Þ

Using the generalized potential in Eq. (21), we can write

2qjyq−1ð1 − xp − yqÞj ≤ M
H
2π

; ð43Þ

where y≡ ψ
M and x≡ ϕ

ϕc
. The quantum diffusion boundary

defined by Eq. (43) is shown in Fig. 4 for q ¼ 4,M ¼ 0.01,
andΛ ≃ 9 × 10−6. The value of Λ corresponds to the last 60
numbers of e-folds for ϕ < ϕc before the end of inflation.
The inclusion of this data point serves the sole purpose of
elucidating the linkage between the diffusion boundary and
the initial conditions, which will become pertinent in our
subsequent discussion. At the diffusion boundary, the value
of y exhibits a sharp increase as it approaches x ¼ 1. The
black curve represents the system’s evolution within the
diffusion region, bridging the gap between the inflationary
phase below ϕc and its potential initial conditions above ϕc.
In the following discussion, we will denote the field values
at the quantum diffusion boundary as ψDB and ϕDB.
In the diffusion region, the expectation value hψ2i grows

linearly with e-folds, and the field value ψDBðϕDB > ϕcÞ

N0 = 60

N0 = 50

2 4 6 8 10 12 14 16 18 20

0.92

0.93

0.94

0.95

0.96

0.97

0.98

q

n s

FIG. 3. The scalar spectral index ns is plotted against the integer
power q for 50 and 60 e-folds. The light (dark) shaded region
represents the Planck 2018 1σ (2σ) bounds.
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can be related to field value ψDBðϕDB < ϕcÞ using
Eq. (41) as

ψ2
DBðϕDB < ϕcÞ ≃ ψ2

DBðϕDB > ϕcÞ þ
�
H
2π

�
2

ΔN; ð44Þ

where ΔN is the number of e-folds that elapsed between
the two distinct diffusion boundaries defined by ϕDB > ϕc
and ϕDB < ϕc. The value of ΔN between these two
points can be determined utilizing the slow-roll equation
of motion for ϕ. For the data point depicted in Fig. 4,
we find that the number of e-folds ΔN is approxi-
mately on the order of 102. Consequently, we find that

ψ2
DBðϕDB < ϕcÞ ≃ ψ2

DBðϕDB > ϕcÞ, leading to a linear
evolution within the diffusion region. By following this
procedure, a connection can be established between the
points on both boundaries. Nevertheless, in the subsequent
discussion, we will solely focus on describing the success-
ful points along the diffusion boundary with ϕDB < ϕc.
Ultimately, as the system progresses, it exits the diffusion

region when ϕDB < ϕc, and classical motion begins to
predominate. For our data points, this diffusion boundary
resides within phase 2, where the second term in Eq. (26)
takes precedence. It is worth noting that other phases of
classical inflation remain confined within the diffusion
region and do not bear relevance to the current context.
Subsequently, the inflationary phase ends, giving way to an
oscillatory period around one of the two global minima:
ψ ¼ �M with ϕ ¼ 0.

C. Inflationary trajectories from the
diffusion boundary

Next, we study the various inflationary trajectories
originating from the diffusion boundary with ϕDB < ϕc.
These trajectories are shown in Fig. 5(a) where the
diffusion boundary is depicted in dark red color. The red
curve marks the end of inflation, whereas the green curve
represents the last 60e-folds before the end of inflation.
Note that most of the trajectories are converging toward the
black trajectory, which will be called an attractor infla-
tionary trajectory. This is the trajectory we have discussed
analytically in the previous subsections as the new inflation
limit. Note that this trajectory experiences a maximum
number of e-folds from the diffusion boundary to the end of
inflation as shown in Fig. 5(b).
In the small ϕDB limit, we obtain a single-field inflation

where ψ is playing the role of the inflaton. In the other
extreme where ϕ ≃ ϕc, both fields participate in the last
observable part of the inflation. This limit is multifield
inflation that deals with the δN formalism for the calculation

FIG. 4. Quantum diffusion region (gray) for p ¼ q ¼ 4, where
the black line shows the evolution of the fields inside the diffusion
region. The Λ parameter and the symmetry-breaking scale N are,
respectively, 8.87 × 10−6 and 0.01 (in Planckian units).

(a) (b)

FIG. 5. (a) Field trajectories originating from the diffusion boundary (dark red line) for p ¼ q ¼ 4 are shown. The black curve is the
attractor trajectory. The green curve shows the pivot points for the trajectories for the last 60e-folds with the green (red) dot being the
pivot (end) point for the attractor trajectory. (b) Total number of e-folds from the diffusion boundary to the end of inflation, and the black
dot represents the total e-folds of the attractor trajectory.

NEW INFLATION IN THE WATERFALL REGION PHYS. REV. D 108, 123545 (2023)

123545-7



of its prediction. Beyond this limit ðϕ=ϕcÞp − 1 < 10−7,
enough e-folds are not realized and inflation ends quickly.
As the number of e-folds in this limit is short, we can
call this limit the mild waterfall inflation. The attractor
inflationary serves as a partition to separate the above-
mentioned two extremes. As discussed in the previous
subsections, both ϕ and ψ fields participate in the attractor
inflationary trajectory in such a way that the adiabatic field
σ experiences no turning, and this is an effective single-
field inflation model. For a similar distinction of three
different regimes in the waterfall region of tribrid inflation,
see [19].

IV. THE δN FORMALISM

The numerical estimates are determined for the power
spectrum amplitude of primordial curvature perturbations
P and the scalar spectral index ns using the δN formalism
as given in [54]. The δN formalism, which relies on the
separate universe approximation, asserts that the curvature
perturbation ζðx; tÞ on a spatial hypersurface characterized
by a uniform energy density can be expressed as the
difference between the number of e-folds realized from
an initially flat hypersurface to a final hypersurface with a
uniform energy density δNf

i,

ζ ¼ δNðfÞ
ðiÞ ≡ Nðt; xÞ − N0ðtÞ; ð45Þ

where we label the initial hypersurface by (i) and the final
by (f). In order to extract predictions for the primordial
curvature perturbations, our initial hypersurface is chosen
at the time t� corresponding to the Hubble exit of the
observable pivot scale k� ¼ 0.05 Mpc−1, and the final
hypersurface of a constant energy density is chosen at the
end of inflation where slow-roll parameter ϵ reaches unity.
The field perturbations are approximately Gaussian, and

if the amplitude of these perturbations is very small, then in
the slow-roll approximation the curvature perturbations can
be expanded as

ζ ≃
Xn
i¼1

Niδϕ
ðiÞ
i þ 1

2

Xn
i;j¼1

Nijδϕ
ðiÞ
i ϕðiÞ

j ; ð46Þ

where Ni ¼
∂δNðfÞ

ðiÞ
∂ϕðiÞ

i

and Nij ¼
∂
2δNðfÞ

ðiÞ
∂ϕðiÞ

i ∂ϕðiÞ
j

. The power spectrum

amplitude and the scalar spectral index can be calculated as

Pζðk�Þ ¼
H2�
4π2

Xn
i¼1

N2
i ; ð47Þ

ns ¼ 1 − 2ϵ� þ
Σijϕ̇i�NjNij

H�ΣiN2
i

; ð48Þ

where ϵ ¼ − Ḣ
H2 is the slow-roll parameter. In the effective

singlet-field scenario, Pζðk�Þ reduces to Asðk�Þ defined in
Eq. (39). The non-Gaussianity of the perturbation is para-
metrized by fNL, which is given by

fNL ¼ 5

6

ΣijNiNjNij

ðΣiN2
i Þ2

: ð49Þ

A. Numerical results for inflationary trajectories
from the diffusion boundary

We have conducted numerical work to calculate infla-
tionary trajectories emerging from the diffusion boundary
for a wide range of values of the parameter μ, using the δN
method. The results are depicted in Fig. 6 for the scalar
spectral index as a function of μ and in Fig. 7 for field values
along the diffusion boundary. Specifically, we consider
cases where ðp; qÞ ¼ ð2; 4Þ or ðp; qÞ ¼ ð4; 4Þ. It is worth
noting that for smaller values of the mass parameter μ, these
initial conditions can yield inflationary predictions consis-
tent with the most recent Planck data. We maintain a fixed
symmetry-breaking scale M ≃ 2 × 1016 GeV throughout
our numerical analysis. Additionally, we adjust the infla-
tionary scale parameter Λ to ensure that it matches the
measured amplitude of scalar perturbations.
It is important to note that successful inflation can be

achieved even with smaller values of the parameter q,
specifically, q ≳ 4. We explore two scenarios denoted as
ðp; ; qÞ ¼ ð2; 4Þ and ðp; ; qÞ ¼ ð4; 4Þ, where the value of q
remains the same while p varies. This choice allows us to
demonstrate that the outcomes are primarily influenced by
the value of q. To ensure that our predictions for the scalar
spectral index ns align with the Planck bound at the 1σ
level, we find that the mass parameter μ falls within the
following ranges:

20≲ μ≲ 2500 for ðp; qÞ ¼ ð2; 4Þ;
1≲ μ≲ 5 for ðp; qÞ ¼ ð4; 4Þ: ð50Þ

Interestingly, the shape of the results is consistent
between these two cases, with the primary difference being
a rescaling of the μ parameter. This relationship can be
understood as follows: For the same value of q, the μ
parameter corresponding to two different values of p
denoted as p1 and p2 can be related as

�
μp1

ϕc

�
p1

≃
�
μp2

ϕc

�
p2

: ð51Þ

Here, μ1 (μ2) represents the value of μ associated with p1

(p2). Consequently, for the case where p1 ¼ 2 and p2 ¼ 4,
we find that μ1 ≃ 100μ22. This relationship explains the
connection between the two ranges quoted in the above
Eq. (50) for different values of p.
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When μ takes values smaller than those specified in
Eq. (50), we observe that the scalar spectral index increases
toward unity, deviating from Planck’s bounds. This behav-
ior is clearly depicted in Figs. 6(a) and 6(b). It is note-
worthy that the realistic range of μ outlined in Eq. (50)

corresponds to phase 1 characterized by the condition
2ðμ=ϕcÞpðψDB=MÞq < 1. This contrasts with the new
inflation limit featuring an attractor solution, which falls
within phase 2 and is associated with larger values of μ.
In the cases we have investigated, the new inflation limit

(a) (b)

FIG. 6. The scalar spectral index ns plotted against the mass parameter μ, for (a) p ¼ 4, q ¼ 4 for different points (1 − ðϕDB=ϕcÞp,
ψDB=M) from (2.51189 × 10−5; 7.3374 × 10−4) (red) to (1.99526 × 10−7; 3.67854 × 10−3) (black) and (b) p ¼ 2, q ¼ 4 for different
points (1 − ðϕDB=ϕcÞp,ψDB=M) from (7.94328 × 10−5; 5.8393 × 10−4) (red) to (3.16228 × 10−7; 3.68507 × 10−3) (black), for
60e-folds from the pivot scale. The light (dark) shaded region represents the Planck 2018 1σ (2σ) bounds.

(a) (b)

(c) (d)

FIG. 7. Top panels: plot of the scalar spectral index ns against (a) 1 − ðϕDB=ϕcÞp, (b) ψDB=M over the diffusion boundary, using
different μ values, for p ¼ 2 and q ¼ 4 and 60e-folds before the end of inflation. Bottom panels: plot of the scalar spectral index ns
against (c) 1 − ðϕDB=ϕcÞp, (d) ψDB=M over the diffusion boundary, using different μ values, for p ¼ 4 and q ¼ 4 and 60e-folds before
the end of inflation. The light (dark) shaded region represents the Planck 2018 1σ (2σ) bounds.
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featuring an attractor solution is realized for significantly
larger values of μ:

μ ≫ 2500 for ðp; qÞ ¼ ð2; 4Þ

and

μ ≫ 5 for ðp; qÞ ¼ ð4; 4Þ:

In this limit, as depicted in Fig. 7, we do not achieve the
central value of ns for the entire field range spanning
the diffusion boundary. This aligns with our previously
obtained findings for the case with q ¼ 4, as illustrated in
Fig. 3. Nevertheless, for larger values of q, we can obtain
scalar spectral index values consistent with Planck data at
the 1σ level, as previously demonstrated in Fig. 3. Finally, it
is worth noting that the non-Gaussianity parameter denoted
as fNL is found to be slow-roll suppressed, having a value
on the order of 10−2, which is well within the current
bounds set by Planck [23].

B. Beyond minimal generalization

We should make a few comments regarding a potential
extension of the minimal generalization we discussed
earlier for the potential described by Eq. (21). Let us
consider the following potential generalization:

V ¼ Λ4

��
1 −

�
ψ

M

�
q1
�

2

þ
�
ϕ

μ

�
p1 þ 2

�
ϕ

ϕc

�
p2

�
ψ

M

�
q2
�
:

ð52Þ

Note that the critical value ϕc in the above expression
describes the waterfall transition point only for q1 ¼ q2. In
the case where the value of the ϕ field is dynamically
suppressed before observable inflation begins, the above
potential simplifies to

V ≃ Λ4

�
1 − 2

�
ψ

M

�
q1
�
: ð53Þ

This situation allows for a new inflation scenario. For
q1 ≠ q2, the potential in Eq. (52) does not exhibit a
waterfall. For q1 < q2, it rather supports a smooth hybrid
inflation mechanism [18,55–59]. For q1 > q2, the classical
evolution of ϕ in the ψ ¼ 0 valley toward the origin can
provide a significant suppression of the term ðϕ=ϕcÞp2 for
new inflation to work smoothly.
Now, let us consider a mixed scenario in the context of a

tribrid inflation model, where the scalar potential can be
expressed as

V ¼ Λ4

��
1 −

�
ψ

M

�
q1
�

2

þ
�
ϕ

μ

�
p

þ 2

�
ϕ

ϕc

�
q2
�
ψ

M

�
q1 þ 2

�
ϕ

ϕc

�
q1
�
ψ

M

�
q2
�
: ð54Þ

If the first mixing term dominates with q1 < q2, the new
inflation scenario proceeds similarly to the minimal gen-
eralized case discussed earlier. However, if the second
mixing term dominates with q1 > q2, it is necessary to
adequately suppress the term ðϕ=ϕcÞq2 for new inflation to
work effectively. This mixed scenario is studied in [19],
where they consider specific values such as q1 ¼ 4, q2 ¼ 2,
along with additional mass terms for both fields induced by
supergravity corrections. Within the supergravity frame-
work, incorporating correction terms for the ψ field opens
up the potential for achieving a waterfall transition, even
when q1 ≠ q2, as discussed in [19,45]. Having outlined
these potential generalizations beyond the minimal version,
we will now focus exclusively on the minimal generaliza-
tion in the rest of this paper.

V. SUPERSYMMETRIC REALIZATION

We begin with a superpotential that exhibits a general-
ized tribrid structure and can be expressed as follows:

W ¼ κ

�
S

�
Ψq

Mq−2
c

−M2�

�
þ λ

ΨmΦn

Mmþn−3
c

�
: ð55Þ

Here, the integersm, n, and q will be specified later, while κ
and λ represent dimensionless couplings. Additionally, Mc
denotes the cutoff scale, S is a gauge singlet chiral superfield,
and Ψ and Φ could be gauge nonsinglet chiral superfields,
depending on the specific model under consideration. For
instance, in the models considered in [60,61],Ψ corresponds
to the GUT Higgs superfield, and Φ represents the gauge
singlet or nonsinglet sneutrino. Furthermore, Φ might
represent a gauge-invariant combination of matter and
Higgs superfields. The general form of W has already been
employed in [62] for pseudosmooth tribrid inflation and
in [48] for Kähler-driven tribrid inflation. The global
supersymmetry (SUSY) minimum of W is characterized by

hSi ¼ 0; hΦi ¼ M with Mq ¼ Mq−2
c M2�; ð56Þ

whereM is the symmetry-breaking scale. To facilitate future
discussions, the mass parameterM� is eliminated in terms of
M andMc using the relationship in the above equation. The
tribrid form of the superpotential is chosen because its scalar
potential can be reduced to the generalized potential form
presented in Eq. (21). To facilitate subsequent analysis, we
absorb the parameter κ into a rescaling of the scalar potential,
and all remaining parameters are assumed to be real.
The form of the above superpotential can be restricted

by the Uð1ÞR × Zq symmetries. In Table I, we outline the
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charge assignments under these symmetries for the vari-
ous superfields. In particular, the Zq charge assigned to
the last term is mþ n ¼ q. The global SUSY F-term
scalar potential corresponding to the superpotential W is
expressed as

V ¼
����Ψq −Mq

Mq−2
c

����2 þ
����q SΨq−1

Mq−2
c

þmλ
Ψm−1Φn

Mmþn−3
c

����2

þ
����nλΨmΦn−1

Mmþn−3
c

����2: ð57Þ

Note that we use the same notation for the scalar compo-
nents of the chiral superfields S, Φ, and Ψ here.
When Φ is set to zero, the above potential simplifies to a

generalized form of the hybrid inflation potential. However,
this does not yield the desired form of the scalar poten-
tial (21). On the other hand, if we consider the scenario
where S vanishes, the scalar potential adopts the form of the
generalized scalar potential in (21), provided we choose
m ¼ qþ2

2
and n ¼ q−2

2
. This identification helps clarify our

rationale for selecting supersymmetric tribrid inflation as
the framework for investigating the new inflation phase in
the waterfall region.
Let us delve into the details of the setup further. We begin

with the Kähler potential expressed as follows:

K ¼ jSj2 þ jΨj2 þ jΦj2 þ κS
jSj2
4

þ κΨ
jΨj2
4

þ κΦ
jΦj2
4

þ κSΨjSj2jΨj2 þ κSΦjSj2jΦj2 þ… ð58Þ

In the context of this setup, the F-term supergravity
(SUGRA) scalar potential is given by

V ¼ eKðK−1
ij
DziWDz�j

W� − 3jWj2Þ þ VD ð59Þ

with

DziW ≡ ∂W
∂zi

þ ∂K
∂zi

W; Kij̄ ≡ ∂
2K

∂zi∂z�j
ð60Þ

and

Dz�i
W� ¼ ðDziWÞ�; ð61Þ

with zi being the bosonic components of the superfields
zi ∈ fS;Ψ;Φ; � � �g. Since the scalar fields in this setup are
complex, they can be represented as

Ψ ¼ ψeiθψ ; S ¼ jSjeiθS ; Φ ¼ ϕeiθϕ : ð62Þ

We further assume that the phases of these fields are
stabilized at their respective minima,

θψ ¼ 0; θS þ nθϕ ¼ 0: ð63Þ

To understand how these phases might influence infla-
tionary dynamics, refer to Ref. [63]. Consequently, the
potential simplifies to

V¼V0

�
1−

�
ψ

M

�
q
�

2

þ
�
q
Sψq−1

Mq−2
c

þmλ
ψm−1ϕn

Mmþn−3
c

�
2

þn2λ2
ψ2mϕ2ðn−1Þ

Mmþn−3
c

þ3κSH2S2þV0ðαϕ2−βψ2Þ ð64Þ

with

V0 ¼ κ2M4
c

�
M
Mc

�
2q
: ð65Þ

Here, α ¼ κSΦ − 1, β ¼ κSΨ − 1, and H2 ≃ V0=3 is the
Hubble parameter. It is worth noting that a SUGRA mass
on the order of H is necessary for the S field to suppress its
vacuum expectation value (VEV) during inflation. We
determine the VEV hSi by minimizing the potential, i.e.,
∂V
∂S ¼ 0. The result is

hSi ¼ −
mqλψmþq−2ϕnM2

c

−q2ψ2q−2=2þ 3κSH2
: ð66Þ

In the preinflation phase where ψ ¼ 0, the driving field S
with the Hubble size mass ðκS ≲ − 1

3
Þ quickly settles to its

minimum at hSi ¼ 0. Consequently, the potential becomes

V ≃ V0

��
1 −

�
ψ

M

�
q
�

2

þ λ2
�
qþ 2

2

�
2 M2

c

M2

ϕq−2

Mq−2
ψq

Mq

− βψ2 þ αϕ2

�
; ð67Þ

where we retain the term with a lower power in ψ since the
term with a higher power in ψ is relatively suppressed.
Next, we aim to find the critical value of ϕ that marks the

transition to the waterfall phase. To do this, we calculate the
qth derivatives of the above potential, yielding

∂
qV
∂ψq≃V0

�
−
2ðq!Þ
Mq þð2q!Þ

q!
ψqþq!

�
qþ2

2

�
2

λ2
M2

c

Mqþ2

ϕq−2

Mq−2

�
:

ð68Þ

TABLE I. Charge assignments of the superfields under
Uð1ÞR × Zq.

Superfield Uð1ÞR Zq

S 1 0
Ψ 0 1
Φ 1=n 1
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It is worth noting that the β term only contributes when
q ¼ 2, but it remains negligibly small within the relevant β
range (less than 10−2). Evaluating this derivative at ψ ¼ 0,
we get

∂
qV
∂ψq

����
ψ¼0

≃V0

�
−
2ðq!Þ
Mq þq!

�
qþ2

2

�
2

λ2
M2

c

Mqþ2

ϕq−2

Mq−2

�
: ð69Þ

The waterfall transition occurs when�
∂
qV
∂ψq

�
ψ¼0;ϕ¼ϕc

¼ 0: ð70Þ

Therefore, the critical value of ϕ where the transition takes
place can be expressed as

ϕq−2
c

Mq−2 ¼
2

λ2ðqþ2
2
Þ2
M2

M2
c
: ð71Þ

Utilizing this equation, the normalized scalar potential
adopts the following form:

V=V0 ≃
�
1 −

�
ψ

M

�
q
�

2

þ 2

�
ψ

M

�
q
�
ϕ

ϕc

�
2n

þ αϕ2 − βψ2; ð72Þ

where 2n ¼ q − 2. With canonically normalized fields, we
perform the replacements ψ → ψffiffi

2
p and → ϕffiffi

2
p . This adjust-

ment brings the above potential in line with the required
generalized form of Eq. (21) with 2n ¼ q − 2 ¼ p, β ¼ 0,
αðp ¼ 2Þ ≃ μ−2 supplemented with the replacements
M → Mffiffi

2
p and ϕc →

ϕcffiffi
2

p (with Mc →
Mcffiffi
2

p ). However, there

are still some differences due to the presence of α and β
terms. These differences render the predictions of this
specific supersymmetric realization particularly intriguing,
as discussed in the subsequent section.

A. Results and discussion

In the current supersymmetric framework, the diffusion
boundary is given by

2M2βyþ 2qjyq−1ð1 − x2n − yqÞj ≤ M
H
2π

: ð73Þ

For M2βy ≫ qyq−1, the above condition simplifies to

ψ ≤ ψDB ≡ H
4πβ

: ð74Þ

For β ≃ 10−3–10−2, M ¼ 0.01, and H ≃ 10−10, we obtain
ψDB ≃ 10−9–10−8. In order for classical evolution to
dominate, it in necessary for ψ to exceed ψDB.
In the limit of large values for q and small values for α

and β, the potential in Eq. (72) predicts the scalar spectral
index in accordance with Planck data. Therefore, in this
section, we focus on the smallest possible values of q and
explore the ranges of α and β that remain consistent with
the observational data.
In Fig. 8(a), we present a plot depicting the scalar

spectral index as a function of the parameter β for three
different values of n (specifically, n ¼ 1, 2, and n ¼ 3,
which correspond to q ¼ 4, 6, and 8, respectively) while
assuming a negligible value for α (i.e., α ≪ 1). For q ¼ 6
and q ¼ 8, the range β ≃ 0.001–0.01 falls within the 1σ
Planck constraint on ns, whereas q ¼ 4 is just within the 2σ
range around β ∼ 0.008. It is worth noting that the smallest
possible value for n, which is n ¼ 1, leads to a high
supersymmetry-breaking scale, making it less relevant for
physics related to the Large Hadron Collider. Therefore, for
our subsequent discussions, we adopt n ¼ 2 (or q ¼ 6) as
the next smallest value, which also remains consistent with
the Planck constraints over a wider range of β.

(a) (b)

FIG. 8. (a) The scalar spectral index ns plotted against β for (q ¼ 4, 6, 8) corresponding to (n ¼ 1, 2, 3). The parameter α is
approximately zero. (b) The scalar spectral index for p ¼ 6 plotted against β for different values of α. The boundary point is fixed in both
(a) and (b). The light (dark) shaded region represents the Planck 2018 1σ (2σ) bounds.
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The scalar potential for q ¼ 6 is given by

V=V0 ≃
�
1 −

�
ψ

M

�
6
�

2

þ 2

�
ψ

M

�
6
�
ϕ

ϕc

�
4

þ αϕ2 − βψ2: ð75Þ

The variation of ns with β for the various values of α is
depicted in Fig. 8(b). For this analysis, the values of
the fields have been fixed at the diffusion boundary.
A decreasing trend in ns can be seen with increasing α.
For α≳ 1=3, the field ϕ becomes sufficiently heavy to
quickly settle down to zero, and inflation proceeds pri-
marily through the evolution of the ψ field, a scenario that
was explored in the context of the supersymmetric hybrid
framework in [18].
Our next objective is to investigate the impact of initial

conditions. In Fig. 9(a), we present a plot of the scalar
spectral index as it varies with field values along the
diffusion boundary, considering different values of β,
while keeping α approximately close to zero. This plot
illustrates that within a certain range of field values,
specifically when ð1 − ðϕDB=ϕcÞ6Þ < 10−2, the effect on
the spectral index is negligible. Within a narrower range
ð10−2≲ð1−ðϕDB=ϕcÞ6Þ≲10−1Þ, there is a slight decrease
in the value of ns, which diminishes as field values become
even larger, rendering the effect on ns insignificant once
more. For very small values of ϕ, the predictions converge
to a single-field new inflation scenario discussed in [18]. It
is crucial to emphasize that, given the defined ranges for α
and β, the current scenario highly favors the occurrence of
successful new inflation that aligns with Planck data.
Moving on to Fig. 9(b), we depict the tensor-to-scalar
ratio r against the boundary, using the same parameter
values as in Fig. 9(a). As is consistent with a standard
small-field inflation model, the value of r is exceedingly
small. Solid lines represent an increasing trend of ns with β
values, while dashed lines represent the decreasing trend.

B. Reheating and leptogenesis

To discuss reheating and leptogenesis in the case with
n ¼ 2 (or q ¼ 6), we replace Φ2 in W with NN, with N
representing the right-handed neutrino superfield. In this
general framework, we consider the inflaton to be the
lightest sneutrino field NI ≡ N1. Reheating and lepto-
genesis can proceed here in a manner analogous to the
models examined in [45,60,61]. Incorporating the relevant
term in the superpotential (55) for reheating, along with the
Yukawa term involving Ni, we arrive at the following
expression:

W ⊃ κλij
Ψm

Mm−1
c

NiNj þ Yν
ijNiLjHu: ð76Þ

After the breaking of the underlying symmetry, the
Majorana mass term for the Ni superfield is determined
as follows:

MR
ij ¼

κλij
2

�
M
Mc

�
m−1

M: ð77Þ

From the above expression, the mass of the sneutrino
inflaton N1 is obtained as

MI
R ¼

ffiffiffi
2

p
κM

qþ 2

�
M
Mc

�qþ2
2

< M; ð78Þ

assuming ϕc ¼ M. For Mc ¼ 10M and V0 ∼ 10−19–10−20,
we obtain κ ≃ 0.01–0.032 and MI

R ≃ 4.3 × 109–1.4×
1010 GeV.
The inflaton undergoes decay through the Yukawa

coupling Yν
1jN1LjHu, resulting in the production of slepton

and Higgs or lepton and Higgsino with a decay width
given by

(a) (b)

FIG. 9. (a) The scalar spectral index ns for ðn ¼ 2; q ¼ 6Þ plotted against ð1 − ðϕDB=ϕcÞ4Þ for different values of β. (b) The tensor-to-
scalar ratio r for ðn ¼ 2; q ¼ 6Þ plotted against ð1 − ðϕDB=ϕcÞ4Þ for different values of β. The parameter α in this case is negligibly
small. Solid lines represent an increasing trend of ns with β values, while dashed lines represent the decreasing trend.
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ΓNI
≃
y2ν
4π

MI
R ≃

y2ν
4π

ffiffiffi
2

p
κM

qþ 2

�
M
Mc

�qþ2
2

; ð79Þ

where y2ν ¼ ðYνY
†
νÞ11. Following the end of inflation, the

Universe undergoes reheating as a result of inflaton’s
decay. The reheating temperature Tr is given by
Eq. (80), where g� ¼ 228.75 for minimal supersymmetric
standard model.

Tr ¼
�

90

π2g�

�
1=4 ffiffiffiffiffiffiffi

ΓNI

p
; ð80Þ

where g� ¼ 228.75 for MSSM. Assuming a standard
thermal history, we can establish a connection between
the total number of e-folds N0 and the reheating temper-
ature using the equation

N0 ≃ 53þ 1

3
ln

�
Tr

109 GeV

�
þ 2

3
ln

�
V1=4
0

1015 GeV

�
: ð81Þ

The lepton asymmetry generated by the inflaton decay
undergoes a partial conversion into the observed baryon
asymmetry through sphaleron processes [64–66]. In order
to suppress the washout factor of lepton asymmetry, we
assumeMI

R ≫ Tr. The baryon asymmetry can be expressed
in terms of the reheating temperature as follows:

nB
nγ

≲ 1.84

�
3

8π

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
v2

�
Tr; ð82Þ

assuming a hierarchical structure of neutrino masses. Here,
the atmospheric neutrino mass squared difference is
Δm2

31 ≃ 2.6 × 10−3 eV2 and we take hHui≃v≃174GeV
in the large tan β limit. Importantly, it is worth noting that

this expression is independent of the inflaton mass MI
R.

Finally, the observed baryon-to-photon ratio nB=nγ ¼
ð6.10� 0.04Þ × 10−10 places a bound on reheating temper-
ature Tr ≳ 106 GeV. For our numerical calculations, we set
Tr ¼ 106 GeV, a value sufficiently low to evade the
gravitino overproduction problem.

VI. CONCLUSION

The idea of achieving a new inflationary phase within
the context of waterfall hybrid inflation, as initially
proposed in [20], has been extended to align with the
observational data provided by the Planck mission. In this
extension, we identify a single-field inflationary scenario
that predominates in the large μ (phase 2), while a multi-
field inflationary scenario emerges in the regime charac-
terized by relatively smaller μ values (phase 1). The initial
conditions for this generalization are generated through
valley hybrid preinflation. The predictions of inflationary
observables are computed using the δN formalism.
Remarkably, the predictions for single-field scenarios with
large q values are observationally consistent, whereas
multifield scenarios can also work well with smaller q
values, even as low as 6.
Implementation of this idea within a supersymmetric

framework requires a generalized version of the tribrid
inflation model. The inclusion of supergravity corrections,
stemming from a nonminimal Kähler potential, further
boosts the model’s viability. As a specific example, we
consider n ¼ 2 (or q ¼ 6) and replace the Φ field with the
right-handed neutrino field N. Notably, the interaction term
between the waterfall-Higgs field and the matter field
assumes a pivotal role in achieving successful reheating
and enabling nonthermal leptogenesis.
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