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Constraining cosmological parameters from large-scale structure observations requires precise and
accurate tools to compute its properties. While perturbation theory (PT) approaches can serve this
purpose, exploration of large parameter space is challenging due to the potentially large computational
cost of such calculations. In this study, we show that a response function approach applied to the
regularized PT (RegPT) model at two-loop order, plus correction terms induced by redshift space
distortion effects, can reduce the run-time by a factor of 50 compared to direct integration. We illustrate
the performance of this approach by performing the parameter inference of five fundamental
cosmological parameters from the redshift space power spectrum measured from N-body simulations
as mock measurements, and inferred cosmological parameters are directly compared with parameters
used to generate initial conditions of the simulations. From this PT challenge analysis, the constraining
power of cosmological parameters and parameter biases are quantified with the survey volume and
galaxy number density expected for the Euclidmission at the redshift z ¼ 1 as a function of the maximum
wave number of data points kmax. We find that RegPT with correction terms reproduces the input
cosmological parameters without bias up to maximum wave number kmax ¼ 0.18hMpc−1. Moreover,
RegPTþ, which introduces one free parameter to RegPT to handle the damping feature on small scales,
delivers the best performance among the examined models and achieves tighter constraints without
significant parameter bias for higher maximum wave number kmax ¼ 0.21hMpc−1.
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I. INTRODUCTION

The widely accepted scenario in modern cosmology is
that quantum fluctuations generated by inflation in the
earliest stage of the Universe result in primordial density
perturbation and the fluctuations lead to the formation of
self-gravitating bound objects called dark halos by gravi-
tational instability. As the Universe evolves, dark halos
successively undergo mergers and form structures with a
wide range of spatial scales [1]. In the hierarchy of
structures, the largest structures are referred to as the
large-scale structures (LSS) of the Universe. The spatial

clustering of LSS, in particular baryon acoustic oscillation
(BAO) [2], is driven by dark matter and is sensitive to
the accelerated expansion induced by dark energy. Thus,
observations of LSS are the key to understanding the
nature of the dark sector (for a review, see Ref. [3]).
One widely employed probe to map the LSS is the use

of the galaxies as tracers of the matter distribution at
large cosmological scales. Over the past decade, many
such surveys have been built: 6dF Galaxy Survey [4],
WiggleZ [5], VIPERS [6], and extended Baryon Acoustic
Oscillation Survey (eBOSS; [7]). In the coming era, a new
generation of spectroscopic surveys is under preparation: the
Subaru Prime Focus Spectrograph (PFS; [8]), Dark Energy
Spectrograph Instrument (DESI; [9,10]), Euclid [11,12], and*ken.osato@chiba-u.jp
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Nancy Grace Roman Space Telescope [13], which will
probe the Universe with wider and deeper coverage. These
next-generation surveys are promised to advance our under-
standing of the Universe through precise and accurate
measurements of galaxy clustering.
In the practical analysis of galaxy clustering, we rely on

statistics to summarize the information of observed galaxy
distribution. The most fundamental and widely used sta-
tistics is the two-point correlation function or its Fourier
space counterpart, the power spectrum. The accurate and
precise theoretical model to predict these statistics given a
cosmological model is an essential component in the
statistical analysis to constrain cosmological models. For
this purpose, various approaches have been developed so
far. Among such methods, the perturbation theory (PT) of
LSS (for a review, see Ref. [14]) has been commonly
employed in practical analysis. In the PT framework, the
cosmic matter is approximated as single-stream fluid and
the evolution is governed by continuity equation, Euler
equation, and Poisson equation. These equations can be
expanded with respect to the linear density contrast and this
naive approach is called the standard perturbation theory
(SPT). SPT is fast enough to apply for statistical inference
and the subpercent level accuracy is achieved up to the
mildly nonlinear regime. However, SPT is known to exhibit
poor convergence of PT expansion and the UV-sensitive
behaviors [15,16]. These severely restrict the applicable
range of SPT predictions, and a better control of the
convergence as well as UV sensitivity needs to be exploited.
In order to circumvent these problems and realize better

convergence and accuracy, approaches beyond SPT have
been developed based on a resummation technique in
Lagrangian space [17,18] and in Eulerian space [19–24].
Further, by introducing counterterms allowed by the sym-
metry, the UV sensitivity has been shown to be mitigated,
and the applicable range of PT treatment can be extended to
small scales. The latter approach is especially referred to as
the effective field theory (EFT) of LSS [25–28]. The main
concept of this treatment is to filter out small-scale
uncertainties, including the galaxy bias, and to absorb their
impacts on large-scale modes by adding an effective stress
tensor in the single-stream fluid equations. As a trade-off, in
EFT, controlling UV-sensitive behaviors needs free param-
eters that characterize the amplitude of counterterms, and
these must be marginalized over when comparing the
predictions with observations or simulations, although each
coefficient of counterterms has a clear physical meaning
such as the effective sound speed.
In all cases, the statistical inference of cosmological

parameters from the power spectrum involves theoretical
calculations of power spectra for a large number of sets of
cosmological parameters. For example, the standard cos-
mological model, where the Universe is composed of
ordinary matter, cold dark matter (CDM) and the cosmo-
logical constant and the geometry is flat, i.e., flat ΛCDM

model, contains at least five cosmological parameters. This
number is significantly augmented when one takes into
account nuisance parameters for observational systematics,
such as the galaxy bias, and the impact of redshift space
distortion (RSD) effect [29,30]. For instance, for a param-
eter space of three cosmological parameters [31], Oð105Þ
evaluations of statistics were required to perform the
parameter inference. A full exploration of the parameter
space will be obviously more demanding.
So far, a variety of approaches to predict the power

spectrum have been used to explore such large parameter
space. Previous works [32–35] showed that the computa-
tional cost of loop correction terms in the SPT expansion
could be reduced with the FFTLOG algorithm [36]. These
methods are formulated up to next-to-leading order (NLO)
but have not been implemented at next-to-next-leading
order (NNLO). NNLO direct computations have so far
been hampered by their computational cost. In order to gain
accuracy, EFT approaches have been widely advocated as
an alternative to NNLO computations, and applied to full-
shape analysis of galaxy power spectrum [37–39]. The
advantage is that their computational cost is indeed com-
parable to that of NLO computations. The price to pay is the
introduction of many extra nuisance parameters to control
the impact of the small-scale fluctuations that potentially
degrade their constraining power [31]. Finally, it should be
noted that simulation-based approaches, e.g., emulator
approach [40–43], are successful in predicting power
spectrum down to small scales in a fast manner [44] and
have been successfully employed to constrain cosmological
parameters from galaxy power spectrum [45]. This is not
however the path we choose to follow here.
In general, analytical PT treatments mentioned above

have their own limitation, and the robustness of these
approaches has to be tested against numerical simulations,
in which several nonlinear systematics, including gravita-
tional clustering, RSD, and galaxy bias, are properly
accounted for. However, most of the previous studies have
restricted their analysis to the case where cosmological
parameters are fixed. For a more practical setup, one would
be interested in deriving cosmological constraints, allowing
all the parameters in the theoretical models to be free.
Nevertheless, in the presence of parameter degeneracies,
even if an analytical method succeeds in reproducing the
observed power spectra, an unbiased parameter estimation
is not always guaranteed.
The main goal of this paper is to conduct a cosmology

challenge analysis of the perturbation theory, a PT chal-
lenge, extending to redshift space the studies done pre-
viously in real space [31,46–49]. Since cosmological
parameters used to generate the initial conditions of the
simulation are known, we can directly compare between the
inferred and true values. In this analysis, we mainly focus on
the regularized PT approach RegPT [50] with acceleration
by the response function expansion fast-RegPT [51]. With
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the help of the response function, we can significantly
reduce the computational cost of the calculation of power
spectrum and bispectrum. Through this analysis, we can
discuss which model serves the best to give precise and
accurate estimates. Further, we determine the extent to
which each of the PT models/methods can be used as a
reliable theoretical template to reproduce safely the cosmo-
logical parameters without any systematic bias. Note that
the target power spectrum in this analysis is the matter
power spectrum. Indeed, the matter power spectrum differs
from the galaxy power spectrum, which is measured in real
galaxy clustering measurements. Since there are various
uncertainties in modeling of the galaxy power spectrum and
construction of galaxy mock samples, we focus only on the
matter power spectrum to evade such uncertainties. Our
scope in this work is to assess the performance of PTmodels
at the matter level, and the analysis with the galaxy power
spectrum will be carried out in the subsequent paper of the
PT challenge series.
In Sec. II, we briefly overview the basics of analytical

treatments on the redshift space power spectrum: SPT,
RegPT, IR-resummed EFT. In Sec. III, we present the fast
scheme of RegPT calculation which realizes full funda-
mental cosmological parameter inference. In Sec. IV, we
present details of the PT challenge: statistical analysis and
N-body simulations, and in Sec. V, the results of the PT
challenge are presented. We make concluding remarks
in Sec. VI.
Throughout this paper, we assume a flatΛCDM universe.

Though we will perform the statistical inference of cosmo-
logical parameters, the fiducial cosmological parameters to
generate the initial conditions of N-body simulations for
mock measurements are based on the results of temperature
and polarization anisotropies (TT;TE;EEþ lowP dataset)
measured in Planck 2015 results [52]. The CDM density
parameter is ωcdm ¼ 0.1198, the baryon density parameter
is ωb ¼ 0.02225, and the massive neutrino density param-
eter is ων ¼ 0.00064. For neutrinos, we assume that one of
three generations is massive with mass mν ¼ 0.06 eV and
the other two are massless. The dark energy density
parameter Ωde ¼ 0.6844 and the dark energy is the cos-
mological constant with the equation of state parameter
wde ¼ −1. The Hubble parameter at the present Universe is
H0=ðkm s−1Mpc−1Þ ¼ 100h ¼ 67.27, which is determined
through the flatness ðωcdm þ ωb þ ωνÞ=h2 þ Ωde ¼ 1. The
amplitude and tilt of the primordial scalar perturbation is
lnð1010AsÞ ¼ 3.094 and ns ¼ 0.9645, respectively, with the
pivot scale kpiv ¼ 0.05Mpc−1.

II. THEORY

In this section, we briefly review the basics of SPT and
RegPT and the calculations of the power spectrum. In
addition to these PT schemes, we present one of the EFT
treatments: IR-resummed EFT. In the redshift space,

nonlinear coupling with density and velocity fields has
appreciable contributions to the power spectrum. We over-
view how we can incorporate the effect specific to the
redshift space based on the PT framework.

A. Standard perturbation theory

Since the density fluctuation is small on large scales and/
or at early times, the cosmic matter field can be approxi-
mated as a single-stream fluid. Then, the evolution of the
cosmic fluid is described by continuity, Euler, and Poisson
equations, and the density and velocity divergence field can
be expanded in a perturbative manner with respect to the
linear density field at the present Universe:

Ψðk; ηÞ ¼
X∞
n¼1

enηΨðnÞðkÞ; ð1Þ

where Ψðk; ηÞ ¼ ðδðk; ηÞ; θðk; ηÞÞ is the density-velocity
doublet, δðk; ηÞ and θðk; ηÞ are the Fourier transform of the
density and velocity divergence field, respectively. The
velocity divergence field is normalized as θ ¼ −∇ · v=
ðaHfÞ, where v is the velocity field, a is the scale factor,
H is the Hubble parameter, f ¼ d lnDþ=d lna is the linear
growth rate, and DþðaÞ is the linear growth factor normal-
ized as Dþða ¼ 1Þ ¼ 1. We have considered the fastest
growing mode and adopted an Einstein–de Sitter universe in
the expansion, and thus, the time dependence of the kernel
functions is factorizable as enη, where η≡ lnDþ. The
doublet at linear order (n ¼ 1) is Ψð1ÞðkÞ¼ðδ0ðkÞ;δ0ðkÞÞ,
where δ0ðkÞ is the Fourier transform of the linear density
field at the present Universe. The nth order term of the
doublet ΨðnÞ is expressed as mode coupling of the Fourier
transform of the linear density field due to nonlinear
gravitational evolution:

ΨðnÞ
a ðkÞ ¼

Z
d3q1
ð2πÞ3 � � �

Z
d3qn
ð2πÞ3 ð2πÞ

3δDðk − q1���nÞ

× FðnÞ
a ðq1;…; qnÞδ0ðq1Þ � � � δ0ðqnÞ; ð2Þ

where δD is the Dirac delta function, q1���n ≡ q1 þ � � � þ qn,

and FðnÞ
a are symmetrized kernel functions and the explicit

expression is derived via the recursion relation (see,
e.g., [19]).
Based on the PT framework, one can also compute the

statistics of the density and velocity divergence field in a
perturbative manner. As a working example, let us con-
sider the most fundamental statistics to characterize the
cosmic field: power spectrum Pab and bispectrum Babc,
which is the Fourier space version of two-point and three-
point correlation functions, respectively. The definitions
are given as

hΨaðk; ηÞΨbðk0; ηÞi≡ ð2πÞ3δDðkþ k0ÞPabðk; ηÞ; ð3Þ
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hΨaðk1; ηÞΨbðk2; ηÞΨcðk3; ηÞi
≡ ð2πÞ3δDðk123ÞBabcðk1; k2; k3; ηÞ; ð4Þ

where the subscript (a; b; c) denotes the density δ or the
velocity divergence θ. Based on the perturbative expres-
sions [Eq. (1)], the power spectrum and the bispectrum can
be calculated as the loop expansion:

Pabðk; ηÞ ¼ Pab;treeðk; ηÞ þ Pab;one-loopðk; ηÞ þ � � � ; ð5Þ

Babcðk1;k2;k3;ηÞ ¼ Babc;treeðk1;k2;k3;ηÞ
þBabc;one-loopðk1;k2;k3;ηÞ þ � � � : ð6Þ

These expansions are ordered with respect to the linear
power spectrum at the present Universe P0ðkÞ, which is
defined as

hδ0ðkÞδ0ðk0Þi≡ ð2πÞ3δDðkþ k0ÞP0ðkÞ: ð7Þ

The tree level (LO) terms of power spectrum and bispec-
trum (Pab;tree and Babc;tree) are proportional to the linear
power spectrum and the square of the linear power
spectrum, respectively. Next, the one-loop level (NLO)
terms (Pab;one-loop and Babc;one-loop) require the loop integral
with the external wave vector and the integrand for power
spectrum (bispectrum) contains the square (cubic) power
of the linear power spectrum. In general, n-loop terms
involve 3n − 1 dimensional integrals and the power of the
linear power spectrum in the integrands is nþ 1 for power
spectrum and nþ 2 for bispectrum. In practice, one needs
to truncate the infinite series of the expansion to compute
the power spectrum and the bispectrum, and in this paper,
terms up to two-loop orders are considered for the power
spectrum calculations.

B. Regularized perturbation theory

In order to improve the convergence of the SPT expan-
sion, the resummation technique, which reorganizes the
terms of the SPT expansion, has been developed. Among
the resummed PT frameworks, we consider the regularized
perturbation theory (RegPT) [50], which utilizes the multi-
point propagators to reorganize the SPT expansion, i.e., Γ
expansion [20].
First, we introduce the expressions of multipoint propa-

gators, which are defined as the response of the density and
velocity divergence fields with respect to the linear density
field. The (nþ 1)-point propagator ΓðnÞ

a is defined as

1

n!

�
δnΨaðk; ηÞ

δδ0ðk1Þ � � � δδ0ðknÞ
�

≡ δDðk − k1���nÞð2πÞ−3ðn−1ÞΓðnÞ
a ðk1;…kn; ηÞ: ð8Þ

The expression of the propagator is given as

ΓðnÞ
a ðk1;…; kn; ηÞ ¼ ΓðnÞ

a;treeðk1;…; kn; ηÞ

þ
X∞
p¼1

ΓðnÞ
a;p-loopðk1;…; kn; ηÞ; ð9Þ

ΓðnÞ
a;treeðk1;…; kn; ηÞ≡ enηFðnÞ

a ðk1;…; knÞ ð10Þ

ΓðnÞ
a;p-loopðk1;…;kn;ηÞ≡eðnþ2pÞηcðnÞp

Z
d3q1
ð2πÞ3 � � �

Z
d3qp
ð2πÞ3

×FðnÞ
a ðq1;−q1;…;qp;−qp;k1;…;knÞ

×P0ðq1Þ���P0ðqpÞ ð11Þ

≡eðnþ2pÞηΓ̄ðnÞ
a;p-loopðk1;…; knÞ; ð12Þ

where cðnÞp ≡ ðnþ2p
n Þð2n − 1Þ!!. There is a notable feature

that the propagator has an asymptotic form at the high-k
limit [20]:

lim
k→∞

ΓðnÞ
a ðk1;…;kn;ηÞ¼ exp

�
−
k2e2ησ2d

2

�
ΓðnÞ
a;treeðk1;…;kn;ηÞ;

ð13Þ

where k≡ jk1 þ � � � þ knj, σ2d is the dispersion of the
displacement field:

σ2dðkÞ≡
Z

kΛðkÞ

0

dq
6π2

P0ðqÞ; ð14Þ

and we have introduced the UV cutoff scale kΛðkÞ and
adopted kΛðkÞ ¼ k=2 to match the result of N-body
simulations [50]. This displacement dispersion controls
the damping feature on small scales and it is known that
making σd a free parameter improves the fit to the N-body
simulation results [31] though the generalized Galilean
invariance is broken (see e.g., [16,53,54]). We refer to this
one-parameter extended RegPT model as RegPTþ.
It is possible to express the statistics of density and

velocity fields with the propagator expansion. The power
spectrum and the bispectrum based on RegPT are formally
expressed as the infinite series [20]:
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hΨaðk; ηÞΨbðk0; ηÞi ¼ δDðkþ k0Þ
X∞
p¼1

p!
Z

d3q1 � � � d3qp
ð2πÞ3p δDðk − q1…pÞ

× ΓðpÞ
a ðq1;…qp; ηÞΓðpÞ

b ðq1;…qp; ηÞP0ðq1Þ � � �P0ðqpÞ; ð15Þ

hΨaðk1;ηÞΨbðk2;ηÞΨcðk3;ηÞi ¼
X
α;β;γ

�
αþ β

α

��
βþ γ

β

��
γþ α

γ

�
α!β!γ!

Z
d3p1 � � �d3pα

ð2πÞ3ðα−1Þ
d3q1 � � �d3qβ
ð2πÞ3ðβ−1Þ

d3r1 � � �d3rγ
ð2πÞ3ðγ−1Þ

× δDðk1 − p1…α − q1…βÞδDðk2 þ q1…β − r1…γÞδDðk3þ r1…γ þ p1…αÞ
×ΓðαþβÞ

a ðp1;…;pα;q1;…;qβ;ηÞΓðβþγÞ
b ð−q1;…;−qβ; r1;…; rγ;ηÞ

×ΓðγþαÞ
c ð−r1;…;−rγ;−p1;…;−pα;ηÞP0ðp1Þ � � �P0ðpαÞP0ðq1Þ � � �P0ðqβÞP0ðr1Þ � � �P0ðrγÞ;

ð16Þ

where the summation in Eq. (16) runs over non-negative
integers with the constraint that at most one of the indices
(α, β, γ) is zero. Similarly to the SPT expansion, one needs
to truncate the expansion. Hereafter, we suppress the time
variable η for simplicity. For more explicit construction of
the power spectrum and bispectrum calculations respec-
tively at two- and one-loop orders, refer to Refs. [50,55].

C. Redshift space power spectrum

The peculiar motion of galaxies along the line-of-sight
direction is known to induce the anisotropy onto the power
spectrum observed via spectroscopic surveys, referred to as
the RSD effect, and this effect must be taken into account
for the analysis of the power spectrum measurements. The
redshift space power spectrum is enhanced on large scales
due to a coherent infall toward the gravitational potential
well, which is referred to as the Kaiser effect [30]. The
nonlinear version of the Kaiser formula is given as

PðSÞ
Kaiserðk; μÞ ¼ PδδðkÞ þ 2fμ2PδθðkÞ þ f2μ4PθθðkÞ; ð17Þ

where Pδδ, Pδθ, and Pθθ are the density autospectra, the
density-velocity cross spectra, and the velocity autospectra
in the real space, respectively, and μ is the directional cosine
with respect to the line-of-sight direction. Hereafter, we take
the z axis as the line-of-sight direction. Furthermore, the
nonlinear coupling of density and velocity fields gives rise
to additional contributions at small scales [56]. This effect
can be modeled in a perturbative manner using the cumulant
expansion and the formalism is presented in Ref. [57],
which is referred to as the Taruya-Nishimichi-Saito (TNS)
correction, and further extended with RegPT [55]. The
resultant power spectrum in the redshift space based on
RegPT is given as

PðSÞ
RegPTðk; μÞ ¼ DFoGðkμfσvÞ½PδδðkÞ þ 2fμ2PδθðkÞ

þ f2μ4PθθðkÞ þ Aðk; μÞ þ Bðk; μÞ�; ð18Þ

where DFoG is the damping function due to the finger-of-
God (FoG) effect and will be discussed later, and two
correction terms denoted as Aðk; μÞ and Bðk; μÞ are intro-
duced. These correction terms are referred to as TNS terms.
The explicit expressions of A and B terms are given as

Aðk; μÞ ¼ ðkμfÞ
Z

d3p
ð2πÞ3

μp
p
½Bσðp; k − p;−kÞ

− Bσðp; k;−k − pÞ�; ð19Þ

Bðk; μÞ ¼ ðkμfÞ2
Z

d3p
ð2πÞ3 FðpÞFðk − pÞ; ð20Þ

FðpÞ≡ μp
p

�
PδθðpÞ þ f

μp
p
PθθðpÞ

�
; ð21Þ

where the cross-bispectrum Bσ is defined as

�
θðk1Þ

�
δðk2Þ þ f

μ2
k2

θðk2Þ
	�

δðk3Þ þ f
μ3
k3

θðk3Þ
	�

≡ ð2πÞ3δDðk1 þ k2 þ k3ÞBσðk1; k2; k3Þ: ð22Þ

These expressions do not depend on the direction of
the wave vector k, and thus, we take k ¼ ð0; 0; kÞ and the
directional cosine as μp ¼ ðk · pÞ=ðkpÞ ¼ pz=p. The
expression of the A term is written as the integrals of
density and velocity bispectra:

Aðk; μÞ ¼
X3
n¼1

X2
a;b¼1

μ2nfaþb−1 k3

ð2πÞ2
Z

∞

0

dr
Z þ1

−1
dx

× ½An
abðr; xÞB2abðp; k − p;−kÞ

þ Ãn
abðr; xÞB2abðk − p; p;−kÞ�

≡X3
n¼1

μ2nA2nðkÞ; ð23Þ
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where r and x are the dimensionless variables defined as
r ¼ p=k and x ¼ ðp · kÞ=ðpkÞ. As a notation, we also assign
an integer to the subscript: a ¼ 1 denotes the density field δ
and a ¼ 2 denotes the velocity divergence field θ. Next, the
B term is expressed as the integrals of the power spectra:

Bðk; μÞ ¼
X4
n¼1

X2
a;b¼1

μ2nð−fÞaþb k3

ð2πÞ2
Z

∞

0

dr
Z þ1

−1
dx

× Bn
abðr; xÞ

Pa2ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
ÞPb2ðkrÞ

ð1þ r2 − 2rxÞa

≡X4
n¼1

μ2nB2nðkÞ: ð24Þ

The explicit expressions of auxiliary functions (An
ab; Ã

n
ab;

Bn
ab) are found in Ref. [57]. Hereafter, we consider the power

spectrum in the redshift space at two-loop order, and thus,
density autospectra, velocity autospectra, and density-
velocity cross spectra in Eq. (18) are computed at two-
loop order. For TNS terms, the bispectra in the A term and
the power spectra in the B term should be computed at one-
loop order to be consistent. It is possible to derive the
expression of the redshift space power spectrum based on
SPT at one-loop order in the same manner and the
derivation is described in Appendix A.
At small scales, the random motion of galaxies

suppresses the structures, which is referred to as the
FoG effect [29]. The damping effect is well explained
by the phenomenological model, which introduces the
damping function DFoGðkμfσvÞ to control the overall
amplitude of the power spectrum and the functional form
is taken as Gaussian or Lorentzian form:

DFoGðxÞ ¼
�

expð−x2Þ ðGaussianÞ;
ð1þ x2=2Þ−2 ðLorentzianÞ: ð25Þ

In most of the models, the velocity dispersion σv is treated
as a free parameter and can be calculated at linear order as

σ2v;L ¼
Z

∞

0

dq
6π2

PLðq; zÞ; ð26Þ

where PLðk; zÞ ¼ e2ηðzÞP0ðkÞ is the linear power spectrum
at the redshift z. We also consider another functional form
with one free parameter γ [58]:

DFoGðxÞ ¼
�
1þ x2

γ

�−γ
: ð27Þ

This FoG model becomes Lorentzian FoG for γ ¼ 2 and
asymptotes to Gaussian FoG with γ → ∞. Thus, this model
contains the Gaussian and Lorentzian FoGs and has more
flexibility. Hereafter, we refer to this FoG model as
“γ FoG.”

D. IR-resummed effective field theory

The EFT provides a practical way to compute the power
spectrum down to small scales (≳0.3hMpc−1) once free
parameters are calibrated with N-body simulations or
marginalized over as nuisance parameters in comparing
its predictions with simulations/observations. In order to
examine the performance of the EFT against PT models,
we adopt the latter approach and consider specifically the
IR-resummed EFT model, where the damping of the BAO
feature due to the large-scale bulk motion is corrected in
the perturbative approach [59–61]. Here, we describe the
power spectrum based on IR-resummed EFT at one-loop
order. Although our primary focus is to test the two-loop
PT predictions, the one-loop EFT is now being used for
parameter inference on observational data. Thus, compar-
ing its performance with those of the two-loop PT would
provide a useful guideline for future applications to
observations.
First, we divide the linear power spectrum PLðkÞ into the

wiggle and smooth parts. The smooth part Pnw
L ðkÞ is

obtained by smoothing the linear power spectrum with
no-wiggle power spectrum:

Pnw
L ðkÞ ¼ PEHðkÞ

1ffiffiffiffiffiffi
2π

p
log10λ

Z
dðlog10qÞ

PLðqÞ
PEHðqÞ

× exp

�
−
ðlog10k − log10qÞ2

2ðlog10λÞ2
�
; ð28Þ

wherewe adopt the smoothing scale λ ¼ 100.25hMpc−1 [60]
and PEH is the no-wiggle power spectrum from the fitting
formula in Ref. [62]. The wiggle part Pw

L ðkÞ is obtained by
taking the residual:

Pw
L ðkÞ ¼ PLðkÞ − Pnw

L ðkÞ: ð29Þ

The expression for the IR-resummed EFT power
spectrum [63] is given as

PðSÞ
EFTðk;μÞ ¼ Pnw

L ðk;μÞ þPnw
one-loopðk;μÞ þPnw

ctr ðk;μÞ þPshot

þ e−k
2Σ2

totðμÞ½ð1þ k2Σ2
totðμÞÞPw

L ðk;μÞ
þPw

one-loopðk;μÞ þPw
ctrðk;μÞ�; ð30Þ

where Pshot is the constant shot noise term. The total
damping function Σ2

totðμÞ is defined as

Σ2
totðμÞ ¼ ½1þ fμ2ð2þ fÞ�Σ2 þ f2μ2ðμ2 − 1ÞδΣ2; ð31Þ

Σ2 ¼ 1

6π2

Z
kS

0

dqPnw
L ðqÞ½1 − j0ðqrdÞ þ 2j2ðqrdÞ�; ð32Þ
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δΣ2 ¼ 1

2π2

Z
kS

0

dqPnw
L ðqÞj2ðqrdÞ; ð33Þ

where rd is the sound horizon scale at the drag epoch, and
j0 and j2 are zeroth- and second-order spherical Bessel
functions. We adopt kS ¼ 0.2h−1Mpc [63]. For the coun-
terterm Pctrðk; μÞ, we adopt the following form:

Pctrðk; μÞ ¼ −2c̃0k2PLðkÞ − 2c̃2fμ2k2PLðkÞ
− 2c̃4f2μ4k2PLðkÞ
þ c̃∇4

zδ
f4μ4k4ð1þ fμ2Þ2PLðkÞ; ð34Þ

where four parameters (c̃0, c̃2, c̃4, c̃∇4
zδ
) are introduced. For

one-loop correction and counterterms, smooth and wiggle
parts are obtained by regarding the expressions as the
functional of the linear power spectrum and plugging the
smoothed and wiggly linear power spectra into SPT
expressions:

Pnw
one-loop ≡ Pone-loop½Pnw

L �; ð35Þ

Pw
one-loop ≡ Pone-loop½PL� − Pone-loop½Pnw

L �; ð36Þ

Pnw
ctr ≡ Pctr½Pnw

L �; ð37Þ

Pw
ctr ≡ Pctr½PL� − Pctr½Pnw

L �: ð38Þ

E. Alcock-Paczyński effect

When converting the galaxy position and redshift into the
comoving coordinate, one needs to assume cosmological
parameters relevant to the geometry of the Universe. The
cosmological parameters are varied for inference but due to
the high computational cost, the redshift-distance conver-
sion is performed only once with a fiducial cosmological
parameter set. The wrong fiducial cosmological parameters
induce spurious anisotropy to the power spectrum. This
effect is called the Alcock-Paczyński (AP) effect [64]. The
distortion is proportional to the Hubble distance for the line-
of-sight direction and the angular diameter distance for the
direction perpendicular to the line-of-sight direction. Then,
we define AP parameters:

αk ¼
DH

Dfid
H

rfidd
rd

; α⊥ ¼ DM

Dfid
M

rfidd
rd

; ð39Þ

where rd is the sound horizon at the drag epoch, DMðzÞ ¼
ð1þ zÞDAðzÞ is the proper motion distance, DHðzÞ ¼
c=HðzÞ is the Hubble distance, DAðzÞ is the angular
diameter distance, c is the speed of light, HðzÞ is the
Hubble parameter, and the superscript “fid” represents the
value computed with the fiducial cosmology. Accordingly,
the distorted power spectrum is given as

PðSÞ
APðk; μÞ ¼

�
rfidd
rd

�
3 1

αkα2⊥
PðSÞðq; νÞ; ð40Þ

q ¼ k
α⊥

�
1þ μ2

�
α2⊥
α2k

− 1

��1
2

; ð41Þ

ν ¼ μα⊥
αk

�
1þ μ2

�
α2⊥
α2k

− 1

��1
2

: ð42Þ

This power spectrum is an observable when the fiducial
cosmology is fixed to derive the redshift-distance relation.
The information on the anisotropic clustering signal is

expressed by the pair of αk and α⊥. On the other hand,
different combinations are introduced in the literature.
Among such pairs, we consider the dilation (warping)
parameter α (ϵ) [65], the volume-averaged distance DVðzÞ,
and the AP parameter FAPðzÞ:

α≡ α
1
3

kα
2
3⊥; ð43Þ

ϵ≡
�
αk
α⊥

�1
3

− 1; ð44Þ

DVðzÞ≡ ðzD2
MðzÞDHðzÞÞ13; ð45Þ

FAPðzÞ≡DMðzÞ=DHðzÞ: ð46Þ

The dilation parameter α corresponds to the isotropic
deformation and thus can be constrained from the BAO
scale. On the other hand, the warping parameter ϵ describes
the anisotropic deformation and the change of this param-
eter has more impact on the anisotropic moments. Another
pair is the volume-averaged distance DVðzÞ and the AP
parameter FAPðzÞ, which are widely employed in previous
galaxy clustering analyses.

III. FAST SCHEMES FOR THE REDSHIFT SPACE
POWER SPECTRUM

In the practical parameter inference from the power
spectrum measurements, a fast methodology is critical to
explore the large parameter space. Typically, a run-time of
less than a few minutes for each cosmological model is
required. In order to realize fast calculations of the redshift
space power spectrum at two-loop order, we employ the
response function approach to speed up the computations
of the density and velocity power spectra at two-loop order
and the TNS correction terms.

A. Response function approach

In this section, we describe the response function
approach to speed up the calculations of the power
spectrum and the bispectrum (for details, see Ref. [51])
and implement this approach for calculations of the TNS
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correction terms. In general, the expressions of the power
spectrum based on PT approaches can be regarded as the
functionals with respect to the linear power spectrum. In the
response function approach, the PT expressions are
expanded with functional derivatives and if the fiducial
cosmology is close to the target cosmology, the power
spectrum for the target cosmology is well approximated
with the expansion up to the leading order:

Pabðk;θtar;σtard Þ≃Pabðk;θfid;σtard Þ

þ
Z

dq
δPab½P0;θfid;σtard �

δP0ðqÞ
δP0ðqÞ; ð47Þ

Babcðk1;k2;k3;θtar;σtard Þ≃Babcðk1;k2;k3;θfid;σtard Þ

þ
Z

dq
δBabc½P0;θfid;σtard �

δP0ðqÞ
δP0ðqÞ;

ð48Þ

where δPab=δP0 and δBabc=δP0 are the response functions
of the power spectrum and the bispectrum, respectively,
θtar and θfid are sets of cosmological parameters for target
and fiducial cosmologies, respectively, and δP0ðqÞ ¼
Ptar
0 ðqÞ − Pfid

0 ðqÞ is the difference of linear power spectra
between the fiducial and target cosmologies. Once the
fiducial spectra and response functions are precomputed,
the computational cost to evaluate spectra at target
cosmologies is just to perform the one-dimensional
integrations [second terms of the right-hand sides in
Eqs. (47) and (48)]. Since the original expressions at
two-loop order involve five-dimensional integrations,
this response function approach considerably reduces
the computational costs. Note that the displacement
dispersion σd is always evaluated at the target cosmology
because the cosmology dependence of the displacement
dispersion is incorporated without cost after the
precomputations.
The redshift space power spectrum [Eq. (18)] has

contributions from three two-loop spectra (Pδδ, Pδθ,
Pθθ) and TNS corrections, and all of them involve five-
dimensional integrations, which hamper fast predictions
essential to the statistical inference. For two-loop spectra,
we can make use of the response function approach and
the computations require only one-dimensional integra-
tions, which can be computed within a few seconds in
general. The most time consuming part is five-dimen-
sional integrations in the A terms; the one-loop bispec-
trum contains three-dimensional integrations and for the
A term, the bispectra are further integrated twice. The
response function approach is also applicable to TNS
correction terms. With the response function expansion,
the bispectra in the A terms and the power spectra in
the B terms can be calculated in a fast manner, and both A
and B terms become three-dimensional integrations. The

response function approach is not applied to the entire A
and B terms because the variation of σd is not easily
incorporated. This reduction of computational time
makes the analytical PT scheme feasible for cosmological
parameter estimation with the redshift space power
spectrum.

B. Validation

In order to validate our fast scheme, we compare the
results with the fast approach and direct integrations. We
follow the validation procedure in Ref. [51]. First, we
generate ten fiducial and ten target cosmological parameter
sets around Planck 2015 best-fit cosmological parameters,
which are homogeneously sampled with the latin hyper-
cube design [66]. The parameter ranges of fiducial and
target cosmological parameters are described in Sec. III.B
of Ref. [51]. For fiducial sets, we precompute power
spectra, bispectra, and response functions, and for each
target set we select the nearest fiducial set according to the
distance between fiducial and target linear power spectra,
which is denoted as d [see Eq. (22) of Ref. [51] for
definition]. In Ref. [51], we have found that the response
function approach reproduces the results with direct inte-
grations with the accuracy of 0.5% for power spectra and
2% for bispectra up to 0.3hMpc−1.
Here, we apply the response function technique to the

TNS correction terms and investigate the accuracy. For
power spectra, the number of sampling for wave numbers
should be small but sufficient to reconstruct the full shape
of the spectra. We employ the following adaptive sampling
scheme:

8>><
>>:
½10−3;10−2�hMpc−1 ðΔ logk¼ const;nk ¼ 10Þ;
½10−2;0.3�hMpc−1 ðΔk¼ const;nk ¼ 80Þ;
½0.3;1�hMpc−1 ðΔ logk¼ const;nk ¼ 30Þ;

ð49Þ

where nk is the number of sampling. For the intermediate
range, we use linear spacing to capture the BAO feature,
otherwise the log-equally spaced sampling is employed.
If the spectra with arbitrary wave numbers are necessary,
we employ cubic spline. In A-term calculations, bispectra
with specific configurations ðk1; k2; k3Þ ¼ ðp; k − p;−kÞ
are required. The range of the wave number k is
ð10−3; 1ÞhMpc−1 with log-equally spaced 300 wave
numbers. For integration with respect to the wave-
vector p, numerical integrations are performed with
Gaussian quadrature for r ¼ p=k and x ¼ ðp · kÞ=ðpkÞ
and the number of sampling is nr ¼ 600 and nx ¼ 10,
respectively.
Figure 1 shows the results with the response function

approach for ten target models and the ratios with respect to
the direct integration results. Each result is color coded by
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the distance between target and fiducial cosmologies d,
which is defined as

d2 ¼ 1

nk

Xnk
i¼1

½logðPtar
0 ðkiÞÞ− logðcPfid

0 ðkiÞÞ�2
σ2ki

; ð50Þ

where σki ¼ ki=ð1hMpc−1Þ, nk ¼ 20, and c is the scaling
factor. The scaling factor and fiducial cosmological model
are determined to minimize the distance d. The detailed
procedure to select the fiducial model is described in
Sec. III B of Ref. [51]. The accuracy of A-term calculations
is about 1% at all scales. There is a noisy feature around
k ¼ 0.07hMpc−1 but this originates from zero crossing of
direct integration results. Similarly, Fig. 2 shows the results
for B terms. The accuracy for the B terms is more stable and
well within 1% for all scales.
In the practical analysis, instead of two-dimensional

power spectrum PðSÞðk; μÞ, the multipole expansion is
widely used to characterize the anisotropy. The lth order
multipole moment is defined as

PlðkÞ≡ 2lþ 1

2

Z þ1

−1
dμPlðμÞPðSÞðk; μÞ; ð51Þ

where Pl is the Legendre polynomial of order l. Another
representation of anisotropic power spectrum is wedges [67]
which are mean power spectrum with a given range of the
directional cosine:

PwðkÞ≡ 1

μwmax − μwmin

Z
μwmax

μwmin

dμPðSÞðk; μÞ; ð52Þ

where ½μwmin; μ
w
max� is the range of the bin. Figures 3 and 4

demonstrate the performance of the response function
approach for multipoles and wedges, respectively. For
multipoles, monopole (l ¼ 0), quadrupole (l ¼ 2), and
hexadecapole (l ¼ 4) moments are considered. For wedges,
we consider two sets of wedge bins:

½μwmin;μ
w
max� ¼

8>><
>>:

h
0;1

3

i
;
h
1
3
;2
3

i
;
h
2
3
;1
i

ðthree wedgesÞ;h
0;1

2

i
;
h
1
2
;1
i

ðtwo wedgesÞ:
ð53Þ

The response function approach has been employed to
compute all two-loop spectra and TNS correction terms.
The accuracy of multipoles and wedges is well within 0.5%
up to k ¼ 0.3hMpc−1. Therefore, the fast scheme can be
applied to practical analysis.

IV. PERTURBATION THEORY CHALLENGE
IN REDSHIFT SPACE

Here, we describe the PT challenge analysis and present
details of N-body simulations for mock measurements of
the redshift space power spectrum and theoretical templates
used in the analysis.

A. Mock measurement of the power spectrum

First, we prepare the realistic mock measurements of the
power spectrum in the cosmological parameter inference.
The baseline N-body simulation is presented in Ref. [68]
and here we briefly summarize specifications of the sim-
ulation. The gravitational evolution of the matter density

FIG. 1. The A terms at the redshift z ¼ 0.9 computed with the response function approach. The upper panels show A terms for the ten
target models and the color corresponds to the distance from the nearest fiducial model [Eq. (50)]. The lower panels show the fractional
difference with respect to the results with direct integration.
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FIG. 2. The B terms at the redshift z ¼ 0.9 computed with the response function approach. The configuration of the lower panels and
the color is the same as Fig. 1.

FIG. 3. The monopole, quadrupole, and hexadecapole moments at the redshift z ¼ 0.9 computed with the response function approach.
The configuration of the lower panels and the color is the same as Fig. 1.
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field is solved by the Tree-PM code L-GADGET-2 [69]. The
initial condition is generated at the redshift zini ¼ 15 based
on the second-order Lagrangian PT [70–73] with the
transfer function calculated with the Boltzmann solver
CAMB [74]. Furthermore, the Fourier amplitude and phase
of initial conditions are determined based on the “paired and
fixed” approach [75] to suppress the cosmic variance. The
employed cosmological parameters are the best-fit values of
Planck 2015 results [52], which are listed in Sec. I. The
volume of the simulation box is Vs ¼ 20483ðh−1 MpcÞ3
with periodic boundary condition and the number of particle
is N ¼ 20483.
Hereafter, we employ the particle snapshot at the redshift

z ¼ 0.900902. We construct the density field with regular
grids, where the number of grid is 1024 on a side, with

cloud-in-cell mass assignment and then apply fast Fourier
transform to obtain the Fourier space density field. For
power spectrum measurements, Fourier amplitude for each
mode is summed up for the given range of bins: for
multipoles,

P̂lðkiÞ¼
2lþ1

Nki

X
k∈ ½ki−Δk=2;kiþΔk=2�

jδ̃ðkk;k⊥Þj2PlðμÞ; ð54Þ

and for wedges,

P̂wðkiÞ ¼
1

Nki;w

X
k∈ ½ki−Δk=2;kiþΔk=2�

jμj∈ ½μw
min

;μwmax �

jδ̃ðkk; k⊥Þj2; ð55Þ

FIG. 4. The wedge power spectra at the redshift z ¼ 0.9 computed with the response function approach. The upper three figures show
the results with three wedges ½0; 1=3�; ½1=3; 2=3�; ½2=3; 1� and the lower two figures show the results with two wedges ½0; 1=2�; ½1=2; 1�.
The configuration of the lower panels and the color is the same as Fig. 1.
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where δ̃ is the Fourier transform of the density

field, μ ¼ kk=k, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þ k2⊥

q
[76] and the number of

modes is calculated by counting the modes for the three-
dimensional regular grids:

Nki ¼
X

k∈ ½ki−Δk=2;kiþΔk=2�
1; ð56Þ

Nki;w ¼
X

k∈ ½ki−Δk=2;kiþΔk=2�
jμj∈ ½μw

min
;μwmax�

1: ð57Þ

Here, we consider the linearly spaced bins with Δk ¼
0.01hMpc−1. If the width is sufficiently small compared
with k, the estimator converges. However, on large scales,
i.e., small k, the number of available modes is limited and the
discreteness of modes impacts the estimation of the power
spectrum. In order to incorporate the finite grid effect, in the
model prediction, we take the sum of modes as performed in
the estimators [Eqs. (54) and (55)] with replacing jδ̃j2 with
the model template PðSÞ [55].
We assume that the likelihood follows the multivariate

Gaussian distribution: for multipoles,

−2 logLmultipolesðθ; kmaxÞ ¼
X
l;l0

Xki;kj<kmax

i;j

½P̂lðkiÞ − Plðθ; kiÞ�Cov−1l;l0 ðki; kjÞ

× ½P̂l0 ðkjÞ − Pl0 ðθ; kjÞ� þ const ð58Þ

≡χ2multipoles þ const ð59Þ

and for wedges,

−2 logLwedgesðθ; kmaxÞ ¼
X
w;w0

Xki;kj<kmax

i;j

½P̂wðkiÞ − Pwðθ; kiÞ�Cov−1w;w0 ðki; kjÞ

× ½P̂w0 ðkjÞ − Pw0 ðθ; kjÞ� þ const ð60Þ

≡χ2wedges þ const; ð61Þ

where θ is the set of cosmological and nuisance parameters,
kmax is the maximum wave number to exclude small-scale
data points, P̂lðkiÞ and P̂wðkiÞ are binned multipoles and
wedges measured from the simulation, and Plðθ; kiÞ and
Pwðθ; kiÞ are model predictions of multipoles and wedges,
and χ2multipoles and χ2wedges are the chi-squares for multipoles
and wedges, respectively.

B. Covariance matrix

In the actual observations, galaxies are used as a tracer of
the matter distribution, and thus, the galaxy power spec-
trum is employed in the analysis. Though we are interested
in how our approach performs for the matter power
spectrum without uncertainty relevant to the galaxy bias,
it is important to take into account the shot noise due to the
finite number of observed galaxies. Hence, we include the
effective shot noise term with angular dependence:

1

neffg
ðμÞ ¼ ð1þ fμ2Þ2

ðbg þ fμ2Þ2
1

ng
; ð62Þ

where bg ¼ 1.41 is the linear galaxy bias and ng ¼ 8.4 ×
10−4ðh−1MpcÞ−3 is the galaxy number density, which are

expected values in Euclid survey at redshift z ¼ 1 [12].
Assuming furthermore that the field is Gaussian distrib-
uted, the covariance matrix of multipoles is given by
(e.g., [57,77,78])

Covl;l0 ðki; kjÞ ¼ δij
2

Nki

ð2lþ 1Þð2l0 þ 1Þ
2

×
Z

kiþΔk=2

ki−Δk=2

4πk2dk
Vki

Z þ1

−1
dμPlðμÞPl0 ðμÞ

×

�
PðSÞ
L;FoGðk; μÞ þ

1

neffg
ðμÞ

�
2

; ð63Þ

where Vki ¼ ð4π=3Þ½ðki þ Δk=2Þ3 − ðki − Δk=2Þ3�, Nki ¼
VkiVs=ð2πÞ3 is the number of modes within the bin. The

power spectrum PðSÞ
L;FoGðk; μÞ is at linear order with the

Lorentzian FoG damping function:

PðSÞ
L;FoGðk;μÞ ¼DLorentzian

FoG ðkμfσv;LÞð1þfμ2Þ2PLðkÞ: ð64Þ

Though the linear model underestimates the power spec-
trum at small scales where nonlinear evolution predom-
inates, the damping due to the FoG effect is strong on small
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scales and the shot noise is dominant in the covariance
matrix. Thus, the linear model yields reasonable estimates
of the covariance matrix. Similarly, the covariance matrix
for wedges is given by [77,78]

Covw;w0 ðki; kjÞ ¼ δijδw;w0
2

NkiΔμ
w

Z
kiþΔk=2

ki−Δk=2

4πk2dk
Vki

×
Z

μwmax

μwmin

dμ
Δμw

�
PðSÞ
L;FoGðk; μÞ þ

1

neffg
ðμÞ

�
2

;

ð65Þ

where Δμw ≡ μwmax − μwmin is the wedge bin width. Note
that these covariance matrices are calculated once with
fiducial cosmological parameters and, thus, the cosmo-
logical dependence is not considered in the cosmological
parameter inference.

C. Markov chain Monte-Carlo analysis

Our PT challenge for cosmological parameter estimation
employs the Markov chain Monte-Carlo (MCMC) tech-
nique to compute the posterior distribution of parameters.
To be specific, we use the affine invariant ensemble sampler
EMCEE [79,80]. As a baseline model, we adopt RegPT at
two-loop order with Lorentzian FoG, the data vector
consisting of three multipoles (l ¼ 0, 2, 4), and the AP
effect incorporated. We also consider the various cases for
PT modeling and data vectors in the MCMC analysis;

PT model: RegPT (two-loop), RegPTþ (two-loop), IR-
resummed EFT (one-loop).

Data vector: three multipoles (l ¼ 0; 2; 4), two multi-
poles (l ¼ 0; 2), three wedges (½0; 1=3�; ½1=3; 2=3�;
½2=3; 1�), two wedges (½0; 1=2�; ½1=2; 1�).

FoG: Lorentzian, Gaussian, γ FoGs.
AP effect: considered or ignored.

Table I summarizes the cases we examined in the PT
challenge analysis, in which the IR-resummed EFT at one-
loop order is included as a reference model to clarify the
performance of two-loop PTmodels. We vary the maximum
wave number kmax, i.e., the smallest scale of the data points
used in the analysis, from 0.12hMpc−1 to 0.30hMpc−1 by
the step of 0.03hMpc−1. The results based on one-loop PT
models (RegPT, RegPTþ, and SPT) are discussed in
Appendix B.
In the subsequent MCMC analysis, we consider five

cosmological parameters (ωcdm;ωb; h; As; ns) plus nuisance
parameters, which are described in Table I. Though the
target power spectrum is the matter power spectrum, all the
models involve the linear bias parameter b1 as a nuisance
parameter. That is because the linear bias is incorporated
consistently in the models and does not yield additional
higher-order bias terms. The true value of the bias parameter
in this analysis is unity, which serves as a consistency check
of the models. Furthermore, there is another implication
about the linear bias. In the real galaxy clustering analysis,
the amplitude information cannot be used directly due to the
bias uncertainties. On the other hand, the degeneracy in the
amplitude can be broken through RSD since we assume
there is no velocity bias. Therefore, dropping the linear bias
would lead to an unrealistic assessment of the model
accuracy. In order to incorporate the linear bias in the

TABLE I. Descriptions of models of RegPT and RegPTþ at two-loop order and IR-resummed EFT at one-loop order. The label
describes the components of the model: the PT model (RegPT, RegPTþ, or IR-resummed EFT), the functional form of FoG damping
(Lorentzian, Gaussian, or γ FoGs), and the data vector (3=2 multipoles or 3=2 wedges).

Label Model Data vector AP FoG Nuisance parameters

RPT-L-3l RegPT Three multipoles (l ¼ 0; 2; 4) ✓ Lorentzian b1; σv
RPT-G-3l RegPT Three multipoles (l ¼ 0; 2; 4) ✓ Gaussian b1; σv
RPT-γ-3l RegPT Three multipoles (l ¼ 0; 2; 4) ✓ γ FoG b1; σv; γ−1

RPT(no AP)-L-3l RegPT Three multipoles (l ¼ 0, 2, 4) � � � Lorentzian b1; σv
RPT-L-2l RegPT Two multipoles (l ¼ 0; 2) ✓ Lorentzian b1; σv
RPT-L-3w RegPT Three wedges (½0; 1=3�; ½1=3; 2=3�; ½2=3; 1�) ✓ Lorentzian b1; σv
RPT-L-2w RegPT Two wedges (½0; 1=2�; ½1=2; 1�) ✓ Lorentzian b1; σv
RPTþ-L-3l RegPTþ Three multipoles (l ¼ 0; 2; 4) ✓ Lorentzian b1; σv; σd
RPTþ-G-3l RegPTþ Three multipoles (l ¼ 0; 2; 4) ✓ Gaussian b1; σv; σd
RPT+-γ-3l RegPTþ Three multipoles (l ¼ 0; 2; 4) ✓ γ FoG b1; σv; γ−1; σd
RPTþ(no AP)-L-3l RegPTþ Three multipoles (l ¼ 0; 2; 4) � � � Lorentzian b1; σv; σd
RPTþ-L-2l RegPTþ Two multipoles (l ¼ 0; 2) ✓ Lorentzian b1; σv; σd
RPT+-L-3w RegPTþ Three wedges (½0; 1=3�; ½1=3; 2=3�; ½2=3; 1�) ✓ Lorentzian b1; σv; σd
RPTþ-L-2w RegPTþ Two wedges (½0; 1=2�; ½1=2; 1�) ✓ Lorentzian b1; σv; σd
EFT-3l IR-resummed EFT Three multipoles (l ¼ 0; 2; 4) ✓ � � � b1; c̃0; c̃2; c̃4; c̃∇4

zδ; Pshot

EFT-2l IR-resummed EFT Two multipoles (l ¼ 0; 2) ✓ � � � b1; c̃0; c̃2; c̃∇4
zδ; Pshot

EFT-3w IR-resummed EFT Three wedges (½0; 1=3�; ½1=3; 2=3�; ½2=3; 1�) ✓ � � � b1; c̃0; c̃2; c̃4; c̃∇4
zδ; Pshot

EFT-2w IR-resummed EFT Two wedges (½0; 1=2�; ½1=2; 1�) ✓ � � � b1; c̃0; c̃2; c̃∇4
zδ
; Pshot
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models, f and Pab in Eq. (18) are replaced with β≡ f=b1
and b21Pab, respectively. The TNS correction terms scale
with the linear bias as

Aðk; μ; fÞ → b31Aðk; μ; βÞ; ð66Þ

Bðk; μ; fÞ → b41Bðk; μ; βÞ: ð67Þ

The velocity dispersion parameter σv controls the scale of
FoG damping and this parameter is required by all the
models with RegPT and RegPTþ. RegPTþ introduces the
new parameter, the dispersion displacement parameter σd,
which improves the modeling of small-scale power spectra.
If γ FoG is selected, the nuisance parameter γ is included
and this parameter determines the shape of FoG damping.
The IR-resummed EFT models introduce coefficients of
counterterms (c̃0; c̃2; c̃4; c̃∇4

zδ
) and the shot noise term Pshot

as nuisance parameters. Since the target power spectrum is
the matter power spectrum, the shot noise is expected to be
close to zero but included in the analysis for the consistency
check similarly to the linear bias. In the cases of two
multipoles and twowedges, we do not include the parameter
c̃4, which is the coefficient of the counterterm proportional
to μ4, because this term is less constrained due to the limited
sampling in the μ direction.
We add prior information for ωb and ns, which are only

poorly constrained with the redshift space power spectrum.
For both parameters, the prior distribution is Gaussian with
mean values given by the fiducial ones and standard
deviations of ns and ωb inferred respectively by the
Planck 2015 result and the constraints brought by big-
bang nucleosynthesis and observations of primordial deu-
trium abundance [81]. Note that for the γ FoG, the sampled
parameter is γ−1 instead of γ because the γ FoG asymptotes
to the Gaussian FoG with γ → ∞, i.e., γ−1 → 0, and the
correspondence becomes clearer with γ−1. For other

parameters, we assume flat prior distributions and they
are summarized in Table II. Table III shows the fiducial
values of the derived parameters. All the chains are run with
80 walkers. For convergence of the chains, the sampler is
run until the length of chains is 50 times longer than the
autocorrelation time for all cosmological parameters [82].

V. RESULTS

In this section, we present the results of the PT challenge
analysis. First, as a demonstration of the accuracy of PT
schemes, we show power spectra with fiducial and best-fit
cosmological parameters. Next, in order to quantify the
performance of the PT schemes, we introduce three mea-
sures: figure of bias (FoB), figure of merit (FoM), and
reduced chi-square. FoB corresponds to the normalized
distance between the inferred and fiducial cosmological
parameters, and FoM indicates the constraining power of
parameters. The reduced chi-square is the goodness of fit,
i.e. how close the PT scheme predictions are to the data.
Here, we only show results for primary models

with a part of maximum wave numbers. The complete
results including all models are found in Supplemental
Material [83].

A. Fiducial and best-fit power spectra

Before the parameter inference, we present predictions
with fiducial cosmological parameters, which are used to
generate the initial condition of the N-body simulations,
based on RegPT, RegPTþ, and IR-resummed EFT. The
bias parameter is fixed as unity (b1 ¼ 1) and other nuisance
parameters are fit with the likelihood functions defined in
Eqs. (58) and (60). Figures 5–7 show the fiducial multi-
poles, three wedges, and two wedges, respectively, in
comparison with the simulation result. The maximum wave
number is kmax ¼ 0.21hMpc−1 and the data points with
k < kmax are used to fit nuisance parameters. In general, all
of the models yield good fits to the simulation spectra. For
multipoles, the difference is clear for hexadecapoles;
Gaussian FoG significantly underestimates the hexadeca-
pole moment, and the IR-resummed EFT can reproduce the
hexadecapole the best among the models examined. For
three wedges and two wedges, there is an overshoot at large
scale for IR-resummed EFT because counterterms are
adjusted to fit small-scale power, where the covariance is

TABLE II. Priors and fiducial values for cosmological and
nuisance parameters. The symbol N ðμ; σÞ is the Gaussian
distribution with the mean μ and the standard deviation σ and
the symbol Uða; bÞ is the flat distribution in the range of ða; bÞ.
Parameter Prior Fiducial value Unit

ωcdm Uð0;∞Þ 0.1198 � � �
ωb N ð0.02225; 0.0005Þ 0.02225 � � �
ns N ð0.9645; 0.0049Þ 0.9645 � � �
h Uð0;∞Þ 0.6727 � � �
lnð1010AsÞ Uð0;∞Þ 3.094 � � �
b1 Uð0;∞Þ 1 � � �
σd, σv Uð0;∞Þ � � � h−1 Mpc
γ−1 Uð0;∞Þ � � � � � �
Pshot Uð0;∞Þ � � � ðh−1 MpcÞ3
c̃0, c̃2, c̃4 Uð−∞;∞Þ � � � ðh−1 MpcÞ2
c̃∇4

zδ
Uð−∞;∞Þ � � � ðh−1 MpcÞ4

TABLE III. Fiducial values for derived parameters.

Parameter Fiducial value

b1σ8 0.5273
fσ8 0.4524
α⊥ 1
αk 1
FAP 1.195
DV=rd 19.48
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small, and as a result, the accuracy at the large scale is
degraded.
Next, the cosmological parameters are varied and the

posterior distributions are inferred with the MCMC analy-
sis. We define the best-fit parameters as the ones which
yield the maximum of the posterior in the chain [84].
Figures 8–10 show the best-fit multipoles, three wedges,
and two wedges, respectively, in comparison with
the simulation result. The cosmological and nuisance
parameters are determined to maximize the posterior
functions [85]. At the cost of the large-scale power, most
of the models try to fit the small-scale power whose errors
are small. As a result, the best-fit power spectra are
better matched with simulations at the intermediate
scale (k ¼ 0.1–0.2hMpc−1) compared with fiducial power
spectra.

B. Constraints on cosmological and derived parameters

Here, we present examples of parameter inference results.
Figures 11–13 show constraints of cosmological and
nuisance parameters for RegPT, RegPTþ and IR-resummed
EFT, respectively. The FoG damping function for RegPT
and RegPTþ is Lorentzian and the data vector is three
multipoles. As the general trend, the parameter constraints
become tighter for larger kmax since more small-scale data
are incorporated in the parameter inference. On the other
hand, when the aggressive kmax, e.g., kmax ¼ 0.30hMpc−1

for RegPT, is chosen, the validity of the PT scheme ceases to
be adequate due to a stronger nonlinearity in the power
spectra, and the predictions are no longer reliable. As a
result, the inferred parameters are strongly biased. This
feature is common in all the models.
Next, Figs. 14–16 show constraints on derived parame-

ters. Overall, the similar feature to cosmological parameters
appears. At low kmax, the parameters are consistent with
fiducial values but the constraining power is weak. On the
other hand, increasing high kmax leads to tight constraints
but biased inference because the PT schemes become less
reliable. This trend is clearer for b1σ8 and fσ8, which

FIG. 5. The monopole (upper panel), quadrupole (middle
panel), and hexadecapole (lower panel) moments computed with
fiducial cosmological parameters. The cyan points and black
dotted lines correspond to the simulation result and the linear
prediction, respectively. The nuisance parameters are fit to
maximize the likelihood and the maximum wave number of
data points in the fitting is kmax ¼ 0.21hMpc−1, which is
indicated as the black dot-dashed vertical line. Note that the
hexadecapole moments of the models with two multipoles are not
shown because they are not used for fitting.

FIG. 6. The same as Fig. 5 but for three wedges: ½0; 1=3� (upper
panel), ½1=3; 2=3� (middle panel), and ½2=3; 1� (lower panel).

PERTURBATION THEORY …. II. MATTER POWER … PHYS. REV. D 108, 123541 (2023)

123541-15



correspond to the amplitudes of density and velocity power
spectra. These parameters are sensitive to the small-scale
power spectra, and strongly biased with aggressive kmax. In
contrast, AP parameters ðα⊥; αk; FAPÞ and the distance scale
(DV=rd) are more robustly determined even with high kmax.
These parameters are constrained with the geometry infor-
mation at large scales, and thus, the parameter bias is less
significant even for high kmax.

C. Figure of bias, figure of merit, and reduced
chi-square

Here, we discuss the measures to quantify the parameter
bias, the constraining power, and the goodness of fit. First,
we compute the covariance matrix of parameters S from the
chains:

Sαβ ¼
1

N − 1

XN
i¼1

ðθiα − θ̄αÞðθiβ − θ̄βÞ; ð68Þ

where N is the number of samples in the chain and θ̄ is the
sample mean of the parameter. In order to evaluate the
parameter bias, we define figure of bias (FoB):

FoB ¼
�X

α;β

δθαðS̃Þ−1αβ δθβ
�
; ð69Þ

where the covariance matrix S̃ is marginalized over all
nuisance parameters from the full parameter covariance
matrix S and δθ ¼ θ̄ − θfid is the difference between the
sample mean and the fiducial parameter. The probability

distribution of FoB is the chi-squared distribution with the
degree of freedom of 5. Then, we define the 1-σ, 2-σ, and
3-σ critical values of FoB, which are 68.3, 95.5, and
99.7 percentiles, respectively.
Next, in order to evaluate the constraining power, we

define the figure of merit (FoM):

FoM≡ Vθffiffiffiffiffiffiffiffiffiffi
det S̃

p ; ð70Þ

where Vθ ¼
Q

α θ
fid
α is the normalization factor and the

subscript α runs over five cosmological parameters. The
FoM is roughly proportional to the hyper volume of 1-σ
confidence region and, thus, larger FoM implies stronger
constraining power.

FIG. 7. The same as Fig. 5 but for two wedges: ½0; 1=2� (upper
panel) and ½1=2; 1� (lower panel).

FIG. 8. The monopole (upper panel), quadrupole (middle
panel), and hexadecapole (lower panel) moments computed with
best-fit parameters. The cyan points and black dotted lines
correspond to the simulation result and the linear prediction,
respectively. The cosmological and nuisance parameters are fit to
maximize the posterior and the maximum wave number of data
points in the fitting is kmax ¼ 0.21hMpc−1, which is indicated as
the black dot-dashed vertical line. Note that the hexadecapole
moments of the models with two multipoles are not shown
because they are not used for fitting.
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The measure of the goodness of fit is the reduced chi-
square χ2=Ndof , where χ2 is the best-fit chi-square
[Eqs. (59) and (61)] and Ndof is the effective degree of
freedom. We have introduced priors of several parameters
and the information content of the priors should be
considered in the degree of freedom. The effective number
of parameters Neff is given as [86]

Neff ¼ Np − tr½C−1priorC�; ð71Þ

where Np is the number of parameters (cosmological
parameters plus nuisance parameters), and C and Cprior
are the covariance matrix of posterior and prior param-
eters, respectively. Since all of the adopted priors are
Gaussian, the expression of the second term can be
simplified as

tr½C−1priorC� ¼
X
α

σ̂2α
σ2α

; ð72Þ

where the summation runs over parameters with priors
(α ¼ ωb; ns), σ̂2θ is the sample variance of the parameter

computed from the chain, and σ2θ is the variance of the
prior. As a result, the degree of freedom is given as

Ndof ¼ Ndata − Neff ; ð73Þ
where Ndata is the number of data points. Note that the
reduced chi-square in this analysis does not follow the chi-
square distribution because we have generated the initial
condition of the N-body simulation with the paired and
fixed approach. Therefore, the cosmic variance is strongly
suppressed and the reduced chi-square is always close
to zero.
In order to highlight the difference between models, we

discuss the results for the following groups:
Group A: RegPT and RegPTþ with Lorentzian FoG with
and without AP effect, and IR-resummed EFT with three
multipoles,
Group B: RegPT and RegPTþ with Gaussian FoG, γ FoG,
and IR-resummed EFT with three multipoles,
Group C: RegPT and RegPTþ with Lorentzian, Gaussian,
γ FoGs with three multipoles,
Group D: RegPT with 3=2 multipoles and 3=2 wedges,
Group E: RegPTþ with 3=2 multipoles and 3=2 wedges,
Group F: IR-resummed EFT with 3=2 multipoles and 3=2
wedges.
Figures 17–19 show the FoB, FoM, and reduced
chi-square for each group.

1. Group A

This group consists of RegPT, RegPTþ, and IR-
resummed EFT with the three multipoles data vector.

FIG. 9. The same as Fig. 8 but for three wedges: ½0; 1=3� (upper
panel), ½1=3; 2=3� (middle panel), and ½2=3; 1� (lower panel).

FIG. 10. The same as Fig. 8 but for two wedges: ½0; 1=2� (upper
panel) and ½1=2; 1� (lower panel).
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First, FoBs of RegPTþ are the lowest among the models
presented and they do not exceed the 1-σ critical value up to
kmax ¼ 0.21hMpc−1 whereas FoB for RegPT with kmax ¼
0.21hMpc−1 is around the 2-σ level. In terms of FoM, the
FoM of RegPT is always the highest because RegPT
contains only two nuisance parameters (three for
RegPTþ), which can be degenerate with cosmological
parameters and, as a result, weaken parameter constraints.
However, the highest FoM with unbiased parameter esti-
mates, i.e. FoB less than the 1-σ value, can be achieved by
RegPTþ though there is only a slight difference between
RegPT and RegPTþ. Second, FoB of IR-resummed EFT is
comparable with RegPTþ but FoM is much smaller than
RegPT and RegPTþ because the number of nuisance
parameters of IR-resummed EFT is six and these many

nuisance parameters lead to weak parameter constraints. On
the other hand, reduced chi-squares of IR-resummed EFT
are the smallest except kmax ¼ 0.12hMpc−1. This feature
has an important implication that the good fit to the
measured power spectrum does not guarantee the tight
or unbiased parameter constraints and, potentially, over-
fitting occurs due to the large degrees of freedom. Finally,
FoB and reduced chi-squares are not much affected by the
AP effect but FoM with the AP effect considered is higher
than that without the AP effect. The AP effect induces
additional dependence on cosmological parameters rel-
evant to the geometry, and thus, more information can
be accessible from the AP effect. Therefore, when the AP
effect is considered, the parameter constraints become
tighter and the resultant FoM becomes larger.

FIG. 11. Constraints of cosmological and nuisance parameters inferred with RegPT with Lorentzian FoG and three
multipoles for kmax ¼ 0.12; 0.18; 0.24; 0.30hMpc−1. The inner and outer ellipses correspond to the 1-σ and 2-σ confidence levels,
respectively. The purple lines correspond to fiducial values. The prior distributions of ωb and ns are shown as black dashed lines. The
unit of σv is h−1 Mpc.
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2. Group B

In this group, we investigate whether the performance of
RegPT and RegPTþ in comparison with IR-resummed
EFT, which is addressed in Group A, is affected by different
FoG functional forms: Gaussian and γ FoGs. The general
trend is quite similar to the results with fiducial Lorentzian
FoG; though the reduced chi-square is larger compared
with IR-resummed EFT, FoM and FoB for both models
with Gaussian or γ FoG are better. That is because these
models contain less nuisance parameters.

3. Group C

Here, we address how the choice of functional form of
FoG function affects the measures. The γ FoG has one
additional free parameter which determines the shape of the
FoG function and includes Lorentzian and Gaussian forms
as a special case. The best-performing model in terms of
FoB and FoM is Gaussian for RegPTand RegPTþ. Though

the fitting results for hexadecapole moments with Gaussian
FoGs are worse than Lorentzian FoG, the models with
Gaussian FoG can perform better for monopole and
quadrupole moments. The reduced chi-square with the γ
FoG is the best compared with other FoG models.
However, the FoM and FoB are significantly worse and,
thus, the free parameter of the γ FoG leads to overfitting to
the data.

4. Group D

This group addresses the choice of data vectors with
RegPT: 3=2 multipoles and 3=2 wedges. The 3 (2) multi-
poles and three (two) wedges contain the same number of
data points but different projection of the anisotropic power
spectrum is adopted. For FoB, the results for the pair of
results of three (two) multipoles and three (two) wedges are
quite similar. On the other hand, FoM is better for multi-
poles and reduced chi-square is smaller for wedges.

FIG. 12. Same as Fig. 11 but for RegPTþ with Lorentzian FoG and three multipoles. The unit of σv and σd is h−1 Mpc.
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Originally, the concept of wedges has been proposed in
Ref. [67] to efficiently constrain the geometry of the
Universe. The transverse wedge (0 < μ < 1=2) and radial
wedge (1=2 < μ < 1) are sensitive to HðzÞ and DAðzÞ,
respectively. However, our analysis incorporates the full
shape information of the power spectrum, and in this case,
the multipole expansion can constrain parameters better
because it weights the anisotropic part of the power
spectrum more. We have investigated only the equally
spaced wedges but the different spacing of wedges, e.g.

weighing more on μ ≃ 0 to avoid the region where FoG
damping is eminent, has the potential to yield performance
similar to multipoles.

5. Group E

This group presents results similar to those in Group D
but with RegPTþ For FoB, the results are almost the same
as Group D but the difference for FoM and chi-square is
clearer. The RegPTþ has better flexibility of the FoG
damping and, thus, can extract more information from the

FIG. 13. Same as Fig. 11 but for IR-resummed EFTwith three multipoles. For the units of c̃0, c̃2, c̃4, c̃∇4
zδ
, and Pshot, refer to Table II.
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power spectrum at directions where strong FoG damping
happens, i.e., μ ≃ 1.

6. Group F

This group also presents results for different data vectors
with IR-resummed EFT. The general trend is the same as
Group D and Group E but the difference due to data vectors
is comparable with RegPT but less significant than
RegPTþ. Note that for all data vectors the reduced chi-
squares are the lowest among all PT models but in
compensation, FoMs are the lowest and, thus, the con-
straining power of cosmological parameters is weak. It
should be noted that the reduced chi-square with small kmax
is unstable because there are too many free parameters
compared with the number of data points and overfitting
may occur in this case.
To summarize, Fig. 20 illustrates the highest FoM

achieved by each model with the constraint that FoB does
not exceed the 1-σ critical value. RegPTþ generally
performs better than RegPT and the best-performing model
among all the examined models is RegPTþ with Gaussian
FoG and three multipoles. IR-resummed EFT with two
multipoles or two wedges can utilize the small-scale power
spectra up to kmax ¼ 0.24hMpc−1. However, due to many
nuisance parameters introduced in IR-resummed EFT, the
parameter constraining power, i.e. FoM, is weaker than
RegPT and RegPTþ. There is a caveat about IR-resummed
EFT. In the presented results, the order of IR-resummed

EFT is one loop in contrast to two loop for RegPT and
RegPTþ since the implementation of IR-resummed EFT at
two-loop order is still challenging. Thus, the comparison
between one-loop IR-resummed EFT and two-loop RegPT
and RegPTþ is not fair and IR-resummed EFT at two-loop
order has potential to achieve the lower FoB with higher
kmax than RegPTþ.

FIG. 14. Constraints of derived parameters inferred with RegPT
with three multipoles for kmax ¼ 0.12; 0.18; 0.24; 0.30hMpc−1.
The inner and outer ellipses correspond to the 1-σ and 2-σ
confidence levels, respectively. The purple lines correspond to
fiducial values.

FIG. 15. Same as Fig. 14 but RegPTþwith Lorentzian FoG and
three multipoles.

FIG. 16. Same as Fig. 14 but for IR-resummed EFT with three
multipoles.
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VI. CONCLUSIONS

The galaxy clustering analysis has been playing a central
role in observational cosmology to constrain cosmological
parameters. The theoretical model to predict the statistics,
e.g., power spectra, given a cosmological model is an

essential ingredient in cosmological parameter inference,
and the accuracy of the model is critical to place stringent
constraints on cosmological parameters. For accurate
predictions on small scales, the nonlinearity due to gravi-
tational evolution must be incorporated into the model. In

FIG. 17. The FoB (upper panels), FoM (middle panels), and reduced chi-square (lower panels) for Group A (left panels) and Group B
(right panels). For FoB, the gray regions correspond to 1-σ, 2-σ, and 3-σ critical values from bottom to top.
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addition, the peculiar motion of galaxies distorts the
distance estimate in the line-of-sight direction, which is
referred to as the RSD effect, and the effect needs to be
considered in the theoretical model. A variety of theoretical
models based on PT have been proposed and different
assumptions are employed depending on the model.

The PT challenge analysis proposed here follows our
precedent work [31], where the real space power spectrum
is employed. In this work, we extend the PT challenge
analysis with the redshift space power spectrum. This was
made possible with the help of the implementation of the
response function method [51] to accelerate the PT

FIG. 18. Same as Fig. 17 but for Group C (left panels) and Group D (right panels).
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calculations of power spectra with RSD effects and the
calculation module is integrated into the framework of
ECLAIRS [88]. In the challenge analysis, we first perform the
N-body simulation with fiducial cosmological parameters
and measure the power spectrum from the matter density
field. Then, we regard the measured power spectrum as a

given data vector and carry out parameter inference with the
PT models described above. The inferred cosmological
parameters can then be directly compared with the fiducial
values. We can assess the constraining power and the bias
of cosmological parameters as the function of the maxi-
mum wave number scale of data points, which we denote

FIG. 19. Same as Fig. 17 but for Group E (left panels) and Group F (right panels).
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kmax. More precisely, kmax is determined with the help of
the bias parameter, the figure of bias (FoB), defined as the
difference between the inferred and fiducial values nor-
malized by the covariance. Parameter inference is then
tagged as “biased,” and therefore excluded, if FoB exceeds
the 1-σ critical value as the probability distribution of FoB
follows the multivariate Gaussian distribution. The con-
straining power of the parameters is defined with a figure of
merit (FoM), which is the inverse of the square root of the
parameter covariance matrix, which corresponds to the
inverse of the hypervolume of confidence regions. The key
objective of the PT challenge analysis is then first, for each
model to assign a kmax for which its FoB remains below the
1-σ critical value, and then to identify the models which
yield the highest FoM.
The examined PT models are RegPT, RegPTþ, and

IR-resummed EFT. RegPT is the extended version of SPT
by reorganizing the SPT expansion and the accuracy and
convergence have been enhanced compared with SPT. The
RegPTþ model contains one additional free parameter
giving the dispersion of displacement σd that controls the
small-scale damping feature. Previous studies have shown
that taking this parameter as a free parameter can signifi-
cantly improve the model [31]. The last model is

IR-resummed EFT, where the small-scale spectra are
described by effective counterterms. This class of models
can accurately account for the small-scale power spectra but
with the introduction of many nuisance parameters. In
addition to different theoretical models, we also address
how FoG functional forms, the AP effect, and sampling of
data vectors (multipoles or wedges) affect the parameter
inference. In this analysis, however, we use a simple,
perhaps naive, model of linear galaxy bias and assume
Poisson noise. In particular, we assume a simple linear scale
independent bias, ignoring the possibility that the galaxy
bias is likely to have nontrivial scale dependencies (for a
review, see Ref. [87]). It should be kept in mind that this is
likely to be an important limitation on the scope of the
analysis we present below. In particular, the performance of
the models we consider is likely to be affected differently
when additional nuisance parameters are introduced.
It is also to be noted that the reference survey we

consider, in terms of volume and number density of
galaxies, reproduces the raw characteristics of the Euclid
spectroscopic survey. The conclusions we reach are then
a priori valid for such a setting only but we do not expect
the results to be very sensitive to those assumptions.
In the PT challenge analysis, five cosmological param-

eters ½ωb;ωcdm; h; lnð1010AsÞ; ns� and the linear bias param-
eter b1 are inferred from the redshift space power spectrum
at the redshift z ¼ 1 assuming the Gaussian covariance
matrix with the survey volume and the galaxy number
density expected for the Euclid mission. In order to
quantify the goodness of fit and the induced parameter
bias, we have introduced three measures: FoM, FoB, and
reduced chi-squares. The reduced chi-square is irrelevant to
the parameter inference but expresses the performance of
the fitting of the power spectrum. The findings derived
from the PT challenge analysis are summarized below:

(i) RegPTyields the highest FoM but the largest reduced
chi-square. IR-resummed EFT delivers the opposite
results: the lowest FoM but the smallest reduced chi-
square. RegPTþ is in between. This feature can be
explained by the number of nuisance parameters.
RegPT has no nuisance parameter, RegPTþ has one,
and IR-resummed EFT has five for three multipoles
case. The nuisance parameters add flexibility espe-
cially at small scales, and thus, introducing nuisance
parameters improves the fitting at small scales, i.e.,
smaller reduced chi-square. However, the nuisance
parameters are degenerate with cosmological param-
eters and thus degrade constraints on cosmological
parameters, i.e., lower FoM. The trade-off is also
observed in the previous analysis of the real-space
power spectrum [31].

(ii) Under the condition that the FoB does not exceed the
1-σ critical value, the PT model which yields the
highest FoM is RegPTþ with kmax ¼ 0.21hMpc−1.
This model has only one free parameter σd, which

FIG. 20. The highest FoM with the constraint that FoB does not
exceed the 1-σ critical value. RegPTþ with Gaussian FoG and
three multipoles yields the highest FoM, which is displayed as a
star symbol. Note that IR-resummed EFT is at one-loop order and
the FoMs of IR-resummed EFTare shown as square symbols. For
reference, a factor of 2 better FoM corresponds to 14.8% better
constraint for each parameter on average.
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controls the small-scale damping feature. Therefore,
we can conclude that RegPTþ is the most competent
without significant parameter bias among the exam-
ined PT models.

(iii) We have examined the different functional forms of
FoG damping: Lorentzian, Gaussian, γ FoGs. The γ
FoG has one additional parameter, which determines
the shape of the damping, and contains Lorentzian
and Gaussian forms as special cases. Among the
three models, Gaussian FoG yields the best FoM and
FoB. On the other hand, for the γ FoG, overfitting
occurs due to the free parameter introduced in the
model. Hence, the reduced chi-square is the lowest
but the FoM and FoB are the worst.

(iv) The redshift space power spectrum has two argu-
ments: the magnitude of wave number k and the
directional cosine μ in the line-of-sight direction. In
the practical analysis, the variable μ is projected in
two different manners: multipoles and wedges.
Overall, for three multipoles and three wedges,
FoMs are slightly better than two multipoles and
two wedges, respectively, because there are more
data points and more information is accessible.
The difference between three (two) multipoles and
three (two) wedges is quite small, but overall
multipoles lead to slightly better FoM but worse
reduced chi-square.

These conclusions on the relative performances of the
models we explore should not however be considered
definitive. In particular, as mentioned before, we made a
simplifying assumption on galaxy bias behavior. The
introduction of a more elaborate model is likely to affect
the result and the relative performances of the models.
This is precisely what we would like to explore in the
subsequent paper of this series, exploiting the fact that the
computation of higher-order contributions in galaxy bias
expansion can also be accelerated with the response
function approach.

The codes to compute the power spectrum with TNS
correction terms are implemented in the framework of
ECLAIRS [88] and will be publicly available at the github
repository [89].
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APPENDIX A: ONE-LOOP SPT POWER
SPECTRUM IN THE REDSHIFT SPACE

There is another formalism to derive the expression of
the power spectrum in the redshift space based on SPT
through the mapping of coordinates s ¼ xþ vzðxÞ

aH ẑ, where s
and x are the coordinates in the redshift space and the
real space, respectively, and ẑ is the unit vector along the
line-of-sight direction. Thus, one can obtain the expression
of the power spectrum in the redshift space [17,90,91] and
the expression at one-loop order can be reorganized with
TNS correction terms [57]:

PðSÞ
SPTðk;μÞ ¼ ½1− ðkμfσv;LÞ2�½PδδðkÞ þ 2fμ2PδθðkÞ

þ f2μ4PθθðkÞ� þAðk;μÞ þBðk;μÞ þCðk;μÞ;
ðA1Þ

where the velocity dispersion at linear order σ2v;L is defined
in Eq. (26). The power spectra PδδðkÞ, PδθðkÞ, and PθθðkÞ
are computed based on SPT at one-loop order. For the
correction terms at one-loop order, the bispectra in the A
term and the power spectra in the B term should be
computed at the tree level, i.e., Pabðk; zÞ ¼ PLðk; zÞ.
Then, the C term is given as

Cðk;μÞ ¼ ðkμfÞ2
Z

d3p
ð2πÞ3

d3q
ð2πÞ3 δDðk−p− qÞμ

2
p

p2
PθθðpÞ

×fPδδðqÞþ 2fμ2qPδθðqÞþf2μ4qPθθðqÞg; ðA2Þ

where μp ¼ pz=p and μq ¼ qz=q. To keep the consistency
of the order, the power spectra should be computed at linear
order. Then, the C term is given as

Cðk;μÞ ¼
X3
n¼1

X2
a;b¼1

μ2nð−fÞaþb k3

ð2πÞ2
Z

∞

0

dr
Z þ1

−1
dx

×
h
Cn
abðr;xÞPab

�
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p �
P22ðkrÞ

þC̃n
abðr;xÞP22ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 − 2rx

p
ÞPabðkrÞ

i
: ðA3Þ

The nonvanishing components of Cn
abðr; xÞ and

C̃n
abðr; xÞ are

C1
11ðr; xÞ ¼ −

x2 − 1

4
; ðA4Þ

C1
12ðr; xÞ ¼ −

3r2ðx2 − 1Þ2
8ð1þ r2 − 2rxÞ ; ðA5Þ
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C1
22ðr; xÞ ¼ −

5r4ðx2 − 1Þ3
16ð1þ r2 − 2rxÞ2 ; ðA6Þ

C2
11ðr; xÞ ¼

3x2 − 1

4
; ðA7Þ

C2
12ðr; xÞ ¼

ðx2 − 1Þð2 − 12rx − 3r2 þ 15r2x2Þ
4ð1þ r2 − 2rxÞ ; ðA8Þ

C2
22ðr; xÞ ¼

3r2ðx2 − 1Þ2ð7 − 30rx − 5r2 þ 35r2x2Þ
16ð1 þ r2 − 2rxÞ2 ; ðA9Þ

C3
12ðr; xÞ ¼ −

−4þ 12x2 þ 8rxð3 − 5x2Þ þ r2ð3 − 30x2 þ 35x4Þ
8ð1þ r2 − 2rxÞ ; ðA10Þ

C3
22ðr; xÞ ¼ −

ðx2 − 1Þ½4þ 3rf−16xþ rð−14þ 70x2 þ 20rxð3 − 7x2Þ þ 5r2ð1 − 14x2 þ 21x4ÞÞg�
16ð1þ r2 − 2rxÞ2 ; ðA11Þ

C4
22ðr; xÞ ¼

−4þ 12x2 þ 16rxð3 − 5x2Þ þ 7r2ð3 − 30x2 þ 35x4Þ − 6r3xð15 − 70x2 þ 63x4Þ
16ð1þ r2 − 2rxÞ2

þ r4f−5þ 21x2ð5 − 15x2 þ 11x4Þg
16ð1þ r2 − 2rxÞ2 ; ðA12Þ

C̃1
11ðr; xÞ ¼ −

r4ðx2 − 1Þ
4ð1þ r2 − 2rxÞ2 ; ðA13Þ

C̃1
12ðr; xÞ ¼ −

3r4ðx2 − 1Þ
8ð1þ r2 − 2rxÞ2 ; ðA14Þ

C̃2
11ðr; xÞ ¼

r2ð2 − 4rx − r2 þ 3r2x2Þ
4ð1þ r2 − 2rxÞ2 ; ðA15Þ

C̃2
12ðr; xÞ ¼

r2ðx2 − 1Þð2 − 12rx − 3r2 þ 15r2x2Þ
4ð1þ r2 − 2rxÞ2 ; ðA16Þ

C̃3
12ðr; xÞ ¼ −

r2f−4þ 12x2 þ 8rxð3 − 5x2Þ þ r2ð3 − 30x2 þ 35x4Þg
8ð1þ r2 − 2rxÞ2 : ðA17Þ

TABLE IV. Descriptions of models with RegPT, RegPTþ, and SPT at one-loop order.

Label PT model Data vector AP FoG Nuisance parameters

RPT(one-loop)-L-3l RegPT Three multipoles (l ¼ 0; 2; 4) ✓ Lorentzian b1; σv
RPTþ(one-loop)-L-3l RegPTþ Three multipoles (l ¼ 0; 2; 4) ✓ Lorentzian b1; σv; σd
SPT(one-loop)-3l SPT Three multipoles (l ¼ 0; 2; 4) ✓ � � � b1
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The scaling of C terms with respect to the linear bias b1 is
given as

Cðk; μ; fÞ → b41Cðk; μ; βÞ: ðA18Þ

APPENDIX B: PT CHALLENGE RESULTS
WITH MODELS AT ONE-LOOP ORDER

Here, we carry out the PT challenge analysis for
SPT, RegPT, and RegPTþ at one-loop order to inves-
tigate the effect of the order of PT models. For these
one-loop PT models, the computational cost is not
problematic and, thus, we use the direct integration for
computations instead of the response function
approach. Table IV summarizes the examined models
and we define Group G, which includes RegPT and
RegPTþ at one-loop and two-loop orders and SPT and
IR-resummed EFT at one-loop order to investigate
measures of FoB, FoM, and the reduced chi-square.
Figure 21 shows the results for Group G. In this group,
the FoG damping function and the data vector are fixed
as Lorentzian and three multipoles, respectively, and
the AP effect is included. First, SPT demonstrates poor
performance even at the small kmax. The FoB is already
larger than the 1-σ critical value at kmax ¼ 0.12hMpc−1.
As SPT has no nuisance parameters, it yields high
FoM. However, the FoB and reduced chi-square are too
high and, thus, SPT at one-loop order cannot be used to
robustly constrain cosmological parameters. In terms of
RegPT, FoB is better for the two-loop model and FoB
of the one-loop model suddenly increases at kmax ¼
0.21hMpc−1 because the accuracy at the small scale of
this model is worse. A similar feature is found in the
reduced chi-square. The FoM is quite similar at lower
kmax because the number of the nuisance parameter is
the same. In contrast, the performance of RegPT
and RegPTþ is comparable but FoM is better for
the two-loop PT model. The free parameter specific
to RegPTþ, i.e., the dispersion of displacement, has
considerable flexibility to fit the small-scale power
spectrum. IR-resummed EFT yields the lowest
reduced chi-square and FoM is slightly higher than
RegPTþ. Similarly to the two-loop case, FoM of IR-
resummed EFT is quite suppressed due to many
nuisance parameters.

FIG. 21. The FoB (upper panel), FoM (middle panel), and
reduced chi-square (lower panel) for Group G.
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