
Induced gravitational waves with kination era for recent pulsar
timing array signals

Keisuke Harigaya,1,2,3 Keisuke Inomata ,2 and Takahiro Terada 4

1Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
2Kavli Institute for Cosmological Physics and Enrico Fermi Institute, University of Chicago,

Chicago, Illinois 60637, USA
3Kavli Institute for the Physics and Mathematics of the Universe (WPI),

The University of Tokyo Institutes for Advanced Study, The University of Tokyo,
Kashiwa, Chiba 277-8583, Japan

4Particle Theory and Cosmology Group, Center for Theoretical Physics of the Universe,
Institute for Basic Science (IBS), Daejeon 34126, Korea

(Received 20 September 2023; accepted 22 November 2023; published 20 December 2023)

The evidence of the stochastic gravitational-wave background around the nanohertz frequency range
was recently found by worldwide pulsar timing array (PTA) collaborations. One of the cosmological
explanations is the gravitational waves induced by enhanced curvature perturbations, but the issue of
primordial black hole (PBH) overproduction in this scenario was pointed out in the literature. Motivated by
this issue and the ΩGW ∼ f2 scaling suggested by the data, we study the gravitational waves induced in a
cosmological epoch dominated by a stiff fluid (w ¼ 1) and find that they can safely explain the PTA data
well without PBH overproduction.
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I. INTRODUCTION

Gravitational waves (GWs) are a unique probe of the
early Universe as well as astrophysical phenomena.
Following the first indirect measurement of GWs from
the observations of periods of a binary pulsar [1], GWs
from binary black hole/neutron star mergers were finally
detected directly by the ground-based laser interferometers
[2,3]. This was the beginning of GW (and multimessenger)
astronomy. Recently, the long-sought evidence of the
Hellings-Downs curve [4] was observed by the worldwide
pulsar timing array (PTA) collaborations, in particular, by
NANOGrav [5–7] and by EPTA/InPTA [8–10]; see also the
results of PPTA [11–13] and CPTA [14]. This indicates the
first evidence of the isotropic [15], stochastic [16,17] GW
background (SGWB) in the Universe. Whatever its origin
is, it will give us new insight into our Universe. While the
arguably standard interpretation is astrophysical, namely
due to merger events of supermassive black hole binaries
(SMBHBs), it requires somewhat nonstandard parameters
to fit the data [10,18,19] (see also Ref. [20] for the
interpretation as primordial SMBHBs). For instance, cir-
cular SMBHBs that lose their energy dominantly by the
GW emission are excluded at 3.9σ [21]. Though it is
premature to draw any conclusions, and new-physics (or
cosmological) interpretations always bring some nonmini-
mal assumptions in the early Universe, some new-physics
interpretations can fit the PTA data better [7,21,22] (see,
however, also Ref. [23]). Thus, we may be at the beginning
of the era of observational GW cosmology.

It is intriguing that the Bayesian analyses by NANOGrav
[7] favor some particular new-physics interpretations.
One of the best scenarios is the so-called scalar-induced
GWs (SIGWs) [7,21], namely, GWs secondarily induced
from the curvature perturbations [24–28]. One reason
why the SIGW interpretation is favored is that it is
relatively easy to fit the observed slope of the spectrum
nT ≡ d lnΩGW=d ln f ∼ 2, which we discuss further later.
Another reason is that the large amplitude of the signal can
be easily realized by simply assuming the large amplitude
of the primordial curvature perturbations. Of course,
deriving such a power spectrum from a natural UV-
complete model of inflation without any fine-tuning is
much more difficult than just fitting the data phenomeno-
logically. For the inflationary model building approach in
the context of the induced GWs, see, e.g., Refs. [29–34]. In
this paper, we follow the phenomenological approach as a
first step to narrow down possible underlying inflation
models. For recent attempts to explain the PTA data by
SIGWs, see Refs. [35–59].
Typically associated to substantial SIGWs are primordial

black holes (PBHs) [60–62]. This is because strong SIGWs
are produced by substantial curvature perturbations, which
also produce PBHs. This fact can be seen both as
advantages and disadvantages. For example, PBHs can
serve as a dark matter candidate, and in some scenarios,
one can explain the dark matter abundance by PBHs and
simultaneously predict observable SIGWs [60,63–65].
However, in some cases, the PBH abundance exceeds
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the observed dark matter abundance [66–69] and then the
model is excluded. This is because the intensity of the
SIGWs depends on the square of the power spectrum of
the curvature perturbations whereas the abundance of PBHs
is exponentially sensitive to the inverse of the power
spectrum of the curvature perturbations. On top of that,
the PBH abundance is subject to orders-of-magnitude
uncertainties depending on the calculation method (see,
e.g., Refs. [70–73] and references therein). Nevertheless,
multiple recent works [41,43,46] pointed out the PBH
overproduction issue when one fits the PTA data by SIGWs
and discussed the necessity of non-Gaussianity of primor-
dial curvature perturbations to avoid the overproduction. To
evade this issue, enhanced sound speed cs ¼ 1 beyond the
perfect fluid was studied in Ref. [52]. With a similar
motivation, Ref. [74] studied GWs induced from an extra
spectator tensor field.
As mentioned above, the latest data favors the spectral

index nT around 2. The NANOGrav data show nT ¼ 1.8�
0.6 (90% credible region) [5]. The EPTA/InPTA data have
an internal tension between the full dataset leading to nT ¼
0.81þ0.63

−0.73 and the new dataset leading to nT ¼ 2.29þ0.73
−1.18

(90% credible regions for both), but the spectral index
being equal to 2 is consistent with both datasets at the 3σ
level [8]. Also, the analysis in Ref. [21] combining the
NANOGrav 15-year data and the new dataset of EPTA
shows nT ¼ 2.08þ0.32

−0.30 (68% confidence level). In our
previous work with Kohri [75], we delineated three ways
to explain the ΩGW ∼ f2 scaling1: (1) SIGWs from the
linear spectrum of the curvature perturbations PζðkÞ ∼ k,
(2) the IR tail [77–79] of SIGWs generated from a very
sharply peaked spectrum PζðkÞ ∼ δðlnðk=k�ÞÞ, and (3) the
IR tail of SIGWs generated in a cosmological epoch
dominated by a stiff fluid that has the equation-of-state
parameter w ¼ 1

2 rather than in the standard radiation-
dominated (RD) era with w ¼ 1=3. The second option was
the main focus of Ref. [75]. The last option is independent
of the details of the underlying power spectrum of the
curvature perturbations and is theoretically appealing. In
this paper, we focus on the last option, i.e., the GWs
induced by curvature perturbations in a cosmological era
with w ¼ 1. Such an era is realized, e.g., when the kinetic
energy of a scalar field dominates the energy density of the
Universe. The kinetic-energy dominated era (kination)
[80–82] has been studied in a variety of contexts (see
Refs. [83,84] and references therein; Refs. [85–87] studied
kination in the context of explaining the PTA data),
and particle-physics UV completion by axionlike fields

exist [88]. Another virtue of the induced GWs from a
kination era beyond the fact that it leads to the f2 IR tail to
fit the PTA data is suppression of the PBH abundance. As
we explain in detail in the rest of this paper, there are two
reasons for the suppression of the PBH abundance. The first
reason is that we need a relatively small amplitude of the
curvature perturbations to fit the PTA data since the energy
fraction of GWs ΩGW increases during a kination era. The
second reason is that the threshold of the PBH formation
is presumably greater in a kination era than in the RD
era [89–92]. Both of these facts exponentially suppress the
PBH abundance.
For the study of SIGWs beyond the RD era, we refer

the reader to Refs. [79,93,94] in general. Furthermore,
Refs. [53,54] discussed SIGWs for the recent PTA data in
general w, focusing on the narrow power spectrum of
curvature perturbations with Δ ≤ 0.1 [see Eq. (25) for
the definition of Δ]. In particular, Ref. [53] focused on the
delta-function power spectrum (Δ → 0). In the case of the
narrow power spectrum withΔ ≪ 1, the slope of the SIGW
power spectrum changes around k=k� ≃ Δ [79], where k� is
the peak scale of the power spectrum [see Eq. (25) for the
definition]. References [53,54] used the slope in Δ≲
k=k� ≲ 1 to fit the PTA signals, where ΩGW ∝ f on those
scales for w ¼ 1 if the scale of k�Δ is inside the horizon at
the end of the kination era [79]. Then, one of the papers
concluded that the case of w ¼ 1 is outside the 90%
credible region [54]. In contrast, we consider Δ ≥ 1
throughout this work and focus on the IR slope of the
GW spectrum that is different from those discussed in the
previous works.
The structure of the paper is as follows. In Sec. II, we show

that the induced GWs produced in a cosmological era with
w ¼ 1 can fit the recent PTA data well. In particular, the f2

scaling iswell explained by the IR tail of the inducedGWs. In
Sec. III, we show that the PBH abundance is significantly
suppressed in our scenario. Our conclusions are given in
Sec. IV. We use the natural unit c ¼ ℏ ¼ kB ¼ 1.

II. INDUCED GRAVITATIONAL WAVES
IN KINATION ERA

A. Cosmological scenario and intuitive picture

We consider a cosmological scenario in which there is a
transient cosmological era with its equation-of-state param-
eter w ¼ 1. We assume this era ends before the big bang
nucleosynthesis (BBN). We consider a transition of the era
with w ¼ 1 into the standard RD era for concreteness,
although such an era can be in principle followed by, e.g.,
an early matter-dominated era. Depending on the under-
lying particle-physics model, the transition from the era
with w ¼ 1 to the standard RD era may or may not involve
entropy production. Since the dominant energy density
redshifts faster than radiation in the era with w ¼ 1, a
natural scenario is a smooth crossover without entropy

1Apart from SIGWs, theΩGW ∝ f2 scaling can also be realized
with melting domain walls characterized by a time-dependent
tension [76].

2w ¼ 1=9 is also a possible solution for the f2 scaling of ΩGW,
but the PBH abundance is enhanced in contrast to the case
of w ¼ 1.

HARIGAYA, INOMATA, and TERADA PHYS. REV. D 108, 123538 (2023)

123538-2



production [83,84]. For definiteness, we consider such a
scenario as a fiducial setup throughout this paper.
Alternatively, the transition by the decay of the field
responsible for the era with w ¼ 1 into radiation, i.e., with
entropy production, is conceivable. Given this possibility,
we also mention possible modifications of equations in this
case. The GW signals in our scenario are not sensitive to
this difference. Though we sometimes call the era with
w ¼ 1 kination for short, we are agnostic about the details
of the underlying model in this work. Similarly, we do not
specify the beginning of the kination era. It may be
preceded by, e.g., inflation [80] or an early matter-domi-
nated era [83,84,88]. We only assume that the induced
GWs on the relevant frequency ranges are produced in the
kination era and the relevant scalar source modes enter the
Hubble horizon during the kination era.
Now, let us discuss in an intuitive manner how the

desired slope nT ¼ 2 of the induced GWs can arise in our
scenario. A more detailed formulation is given in the next
subsection. If the curvature power spectrum does not
sharply increase on small scales, the spectrum of the
GWs induced during the era with w has the rough
dependence ΩGWðfÞ ∼ ðk=kwÞ−2βP2

ζðkÞ with the relation
2πf ¼ k, where β≡ ð1 − 3wÞ=ð1þ 3wÞ and kw is the
inverse of the horizon scale at the end of the era with w,
followed by the RD era. Note that the ðk=kwÞ−2β factor
comes from the redshift difference from the GWs and the
total energy density in the era with w. However, when
PζðkÞ sharply increases on some scales, GWs are not
necessarily induced dominantly by the scalar mode on the
same k but may be induced dominantly by smaller-scale
scalar modes. For example, if the curvature power spectrum
sharply increases in k < k� with nsð≡d lnPζ=d ln kÞ >
nβð≡3=2þ β − jβjÞ in the era with w and has a (nonexcep-
tionally) narrow peak3 around k ∼ k� or a flatter region
k≳ k� with ns < nβ, the IR tail of the induced GWs
in k < k� is determined only by the perturbations around
k ∼ k�, where the IR tail is given by ΩGW ∝ k3−2jβj for the
sharply increasing power spectrum [79]. This indicates that
the IR tail in that case is determined by the cosmological
background dynamics of the Universe, independently of the
details of the shape of PζðkÞ in k < k�. Note that β ¼ 0

and nβ ¼ 3=2 in the RD era (w ¼ 1=3) and β ¼ −1=2 and
nβ¼1=2 in the kination era (w ¼ 1). For the sharply
increasing power spectrum, this leads to the IR tails
ΩGW ∝ f3 in the RD era and ΩGW ∝ f2 in the kination era.
Here, we briefly explain the physical interpretation of the

frequency dependence of the IR tail of ΩGW in the RD and
the kination era. Causality tells us there is no correlation,
except by chance, outside the Hubble horizon. Given that
the superhorizon tensor perturbations with the absolute

value of their wavenumber k are composed of the super-
position of ∼OððaH=kÞ3Þ independent Hubble horizon
patches, the central limit theorem tells us that the power
spectrum of the tensor modes is volume-suppressed leading
to PhðfÞ ∝ f3 on superhorizon scales. This cubic scaling is
inherited by ΩGWðfÞ as the universal IR tail ΩGWðfÞ ∝ f3

in the RD era even though the energy density of GWs is
proportional to f2PhðfÞ. This is because the additional f2
factor for the energy density of GWs is canceled by the
redshift factor of the tensor modes, which are constant
outside the horizon but get redshifted as h ∝ 1=a inside the
horizon. Note that the tensor modes with different scales
enter the horizon at different times. On the other hand, there
are extra factors in the kination universe. During the
kination era, the decrease of the source terms with the
subhorizon perturbations is slower than the decrease of
the Hubble parameter unlike during the RD era. This leads
to the growth of the superhorizon tensor perturbations as
Ph ∝ a4 while keeping the frequency dependence Ph ∝ f3.
Once they enter the horizon, they decouple from the source
terms and behave as freely propagating waves, which
redshift as h ∝ 1=a. The redshift difference between the
energy densities of the kination fluid background and the
subhorizon GWs leads to the behavior of ΩGW ∝ a2 on
subhorizon scales. From the above relations, we can see
ΩGW ∼ Phjhcða=ahcÞ2 ∝ f2 on the IR tail, where the sub-
script ‘hc’ denotes the value at the horizon crossing and
we have used ΩGWjhc ∼ Phjhc, Phjhc ∝ f3a4hc ∝ f, and
a ∝ η1=2. See Refs. [77–79] for more details on the IR tail.

B. Basic formulas for induced gravitational waves

In this subsection, we summarize the equations for the
GWs induced by scalar perturbations during the kination
era, followed by the RD era. See also Refs. [79,93,97] for
the details.
Throughout this work, we take Newtonian gauge, where

the metric perturbations are expressed as

ds2¼a2
�
−ð1þ2ΦÞdη2þ

�
ð1−2ΨÞδijþ

hij
2

�
dxidxj

�
: ð1Þ

Φ and Ψ are the first-order scalar perturbations and hij is
the second-order tensor perturbation. We have neglected
the vector perturbations because their contribution to GW
production is negligible. In this work, we consider a perfect
fluid and set Φ ¼ Ψ throughout the evolution for simplic-
ity. We expand the tensor perturbations as

hijðxÞ ¼
X
λ¼þ;×

Z
d3k
ð2πÞ3 e

λ
ijðk̂Þhλkeik·x; ð2Þ

where eλij is the polarization tensor that satisfies kieλij ¼ 0,

δijeλij ¼ 0, and δikδjleλkle
λ0
ij ¼ δλλ

0
. With their Fourier

3If Pζ has an exceptionally sharp peak at k� such as that with
the Dirac delta function, the prediction changes [54,79,95,96].
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modes, we can express the power spectrum of the tensor
perturbations as

hhλkhλ
0
k0 i ¼ ð2πÞ3δðkþ k0Þδλλ0 2π

2

k3
Phðη; kÞ: ð3Þ

The equation of motion for the tensor perturbation during
the kination era is given by [27,28,98]

hλk
00 þ 2Hhλk

0 þ k2hλk ¼ 4Sλ
k; ð4Þ

where H is the conformal Hubble parameter, a prime
denotes differentiation with respect to the conformal time η,
and the source term S is given by

Sλ
kðηÞ ¼

Z
d3k0

ð2πÞ3 e
λlmðk̂Þk0lk0m

�
2Φk0 ðηÞΦk−k0 ðηÞ

þ 2

3
ðΦk0 ðηÞ þH−1Φ0

k0 ðηÞÞ

× ðΦk−k0 ðηÞ þH−1Φ0
k−k0 ðηÞÞ

�
: ð5Þ

After some calculation based on the Green function
method, we finally obtain the following expression for
the time-averaged power spectrum of the induced GWs
during a kination era, which is used when we discuss their
energy density:

Phðη; kÞ ¼ 4

Z
∞

0

dv
Z

1þv

j1−vj
du

�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

× I2ðu; v; xÞPζðkuÞPζðkvÞ; ð6Þ

where x ¼ kη, the overline denotes the time average over
oscillations of the tensor modes, and

Iðu; v; xÞ ¼
Z

x

0

dxkGkðη; η̄Þfðu; v; x̄Þ: ð7Þ

Gk is the Green function satisfying N̂Gkðη; η̄Þ ¼ δðη − η̄Þ,
where

N̂ ≡ ∂
2

∂η2
þ 2H

∂

∂η
þ k2: ð8Þ

Specifically, the Green function for the GWs induced
during a kination era is given by

kGkðη; η̄Þ ¼
π

2
x̄ðJ0ðx̄ÞY0ðxÞ − J0ðxÞY0ðx̄ÞÞ; ð9Þ

where x̄ ¼ kη̄, JνðxÞ, and YνðxÞ with ν arbitrary are the
Bessel functions of the first and the second kind, and we
have used H ¼ 1=ð2ηÞ during a kination era. The source
function f is given by

fðu; v; x̄Þ ¼ 2Tðux̄ÞTðvx̄Þ þ 2

3

�
Tðux̄Þ þ 2ux̄

dTðux̄Þ
dðux̄Þ

�

×

�
Tðvx̄Þ þ 2vx̄

dTðvx̄Þ
dðvx̄Þ

�
; ð10Þ

where ΦkðηÞ ¼ TðkηÞζk with ζk being the curvature per-
turbation in the superhorizon limit. To obtain the concrete
expression of the transfer function TðkηÞ, we need to solve
the equation of motion for the gravitational potential,

Φ00
k þ 6HΦ0

k þ k2Φk ¼ 0: ð11Þ

The solution of this equation is

TðkηÞ ¼ −
3

2
ðkηÞ−1J1ðkηÞ; ð12Þ

where we have imposed the normalization of T to satisfy
the superhorizon-limit relation during a kination era,
Φkðη ≪ 1=kÞ ¼ − 3

4
ζk, i.e., Tðkη ≪ 1Þ ¼ − 3

4
.

For convenience, we rewrite Eq. (7) as

Iðu; v; xÞ ¼
Z

x

0

dx̄kGkðη; η̄Þfðu; v; x̄Þ

¼ π

2
½Y0ðxÞIJðu; v; xÞ − J0ðxÞIYðu; v; xÞ�; ð13Þ

where IJ and IY are defined as

IJðu; v; xÞ≡
Z

x

0

dx̄ x̄ J0ðx̄Þfðu; v; x̄Þ; ð14Þ

IYðu; v; xÞ≡
Z

x

0

dx̄ x̄ Y0ðx̄Þfðu; v; x̄Þ: ð15Þ

In the subhorizon limit (x ≫ 1), I can be approximated as

Iðu; v; xð≫1ÞÞ ≃ −
ffiffiffi
π

2

r
x−1=2

�
sin

�
π

4
− x

�
IJðu; v; xÞ

þ cos

�
π

4
− x

�
IYðu; v; xÞ

�
: ð16Þ

Then, we can express the oscillation average of I2 as

I2ðu; v; xð≫1ÞÞ ≃ π

4
x−1½I2

Jðu; v; xÞ þ I2
Yðu; v; xÞ�: ð17Þ

The analytic expression of this equation in the late-time
limit x ≫ 1 is given by [93]

I2ðu; v; xð≫1ÞÞ ≃ 9

16πu4v4x

�ð3ðu2 þ v2 − 1Þ2 − 4u2v2Þ2
4u2v2 − ðu2 þ v2 − 1Þ2

þ 9ðu2 þ v2 − 1Þ2
�
: ð18Þ
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The energy density of GWs per log bin (ln k) is given by

ρGWðη; kÞ ¼
k2

8a2
Phðη; kÞ; ð19Þ

and the energy density parameter of GWs is given by

ΩGWðη; kÞ≡ ρGWðη; kÞ
ρtotðηÞ

¼ 1

24

�
k
H

�
2

Phðη; kÞ

¼ x2

6
Phðη; kÞ; ð20Þ

where ρtot is the total energy density of the Universe and we
have usedH ¼ 1=ð2ηÞ again. UnlikeΩGW during a RD era,
ΩGW continues to grow proportionally to a2 during a
kination era even for the subhorizon GWs. This is because
the redshift evolution of ρGWð∝a−4Þ and ρtotð∝a−6Þ is
different during a kination era.
We here relate the energy density parameter during the

kination era and the following RD era. For definiteness,
we consider the case without the entropy production (the
energy transfer from the kination fluid to the radiation). In
that case, ΩGW during the following RD era is the same as
the GW-radiation energy ratio ρGW=ρr during a kination
era, which becomes constant for subhorizon GWs even
during a kination era. Specifically, we can express the
energy density parameter during the following RD era as4

ΩGWðηc; kÞ ¼
ρGWðη; kÞ
ρrðηÞ

≃
ρkinðηÞ
ρrðηÞ

ΩGWðη; kÞðη ≪ ηeq;kinÞ

¼
�
aeq;kin
aðηÞ

�
2 x2

6
Phðη; kÞ

¼ k

6
ffiffiffi
2

p
Heq;kin

xPhðη; kÞ; ð21Þ

where ρkin is the energy density of the kination fluid, the
subscript ‘eq, kin’ denotes the value at the time when
ρkin ¼ ρr, and ηc is the time when the kination energy
density becomes negligible compared to the radiation
energy density and ΩGW becomes constant except for its
evolution due to the change of the degrees of freedom
(ηc > ηeq;kin). We have also used the relation aðηÞ=aeq;kin ≃
ð ffiffiffi

2
p

Heq;kinηÞ1=2 for η ≪ ηeq;kin. Note that xPhðη; kÞ
becomes constant even during a kination era.
Taking into account the late-time MD era, which follows

the RD era and dilutes ΩGW, we find the current ΩGW
as [99]

ΩGWðη0; kÞh2 ≃ 0.84

�
gρh

10.75

��
gsh

10.75

�
−4=3

×Ωr;0h2ΩGWðηc; kÞ; ð22Þ

where gρ (gs) is the effective relativistic degrees of freedom
for the energy (entropy) density, the subscript ‘h’ denotes
the value at the horizon entry of the mode with k, h ¼
H0=ð100 km s−1Mpc−1Þ with H0 being the current Hubble
parameter, and Ωr;0 is the current energy density parameter
for radiation (Ωr;0h2 ≃ 4.2 × 10−5). We use the temperature
dependence of gρ and gs in Ref. [100]. The argument of
ΩGW in Eq. (22) is the scale of the tensor mode k, but it can
be converted to the frequency f through f ¼ k=ð2πÞ
because GWs propagate at the speed of light.

C. Explaining the PTA data

Before the application of our formulas to the PTA data,
let us discuss constraints on our parameter space. The
transition from the kination era to the RD era must occur at
T > Oð1Þ MeV for the BBN not to be disturbed [83,101].
For simplicity, we regard ηeq;kin as the end of the kination
era, ηend, in the following.
The relation between the horizon scale and the temper-

ature at ηend is given by5

aendHend ¼
�
gsend
gs0

�
−1=3

�
Tend

T0

�
−1
�
π2gρendT

4
end

90M2
Pl

�
1=2

×Ω−1=2
r ðηendÞ

¼ 1.7 × 105 Mpc−1
�

gsend
10.75

�
−1=3

�
gρend
10.75

�
1=2

×

�
Tend

10 MeV

�
ð2ΩrðηendÞÞ−1=2; ð23Þ

4If the kination era ends with the entropy production by the
decay of the kination fluid at ηend, the relation is modified as

ΩGWðηend;þ; kÞ ≃ Ωrðηend;−Þ
ρkinðηÞ
ρrðηÞ

ΩGWðη; kÞ

ðfor η that leads to ΩrðηÞ ≪ 1Þ

¼ ð1 − Ωrðηend;−ÞÞ
�
aðηend;−Þ
aðηÞ

�
2 x2

6
Phðη; kÞ

¼ ð1 − Ωrðηend;−ÞÞ1=2
k

12Hðηend;−Þ
xPhðη; kÞ;

where ηend;� is the time right after/before the entropy production,
respectively, and Ωrðηend;−Þ denotes the radiation energy density
parameter just before the entropy production. We have used
ρkinðηÞ=ρrðηÞ¼ðaðηend;−Þ=aðηÞÞ2ð1−Ωrðηend;−ÞÞ=Ωrðηend;−Þ and
aðηÞ=aðηend;−Þ ≃ ð2Hðηend;−Þð1 − Ωrðηend;−ÞÞ1=2ηÞ1=2 for η that
leads to ΩrðηÞ ≪ 1. We can see that, if the entropy produc-
tion terminates the kination era at ηeq;kin (Ωrðηeq;kinÞ ¼ 1=2),
ΩGWðηend;þ; kÞ indeed becomes one-half of Eq. (21). In this
entropy production case, fUV in Eq. (26) below is also modified
similarly.

5When entropy production occurs at ηend instantaneously, Tend,
gsend, and gρend in Eq. (23) should be regarded as those right after
the entropy production while ΩrðηendÞ in it should be regarded as
that just before the entropy production.
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where the subscript ‘end’ denotes the value at ηend and the
subscript ‘0’ denotes the value at present as gs0 ¼ 3.91 [102]
and T0 ¼ 2.72 K ¼ 2.35 × 10−4 eV [103]. Using this and
the relation fend ¼ aendHend=ð2πÞ, we obtain the corre-
sponding frequency as

fend ¼ 2.6 × 10−10 Hz

�
gsend
10.75

�
−1=3

�
gρend
10.75

�
1=2

×

�
Tend

10 MeV

�
ð2ΩrðηendÞÞ−1=2: ð24Þ

Note again that Tend > Oð1Þ MeV must be satisfied not to
affect the BBN.
There is also an upper bound on the characteristic

frequency scale as we will see soon below. To be concrete,
we consider the log-normal power spectrum as an example,

PζðkÞ ¼
Affiffiffiffiffiffiffiffiffiffiffi
2πΔ2

p exp

�
−
ðlnðk=k�ÞÞ2

2Δ2

�
; ð25Þ

where A is the amplitude, Δ is the width, and k� is the peak
wave number. This is a toy model to represent a smooth
peak in the power spectrum. Note that the dynamics during
inflation is parameterized by a natural time variable during
inflation, which is the e-folding number N. It is related to
the wave number k via k ¼ aH ∼HeN , explaining the
logarithmic dependence in the argument of the Gaussian.
As a benchmark point, we takeΔ ¼ 1 to reduce the number
of free parameters unless otherwise noted.
f� ¼ k�=ð2πÞ is upper-bounded from the requirement

that the induced GWs are not overproduced as dark
radiation, ΩGWh2 < 1.8 × 10−6 [104,105],

f� ≤ fUV

¼ 2.8 × 10−7 Hz

�
fend

2.6 × 10−10 Hz

�

×

�
A

1.3 × 10−2

�
−2
: ð26Þ

The characteristic scale f� should also satisfy ðfend<Þ×
fPTA ≲ f� to explain the PTA results with the IR tail, where
fPTA ≈ 6 × 10−8 Hz is the highest frequency the PTAs are
sensitive to. Thus, the viable range of f� is fPTA≲f�≤fUV.
Since the NANOGrav among all the PTA observations

has the strongest signals, we compare our results with the
NANOGrav 15-year data [5,7]. Figure 1 shows the poste-
riors for the data [5,7]. In this figure, we also show the
posterior for the GWs induced during the RD era for
comparison. We can see that the kination era decreases the
curvature amplitudes required to fit the NANOGrav results.
This is because ΩGW for the GWs induced during the
kination era grows proportionally to a2 from their horizon
entry until the end of the kination era.

As long as the power spectrum of the curvature pertur-
bations is not sharply peaked (Δ≳ 1), the resultant induced
GWs produced in a kination era have the f2 IR tail. The
strength of the induced GWs has the parametric depend-
ence ΩGWðfÞ ∼ A2f2=ðfendf�Þ. This is qualitatively the
same for other generic (nonsharply peaked) choices of the
functional form of PζðkÞ. Because of this dependence,
there is degeneracy among parameters to fit the PTA data

A ≈ 8 × 10−3
�

f�
1 × 10−7 Hz

�
1=2

�
fend

2.6 × 10−10 Hz

�
1=2

for f� > Oð10−8Þ Hz: ð27Þ

We can see this relation in Fig. 1. Setting f� ¼ fUV and
combining the above relations, we obtain the maximal
value of A (or, equivalently, that of f�) for a given fend. For
example, if we fix fend ¼ 2.6 × 10−10 Hz, the parameters
should be A≲ 1.3 × 10−2 and, correspondingly, f� ≲ 2.8 ×
10−7 Hz to be consistent with the NANOGrav results.

FIG. 1. The posteriors for the NANOGrav 15-year results [5,7].
The power spectrum is given by Eq. (25). We take Δ ¼ 0.5
(green), 1 (gray), and 2 (red) with Tend ¼ 10 MeV. For com-
parison, we also show the posterior for the GWs induced during
the RD era with Δ ¼ 1 (blue). The dark and light color regions in
the posteriors denote the 68% and the 95% credible regions. The
black dots correspond to the fiducial parameters taken to compare
the PBH abundances in the kination and the RD era cases in
Sec. III. Specifically, the black dot in the gray region corresponds
to log10 A ¼ −2.3 and log10ðf�=HzÞ ¼ −7.6, which is used in
Fig. 2, and that in the blue region log10 A ¼ −1.3 and
log10ðf�=HzÞ ¼ −7.6. As priors, we take the log-uniform dis-
tribution in the range ½−11;−5� for f�=Hz and the log-uniform
distribution in the range ½−5; 0� for A. We used PTArcade
[106,107] with Ceffyl [108] to make this figure. The dark
radiation constraint is not imposed in this figure.
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Figure 2 shows the GW spectrum for the fiducial parameter
values, log10 A ¼ −2.3 and log10ðf�=HzÞ ¼ −7.6.

III. SUPPRESSION OF PRIMORDIAL BLACK
HOLE ABUNDANCE

In this section, we point out two reasons why the PBH
abundance is suppressed in our scenario.
The first reason is the reduction of the necessary

amplitude of the curvature perturbation to fit the PTA
data, as shown in Fig. 1. This is related to the enhancement
of the induced GWs by the redshift factor ðaend=ahÞ2
relative to the kination fluid, where aend and ah denote
the scale factor at ηend and the horizon entry of the mode.
This implies that the necessary amplitude of the curvature
power spectrum to fit the PTA data is reduced by
ðaend=ahÞ−1. Since the PBH abundance is exponentially
sensitive to the inverse of the amplitude of the curvature
power spectrum, the PBH abundance in our scenario is
significantly reduced.
The second reason is a rise of the critical value δc in the

density perturbations for the PBH formation. The thresh-
old of overdensity for the PBH formation in a cosmo-
logical era with generic values of wð¼ c2s Þ was studied in
the literature [89–92]. The pioneering work by Carr used
δc ∼ w, which shows the tendency that the critical value
increases as w increases. (However, a nonmonotonic
feature was found in Ref. [91] though it was not in
Refs. [90,92].) As summarized in Fig. 11 of the recent
work [92], there is substantial uncertainty (as in the
standard w ¼ 1=3 case), but overall, we see 0.4≲ δc ≲
0.75 for the case of w ¼ 1. The PBH abundance is also
sensitive to this parameter; it is exponentially sensitive to
the square of δc. Due to this, the PBH abundance in our

scenario is further significantly suppressed compared to
the PBH formation in the RD era.
To discuss these points quantitatively, we introduce some

more formulas in the following. The PBH energy density
fraction at their formation, which can also be interpreted
(up to the factor γ) as the PBH formation probability in each
Hubble patch, can be calculated with Carr’s formula (the
Press-Schechter formalism) [89]

βðMÞ≡ ρPBHðMÞ
ρtot

				
form

¼ γ

Z
∞

δc

dδffiffiffiffiffiffi
2π

p
σðMÞ exp

�
−

δ2

2σ2ðMÞ
�

¼ γ

2
Erfc

�
δcffiffiffi

2
p

σðMÞ

�
; ð28Þ

where the subscript ‘form’ denotes the value at the PBH
formation, ρPBHðMÞ is the energy density of PBHs per
log M bin, γ ≈ c3s with cs being the sound speed is the
fraction of the horizon mass that goes into a PBH, σðMÞ
is the coarse-grained density perturbations, and Erfc is
the complementary error function. In the era with
wð¼csÞ ¼ 1, γ ≈ 1. Although the dependence of βðMÞ
on PζðkÞ could be approximately understood as βðMÞ ∼
γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PζðkðMÞÞ

p ffiffiffiffi
2π

p
δc

exp ð− δ2c
2PζðkðMÞÞÞ with a rough relation σ2ðMÞ∼

PζðkðMÞÞ, we calculate σ2ðMÞ with a more specific
formula in this paper,

σ2ðkÞ ¼ 4

9

Z
dq
q

�
q
k

�
4

W2

�
q
k

�
T 2

�
q;

1

2k

�
PζðqÞ; ð29Þ

where WðzÞ is a window function and T ðq; 1=ð2kÞÞ≡
Tðq=ð2kÞÞ [see Eq. (12)] is the transfer function in the
kination era evaluated at the Horizon reentry k ¼ H.
For the window function, we take the real-space top-
hat window function, whose form in Fourier space is
given by

WðqrÞ¼ 3
sinðqrÞ− ðqrÞcosðqrÞ

ðqrÞ3 ; ð30Þ

where r is the smoothing scale and we substitute r ¼ 1=k.
In Eq. (29), we have used the relation between the density
perturbations and the curvature perturbations in comoving
slices, δ ¼ ð8=3ÞðkηÞ2TðkηÞζ (see also Ref. [109] for the
expression in the superhorizon limit). From the appearance
of δc and Pζ in the exponential factor in Eq. (28), we
confirm the above two reasons why the PBH abundance is
suppressed significantly.
The relation between the PBH mass M and the corre-

sponding wave number k of the perturbations that produce
the PBH is given by

FIG. 2. The GW spectrum with log10 A ¼ −2.3 and
log10ðf�=HzÞ ¼ −7.6 (the black dot in the gray region in
Fig. 1). The gray violins are from the NANOGrav results [7].
The lowest frequency of the black line corresponds to fend with
Tend ¼ 10 MeV.
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k ¼ ðaHÞjform
¼ ð1 − Ωrðηend;−ÞÞ1=6

�
Hform

Hend

�
2=3

ðaHÞjend

¼ 7.1 × 107 Mpc−1 ×

�
gsend;þ
10.75

�
−1=3

�
gρ
end;þ
10.75

�
1=6

×

�
MH

10−1M⊙

�
−2=3

�
Tend;þ
10 MeV

�
−1=3

×

�
1 −Ωrðηend;−Þ
Ωrðηend;þÞ

�
1=6

; ð31Þ

where this equation is valid for both the cases with/without
the entropy production. For the case with the entropy
production, we have assumed that the entropy production
occurs instantaneously at ηend and we denote the time
just before and after the entropy production by ηend;− and
ηend;þ. Note that the subscript ‘end;þ’ denotes the value at
ηend;þ. On the other hand, for the case without the entropy
production, which is the main focus of this paper, we set
ηend;þ ¼ ηend;− ¼ ηend ¼ ηeq;kin. In this equation, we have
assumed k ≫ kend and used the fact that a ∝ H−1=3 in a
kination era and that the PBH mass M is related to the
horizon mass MH ¼ 4πM2

Pl=H via M ¼ γMH. From
the above relation and the fact that the scale of k ¼
7.1 × 107 Mpc−1 corresponds to the frequency of f ¼
k=ð2πÞ ¼ 1.1 × 10−7 Hz, we see that the typical mass of
the PBH is Oð10−1ÞM⊙ for our fiducial parameter set
in Fig. 2.6

The differential PBH abundance relative to the cold dark
matter fPBHðMÞ≡ ρPBHðMÞ=ρCDM is

f̄PBHðMÞ ¼ βðMÞ
�
aend
aform

�
3 Ωm;0

ΩCDM;0

gρend;þ
gρeq

gseq
gsend;þ

×
Tend;þ
Teq

1 −Ωrðηend;−Þ
Ωrðηend;þÞ

¼ βðMÞ 4πMPl

MH

�
π2gρend;þT

4
end;þ

90M4
Pl

�−1=2 Ωm;0

ΩCDM;0

×
gρend;þ
gρeq

gseq
gsend;þ

Tend;þ
Teq

�
1 − Ωrðηend;−Þ
Ωrðηend;þÞ

�
1=2

;

ð32Þ

where ΩX;0 ≡ ρX;0=ρtot;0 [X ¼ m (nonrelativistic matter) or
CDM (cold dark matter)] is the current fractional energy-
density abundance of a cosmological component X and the
subscript ‘eq’ means the value at the matter-radiation
equality (at zeq ≃ 3400 with z the redshift). Compared to
the standard expression in the case of PBH production
in the RD era, we have a power enhancement factor
ðaend=aformÞ3ðTend=TformÞ∼ðaend=aformÞ2. However, βðMÞ
is exponentially suppressed as we discussed above. The
total PBH abundance is obtained by integral of f̄PBH

fPBH ≡
Z

dM
M

f̄PBHðMÞ: ð33Þ

Let us demonstrate that the PBH abundance is signifi-
cantly suppressed in our scenario. From the above dis-
cussion, the two most important parameters are the critical
density δc and the magnitude of Pζ, i.e., the amplitude A.
As a fiducial parameter set, we take log10 A ¼ −2.3 and
log10ðf�=HzÞ ¼ −7.6, which is in the 68% credible region
in Fig. 1 (the black dot in the gray shaded region). In this
case, we find

log10 fPBH ¼

8>>><
>>>:

−5 ðδc ¼ 0.4Þ
−13 ðδc ¼ 0.5Þ
−22 ðδc ¼ 0.6Þ
−33 ðδc ¼ 0.7Þ

; ð34Þ

for Δ ¼ 1 and Tend ¼ 10 MeV, where we reported the
values in logarithm since the uncertainty of the exponent
propagates substantially. Thus, even for a conservative
choice of δc in the universe withw ¼ 1, the PBH abundance
is significantly suppressed. For comparison, if we take
log10 A ¼ −1.3 and log10ðf�=HzÞ ¼ −7.6 in the RD era
case as a conservative choice [the black dot around the edge
of the 95% credible (light blue) region in Fig. 1], we obtain
log10 fPBH ≃ 5 with the same formulas in Ref. [75] except
for the window function, for which we use Eq. (30) instead
of the Gaussian window function.7 This shows that the
existence of the kination era helps avoid the PBH over-
production, which occurs in the RD era case. The plots of
fPBH for other values of A and δc are shown in Fig. 3. Note
that some parameters in Fig. 3 are extreme; for example,
log10 A ¼ −1.5 for f� ≤ fUV is too large at more than the

6The possibility that the induced GWs associated with much
smaller PBHs explain the PTA signals was considered in
Ref. [110] and studied more in Ref. [111] based on the poltergeist
mechanism for GW production [99,112] assuming instantaneous
evaporation of PBHs. It will be interesting to see if the PTA
signals could be explained even after taking into account
suppression effects [99,113] during a noninstantaneous transition
from the matter (PBH) dominated era to the RD era in this
scenario because these suppression effects always exist even in
the case of the monochromatic PBH mass function [99].

7This is because the setup in Ref. [75] does not necessarily lead
to the PBH overproduction unlike that in Ref. [43], which points
out the possibility of the PBH overproduction with the use of the
real space top-hat window function, Eq. (30). For example, if we
adopt the Gaussian window function [WðqrÞ ¼ e−ðqrÞ2=2] as in
Ref. [75], we obtain log10 fPBH ¼ −55 with δc ¼ 0.4 for the
kination era and log10 fPBH ¼ −20 with the same setup in
Ref. [75] for the RD era, where the other fiducial parameters
are the same as in the main text. Thus, the PBH abundance is
further suppressed, strengthening our conclusion.
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2σ level in view of Fig. 1. We nevertheless include such
values too to show the scale of the uncertainty of fPBH (or
the sensitivity of fPBH on A).
So far, we have focused on the dependence of fPBH on A

(or the correlated parameter f�) and δc, but let us comment
on the dependence on the other parameters Δ and Tend.
Since we discuss the IR tail of the induced GWs, the precise
value of Δ is unimportant for sufficiently large values of f�
unless Δ ≪ 1, which can be seen in Fig. 2. On the other
hand, the dominant effect of changing Tend is through
changing the value of A as shown in Eq. (27). Since a lower
(higher) Tend means a longer (shorter) kination era, it leads
to a smaller (larger) amount of PBHs.
We also comment that, in our analysis for the PBH

abundance, we do not take into account the effect of the
nonlinear relation between the density perturbations and
the curvature perturbations [114–116]. This nonlinear
relation leads to an intrinsic non-Gaussianity that decreases
the PBH abundance with the curvature amplitude fixed,
which strengthens our conclusion.

IV. CONCLUSIONS

In this paper, we have studied the GWs induced from
curvature perturbations in a cosmological era with w ¼ 1
such as kination. In such a scenario, generic (not excep-
tionally narrow) power spectra of the curvature perturba-
tions whose tilt is ns > 1=2 on the PTA scales but is
ns < 1=2 on the adjacent smaller scales lead to the
ΩGW ∼ f2 scaling at the IR tail of the induced GW spectrum
on the PTA scales (see Sec. II A). The IR tail nicely fits the
recent PTA data. Also, the rapid redshift of the kination fluid
leads to the relative enhancement of the induced GWs.
Thanks to this effect, the required amplitude of the curvature
perturbations is reduced. Moreover, the critical value of the

density perturbation for PBH formation is larger than that in
the RD era. These two effects exponentially suppress the
PBH abundance in our scenario.We have confirmed that the
PBH abundance is suppressed by tens of orders of magni-
tude compared to the standard case, i.e., the PBH abundance
associated with the GWs that are induced in the RD era and
fit the NANOGrav data.
While the uncertainty of the spectrum of the induced GWs

is relatively small as it is based on perturbative physics,8

the uncertainty of the PBH abundance is huge as the PBH
formation is completely nonperturbative physics. We have
taken almost the simplest method to compute the PBH
abundance to clearly show the basic ideas of the suppression
mechanisms. It will be interesting to improve the calculation
method in our scenario to estimate the more accurate and
precise PBH abundance, which becomes important when
we discuss the observability of the PBHs through the
microlensing [131–133] and/or the GWs from their mergers
[75,134]. We leave it for future work.
Another direction for future work is to study concrete

and realistic particle physics models to realize kination. For
example, kination of an axion(like) field is an interesting
possibility since it is related to the dark matter abundance
(kinetic misalignment) [135,136], baryon asymmetry of the
Universe (axiogenesis) [88], and possible enhancement of
the induced GWs (axion poltergeist) [97].
In conclusion, the secondary GWs induced by curvature

perturbations in a cosmological epoch with w ¼ 1 can

FIG. 3. Dependence of the fraction of dark matter in the form of PBHs fPBH on the amplitude of the power spectrum of the curvature
perturbations A (left panel) and the critical density of PBH formation δc (right panel). In the left panel, δc ¼ 0.2 (blue), 0.3 (orange),
0.4 (green), 0.5 (red), 0.6 (purple), 0.7 (brown), and 0.8 (pink) from top to bottom. In the right panel, log10 A ¼ −2.5 (blue),
−2.3 (orange), −2.1 (green), −1.9 (red), −1.7 (purple), and −1.5 (brown) from bottom to top. In both panels, the dashed (parts of the)
lines correspond to δc < 0.4. Other parameters are fixed to Δ ¼ 1, Tend ¼ 10 MeV, and log10ðf�=HzÞ ¼ −7.6.

8For possible corrections, see Refs. [63,117–125] for the
effects of primordial non-Gaussianity of curvature perturbations,
Refs. [47,126,127] for changes of the equation-of-state parameter
and sound speed in the standard thermal history of the early
Universe, Refs. [48,128–130] for the third-order effects in the
cosmological perturbation theory.
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fit the latest PTA data without the PBH overproduc-
tion issue.
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