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We study the nonlinear effects of minimally coupled, massless, cosmological scalar fields on the cosmic
microwave background (CMB). These fields can exhibit postrecombination parametric resonance and
subsequent nonlinear evolution leading to novel contributions to the gravitational potential. We compute
the resulting contributions to the CMB temperature anisotropies through the time variation of the
gravitational potential (i.e., the integrated Sachs-Wolfe (ISW) effect). We find that fields that constitute 5%
of the total energy density and become dynamical at zc ≃ 104 can produce marginally observable ISW
signals at multipoles l ≃ 2000. Fields that become dynamical at earlier times and/or have initial
displacements at a flatter part of their potential, produce ISW contributions that are significantly larger
and at higher multipoles. We calculate these dynamics and the resulting evolution of gravitational
perturbations using analytic estimates alongside detailed nonlinear lattice simulations, which couple scalar
fields and cosmological fluids to a perturbed metric. Finally, we discuss the possibility of detecting these
features with future high-resolution CMB observations.
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I. INTRODUCTION

Scalar fields are ubiquitous in cosmology, from the
inflaton [1] that phenomenologically gives a mechanism
for the flatness and structure of our observed Universe, to
quintessence [2] which provides a dynamical explanation for
the current epoch of accelerated expansion. In between these
two epochs, there has been a plethora of proposed cosmo-
logical scalar fields, with a range of masses, motivated by
many beyond-the-standard model scenarios from inflation-
ary model building [3], to string theory [4–7], to attempts to
explain the seemingly fine-tuned nature of the current epoch
of accelerated expansion [8–10]. Indeed, adding scalar fields
is often the first line of attack to confront inconsistencies in
our cosmological scenarios. After that, however, it is
imperative that these scenarios be forced to predict how
their existence will impact our cosmological observations.

In this paper we consider the consequences of a single
cosmological scalar field,which isminimally coupled,with a
canonical kinetic term, and a potential that goes as V ¼ λφ4

about its minimum. With these restrictions, the scalar field
will be held fixed at some initial displacement by Hubble
friction. When the Hubble parameter drops below some
critical value, the fieldwill become dynamical and eventually
oscillate about the minimum of the potential. Such a field is
often referred to as “Early Dark Energy” (EDE).
There is a rich literature exploring the linear and non-

linear dynamics in cosmological scalar fields both in the
very early and late Universe. In the context of the post-
recombination Universe, a linearized analysis of the res-
onant growth of scalar field fluctuations, and its impact
gravitational potentials were explored earlier in [11]. In that
case, however, the scalar field was not always subdominant
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in energy density. A linearized analysis of resonant growth
of perturbations in certain oscillating dark energy models
was investigated in [12]. In terms of numerical simulations,
the resonant growth of perturbations, and nonlinear dynam-
ics in scalar fields for λnφn potentials have been studied in
detail in the early Universe context [13–15].1
Indirect constraints on cosmological scalar fields which

are dynamically relevant between inflation and today can
be placed using observations of the cosmic microwave
background (CMB) and clustering of matter (through
Galaxy clustering and/or weak lensing). Given that the
field is minimally coupled, its effects on observables come
from how it modifies the expansion history and how its
perturbations gravitate. Changes to the homogeneous
expansion lead to changes to Hubble friction, modifying
the growth of dark matter perturbations. Given that the field
oscillates about an approximately quartic minimum, non-
resonant modes have significant pressure support which
prevents them from growing. This, in turn, limits their
impact on cosmological observables. For fields that become
dynamical during radiation domination nonresonant
modes, at the linear level, act like a perfect, w ¼ −1=3,
fluid, with a maximum fractional energy density of
ρφ=ðρφ þ ργ þ ρνÞ ≲ 5% [18], where ργ is the energy
density of the CMB photons and ρν is the energy density
of three standard ultrarelativistic neutrino species.
The self-interaction from the λφ4 potential allows the

fluctuations in such fields to grow significantly through
parametric resonance, whereby linear perturbations grow
exponentially by efficiently extracting energy from the
oscillating homogeneous background field. Reference [19]
noted that such a process occurs in fields which may
resolve the Hubble tension. The underlying reason is that
for such potentials, the resonant wave numbers do not flow
out of the resonance band as the Universe expands.2 The
growth rate of field fluctuations eventually exceeds the
Hubble rate (even if the field is subdominant in energy
density), leading to a nonlinear, spatially inhomogeneous
evolution of the scalar field.
In the postrecombination ΛCDM universe, and during

matter domination, the gravitational potential Ψ is deter-
mined primarily by the dark matter perturbations, with
Ψ̇ ≃ 0. The significant resonant growth of scalar field
perturbations, even if its background energy density is
subdominant, can lead to a significant contribution to Ψ̇.
This evolution can leave an imprint on the CMB via the

Integrated Sachs-Wolfe effect (ISW). It is this effect that we
explore in detail in this paper.3

Through both detailed simulations and analytic scaling
equations, we show that this novel ISW contribution is
larger the earlier the field becomes nonlinear. The time at
which nonlinear evolution starts, in turn, is earlier if the field
either becomes dynamical earlier and/or starts at a location
where the potential is flatter. As a result of this we find that
scalar fields which may address the Hubble tension become
nonlinear too late to produce an observable ISW. For fields
that become dynamical earlier/start on a flatter part of their
potential, the resulting ISW can dominate over the primary
CMB power spectrum, with a peak at very small angular
scales which cannot be probed by current CMB measure-
ments, but which may be accessible to proposed CMB
telescopes such as CMB-HD [20,21].
The paper is organized as follows. In Sec. II, we describe

our fiducial model and present some details of our linear
and nonlinear analyses, highlighting its important features.
We also describe the metric perturbations and fluid
descriptions used in our nonlinear analysis to model a
realistic universe. In Sec. III we describe our numerical
methods. In Sec. IV, we present the results of our linear
analysis, showing the evolution of the homogeneousmode of
EDE, as well as a comparison between our linear and
nonlinear results which demonstrate the presence of para-
metric resonance and validate the code used for our nonlinear
analysis. We then outline our calculations of the ISW from
the nonlinear simulation. In Sec. V we present the resulting
ISWcontributions for several different scalar fieldmodels. In
Sec. VI, we summarize our results and discuss their signifi-
cance with regard to falsifying the EDE model. Note that we
work in units where c ¼ ℏ ¼ kB ¼ 1 and where the reduced
Planck mass is mpl ≡ ð8πGÞ−1=2.

II. THE DYNAMICS OF A COSMOLOGICAL
SCALAR FIELD

The action for a minimally coupled scalar field, φ, with a
canonical kinetic term, is given by

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

pl

2
R−

1

2
∂μφ∂

μφ−VðφÞþLΛCDM

�
; ð1Þ

whereLΛCDM includes contributions from the cosmological
constant, cold-dark matter and the rest of the Standard
Model. We work in the Conformal Newtonian gauge: a
perturbed, conformal time foliation of a Friedmann-
Lemaître-Robertson-Walker metric without vector and
tensor perturbations,

1In general, there is a large literature on how parametric
resonance and subsequent nonlinear dynamics may also play a
central role in thermalizing the energy stored in the inflaton at the
end of inflation, initiating the epoch of radiation domination. See
[16,17] for recent reviews.

2As discussed in Ref. [19], this implies that the typical
potential used to resolve the Hubble tension, which has V ∝
φ6 around its minimum, does not experience significant effects
through parametric resonance.

3For fields which become dynamical well before matter-
radiation equality, they may make a non-negligible contribution
to gravitational potential at the resonant scale. The fact that the
scalar field energy density is subdominant limits its potential
impact on other cosmic probes.
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ds2 ¼ a2½−ð1þ 2ΦÞdτ2 þ ð1 − 2ΨÞdx · dx�; ð2Þ

where a is the scale factor. Throughout our work here, we
assume that there is no significant gravitational anisotropic
stress, so that the two Bardeen potentials are the same,
Ψ ¼ Φ. The gravitational potential Ψ is evaluated using
Einstein’s equations linearized in Ψ (but not the field φ).4

With this metric, the equation of motion for this field is

φ̈ − ð1þ 4ΨÞ∇2φþ 2ðH − 2Ψ̇Þφ̇þ a2ð1þ 2ΨÞ dV
dφ

¼ 0;

ð3Þ

where an overdot is a partial derivative with respect to
conformal time, H≡ ðda=dτÞ=a, and H includes contri-
butions from both the spatially averaged scalar field, as well
as the ΛCDM components. That is,

H2 ¼ a2

3m2
pl

½ρ̄φ þ ρ̄ΛCDM�; ð4Þ

where

ρ̄ΛCDM ¼ 3H2
0m

2
pl

�
ΩΛ þ Ωm

a3
þ Ωr

a4

�
; ð5Þ

wherewe take the curvature to be zero (ΩΛ ≃ 1 − Ωm −Ωr),
Ωm is the total matter (cold dark matter plus baryons), Ωr is
the total radiation (photons plus neutrinos) density param-
eters and a bar indicates the quantity is spatially averaged.We
have left out the scalar field contribution to ΩΛ since it is
constrained to be a small fractionof the radiation contribution
and is therefore negligible. The scalar field stress energy
tensor is given by

ðTφÞμν ¼ ∇μφ∇νφ −
1

2
½∇αφ∇αφþ 2VðφÞ�δμν: ð6Þ

For concreteness, we take the potential associated with
the scalar field to be

VðφÞ ¼ m2f2
�
1 − cos

φ

f

�
2

; ð7Þ

which, in the limit where φ=f ≪ 1, resembles a massless
scalar VðφÞ ≃ ðm2=f2Þφ4=4. Our choice of the precise form
of VðφÞ is for convenience, and to make contact with earlier

work [19]. The scaling equations derived in this section
lead us to conclude that any potential which has a quartic
minimum, and flattens to a constant at large field values,
will have a qualitatively similar phenomenology.
Note that the effective mass near the minimum of the

potential m2
eff ≡ d2V=dφ2 ≃ 3m2ðφ=fÞ2 which is different

from the mass parameter m2. In the following discussion
equations using the “∼” symbol are missing factors of order
unity whereas those with “≃” retain those factors but are
still approximate.

A. Background evolution

It will prove useful to develop a set of approximate
equations which summarize the background evolution of
the scalar field. Taking the homogeneous limit of Eq. (3) we
have

̈φ̄þ 2H ˙̄φþ a2V;φ ¼ 0; ð8Þ

where we have introduced the notation V;φ ≡ dV=dφ.
Roughly, when the conformal Hubble parameter is large
enough, the friction term dominates, and we have

˙̄φ ∼ −
a2

H
V;φ: ð9Þ

During this “slow-roll” evolution the equation of state
parameter associated with the field is given by

wφ ≃ −1þ ˙̄φ2

2a2V
∼ −1þ a2

H2ðaÞ
V2
;φ

V
: ð10Þ

Since wφ > −1, once the field becomes dynamical the
critical scale factor, ac, is roughly given by

a2c
H2ðacÞ

V2
;φ

V
∼ 1: ð11Þ

If we write Vðφ̄Þ ¼ m2f2Eðθ≡ φ̄=fÞ, in terms of a
dimensionless E≡ ð1 − cos θÞ2, then this condition can
be written in terms of the mass parameter:

m ∼
HðacÞ
ac

ffiffiffiffi
E

p

jE;θj
����
θ¼θi

; ð12Þ

where we evaluate the potential-dependent term at the
initial field displacement, φ̄i ¼ θif.
The fractional contribution the field makes to the total

energy density when it becomes dynamical can now be
written as

4The consistency of these assumptions can be tested using full
nonlinear gravitational methods [22]. However, we do not expect
any significant corrections to our results when we relax these
assumptions since our system exhibits a lower degree of non-
linearity—the homogenous mode of the background does not
completely decay, and the scalar field is a subdominant con-
tribution to the total energy budget of the Universe—than in
previous work that validates this choice [23].
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ρ̄φðacÞ
ρ̄totðacÞ

≃
a2cVðφ̄iÞ

m2
plH

2ðacÞ
∼

f2

m2
pl

�
E
E;θ

�
2
����
θ¼θi

; ð13Þ

where we approximate the field value at ac to be φ̄ ≃ φ̄i.
After the field becomes dynamical it quickly starts to

oscillate with a cycle-averaged equation of state parameter
hwφi ¼ 1=3 with an envelope that decreases as [18]

φenvðaÞ ¼ φc
ac
a
: ð14Þ

Note that empirically we find that φc ≃ 0.7φi.

B. Linear perturbations

If the field were a spectator during inflation then it would
generically have both adiabatic and isocurvature initial
conditions [19,24]. Here we will ignore the isocurvature
perturbations.5 The superhorizon adiabatic initial condi-
tions during slow roll can be found analytically, giving [19]

δφða ≤ acÞ
f

∼
m2a2

H2ðaÞE;θ

�����
θ¼θi

ζadðk⃗Þ: ð15Þ

Outside of resonant phenomena (discussed below),
linear perturbations can be characterized by the cycle-
averaged nonadiabatic sound speed [18]

hc2si ¼
2a2ϖ2ðaÞ þ k2

6a2ϖ2ðaÞ þ k2
; ð16Þ

whereϖðaÞ is the angular frequency of the background field.
The detailed evolution ofϖ is unimportant, since at all times
these perturbations will have significant pressure support,
leading to δρφ=ρ̄φ ≃ constant on subhorizon scales.

C. Parametric resonance

The fluctuations of the scalar field are unstable and
undergo exponential growth in a narrow band of wave
numbers, as discussed in detail in Ref. [19] for the EDE
context. We summarize the main results here. Ignoring the
effects of gravity, the Fourier modes of field perturbations
at linear order satisfy

δφ̈k þ 2Hδφ̇k þ ½k2 þ a2V 00ðφ̄Þ�δφk ¼ 0: ð17Þ

The a2V 00ðφ̄Þ ∝ a2φ̄2 term provides a time-dependent,
approximately periodic, oscillatory contribution to the
effective frequency.

Soon after the field becomes dynamical, the amplitude of
the oscillations in the background field are damped so that
φ=f ≪ 1 and the potential can be approximated as V ∝ φ4.
When the potential is well approximated by a power law the
perturbations evolve as

δφkðaÞ ≃ δφkðacÞ
ac
a
exp

�Z
a

ac

ℜ½μk�
H

d ln a

�
: ð18Þ

The perturbations grow exponentially fast around the
resonant wave number kres, with a width Δkres, and a
Floquet exponent μkres given by [19]

kres ≃ 1.27m

�
φc

f

�
ac;

γres ≡ Δkres
kres

≃ 0.17;

ℜ½μkres � ≃ 0.036m

�
φc

f

�
ac: ð19Þ

The above discussion allows us to derive an approximate
equation for the scale factor when the resonant wave
number becomes nonlinear, anl. In the following we will
assume that anl ≪ 1, ensuring that the universe is filled
with just matter and radiation. Using the approximate,
resonantly growing solution (18), we can estimate when the
perturbations become nonlinear:

γresk3res
2π2

P δφ
φenv

ðkres; anlÞ≡ γresΔ2
δφ

φenv

ðkres; anlÞ ≃ 1; ð20Þ

where hδφkðaÞδφk0 ðaÞi¼ ð2πÞ3Pδφ=φenv
ðk;aÞδðk−k0Þ. Sol-

ving for anl we have

anl
ac

≃ 1 −
14 ln½γresΔ2

δφ
φenv

ðkres; acÞ�
mac=HðacÞθc

þ ac
ac þ aeq

 
14 ln½γresΔ2

δφ
φenv

ðkres; acÞ�
2mac=HðacÞθc

!2

; ð21Þ

where aeq ≡Ωr=Ωm and is the scale factor at which the
matter and radiation energy densities are equal. Since
fluctuations in φ are still linear at ac, both terms are
positive and give anl > ac.
Since kres ∼mac ∼HðacÞ we can approximately com-

puteΔδφ=φenv
ðkres; acÞ using the superhorizon solution given

in Eq. (15) which allows us to write

Δ δφ
φenv

ðkres; acÞ ≃ A1=2
s

m2a2c
H2ðacÞ

E;θðθiÞ
θc

;

∼
A1=2
s

pi
; ð22Þ

5As discussed in Ref. [19], the amplitude of the isocurvature
perturbations scales with the tensor to scalar ratio, r. Given
current upper limits on r from measurements of the B-mode
polarization, the EDE isocurvature contribution is, in general, too
small to impact current measurements.
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where pi ≡ d lnE=d ln θjθ¼θi
is the effective power-law

index of the potential at the initial field displacement and
Δ2

ζðkÞ ≃ As assuming scale invariant initial conditions.

D. The ISW contribution

The ISW can be calculated using a line of sight
integral [25]

TISWðn̂Þ ¼ 2

Z
τ0

τi

dτ
∂Ψðτ; x⃗Þ

∂τ

����
x⃗¼ðτ0−τÞn̂

; ð23Þ

where τi is some initial conformal time and τ0 is the
conformal time today. The angular power spectrum due to
the ISW effect is

CISW
l ¼ 8π

Z
τ0

τi

dτ
Z

τ0

τi

dτ0
Z

d ln kΔ2
Ψ̇ðk; τ; τ0Þ

× jlðk½τ0 − τ�Þjlðk½τ0 − τ0�Þ; ð24Þ

where jlðxÞ is a spherical Bessel function. This allows us to
see that since dτ ¼ d ln a=H, the ISW contribution scales
as CISW

l ∝ Δ2
Ψ̇=Hðl ≃ k½τ0 − τnl�Þ.

The scalar field contribution to the rate of change of the
Newtonian potential on subhorizon scales (k ≫ H) can be
approximated by

∇2Ψ̇φ ≃
a2

2m2
pl

∇jT0
j; ð25Þ

where we have taken the subhorizon limit since kres is well
within the horizon at anl. In Fourier space, and linearizing
around φ̄, we have

Ψ̇φ

H
≃

1

Hm2
pl

˙̄φδφ; ð26Þ

which has a power spectrum

Δ2
Ψ̇φ=H

ðk; aÞ ≃ ˙̄φ2

m4
plH

2
φ2
envΔ2

δφ
φenv

;

≃
ρ̄φðaÞ
ρ̄totðaÞ

θ2c
f2

m2
pl

�
ac
a

�
2

Δ2
δφ

φenv

ðk; aÞ: ð27Þ

The maximum contribution to the ISW effect from the
scalar field will be at k ¼ kres and a ¼ anl, where
Δ2

δφ
φenv

ðkres; aresÞ ≃ 1, giving

Δ2
Ψ̇φ=H

ðkres; anlÞ ≃
ρ̄φðanlÞ
ρ̄totðanlÞ

�
f
mpl

ac
anl

θc

�
2

: ð28Þ

Assuming that anl > aeq,
6 we have ρ̄φ=ρ̄tot ∝ 1=a, and

using Eq. (13) we can write this as

Δ2
Ψ̇φ=H

ðkres; anlÞ ∼
�
ρ̄φðacÞ
ρ̄totðacÞ

�
2

p2
i ×

maxðac; aeqÞ
anl

�
ac
anl

�
2

:

ð29Þ

We are now in a position to anticipate what aspects of the
cosmological scalar field will control its contribution to the
ISW effect. First note that the analytic approximations,
Eqs. (28) and (29), indicate that the relevant dynamics
depend on the shape of the potential around the initial field
displacement [i.e., Eqs. (12), (13), (22)], and on the fact that
the potential goes as V ∝ φ4 around its minimum. In other
words, the exact shape of the potential between the initial
field displacement and the minimum has a subdominant
effect on the relevant field dynamics. Fixing ac and
ρ̄φðacÞ=ρ̄totðacÞ, Eq. (29) tells us that the amplitude of
the ISW contribution has a strong dependence on the ratio

FIG. 1. The scale factor when the field becomes nonlinear, anl
(top panel), the factor that determines the amplitude of the ISW
contribution [see Eq. (28)] (middle panel), and the resonant wave
number, all as a function of the critical redshift, zc, (bottom
panel). The stars in the middle panel correspond to the four
models that we show in Fig. 6. These locations explicitly show
that decreasing θi decreases the ISW peak; however, a larger
value of zc increases the strength of the signal. Note that when
computing this figure we use Eqs. (21) and (28), and solve for the
exact background field dynamics to determine f=mpl m, and θc.

6In order to produce a measurable ISW contribution we must
have anl > arec > aeq so this assumption is required to produce
an observable signal.
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ac=anl, with a smaller anl → ac leading to a larger ISW
contribution.
As we now argue, the overall ISW contribution increases

as the power-law slope of the potential at the initial field
displacement decreases. First note that Eq. (29) tells us that
the ISW contribution scales as ∝ p2

i =a
3
nl. Next note that

½mθcac=HðacÞ�−1 ∼ pi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðθcÞ=θ4c

p
from Eq. (12), so that

Eq. (21) tells us anl ∝ pi or anl ∝ p2
i , if the first or second

term dominates, respectively. Therefore, the ISW contri-
bution will roughly scale as ∝ 1=pn

i , with 1≲ n≲ 4.
Figure 1 shows how the different quantities that determine

the amplitude of the ISW contribution depend on both the
critical redshift, zc, and the initial field displacement, θi. This
figure shows that for a fixed value of ρ̄φðacÞ=ρ̄totðacÞ ¼ 0.05,
the amplitude of the ISW is set by the quantity plotted in the
middle panel which shows that we can achieve a similar
amplitude by increasing zc and/or increasing θi. Note that the
pairs of model parameters which have a similar amplitude in
the middle panel of Fig. 1 (indicated by the stars) also have
similar ISW contributions, as shown in the right panel
of Fig. 6.

III. LINEAR AND NONLINEAR
NUMERICAL METHODS

In all cases we split the ΛCDM content into separate
contributions from matter, radiation and dark energy. Each
of these contributions will contribute to the background
evolution of the scale factor, via Eq. (5). Most simulations
that study the parametric decay of scalar condensates
contain only scalar fields and self-consistently calculate
the evolution of the homogeneous spacetime. Sometimes
these simulations will either impose an expansion history,
as was an option in Ref. [26], or add a homogeneously
diluting component that contributes to the self-consistent
evolution, e.g., Ref. [27]. In this work we will additionally
track the inhomogeneities of matter and radiation using a
fluid treatment. Since we will keep perturbation in the these
fluids to linear order, we will consider these perturbations
in momentum space following the method derived in
Ref. [28]. For each fluid, i, with (constant) equation of
state, wi ≡ p=ρ, the fluid perturbation is

δi ≡ δρi=ρi; ð30Þ

which we keep throughout the simulation as a momentum-
space quantity. The variable θ is defined by

ðρþ P̄Þθ≡ ikjδT0
j ; ð31Þ

where the contributions to θ from each species, θi, are just
the divergences of the fluid velocities, θi ¼ ikj∂jvi, andX

i

ðρ̄i þ P̄iÞθi ≡ ðρ̄þ P̄Þθ: ð32Þ

We then have a set of evolution equations for the fluid
variables, where i can be either matter or radiation,

δ̇i ¼ −ð1þ wÞðθi − 3Ψ̇Þ ð33Þ

θ̇i ¼ −
ȧ
a
ð1 − 3wÞθi þ

w
1þ w

k2δi þ k2Ψ: ð34Þ

Of course, both the field and fluid equations require us to
know the metric perturbations. These can be found from the
linearized Einstein equations,

Ψ¼ −
1

k2

�
S̃1 −

1

k2
ȧ
a

�
S̃2 −

3

2m2
pl

a2
X
species

ðρþ P̄Þθ
��

ð35Þ

Ψ̇ ¼ −
1

3k2

�
−

1

k2

�
S̃2 −

3

2m2
pl

a2
X
species

ðρþ P̄Þθ
�
þ ȧ
a
Ψ
�
;

ð36Þ

where the two quantities S̃1 and S̃2 are the Fourier trans-
forms of

S1 ¼
1

2m2
pl

δρφ ¼ 1

2m2
pl

�
1

2
φ̇2 þ 1

2
ð∇φÞ2 þ VðφÞ − ρ̄φ

�

ð37Þ

and

S2 ¼
3

2m2
pl

∂ið∂0φ∂iφÞ ¼
3

2m2
pl

½ð∇φÞ2 þ φ̇∇2φ�; ð38Þ

which are the contributions to the Poisson equations from
the field. While there is no direct coupling between the
scalar field and the fluids, they both source and feel the
effects of the Newtonian potential.
In both the linear and nonlinear analyses we solve the

Friedmann constraint, Eq. (4), alongside the fluid equations
of motion Eqs. (33) and (34) and the two Poisson equations
for Ψ, Eq. (35), and Ψ̇, Eq. (36). In our linear analysis, we
additionally separate out the field average from its fluctua-
tions, φ ¼ φ̄þ δφ, and solve for the dynamics of the
homogeneous mode, φ̄, via Eq. (8) separately from the
perturbations, δφ, see equation Eq. (17). We complete this
analysis entirely in momentum space.
In our nonlinear analysis we utilized a modified version

of the Grid and Bubble Evolver [29] that simulates the
scalar field in configuration space according to Eq. (3)
while still evolving the fluid variables in momentum space.
The sources, (37) and (38), are calculated in configuration
space, then Fourier transformed to allow us to invert
Eqs. (35) and (36) to find the gravitational perturbations.
These perturbations,Ψ and Ψ̇ are stored both in momentum
space (to be used in the evolution equations for the fluids)
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and inverse Fourier transformed into configuration space
(to be used in the evolution equation for the field). This
procedure allows us to solve for all linearized quantities in
momentum space, while allowing us to treat the field
evolution nonlinearly and fully resolve the dynamics of the
configuration-space metric perturbations.
In order to generate initial conditions for our lattice

simulations, we numerically solve the set of coupled
differential equations in a simplified Einstein-Boltzmann
hierarchy and approximate recombination as instantaneous.
For this analysis, we include a tightly coupled baryon-
photon fluid, CDM, neutrinos, and the scalar field. The
neutrinos are treated as a perfect fluid (i.e., their anisotropic
stress vanishes, σν ¼ 0). We have also evolved the system
with free-streaming neutrinos with a Boltzmann hierarchy
that is truncated at the third moment (while still using the
approximation Φ ¼ Ψ), using the proscription outlined in
Ref. [28], and found no difference in the resulting field
dynamics.
In the lattice simulations we treat the CDM/baryons as a

single matter fluid, and the photons/neutrinos as a single
radiative constituent. We chose the following parameters
for all of our simulations: As ¼ 2 × 10−9, h ¼ 0.67, ΩM¼
ΩcþΩb¼0.314, ΩR¼Ωγ þΩν ¼ 9.16×10−5. We evolve
the system from an initial scale factor, ai, set to be small
enough so that the field dynamics are linear, to af ¼ 1=30,
using a time step of Δt ¼ L=N=100, where L is the length
of an edge of the simulation box and N is the number of
pixels on one side of the box. Our fiducial lattice size is
N3 ¼ 2563, and we choose L to ensure that the resonant
wave number, kres ¼ 2π=λres, is well inside of the box,
L ¼ 20λres. We have confirmed that using smaller boxes
does not alter our results.

IV. RESONANCE AND NONLINEAR
EVOLUTION OF THE SCALAR FIELD

A. The homogeneous mode

In this subsection we will focus on two models—where
we set ρ̄φðacÞ=ρ̄totðacÞ ¼ 0.05, zc ¼ 104.5, and choose
either θi ¼ 1.5 or θi ¼ 3.
We start by comparing the homogeneous evolution of the

scalar field in our lattice simulation with our linear
calculations. The field φ starts out as roughly homo-
geneous, and starts oscillating when a ¼ ac, where ac is
determined by a2cV 00ðφðacÞÞ ∼H2ðacÞ. As the field enters a
period of coherent oscillations, we expect that the con-
tribution to ρ̄φ ceases to look dark energylike (approx-
imately constant) and starts to look radiationlike—since the
minimum is massless. For our linear analysis, the homo-
geneous mode will continue to oscillate about its minimum,
decaying only due to Hubble friction. However, in the
nonlinear analysis, we expect the homogeneous mode to
show signs of earlier decay when the field exits the
linearized regime.

Figure 2 shows a comparison of the homogeneous
evolution of the scalar field between the linear and non-
linear simulations. We can see that, in each case, there
exists a znl at which the homogenous mode in the fully
nonlinear simulation starts to decay away from the linear
solution. This is due to the transfer of energy from the
homogeneous mode to the k > 0 modes, indicating the
presence of resonance from the nonlinear self-coupling.
This also gives us an opportunity to test the accuracy of the
analytic equations presented in Sec. II D. The top panel of
Fig. 1 shows that for zc ¼ 104.5, θi ¼ 3.0 has znl ≃ 500 and
for θi ¼ 1.5 has znl ≃ 120. Comparing this to the values of
znl denoted in Fig. 2 (znl ¼ 300 and znl ¼ 70, respectively)
shows that the analytic formulas provide a good approxi-
mation to the redshift of nonlinearity within a factor of
order unity.

B. The inhomogeneous dynamics

We begin by validating our simulations by showing
consistency between our linear and nonlinear analyses at a
time when the nonlinear simulations have significantly
evolved, but where we still expect to see excellent agree-
ment with the linear analysis. Figure 3 shows how well the
nonlinear simulations reproduce the mode-by-mode behav-
ior of the radiation and matter fluids, the field and the
gravitational perturbations when compared to the linear

FIG. 2. The background evolution of the scalar field field for
zc ¼ 104.5 from our nonlinear simulations (blue) compared to a
background-only calculation (red) with θi ¼ 3 (top panel) and
θi ¼ 1.5 (bottom panel). The decrease in amplitude in the
nonlinear simulation comes from the coupling between the
homogeneous mode and the perturbations and indicates that
the field dynamics are nonlinear.
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simulations. It is clear that both the field and fluid dynamics
are being solved correctly at the linear level. Small
differences between the two spectra at large scales are
due to sample variance and binning in the nonlinear
simulations. Note that the Newtonian potential, Ψ, is
mainly sourced by the matter, and its time derivative is
mainly sourced by the (oscillating) radiation content.
In order to further make a connection between the full

simulation and the analytic expressions in Sec. II D, we plot
the evolution of the resonant wave number in Fig. 4. As
expected, once the field becomes nonlinear the perturbations

remain relatively constant. The resulting contribution to the
ISW is shown in the bottom panel of Fig. 4. Therewe can see
that this contribution peaks at znl and, as expected from the
middle panel of Fig. 1, the peak with θi ¼ 3 is higher than
θi ¼ 1.5.We canmake this comparisonmore quantitative by
noting that Eq. (29) gives Δ2

Ψ̇=Hjk¼kres;θi¼3 ¼ 1.5 × 10−8 and

Δ2
Ψ̇=Hjk¼kres;θi¼1.5 ¼ 8 × 10−10 which is within a factor of a

few of the results from the simulation in the bottom panel of
Fig. 4, which give 3.5 × 10−9 and 2 × 10−10, respectively.

C. Calculating the ISW contribution

The contribution to the ISW is calculated by computing
Eq. (23) along several lines of sight through the simulation
box; a cartoon of the procedure is given in Fig. 5. Slices are
taken along the line of sight through the box, from x ¼ 0 to
x ¼ L. We use periodic boundary conditions, and so after
x ¼ L our next slice is taken at x ¼ 0, and we integrate over
the box again. We compute this integral from some initial
redshift zi ≫ znl up to a time that is late enough, zf, so that
the ISW contribution at the final redshift slice is negligible
(as shown in Fig. 4 the scalar field’s contribution to Ψ̇
decreases rapidly after znl). We note that repeatedly
traversing the same box will introduce some spurious
correlations. However, given that the light-crossing time

FIG. 3. A comparison between the dimensionless power spectra
for different quantities at a later time in the simulation (in this
case zc ¼ 104.5 and θi ¼ 1.5). For each panel, the blue dashed
line shows the power spectrum from a linear analysis at z ¼ 500,
while the red (solid) curves come from the z ¼ 500 slice from a
run initialized at z ¼ 1000. The resonant wave number,
kres ≃ 0.26 Mpc−1, is indicated by the dotted line in the top
two panels.

FIG. 4. The evolution of the scalar field dimensionless power
spectrum normalized by the field’s envelope at the resonant wave
number (top panel). We can see that once the field becomes
nonlinear the field’s dimensionless power spectrum is relatively
constant. The bottom panel shows the evolution of the dimen-
sionless power spectrum of H−1

∂Ψ=∂τ at the resonant wave
number. As discussed in Sec. II D, this quantity measures the
contribution that the scalar field makes to the late-time ISWeffect
(bottom panel). In both panels the simulation with θi ¼ 3 is
shown in blue and θi ¼ 1.5 in red.
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is larger than the dynamical timescales for kres ≫ 1=L, we
expect they will be small for modes well within the
simulation box.
Once we have evaluated (23), we end up with a partial-

sky map of the contribution to the ISW from Ψ̇ from our
nonlinear simulations. We convert the spatial location of
each ray at zf to an angular position on our sky and
compute the resulting 2D Fourier transform of the angular
map to determine the ISW contribution to the CMB
temperature power spectrum. We have confirmed that
the power spectra we compute is insensitive to moving
the final redshift slice closer to today.

V. THE SCALAR FIELD ISW CONTRIBUTION

We are now in a position to compute the ISW contri-
bution for this cosmological scalar field. In order to convert
the temperature power spectra to units of μK2, we take
TCMB ¼ 2.7255 K [30].

A. The contribution from a scalar field
that addresses the Hubble tension

It is of interest to determine whether a scalar field which
may address the Hubble tension may include nonlinear
dynamics which will produce a significant contribution to
the late-time ISW effect. The best-fit parameters for such a
field are given in the Appendix of Ref. [19]: log10 zc ¼ 3.52,
ρφðacÞ=ρtotðacÞ ¼ 0.09, θi ¼ 2.18 which corresponds to
m ¼ 6 × 10−28 eV and f=mpl ¼ 0.2. These parameters lead
to kres ¼ 0.043 Mpc−1 and znl ≃ 3.3, which imply that the
ISW contribution will peak at lpeak ≃ kresðτ0 − τnlÞ ≃ 300.
As shown in Eq. (29), the overall contribution to the ISW

effect is primarily determined by the ratio ac=anl, and in the
case of a field that resolves the Hubble tension this factor is
∼10−3, which already gives us an indication that the ISW
from this model will be very small. Indeed, as shown in the
left panel of Fig. 6, we can see that the resulting power
spectrum is at most ∼10−2 ðμKÞ2, well below the cosmic
variance limit. Also note, as we anticipated, the contribu-
tion shows a peak at l ∼ 100.
The main reason that this model makes such a small ISW

contribution is the wide gap between ac and anl. Since ac ∼
aeq in this case, the ISW contribution scales as ðac=anlÞ3
leading to a suppression of order 10−9. Figure 1 shows that,
with zc fixed in order to resolve the Hubble tension, the
only way to move these two redshifts closer is by increasing
θi (and thereby moving toward a flatter part of the
potential). The pink curve in the left panel of Fig. 6 shows
how the ISW contribution grows in amplitude and moves to
a smaller scale as θi → π. In this limit we also have
V 00ðφÞ < 0, raising the possibility of a tachyonic instability.
However, as shown in Ref. [19], this instability is only

FIG. 5. A cartoon describing the line-of-sight integration used
to compute the scalar field’s ISW contribution, given in Eq. (23).

FIG. 6. The ISW contribution from a scalar field that addresses the Hubble tension with θi ¼ 2.18 (red) and θi ¼ 3.14 (pink)
compared to the primary CMB (black) (left panel). The ISW contribution from four different cosmological scalar field models (right
panel). Unlike the left panel, the chosen parameters are not constrained to resolve the Hubble tension. The dashed orange curve in the
right panel shows the residual foreground contribution required to achieve the science goals of CMB-HD.
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present for isocurvature perturbations, and even in that
case, leads to a relatively small enhancement of the
perturbations. Note that, for this specific form of the
scalar field potential, in order to resolve the Hubble
tension we must have θi ≲ 2.5 at the 95% confidence
level [19]. However, other forms for the scalar field
potential (such as α attractors [31]) may both resolve
the Hubble tension and allow the field to start at a flatter
part of its potential.

B. The contribution from a general scalar field

If we allow the scalar field parameters to vary we can
produce a measurable ISW effect. As discussed in the
previous section, the main way to boost the ISW contri-
bution is to move znl closer to zc. The top panel of Fig. 1
shows that the most effective way to do this is to increase
zc. The bottom panel of Fig. 1 shows that by increasing zc
we will also cause the peak of the ISW contribution to shift
to smaller scales, i.e., larger multipoles.
Figure 6 (right panel) shows the ISW generated by four

possible cosmological scalar fields. The parameters were
chosen so as to produce contributions with similar ampli-
tudes by exchanging a lower value of zc for a larger value of
θi (note that these four models are marked in the middle
panel of Fig. 1 by the four stars). All four models have
ρ̄φðacÞ=ρ̄totðacÞ ¼ 0.05 (saturating the 95% upper limit
from the linear effects of these scalar fields on current
cosmological data).
The power spectra show two clear peaks, which corre-

spond to the “fundamental” and to the “first harmonic” of
the resonant wave number. At smaller scales the nonlinear
scalar field ISW effect produces a scale-invariant tail. The
rise of the power spectra at the lowest multipoles is, at least
in part, due to edge effects in the simulation, and thus the
behavior at these multipoles should not be taken as a
physical result of our analysis.
Although current CMB measurements do not have the

angular resolution and sensitivity to detect these features,
future observatories will. The dotted line in Fig. 6 shows
the error bars due to sample variance and instrumental
noise associated with CMB-HD [20,21], a proposed high-
resolution CMB ground-based observatory which would
image half of the sky. Note that the noise curve does not
include contributions from residual uncertainty from the
subtraction of foreground contributions. CMB-HD will
need to remove foregrounds to a level that ensures the
instrument noise is comparable to or higher than the
residual foreground contribution for l > 7,500 in order
to achieve its CMB lensing science goals [32], correspond-
ing to a foreground level of about ≃0.3 μK2.

VI. CONCLUSIONS

In this paper we have calculated the ISW effect from
subdominant massless scalar fields, which can potentially

play a role in addressing the Hubble tension, in the late
Universe. We present both analytic estimates as well as
high-resolution lattice simulations. We not only included
the full nonlinear evolution of the scalar field, but also
included the evolution of (linearized) radiation and matter
fluid perturbations, as well as metric perturbations sourced
by the inhomogeneous scalar field and the fluids. From
these nonlinear simulations, we have evaluated the ISW
contribution to photons traveling through the simulation,
validated our results against CLASS in the appropriate
limit, and compared these results, for a set of test cases, to
the sensitivity of CMB-HD, a proposed CMB observatory
which is designed to make resolution measurements.
As anticipated by our scaling equations, the full non-

linear simulations show that the amplitude of the ISW
contribution is mainly determined by the ratio ac=anl. This
is shown through a dramatic increase in the strength of the
ISW effect when choosing parameters that ensure non-
linearity sets in at an earlier time. The impact can also be
enhanced by assuming larger initial field displacements,
which lead to stronger, earlier resonance.
While there is wide theoretical motivation for studying

extra scalar degrees of freedom, a recent and popular
invocation of such a model has been to ease the emerging
Hubble tension [33] via an EDE field. From what we show
here, early dark energy with a potential of the form
V ¼ m2f2ð1 − cosφ=fÞ2, that can resolve the Hubble
tension will produce a contribution to the ISW that is
unlikely to be constrained or validated in upcoming CMB
experiments. We make this choice as a concrete proof of
concept, although there has been some indication that such
a potential can be realized from high energy physics
[34,35]. However, models which use a different form of
the potential—such as α attractors [31,36–38]—may
resolve the Hubble tension just as well and at an initial
field value where the potential is flatter producing a larger
ISW effect. The flattening of the potentials in such models
can also bring in additional nonperturbative dynamical
effects [14] at early times. We leave an exploration of
different scalar field potentials to future work.
Although we have established that for some model

parameters the EDE ISW is larger than the noise in an
instrument like CMB-HD (see Fig. 6), it remains to be seen
whether this signal can be distinguished from expected
foreground contamination at these small angular scales. We
note that the specific harmonic structure of the EDE ISW
contribution, relative to the smooth foreground power
spectra, may aid in its detectability.
In addition to the effect on the evolution of the gravita-

tional potentials, the nonlinear fragmentation of the scalar
field also sources gravitational waves at frequencies of order
kres=anl. The postrecombination production of gravitational
waves at such small frequencies might lead to additional
B-mode polarization at reionization (e.g., Ref. [39]). It may
also be possible to see the ISW contribution using other
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probes (i.e., 21 cm observations [40]), and would be worth
considering in the future.
Cosmological scalar fields provide a rich phenomonol-

ogy which touches all aspects of cosmology, from inflation
to the current epoch of accelerated expansion, from linear
to resonant nonlinear dynamics. Here we have shown that
scalar fields may make a novel contribution to the ISW
effect, imparting characteristic features in the very small-
scale CMB temperature anisotropies. This adds further
motivation to build a CMB observatory targeting the very
small-scale anisotropies (such as CMB-HD) which will
give us access to new ways to understand the origin and
evolution of the Universe.
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