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We consider the local physics of an open quantum system embedded in an expanding three-dimensional
space x, evolving in cosmological time t, weakly coupled to a massless quantum field. We derive the
corresponding Markovian master equation for the system’s nonunitary evolution and show that, for a
de Sitter space with Hubble parameter h ¼ const, the background fields act as a physical heat bath with
temperature TdS ¼ h=2π. The energy density of this bath obeys the Stefan-Boltzmann law ρdS ∝ h4. We
comment on how these results clarify the thermodynamics of de Sitter space and support previous
arguments for its instability in the infrared. The cosmological implications are considered in an
accompanying Letter.
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I. INTRODUCTION

According to Einstein’s theory of general relativity (GR),
the size of our Universe is a dynamical quantity. The space-
time geometry of a homogenous, isotropic, and Euclidean
universe can be described by the Friedmann-Lemaître-
Robertson-Walker metric

ds2 ¼ −dt2 þ a2ðtÞdx2; ð1Þ

where ðt;xÞ ¼ ðt; x; y; zÞ are the space-time coordinates in
the “cosmic rest frame” and aðtÞ > 0 is the scale factor that
characterizes the size of the Universe. In terms of the
Hubble parameter

hðtÞ≡ ȧðtÞ
aðtÞ ð2Þ

(where the dot indicates derivation with respect to time t),
Einstein’s classical field equations for GR give us the two
Friedmann equations: First,

h2 ¼ 8πρ

3
; ð3Þ

where ρðtÞ is the energy density of the Universe as a
function of cosmological time and, second,

ḣ ¼ −
3

2
h2 − 4πp; ð4Þ

where p is the pressure of the “cosmological fluid” with
energy density ρ. Equations (3) and (4) imply the condition
of covariant energy-momentum conservation:

ρ̇ ¼ −3hðρþ pÞ: ð5Þ

In terms of the equation of state parameter w≡ p=ρ,
Eqs. (3) and (5) imply that h is constant if and only if
w ¼ −1. Throughout this article we work in Planck units,
such that G ¼ M−2

Pl ¼ ℏ ¼ kB ¼ c ¼ 1.
Hubble’s astronomical observations in 1929 implied an

expanding Universe (ȧ > 0) [1]. This must have conse-
quences for local physics. Already in 1939, Schrödinger
argued that an accelerated expansion (ä > 0) should be
accompanied by what he called “alarming phenomena” of
particle production or annihilation [2]. He drew this
conclusion from the fact that such expansion mixes the
positive and negative frequency terms in the Fourier
expansion of a free relativistic field. If the field is quantized,
these terms are associated with production and annihilation
of particles. The question of “cosmological particle pro-
duction” has remained contentious in theoretical physics
because of the ambiguity about the choice of vacuum state
and the associated definition of particle number (see,
e.g., [3] and references therein).
In 1977, Gibbons and Hawking found that “an

observer moving on a timelike geodesic in de Sitter space
[i.e., with h ¼ const.] will detect thermal radiation” [4].
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They interpreted the temperature of this radiation,
TdS ¼ h=2π, as resulting from the presence of an event
horizon in de Sitter (dS) space, similar to the horizon of the
Schwarzschild solution that leads to Hawking radiation
from a black hole.
The Hawking temperature for a black hole of mass M is

TH ¼ 1=ð8πMÞ. The total energy of a black hole can
be identified with its mass M, so that the first law of
thermodynamics takes the form

dM ¼ THdSþ ΩdJ þΦdQ; ð6Þ

where S is the black-hole entropy, J its angular momentum,
Q its charge, Ω its angular velocity, and Φ its electrostatic
potential at the horizon. This allows us to relate the
Hawking temperature of the black hole to its entropy.
Assuming that S ¼ 0 for M ¼ 0, Eq. (6) implies that
S ¼ 4πM2 ¼ AH=4, where AH is the area of black hole’s
event horizon. This approach, however, does not work for
dS space, which has no extensive variable to play the role
of M in Eq. (6) [5]. If we take the dS entropy to be
proportional to the surface area of the event horizon in the
same way as the black-hole entropy, we get SdS ¼ π=h2,
which diverges in the Minkowski limit (h → 0) in which
the horizon disappears. How to interpret TdS within a
consistent thermodynamics for dS space remains conten-
tious in high-energy theoretical physics: see, e.g., [6,7] and
references therein.
In 1981, Guth proposed that a short-lived dS phase in the

early Universe could solve the horizon and flatness
problems in cosmology [8]. This idea, which Guth called
“inflation,” soon became a pillar of modern cosmology,
especially after it was shown that it could also account for
the primordial density perturbations that seeded the sub-
sequent formation of galaxies; see, e.g., [9] and references
therein. However, despite the acceptance of inflation as a
general paradigm, none of the many detailed models that
have been proposed to implement it have thus far been
generally regarded as wholly satisfactory. The main diffi-
culties that any model of inflation faces are as follows:
(a) to account for the very special (i.e., low-entropy)

initial state of the Universe before inflation,
(b) to explain why inflation ended abruptly after the

scale factor of the Universe had increased by ≳e60

(“60 e-folds”),
(c) to explain how the energy that drove inflation was

converted into thermal radiation, generating the
observed entropy of our Universe, and

(d) to explain why accelerated expansion restarted long
after the end of inflation, at a far slower rate of
exponential growth [10,11].

In this article we study the thermodynamics of dS space
using analytical techniques based on the Markovian
master equation (MME) for an open quantum system (also
known as the “Gorini-Kossakowski-Lindblad-Sudarshan

equation” or the “Lindblad equation”) [12,13]. Taking
such a system to be weakly coupled to a background
massless quantum field and working in the cosmic rest
frame for dS space, we find that the system equilibrates to a
population distribution with temperature TdS ¼ h=2π, con-
sistent with the result of [4]. The authors of [4] concluded,
based on the dS isometries, that any other observer moving
along a timelike geodesic would also measure TdS. We find,
however, that this temperature is only well defined in the
cosmic rest frame, in which the background acts as a
physical heat bath whose energy density obeys the Stefan-
Boltzmann law ρdS ∝ T4

dS.
1

In an accompanying Letter [15], we combine this result
with the Friedmann equations of classical GR and find that
the dS phase ends abruptly because of the irreversible
transfer of energy from the background ρdS into ordinary
particles. This provides a graceful exit to inflation without
the need to invoke any inflaton potential. Thermal particle
production during inflation, with a blackbody spectrum
given by TdS (rather than vacuum fluctuations) can explain
the presence of adiabatic, Gaussian, and approximately
scale-invariant primordial perturbations that seed the sub-
sequent formation of structure in the Universe.
Various authors have already argued that dS space is

unstable in the infrared (IR) and that such an instability may
explain how inflation ends and why the cosmological
constant is currently so small compared to the natural scale
M4

Pl; see, e.g., [16–25] (this list is far from exhaustive).
However, our limited understanding of the thermodynamics
of dS space has obscured the logical relations among these
various arguments and prevented any of them from being
widely accepted as decisive. This work seeks to apply to that
problem the analytical methods of open quantum systems
and quantum thermodynamics. Such an approach has, thus
far, been used mostly in quantum optics (for an introduction
to quantum thermodynamics and its history, see Ref. [26]).
The resulting formulation of the local dynamics in dS space
is not generally covariant. This is a feature and not a bug of
our approach. It is well established—though perhaps not
very widely appreciated—that thermodynamic quantities
are necessarily not covariant in quantum physics [27] (see
also the discussion in the Appendix). Moreover, it has been
shown explicitly that a finite entropy breaks the classical
space-time symmetries of dS space [28].
The combined results of this article and of [15] have

direct relevance to points (b) and (c) in the above list of
difficulties faced by theories of inflation. Our analysis may
also have something to contribute to point (a), as we

1We have borrowed the term “cosmic rest frame” from the
astrophysical literature, where it is commonly used to label the
preferred frame in which the cosmic microwave background has
no dipole moment. In that case, it is well understood that the
cosmic microwave background has a blackbody spectrum—and
therefore a well defined temperature—only in the cosmic rest
frame. See, e.g., [14].
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comment upon briefly in Sec. V C, but this point remains
speculative. We have nothing to contribute on point (d) (the
“small cosmological constant problem”), except to the
extent that our results could be combined with further
efforts of model building aimed specifically at accounting
for the current phase of slowly accelerating expansion.

II. RELATION TO OTHER APPROACHES

The theoretical literature on dS thermodynamics and
related problems in particle physics and cosmology is vast.
Some further remarks are therefore in order about how our
work relates towhat other researchers have done. Starobinsky
pioneered the study of the stochastic dynamics of the average
of a scalar field over a finite region of dS space [29]. More
recently, Mirbabayi has studied the dynamics of such semi-
classical averages over the causal wedge of a dS observer and
found that they equilibrate to a thermal state in a Markovian
fashion [30]. Our own approach, based on the MME
formalism, is very different because we consider the local
dynamics of an open quantum system embedded in dS space
and show that, if the system is weakly coupled to a massless
field, then an observer in the cosmic rest frame sees this local
system thermalize to the Gibbons-Hawking temperature.
Thus, no spatial averaging is involved in our formulation.
Understanding the relation between the results of these two
qualitatively different approaches is an interesting problem
that we must leave for future investigation.
Chandrasekaran, Longo, Penington, and Witten have

recently considered the algebra of observables for a static
patch in dS space, thereby emphasizing that physical mea-
surements carried by an observer in dS are affected by the
expansion of the space in which the observer sits [31].
Susskind has made a qualitatively similar point by invoking
the concept of “quantum reference frames” [32]. Although
our formulation of dS thermodynamics based on theMME is
quite different from those of [31] or [32], it does share with
thema focusonunderstandinghow thedSbackground affects
the physics of the local quantum systems with which
observers probe their surroundings. In our case, the probe
will act as a thermometer, aswewill discuss in detail in Sec.V.
The MME has been applied previously to early Universe

cosmology: see, e.g., [33–38] and references therein. As far
as we know, however, it has only been used to describe
decoherence effects and not the thermal processes that we
will be interested in here. We hope that future research will
connect the results of this paper to ongoing work by others
on how to use the MME formalism to understand irrevers-
ible process in the early Universe.

III. LOCAL PHYSICS IN EXPANDING SPACE

We seek to describe the irreversible dynamics of an
open quantum system embedded in an expanding three-
dimensional space x¼ðx;y;zÞ and evolving in cosmological
time t. If the system in static space is characterized by the

Hamiltonian Ĥ, then its dynamics in an expanding space can
be expressed by the modified Hamiltonian

ĤDðtÞ ¼ Ĥ þ hðtÞD̂; ð7Þ

where D̂ is the spatial dilation operator andhðtÞ is theHubble
parameter defined in Eq. (2). This separation of Ĥ is valid if
we may neglect the backreaction of the dynamics of the
system on the space-time, and it is therefore equivalent to the
fundamental approximationmade in calculations of quantum
fields in curved space-time (see, e.g., [39,40] and references
therein). In the accompanying Letter [15] we include the
backreaction via an adiabatic approximation, by taking hðtÞ
from the classical Friedmann Eqs. (3) and (4), which is
consistent with the usual approach in cosmology.
This formulation is not coordinate invariant, but it will

allow us to apply the analytical machinery of quantum
thermodynamics in a straightforward way. Moreover, in
cosmology we are primarily interested in how the dynamics
appears to an observer in the cosmic rest frame of Eq. (1).
The formulation of Eq. (7) is analogous to that of previous
work in which the quantum thermodynamics of moving
baths (including black-hole superradiance) was studied
using an effective Hamiltonian shifted by rotation [41],
with the important difference that in that case Ĥ was taken
to commute with the generator of rotations L̂z, whereas
now we do not take Ĥ to commute with D̂.
For a wave function ψðxÞ the operator D̂ is defined by

½e−iλD̂ψ �ðxÞ ¼ e−
3
2
λψðe−λxÞ; ð8Þ

and hence

D̂ ¼ 1

2
ðx̂ · p̂þ p̂ · x̂Þ; ð9Þ

which is a particular case of the “squeeze operator.” The
Hamiltonian of Eq. (7) for a single nonrelativistic particle is

ĤDðx̂; p̂; tÞ ¼
p̂2

2m
þ Uðx̂Þ þ 1

2
hðtÞðx̂ · p̂þ x̂ · p̂Þ: ð10Þ

Under the unitary transformations x̂ ↦ x̂ and p̂ ↦
p̂þ hmx̂ this becomes

Ĥ0
Dðx̂; p̂; tÞ ¼

p̂2

2m
þ Uðx̂Þ − 1

2
mh2ðtÞx̂2: ð11Þ

As a check that Eq. (7) gives the correct local physics in
an expanding Universe, consider a two-body system
governed by the classical version of Eqs. (7) and (9):

Hðx;p; tÞ ¼ p2
A

2mA
þ p2

B

2mB
þ UðxA − xBÞ

þ hðtÞðxA · pA þ xB · pBÞ: ð12Þ
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Using the index K ¼ A, B, the corresponding Hamiltonian
equations can be written as

ẋK ¼ ∂H
∂pK

¼ pK

mK
þ hðtÞxK;

ṗK ¼ −
∂H
∂xK

¼ −
∂

∂xK
UðxA − xBÞ − hðtÞpK: ð13Þ

From Eq. (13) one obtains the Newtonian equations of
motion

mKẍK ¼ −
∂

∂xK
UðxA − xBÞ þmK½h2ðtÞ þ ḣðtÞ�xK: ð14Þ

Introducing the center of mass coordinate X ¼
M−1ðmAxA þmBxBÞ, M ¼ mA þmB, and the relative
position x ¼ xA − xB this becomes

Ẍ ¼ ½h2ðtÞ þ ḣðtÞ�X; ð15Þ

ẍ¼−
1

μ

∂

∂x
UðxÞþ ½h2ðtÞþ ḣðtÞ�x; μ¼ mAmB

mAþmB
: ð16Þ

For h ¼ const. (dS space) the contribution from expansion
to Eq. (16) takes the form of a negative (unstable) harmonic
potential. This agrees with the “all or nothing” picture
presented in [42,43]: a tightly bound classical system will,
after some initial disturbance of its orbit, evolve with
bounded jxj, unaffected by the continuing expansion of
space, while the center of mass follows the Universe’s
expansion.
Note that there is an obvious canonical quantization of

the system described by Eq. (16). For a tightly bound
system we expect that bound states are only slightly
perturbed by the dilation. However, none of them will
be eigenvectors of the total Hamiltonian with the dilation
term. Instead, they will be resonances that decay by
tunneling through the potential barrier. The lifetime of
such a resonance can be very long if the system is tightly
bound compared to the rate of expansion, but this already
suggests that quantum systems in dS space are unstable in
the infrared. This is a crucial issue that we shall return to in
Sec. V C in light of the analytical results of quantum
thermodynamics.

IV. MARKOVIAN MASTER EQUATION

Since this is a new application of an approach to thermal
physics that has not been widely used in high-energy
physics or cosmology (see Sec. II), in this section we define
the main mathematical objects used in the rest of this
article, based on a concrete example: a simple harmonic
oscillator weakly coupled to a thermal bath of bosons. The
general analytical methods and results from the theory of
open quantum systems relevant to the present discussion

are briefly reviewed in the Appendix. For further details,
see Ref. [44] and references therein.

A. Example: Harmonic oscillator in a bosonic bath

Let us begin by reviewing the results of the MME
applied to a harmonic oscillator weakly coupled to a
bosonic bath. The purpose of this exercise is to introduce
the relevant concepts and analytical techniques in an
intuitive and physically well motivated context. Those
same concepts and techniques will then be applied in
Sec. V to the thermodynamics of dS space.
Take the physical Hamiltonian of a simple harmonic

oscillator,

Ĥ ¼ ωb̂†b̂; with ½b̂; b̂†� ¼ 1; ð17Þ

where ω is the renormalized frequency of the oscillator (we
ignore the energy of the ground state, which will not be
relevant to us here). See the Appendix for a discussion of
the relation between the renormalized Ĥ and the bare
Hamiltonian Ĥ0. This oscillator serves as the simplest
model of a localized system that can probe its surroundings.
In particular, we will consider how it evolves if it is weakly
coupled to a much larger system that can be treated as a
thermal bath.
Let us take the thermal bath to consist of noninteracting

bosons with dispersion relationωðkÞ ≥ 0 and occupying an
infinite three-dimensional space. The bath Hamiltonian,

ĤB ¼
Z

d3kωðkÞâ†ðkÞâðkÞ; ð18Þ

is given in terms of annihilation and creations field
operators satisfying the canonical commutation relation:

½âðkÞ; â†ðk0Þ� ¼ δð3Þðk − k0Þ: ð19Þ

The density of states (per unit volume) at a given energyω is

nðωÞ ¼
Z

d3k
ð2πÞ3 δ½ω − ωðkÞ�: ð20Þ

The equilibrium state of a bosonic gas at the inverse
temperature β is fully characterized by the second-order
correlations

hâ†ðkÞâðk0Þiβ ¼
1

eβωðkÞ − 1
δð3Þðk − k0Þ; ð21Þ

where h� � �iβ denotes the average with respect to equilib-
rium state with inverse temperature β. Note that here we
have simply assumed that the bosons are in the thermal
state characterized by Eq. (21).
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The coupling of the harmonic oscillator to the bath is
given by the interaction Hamiltonian

Ĥint ¼ λðb̂þ b̂†Þ ⊗ ϕ̂Λð0Þ: ð22Þ

Here, the harmonic oscillator is localized at the origin of
the coordinate system and locally coupled to the field at
that point. To obtain a mathematically well-defined
Hamiltonian we regularize the quantum field at the point
using an ultraviolet cutoff parameter Λ, such that

ϕ̂Λð0Þ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp e−ωðkÞ=Λ½âðkÞ þ â†ðkÞ�: ð23Þ

Under the standard assumptions of weak coupling and of
large separation between the slow timescale of the system
and the fast time scale of the relaxation of the internal
correlations in the bath, one obtains the MME for the
nonunitary evolution of the density matrix ρ̂ðtÞ correspond-
ing to the mixed state of the system, with the degrees of

freedom of the bath averaged over their equilibrium state.2

In terms of the renormalized Hamiltonian Ĥ, this MME is

d
dt

ρ̂ðtÞ ¼ −i½Ĥ; ρ̂ðtÞ� þ 1

2
ðγ↓ð½b̂; ρ̂ðtÞb̂†� þ ½b̂ ρ̂ðtÞ; b̂†�Þ

þ γ↑ð½b̂†; ρ̂ðtÞb̂� þ ½b̂†ρðtÞ; b̂�ÞÞ ð24Þ

with damping and pumping rates

γ↓ ¼ λ2G̃ðωÞ and γ↑ ¼ λ2G̃ð−ωÞ ð25Þ

expressed in terms of the spectral density G̃ðωÞ for the
renormalized frequencies ω. This spectral density is given
by the Fourier transform of the bath correlation function
GðtÞ (see the Appendix).

B. Spectral density function

In this case we have

G̃ðωÞ ¼ lim
Λ→∞

G̃ΛðωÞ ¼ lim
Λ→∞

Z þ∞

−∞
dteiωtGΛðtÞ ¼ lim

Λ→∞

Z þ∞

−∞
dteiωthϕ̂ΛðtÞϕ̂Λð0Þiβ;

¼ lim
Λ→∞

Z þ∞

−∞
dteiωtheiĤBtϕ̂Λð0Þe−iĤBtϕ̂Λð0Þiβ;

¼ lim
Λ→∞

Z
d3k

Z þ∞

−∞
dteiωt

e−2ωðkÞ=Λ

2ωðkÞ fhâðkÞâ†ðkÞiβe−iωðkÞt þ hâ†ðkÞâðkÞiβeiωðkÞtg;

¼ π

Z
d3k

1

ω

�
δ½ω − ωðkÞ� 1

1 − e−βω
þ δ½ωþ ωðkÞ� 1

eβω − 1

�
: ð26Þ

Using Eq. (20) one obtains

G̃ðωÞ ¼ 8π4nðjωjÞ
ωð1 − e−βωÞ : ð27Þ

One can check the Kubo-Martin-Schwinger (KMS) prop-
erty of the spectral density (see the Appendix)

G̃ð−ωÞ ¼ e−βωG̃ðωÞ; ð28Þ

which implies that the Gibbs state ρ̂β ¼ Z−1e−βĤ is an
equilibrium state for the harmonic oscillator and, moreover,
that any initial state relaxes to ρ̂β. The harmonic oscillator
can therefore be treated as a thermometer that measures the
temperature of the bosonic bath.

C. Noise spectra

The bosonic heat bath at equilibrium is a source of
thermal/quantum noise characterized by two different
spectra associated with G̃ðωÞ. The first one is the field
fluctuation spectrum PðωÞ defined as

Z
∞

0

dωPðωÞ ¼ lim
Λ→∞

hϕ̂2
Λiβ: ð29Þ

This average can be written as

hϕ̂2
Λiβ ¼

Z
∞

0

dω
Z

d3kδ½ω − ωðkÞ�e−2ωðkÞ=Λ

×
hâ†ðkÞâðkÞ þ âðkÞâ†ðkÞiβ

2ωðkÞ ;

¼ ð2πÞ3
Z

∞

0

dω
e−2ω=Λ

ω
nðωÞ

�
1

eβω − 1
þ 1

2

�
: ð30Þ

2In the rest of this article we will simply assume that the
coupling between the localized system (here, the harmonic
oscillator) and the bath (here, the bosonic field) is such that
the Markovian approximation is valid. Otherwise, the separation
of the full physics into a small system of interest and a large
environment acting as a thermal bath would be inappropriate. In
other words, we would not have a valid thermometer and,
therefore, a thermodynamic treatment would not be useful.
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This can be decomposed into thermal and vacuum con-
tributions:

PðωÞ¼PthðωÞþPvacðωÞ; PthðωÞ¼ð2πÞ3 nðωÞ
ωðeβω−1Þ;

PvacðωÞ¼4π3
nðωÞ
ω

: ð31Þ

The Pvac can be renormalized to zero by using normal
ordering for the powers of field, as is usually done in
statistical mechanics.
The second spectrum associated with G̃ðωÞ is the energy

density spectrum UðωÞ, given by

UðωÞ ¼ nðωÞω
eβω − 1

: ð32Þ

This coincides with the Planck distribution (per single
polarization) for massless scalar bosons with ωðkÞ ¼ jkj
and density of states

nðωÞ ¼ ω2

2π2
: ð33Þ

The two spectra are related by

PthðωÞ ¼ 2πG̃ð−ωÞ and

UðωÞ ¼ ω2

ð2πÞ3 PthðωÞ ¼
ω2

ð2πÞ2 G̃ð−ωÞ: ð34Þ

V. THERMALIZATION
IN EXPANDING UNIVERSE

It should be clear from the discussion in Sec. IV that our
main task, in order to describe the thermodynamics of dS
space analytically, is to find the corresponding spectral
density G̃ðωÞ, which is given by the Fourier transform of
the bath correlation function GðtÞ [see Eq. (26)]. To obtain
GðtÞ we need to know how the operator ϕ̂Λð0Þ of Eq. (23)
evolves in cosmological time t, for an expanding space x
characterized by the Hubble parameter hðtÞ. It is important
to emphasize that, unlike in Sec. IV, here we will not
assume any thermal state. Instead, we will show that in dS
space the quantum vacuum acts as a thermal bath, and we
will compute its temperature and noise spectra. Our treat-
ment is similar in spirit to the derivation of the Unruh effect
presented in [45].

A. Time-evolution operator

Let us consider a scalar field described in the cosmic rest
frame at some initial cosmological time (say, t0 ¼ 0) by
annihilation and creation operators âðkÞ; â†ðkÞ satisfying
the commutation relations of Eq. (19). The reference state
of the field is the vacuum jΩi satisfying âðkÞjΩi ¼ 0,

which is consistent with the Bunch-Davies condition for
the dS vacuum [46]. The effects of the expansion of space
are accounted for by adding a time-dependent dilation
generator to the free Hamiltonian, as in Eq. (7). For a single
massless scalar boson we have

ĤDðtÞ¼ĤþhðtÞD̂; Ĥ¼jkj; D̂¼ i

�
k

∂

∂k
þi

3

2

�
: ð35Þ

In order to solve the corresponding Schrödinger evolution
equation we use the commutation relation

½D̂; Ĥ� ¼ iĤ: ð36Þ

By the Baker-Hausdorff lemma, this implies that

e−iαD̂ĤeiαD̂ ¼ eαĤ: ð37Þ

The time-evolution operator for a single boson can be
written as

ÛðtÞ ¼ T exp

�
−i

Z
t

0

dsðĤ þ hðsÞD̂Þ
�

¼ e−iνðtÞD̂e−iτðtÞĤ: ð38Þ

The time-ordering symbol T is needed if hðtÞ is not
constant, since then

½ĤDðt1Þ; ĤDðt2Þ� ¼ i½hðt1Þ−hðt2Þ�Ĥ≠ 0 for t1 ≠ t2: ð39Þ

To show that ÛðtÞ does indeed take the form given in
Eq. (38), we compute its derivative in time:

Û0ðtÞ ¼ −iν0ðtÞD̂ ÛðtÞ þ e−iνðtÞD̂ð−iτ0ðtÞĤÞe−iτðtÞĤ
¼ −i½ν0ðtÞD̂þ τ0ðtÞe−iνðtÞD̂ĤeiνðtÞD̂�ÛðtÞ: ð40Þ

Using Eq. (37), we conclude that, as long as

νðtÞ ¼
Z

t

0

dshðsÞ and τðtÞ ¼
Z

t

0

dse−νðsÞ; ð41Þ

this ÛðtÞ obeys the Schrödinger equation

Û0ðtÞ ¼ −iĤDðtÞÛðtÞ for Ûð0Þ ¼ 1: ð42Þ

In particular, for constant h

νðtÞ ¼ ht and τðtÞ ¼ 1 − e−ht

h
: ð43Þ

The evolution of a massless bosonic wave packet in the
expanding space can therefore be represented as the
composition of the propagation in stationary space, albeit
with slowed-down time τðtÞ of Eq. (41) (called “conformal
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time” in the cosmological literature), and the dilation map.
For a plane-wave mode with Ĥjki ¼ jkj · jki, the con-
dition τðtÞ · jkj ≪ 1 implies that the time-evolution oper-
ator of Eq. (38) is completely dominated by the dilation
exp ½−iνðtÞD̂�. This corresponds to the “freezing in” of
modes with wavelengths larger than the causal horizon
(“super-horizon modes”) during inflation. Note that
throughout this article we work in terms of the physical
(rather than the comoving) momenta.

B. de Sitter vacuum as heat bath

We consider a dS universe in the vacuum state jΩi of the
massless scalar field. The physics of this state can be tested
by putting a localized system, such as the harmonic
oscillator of Eq. (17), in contact with the background
scalar field. This will then serve as a thermometer (see
discussion at the end of Sec. IV B). The quantum noise
acting on this system is fully characterized by the back-
ground field’s second order correlation function, or by its
Fourier transform [Eq. (26)]. In order to characterize the
properties of the dS vacuum we compute the analog of
the bath correlation function GΛðtÞ that appeared in
Eq. (26):

GdS
Λ ðtÞ ¼ hΩjeiĤdStϕ̂Λð0Þe−iĤdStϕ̂Λð0ÞjΩi; ð44Þ

where ϕ̂Λð0Þ is given by Eq. (23) withωðkÞ ¼ jkj, and ĤdS
is the second quantization (i.e., lifting to Fock space) of the
single-boson Hamiltonian ĤD in Eq. (35) for h ¼ const.
Then

GdS
Λ ðtÞ ¼ hgΛjÛðtÞjgΛi; ð45Þ

where ÛðtÞ is given by Eqs. (38), (43), and the momentum
representation of the wave function for gΛ,

ψ̃ðkÞ ¼ hkjgΛi ¼
e−jkj=Λffiffiffiffiffiffiffiffiffi
2jkjp : ð46Þ

The corresponding wave function in position representa-
tion is

ψðxÞ ¼ hxjgΛi ¼
Z

d3khxjkihkjgi

¼
Z

d3k

ð2πÞ3=2
e−ik·xe−jkj=Λffiffiffiffiffiffiffiffiffi

2jkjp ; ð47Þ

in the convention for the Fourier transform in which

hxjki ¼ e−ik·x

ð2πÞ3=2 : ð48Þ

In this case,

hxje−iτðtÞĤjgΛi ¼
Z

d3khxje−iτðtÞĤjkihkjgΛi

¼
Z

d3ke−ijkjτðtÞhxjkihkjgi

¼
Z

d3k

ð2πÞ3=2
e−ijkjτðtÞe−ik·xe−jkj=Λffiffiffiffiffiffiffiffiffi

2jkjp : ð49Þ

Using Eq. (8) for the action of the dilation operator on the
wave function, we have that

hxjeiνðtÞD̂jgΛi ¼ ½eiνðtÞD̂ψ �ðxÞ

¼ e
3
2
νðtÞ

ð2πÞ3=2
Z

d3k0
e−jk0j=Λffiffiffiffiffiffiffiffiffiffi
2jk0jp e−ik

0·xeνðtÞ : ð50Þ

The bath correlation function of Eq. (45) can therefore be
expressed as

GdS
Λ ðtÞ ¼

Z
d3xhgΛje−iνðtÞD̂jxihxje−iτðtÞĤjgΛi ¼

1

ð2πÞ3
Z

d3xd3kd3k0e3
2
νðtÞ e

−ðjkjþjk0jÞ=Λ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkj · jk0jp e−ijkjτðtÞe−iðk−eνðtÞk0Þ·x;

¼ e
3
2
νðtÞ

Z
d3kd3k0

e−ðjkjþjk0jÞ=Λ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijkj · jk0jp e−ijkjτðtÞδð3Þðk − eνðtÞk0Þ ¼ e−

3
2
νðtÞ

Z
d3k

e−ð1þe−νðtÞÞjkj=Λ

2jkje−νðtÞ=2 e−ijkjτðtÞ;

¼ 2πe−νðtÞ
Z

∞

0

drr exp

�
−r

�
1þ e−νðtÞ

Λ
þ iτðtÞ

��
¼ 2πe−νðtÞ

�
1þ e−νðtÞ

Λ
þ iτðtÞ

�−2
: ð51Þ

For constant h this becomes

GdS
Λ ðtÞ ¼ π

2

�
hΛ

h cosh ht
2
þ iΛ sinh ht

2

�
2

: ð52Þ

In the convention of Eq. (26), the corresponding spectral
density is

G̃dS
Λ ðωÞ ¼ 2π2Λ2

ω

h2 þ Λ2
csch

�
πω

h

�

× exp

�
2ω

h
arcsin

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ Λ2
p

��
: ð53Þ

Note that G̃dS
Λ ðωÞ > 0, as required by Bochner’s theorem

(see also the discussion in the Appendix). The fact that this
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spectral density has support on ω < 0 indicates a dynami-
cal instability associated with particle production. We can
compute the Boltzmann factor according to Eq. (28), which
gives us

β ¼ 4

h
arcsin

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þ h2
p

�
: ð54Þ

In the limit Λ → ∞, this gives the usual dS temperature

TdS ¼
1

β
¼ h

2π
: ð55Þ

The dS spectral density is

G̃dSðωÞ≡ lim
Λ→∞

G̃dS
Λ ðωÞ ¼ 2π2ωcsch

�
ω

2TdS

�
eω=2TdS

¼ ð2πÞ2ω
1 − e−ω=TdS

: ð56Þ

Comparing this to Eq. (27), we conclude that dS space acts
as a thermal bath with density of states

ndSðωÞ ¼ ωG̃dSðωÞð1 − e−ω=TdSÞ
8π4

¼ ω2

2π2
; ð57Þ

as in Eq. (33).
The energy density of the dS bath obeys the Stefan-

Boltzmann law:

ρdS ¼ gf

Z
∞

0

dωUdSðωÞ ¼ gf

Z
∞

0

dω
ndSðωÞω
eω=TdS − 1

¼ gf
2π2

Z
∞

0

dωω3

eω=TdS − 1
¼ gfT4

dS

2π2

Z
∞

0

dxx3

ex − 1

¼ gfπ2

30
T4
dS; ð58Þ

where gf denotes the number of degrees of freedom in the
bath (which we have assumed to correspond to massless
fields), and where we have used the energy density
spectrum of Eq. (32) with the density of states of
Eq. (57). In terms of the Hubble parameter,

ρdS ¼ σh4; for σ ≡ gf
480π2

: ð59Þ

It should be emphasized that, even though in the
discussion of Sec. IV we took the open system in the
MME [Eq. (24)] to be a simple harmonic oscillator, our
results do not depend on the details of that system, which
can be thought of as a generic quantum thermometer.
Equation (56) implies that any local system with a discrete
spectrum that is weakly coupled to the massless scalar field
in dS space will thermalize at temperature TdS. If the field
has a small self-coupling, then the modes of the field will

themselves thermalize to that temperature. This implies that
a cosmological dS phase (inflation) is accompanied by
particle pair production, which in equilibrium gives the
constant energy density of Eq. (59), assuming that the gf
polarizations are all massless.
Note also that, in line with the arguments of [27] for

physical heat baths, only the observer in the cosmic rest
frame will measure TdS. Boosts with respect to this frame
break the KMS condition of Eq. (28) due to Doppler shifts
of the mode frequencies, so that the bath will not appear in
equilibrium (the results of [41,47], in which Doppler shifts
were introduced by rotational motion, can be easily
extended to linear motion). This is an important difference
with the original results of Gibbons and Hawking [4], in
which TdS was interpreted as preserving the isometries of
dS space. Polyakov has emphasized in [23] that the absence
of such Doppler shifts prevents us from interpreting the
result of [4] in terms of a physical heat bath.
We calculated G̃dSðωÞ and the associated thermal proper-

ties for a single background massless scalar field. In fact, all
of the quantum fields present should be included in the
calculation of the bath correlation function. Fortunately, it
is not difficult to extend our results in that way, as long as h
is large enough that the masses of the fields can be
neglected. For fermions, the thermal power spectrum and
the energy density spectrum [Eqs. (31) and (32)] become,
respectively,

PthðωÞ¼ ð2πÞ3 nðωÞ
ωðeβωþ1Þ and UðωÞ¼ nðωÞω

eβωþ1
: ð60Þ

For βω ≪ 1, the contribution of fermions to the thermal
power spectrum can therefore be neglected relative to the
contribution from bosons. The fermion contribution to ρdS
in Eq. (58) is weighed by a factor of

Z
∞

0

dxx3

ex þ 1

	Z
∞

0

dxx3

ex − 1
¼ 7

8
; ð61Þ

as is well known in cosmology for the energy density of
ordinary thermal radiation (see, e.g., Sec. 3.3 in [48]).

C. Infrared instability

The results of Sec. V B were derived assuming
h ¼ const. As long as the space-time geometry remains
homogenous and isotropic, and if the change in h is very
slow compared to the Planck-time scale that controls the
gravitational microphysics, we may use Eq. (59) as an
adiabatic relation between hðtÞ and the heat bath’s con-
tribution ρdSðtÞ to the energy density of the early Universe.
By including terms corresponding to this contribution in
the Friedmann Eqs. (3) and (4), we can take into account
the back-reaction of the heat bath on the space-time. This is
done in detail in the accompanying Letter [15].
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The bath with energy density ρdS can be considered as a
cosmological fluid whose pressure pdS obeys the equation
of state wdS ¼ pdS=ρdS ¼ −1. The bath must obey this
equation of state because the energy density of Eq. (58) is
not diluted by the Universe’s expansion, as per Eq. (5) (the
increasing amount of energy in this fluid as the Universe
expands is compensated by the negative energy of gravity).
We may therefore write the total energy density of the
Universe as

ρ ¼ ρdS þ ρr ¼ σh4 þ ρr ð62Þ

and the total pressure as

p ¼ pdS þ pr ¼ −σh4 þ wrρr: ð63Þ

By combining Eqs. (62) and (63) with the Friedmann
equations, we show in [15] that—much like in a superheated
liquid—a perturbation may trigger a spontaneous boiling,
which in the cosmological case corresponds to the produc-
tion of radiation with equation of state wr ¼ pr=ρr ¼ 1=3.
This boiling relaxes the temperature, so that h → 0. This
leads us to conclude that dS space is, as previous authors have
argued on a variety of grounds, unstable in the IR. This
picture gives us the main features of inflation without
invoking any inflaton potential function, or even a coherent
inflaton field.3

In the case of boiling water, the microscopic details are
complicated, but the process can be understood macro-
scopically with the aid of the laws of thermodynamics.
A microscopic description of inflation would require a
better understanding of quantum gravity than what is
currently available, but the methods of quantum thermo-
dynamics, combined with the classical Friedman equations
for the macroscopic space-time, allow us to describe such
an irreversible relaxation in broad strokes. On the question
of the size of the initial perturbation that triggers the
relaxation, [15] invokes another analogy to a phase
transition: the phenomenon of Dicke superradiance in
quantum optics [49,50].
The interplay between local pair production (which is a

UVeffect) and the decay of the dS vacuum (which is an IR
effect) may be related to the “IR/UV mixing” that Polyakov
discusses in [23]. Note that, in contrast to our local
approach, in [30] Mirbabayi considers only the relaxation
of extended (delocalized) IR modes. It is therefore not
surprising, from our perspective, that he should find dS to
be stable, since that description does not incorporate the
local pair production.

Despite our limited understanding of quantum gravity, our
results may have something to say about point (a) in the list
given in Sec. I: the problem of the very small entropy of the
initial state of the Universe. Our picture is consistent with
taking the initial state of theUniverse to be theBunch-Davies
vacuum [46] with ρdS ∼M4

Pl (the “large cosmological con-
stant”). An observerwith access only to a subspace of the full
Hilbert space of the Universe may see that vacuum state as
having positive entropy. The irreversible relaxation of
inflation (ρdS → 0) described in [15] could therefore be
compatible with a pure initial state. That relaxation may be
thought of as a tunneling between the initial Bunch-Davies
vacuum and a final Minkowski vacuum. Both states are
devoid of particles so that, if the negative energy contribution
of gravity is included in the total energy, no global con-
servation (“superselection”) prevents such a tunneling.
According to the astronomical evidence first reported

in [10,11], the Universe does not appear to be relaxing
steadily towards empty Minkowski space any more, but has
instead recently entered a new dS phase in which matter
and radiation coexist with ρdS ∼ 10−123M4

Pl. Our work,
unfortunately, has nothing to say about this “small cos-
mological constant” problem. It might be due to the
presence of a condensate with equation of state w ¼ −1,
fated to evaporate due to the instability of dS space. Perhaps
in a more complete theory of quantum gravity the adiabatic
relation between the bath energy density ρdS to the Hubble
parameter h, used in [15], might break down at some time
after the end of inflation, obstructing the further relaxation
of ρdS. Note also that in all our calculations the background
fields were taken to be massless. This is a good approxi-
mation for the early Universe, when h was close to the
Planck scale, but the effect of particle masses on the
thermodynamics of a dS space at the current, much smaller
value of h requires further investigation.

VI. DISCUSSION AND OUTLOOK

In this paper we have applied the analytical machinery of
quantum thermodynamics, based on the MME for an open
system, to the local physics as seen by an observer in dS
space whose space-time metric takes the Friedmann-
Lemaître-Robertson-Walker form of Eq. (1) (the “cosmic
rest frame”). Though widely used in quantum optics and
some other areas of physics, such analytical techniques
have, to our knowledge, not been applied before in the
context of dS thermodynamics. This may be partly because
they require a noncovariant formulation, which can seem
problematic from the point of view of GR. However,
because thermodynamic quantities are noncovariant [27]
and because cosmology is principally concerned with the
physics as it appears to an observer in the cosmic rest
frame, we regard this as a useful feature of the MME
approach.
We showed that an observer in the cosmic rest frame will

see a local system weakly coupled to a background

3In [15] we find that such inflation will naturally occur at the
Planck scale (i.e., TdS ∼MPl). In that case the thermodynamic
treatment is well justified, because there is a very large separation
of scales between the energy density of the dS vacuum and the
local dynamics of any Standard Model probe.
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massless quantum field as subject to a black-body radiation
with temperature TdS ¼ h=2π. Unlike in [4], where this
temperature was first computed, we find that other inertial
observers do not measure the same TdS, but instead see the
radiation as out of equilibrium, because the Doppler shifts
of the mode frequencies break the KMS condition of
Eq. (28). This allows us to interpret TdS as the temperature
of a physical bath with an energy density obeying the
Stefan-Boltzmann law of Eq. (58). In terms of the inter-
pretation that the authors of [28] attribute to Shenker, this
reflects an anomaly: the quantum theory of gravity does not
respect the classical symmetries of dS space.
If the Stefan-Boltzmann law (ρdS ∝ h4) is extended

adiabatically to the case of slowly decreasing h, the
backreaction of ρdS on the space-time may be taken into
account via the Friedmann equations from classical GR. In
that case, we find that h relaxes irreversibly towards zero
via particle production. This supports previous arguments
for the IR instability of dS space, such as those offered
in [16–25], while clearing up some of the obscurity that has
surrounded the thermodynamics of dS space. The impli-
cations of these results for cosmology are covered in [15].
In [15] we also propose that the primordial perturbations

that seed structure formation in the Universe, generally
interpreted as resulting form the “freeze-in” of vacuum
fluctuations, may be interpreted instead as arising from the
thermal fluctuations described by the power spectrum
PthðωÞ in Eq. (31). This proposal is akin to that of “warm
inflation” (see Refs. [51,52] and references therein), except
that in our case the temperature of the fluctuations is given
directly by the h of inflation and that the thermal fluctua-
tions are obtained from the quantum noise spectra that we
introduced in Sec. IV C, rather than from a classical
Langevin equation. Moreover, our picture does not invoke
an inflaton potential VðϕÞ, or even a coherent inflaton field
ϕ. It is clear that such perturbations will be adiabatic,
Gaussian, and approximately scale invariant, but detailed
calculation of cosmological observables in such a qualita-
tively new implementation of inflation requires further
investigation and the development of a calculational frame-
work not based on a coherent inflaton.
In addition to clarifying the thermodynamics of dS space

and inflation, we believe that the MME framework devel-
oped in this article can offer a new theoretical tool for
understanding the history of the early Universe in terms of
out-of-equilibrium, irreversible dynamics. This irreversibil-
ity entirely breaks the (approximate) time-reversal symmetry
of the underlying microphysics. Cohen and Kaplan have
shown that the breaking of the (microphysically exact) CPT
invariance by the time-dependent background during infla-
tion allows baryogenesis without CP violation and while
baryon-violating interactions are still in equilibrium, circum-
venting the Sakharov conditions [53]. We believe that the
problem of baryogenesis should, therefore, be reexamined in
light of the irreversible dynamics of the early Universe.
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APPENDIX: OPEN-SYSTEM FORMALISM

For the convenience of readers who might not be familiar
with the analytical methods for open quantum systems as
covered, e.g., in [44], we include in this Appendix a brief
summary of salient points of the general derivation of the
MME as they are relevant to the present work. A similar but
slightly more extensive summary is given in the Appendix
of [41]. For an interesting review of the history of the
development of this formalism, see Ref. [54]. As we
pointed out at the beginning of Sec. IV, the MME has
been previously applied to cosmology to describe pure
decoherence effects (see, e.g., [38] and references therein),
whereas we are interested in using it to describe the
thermodynamics of dS space.
The MME describes the nonunitary evolution of the

reduced density matrix ρ̂ðtÞ of an open system S weakly
coupled to a bath B in stationary state ρ̂B. The system and
bath Hamiltonians are denoted by Ĥ0 and ĤB, respectively.
The interaction Hamiltonian is taken to be the product of
two Hermitian operators

λĤint ¼ λŜ ⊗ B̂; ðA1Þ

with the constant λ giving the strength of the coupling.
We may always assume that Trðρ̂BB̂Þ ¼ 0. The reduced
dynamics of S is expressed in the interaction picture:

ρ̂ðtÞ ¼ Λðt; 0Þρ̂≡ TrB½Ûλðt; 0Þρ̂ ⊗ ρ̂BÛλðt; 0Þ†�; ðA2Þ

for

Ûλðt; 0Þ ¼ T exp

�
−iλ

Z
t

0

dsŜðsÞ ⊗ B̂ðsÞ
�
; ðA3Þ

(where the symbol T indicates time ordering), with

ŜðtÞ ¼ eiĤtŜe−iĤt and B̂ðtÞ ¼ eiĤBtB̂e−iĤBt: ðA4Þ
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Here, ŜðtÞ is defined in terms of the renormalized
Hamiltonian

Ĥ ¼ Ĥ0 þ λ2Ĥcorr
1 þ… ðA5Þ

The terms proportional to powers of λ in Eq. (A5) are
Lamb-shift corrections due to the interaction with the bath,
which cancel with the uncompensated term Ĥ − Ĥ0 that
should, in principle, be present in Eq. (A3).
To extract the leading contribution to the reduced

dynamics we apply the cumulant expansion

Λðt; 0Þ ¼ exp
X∞
n¼1

½λnKðnÞðtÞ�: ðA6Þ

The first term is Kð1Þ ¼ 0 and the leading Born approxi-
mation (corresponding to weak coupling) corresponds to
taking K ¼ Kð2Þ, so that

Λðt; 0Þ ¼ exp ½λ2KðtÞ þOðλ3Þ�: ðA7Þ

By direct comparison of the cumulant expansion of
Eq. (A6) and Dyson expansion for Eq. (A2) we get that

KðtÞρ̂ ¼
Z

t

0

ds
Z

t

0

duGðs − uÞŜðsÞρ̂Ŝ†ðuÞ

þ ðsimilar termsÞ; ðA8Þ

where the bath correlation function is

GðsÞ≡ Tr½ρ̂BB̂ðsÞB̂�: ðA9Þ

The “similar terms” in Eq. (A8) are of the form ρ̂ ŜðsÞŜ†ðuÞ
and ŜðsÞŜ†ðuÞρ̂.
In the interaction picture, the Markovian approximation,

which is valid for sufficiently long times t, is

KðtÞ ≃ tL; ðA10Þ

where L is the Gorini-Kossakowski-Lindblad-Sudarshan
generator [12,13]. We decompose SðtÞ into its Fourier
components

ŜðtÞ ¼
X
fωg

eiωtŜω; with Ŝ−ω ¼ Ŝ†ω; ðA11Þ

where the set fωg contains the “Bohr frequencies” of the
Hamiltonian:

Ĥ ¼
X
k

ϵkjkihkj; ω ¼ ϵk − ϵl: ðA12Þ

This allows us to write Eq. (A8) in the form

KðtÞρ ¼
X
ω;ω0

Ŝωρ̂Ŝ
†
ω0

Z
t

0

dueiðω−ω0Þu
Z

t−u

−u
dτGðτÞeiωτ

þ ðsimilar termsÞ: ðA13Þ

Applying the approximations

Z
t

0

dueiðω−ω0Þu ≈ tδωω0 and
Z

t−u

−u
dτGðτÞeiωτ ≈ G̃ðωÞ≡

Z
∞

−∞
dτGðτÞeiωτ ≥ 0; ðA14Þ

which make sense for t ≫ maxf1=ðω − ω0Þg, we obtain
that

KðtÞρ̂¼ t
X
ω

G̃ðωÞŜωρ̂Ŝ†ωþðsimilar termsÞ≡ tL; ðA15Þ

where G̃ðωÞ is called the bath’s spectral density. Using the
commutation of L with ½H; ·� one can easily return to the
Schrödinger picture and obtain the final MME:

dρ̂
dt

¼ −i½Ĥ; ρ̂� þ Lρ̂;

Lρ̂≡ λ2

2

X
fωg

G̃ðωÞð½Ŝω; ρ̂Ŝ†ω� þ ½Ŝωρ̂; Ŝ†ω�Þ: ðA16Þ

The following points are important to bear in mind:
(1) The absence of off-diagonal terms in Eq. (A16),

compared to Eq. (A13), is the crucial property,
which can be interpreted as a coarse-graining in
time of rapidly oscillating terms (the “secular
approximation”). It implies the commutation of L
with the Hamiltonian part ½Ĥ; ·�.

(2) The positivity G̃ðωÞ ≥ 0 follows from Bochner’s
theorem and is a necessary condition for complete
positivity of the MME, which is a fundamental
property of quantum dynamics that prevents the
occurrence of negative probabilities. When applying
this formalism to a particular open system, this
positivity of the bath’s spectral density can provide
a useful sanity check: see, e.g., Eq. (53) in the
main text.

(3) For more complicated interaction Hamiltonians of
the form Ĥint ¼

P
α Ŝα ⊗ B̂α we replace G̃ðωÞ by

the positive-definite relaxation matrix G̃αβðωÞ,
which (because of symmetry) is usually diagonal
in an appropriate parametrization.

(4) Point (i) implies that the diagonal elements of the
density matrix (in the energy representation) evolve
independently of the off-diagonal ones. They satisfy
the Pauli master equation, with transition rates equal
to those calculated from Fermi’s golden rule [55].
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If the reservoir is a quantum system in a thermal
equilibrium state, then the bath’s spectral density must
obey the KMS condition

e−βω ¼ G̃ð−ωÞ
G̃ðωÞ ; ðA17Þ

where β is the bath’s inverse temperature (β ¼ 1=T). As a
consequence of Eq. (A17), the Gibbs state

ρ̂β ¼ Z−1e−βĤ; ðA18Þ
is a stationary solution of Eq. (A16). Under mild conditions
(e.g., that the only system operators commuting with Ĥ and

Ŝ are scalars) the Gibbs state is a unique stationary state and
any initial state relaxes towards equilibrium (“zeroth law of
thermodynamics”). One can also show that the second law
of thermodynamics is fulfilled in the sense that entropy
production is positive.
Note that if an observer sees the bath moving, the

Doppler shifts of the ωs in Eq. (A17) will break the
KMS condition, so that the bath will not fulfill the zeroth
law of thermodynamics with respect to that observer.
Sewell showed in [27] that temperature cannot, therefore,
be defined covariantly in quantum physics. Some of the
physical consequences of such Doppler shifts have been
studied in [41,47].
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