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Observational searches for large-scale vorticity modes in the late time Universe are underexplored.
Within the standard ΛCDM model, this is well motivated given the observed properties of the cosmic
microwave background (CMB). However, this means that searches for cosmic vorticity modes can serve
as a powerful consistency test of our cosmological model. We show that through combining CMB
measurements of the kinetic Sunyaev-Zel’dovich and the moving lens effects with galaxy survey data we
can constrain vorticity fields independently from the large scale cosmic velocity field. This approach can
provide stringent constraints on the largest scale modes and can be achieved by a simple change in the
standard estimators. Alternatively, if one assumes there are no cosmic vorticity modes, this estimator can be
used to test for systematic biases in existing analyses of kinetic Sunyaev-Zel’dovich effect in a manner
analogous to curl-lensing.
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I. INTRODUCTION

Consistent measurements of the properties of the
Universe across 13 billion years has established the
ΛCDM cosmological model [1–6]. However, we still lack
insight into the two of the key components, dark matter and
dark energy, and there are now hints of potential cracks
in this model—in the form of tensions between probes
of different eras [see Refs. [7,8], for an overview of the
“Hubble” and “σ8” tensions]. Testing the ΛCDM model
through ever more powerful and varied tests is thus
essential if we are to advance our understanding on these
fundamental issues.
Perturbations to the homogeneous, isotropic background

Friedmann-Lemaître-Robertson-Walker (FLRW) universe
can be decomposed into three types of perturbations:
scalars, vectors and tensors. At the linear level, these three
are decoupled and do not mix [see e.g., [9–11] ]. Through
measurements of the cosmic microwave background
(CMB), we have discovered that the early Universe is
dominated by small scalar perturbations. As linear vector
and tensor decay within the standard ΛCDM model, these
high redshift measurements place tight bounds on the
expected level of vector and tensor modes [12–14].
While the evolution of the small, scalar perturbations is
nonlinear, these processes do not generate large levels of
large-scale vector and tensor perturbations [15–19]. Thus
an important prediction of our current model is the absence

of late-time, large-scale, cosmic vorticity, velocity fields
that cannot be expressed as the gradient of a scalar and are a
type of vector perturbation. To date, there have been only
a few analyses of vorticity/vector modes in the late time
Universe—Motloch et al. [20] search for vorticity modes in
galaxy spins, while Namikawa et al. [21] use the CMB
lensing curl mode.
Recently numerous authors have shown how measure-

ments of the kinetic Sunyaev-Zel’dovich effect (kSZ) or
moving lensing (ML) effect, two CMB secondary anisot-
ropies imprinted on the CMB as photons propagate to the
observer from the surface of last scattering, can be used
to measure the large scale velocity field [22–28]. This
achieved via a technique called “kSZ/ML tomography”
where high resolution, low noise measurements of the
CMB are combined with measurements of the large scale
structure of the Universe, such as galaxy surveys. This
technique is a highly promising avenue for studying large
scale velocity fields with upcoming surveys predicted to
make Oð100Þ s signal-to-noise ratio (SNR) measurements
of velocity fields on k≲ 10−3 hMpc−1 [26,29].
In this work we explore whether kSZ and ML measure-

ments can be used to study late-time vorticity modes. Such
measurements would provide strong tests of the standard
model expectation that these modes are small, constrain
novel cosmological models that can produce large, late-
time vorticity modes or, if one assumes there are no
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vorticity modes, act as a systematics-null test for kSZ
measurements. This work complements recent work by
Bonvin et al. [30], which explores how redshift space
distortions can be used to constrain vorticity modes, and we
find that our approach offers a significantly more powerful
means of constraining the largest scales.
Throughout this paper, we work in the snapshot geom-

etry described in Smith et al. [26] where we compute
our observables by treating the universe as a periodic box at
a distance χ� from the observer. This setup allows the
intuition to be clearly developed and the results can be
extend to include light-cone effects and a treatment of
the curved sky in an analogous way to Terrana et al. [27]. In
Appendix we outline how this idea can be framed in the
framework of Terrana et al. [27].
This paper is structured as follows: in Sec. II we review

vorticity modes. In Secs. III and IV we show how vorticity
modes source kSZ and ML anisotropies. In Sec. V,
we describe how to use these effects to reconstruct the
vorticity perturbations and present a forecast of this
approach in Sec. VI. Our conclusions and outlook are
presented in Sec. VII.

II. VORTICITY MODES

An arbitrary vector can be decomposed with Helmholtz
decomposition into a part that is curl-free, u, and a part that
is divergence-free, ω. Thus, we can decompose the Fourier
space velocity perturbations into divergence, uðkÞ, and curl
(vorticity), ωiðkÞ contributions as

vi ¼
iki
k
uðkÞ þ iωiðkÞ; ð1Þ

where the curl component satisfies ωiki ¼ 0. To proceed it
is useful to represent the divergence-free mode with the
polarization vectors

ωiðkÞ ¼
X
s

ϵsi ðk̂ÞωðsÞðkÞ; ð2Þ

where ϵsi are the polarization basis vector and s denotes the
two polarization states ðþ1;−1Þ. It is convenient to work in
a rotated basis defined as

ωþ ¼ 1ffiffiffi
2

p �
ωðþ1Þ þωð−1Þ� and ω× ¼ 1ffiffiffi

2
p �

ωðþ1Þ −ωð−1Þ�:
ð3Þ

In linear cosmological perturbation theory curl modes are
not sourced by density (scalar) modes and so are expected
to vanish. This means that these curl modes are a powerful
probe of new physics. As an example consider cosmologi-
cal vector perturbations. In the synchronous gauge, the
perturbed FLRW metric can be written as

ds2 ¼ aðτÞ2�−dτ2 þ �ð1 − 2ϕÞδij
þ 2

�
D;ij þ Ωði;jÞ þ hTTij

��
dxidxj

�
; ð4Þ

where ϕðx; tÞ and Dðx; tÞ are scalar perturbations, Ωiðx; tÞ
is the transverse vector perturbation and hTTij ðx; tÞ is the
transverse, traceless tensor perturbation. The vector modes
source vorticity perturbations as

ωiðx; τÞ ¼ −
∇2Ω0

i

16πGa2ðϵ0 þ p0Þ
; ð5Þ

where a is the scale factor, G is the gravitational constant, 0
denotes the conformal time derivative, and ϵ0 and p0 are the
energy density and pressure. Note that, in matter domina-
tion and without a source, the vector perturbations, Ωi,
decay as a−

5
2 and so their induced vorticity decays as, a−1.

To have observable vector modes they thus need to be
sourced. In general vector modes can be sourced whenever
there is nonvanishing anisotropic stress such as neutrino
velocity isocurvature modes [31] or primordial magnetic
field [32]. More exotic sources include modifications to
general relativity [33], topological defects [34–36], a global
rotation [37] and some dark energy models [38–40].

III. KINETIC SUNYAEV-ZEL’DOVICH EFFECT

The kinetic Sunyaev-Zel’dovich (kSZ) effect occurs
when CMB photons are Thomson scattering off electrons
that are moving with bulk motions, such as in galaxy
groups and clusters [41]. This scattering generates anisot-
ropies in the CMB, without altering the CMB blackbody
spectrum, that depend on the electron’s properties via

ΔTkSZðn̂Þ
TCMB

¼ −
Z

dχaðχÞσTneðχÞvðχn̂Þ · n̂e−τðχÞ; ð6Þ

where v is the electron velocity, ne is the electron density, χ
is the comoving distance, σT is the Thomson scattering
cross section and τ is the optical depth. In our simplified
geometry the line-of-sight integral integrates across our box
and the observed angle n describes points of the surface of
the box at location ðx; yÞ ¼ χn.
In Fourier space we can see that the kSZ anisotropies are

given by

T̃kSZðlÞ ¼ i
aσTn̄ee−τ

χ2�

Z
dk31
ð2πÞ3

dk32
ð2πÞ3 ð2πÞ

3δð3ÞD

×

�
l
χ�

− k1 − k2

�
δeðk1Þ

×
�
cos θk2uðk2Þ − sin θk2ω

þðk2Þ
�
; ð7Þ

where δð3ÞD ðxÞ is the 3D Dirac delta function, θk is the angle
between the line-of-sight and the k-mode and δeðkÞ is the
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Fourier transform of the electron density fluctuation field.
The scalar and vector sources contribute via different
angular dependencies, implying that these effects can be
separated. Further note that the kSZ effect is only sensitive
to the ωþ modes.

IV. THE MOVING LENS EFFECT

The moving lens effect is a second-order effect that
generates anisotropies in the CMB. This effect can be
understood from two equivalent perspectives either as part
of the Rees-Scamia, or nonlinear integrated Sachs-Wolfe
effect, or as lensing by a moving cluster [23,28,42–45].
The first perspective describes how the energy of photons
is altered as they enter the potential of clusters moving
perpendicular to the line of sight: if they pass in-front of
the cluster they will be blueshifted as they fall into clusters
however as they leave they are redshifted by a larger
amount as the cluster has moved closer to the line of sight

and deepened the potential. Note that there is no additional
blueshifting from the change in the potential as the cluster’s
velocity is perpendicular to the photon trajectory. The
opposite effect occurs for photons passing behind the
cluster. The second perspective can be understood by
considering photon trajectories as viewed in the cluster
rest frame. In this frame a dynamical dipole is seen and the
dipolar distorted photons are deflected by the cluster’s
mass. Boosting back to the CMB rest frame removes the
initial, unlensed dipole leaving a residual signal.
The size of the induced anisotropies is given by

ΔTMLðnÞ
TCMB

¼ −2
Z

dχv⊥ ·∇⊥Φ; ð8Þ

where Φ is the gravitational potential. Inserting our
expressions for the velocities into this, we find that the
Fourier space ML anisotropies are given by

T̃MLðlÞ ¼ 2

χ2�

Z
d3k
ð2πÞ3 Φ

�
l
χ�

− k

�	
uðkÞ

�
l
χ�

sin θk cosðϕk − ϕlÞ − ksin2θk

�

þ i sinðϕk − ϕlÞω×ðkÞ þ ωþðkÞ
�
l
χ�

cos θk cosðϕk − ϕlÞ − k sin θk cos θk

�

; ð9Þ

where ϕk and ϕl are the azimuthal angles of the k and l in
the plane of the sky. There are several interesting features
here: first, the standard scalar velocity modes have a
different angular dependence than the kSZ effect (this is
expected as it probes transverse modes), which is essential
for breaking the degeneracies with the vector kSZ modes.
Second, the vorticity modes likewise have a different
angular dependence, and so in principle could be separated
out from the other ML contributions. Finally, the ML effect
is also sensitive to the cross component (ω×) of the vector
modes. However, this term is geometrically suppressed and
as it is thus likely unmeasurable we do not consider it
further here.
As was shown in Hotinli et al. [23] the moving-

lens anisotropies are generally smaller than the kSZ
anisotropies—their contribution to the power spectrum at
l ∼ 3000 is an order of magnitude lower.

V. VELOCITY RECONSTRUCTION

Recent work [26,27,46,47] has shown that by combining
kSZ or ML anisotropies with galaxy position measurements

large scale scalar velocity modes, uðkÞ, can be recon-
structed. The reconstruction uses a quadratic estimator

ûXðKÞ ¼
Z

d3kd2l
ð2πÞ2 Wðk; lÞT̃XðlÞδgðkÞδð3ÞD

×
�
K − k −

l
χ�

�
; ð10Þ

where δgðkÞ is the 3D Fourier transform of the galaxy
density field, T̃XðlÞ is the 2D Fourier transform of the
kSZ or ML anisotropies and Wðk; lÞ is a set of weights.
This method is akin to CMB lensing where the lensing
potential is reconstructed from measurements of the
primary CMB anisotropies. Usually the weights in this
estimator are chosen to obtain a minimum variance,
unbiased estimator of the scalar velocity field i.e.,
hûðkÞu�ðk0Þi ¼ ð2πÞ3δð3Þðk − k0ÞPuðkÞ, where PuðkÞ is
the velocity power spectrum. Given these requirements,
the general case of reconstructing field X, the weights
are [48]

Wðk; lÞ ¼ BXδgT�ð−k − l=χ�;k;l=χ�Þ
Ptot
gg ðkÞCtot

l PXXð−k − l=χ�Þ
	Z

d2l
ð2πÞ2

BXδgT�ð−k − l=χ�;k;lÞBXδgTð−k − l=χ�;k;lÞ
Ptot
gg ðkÞCtot

l P2
XXð−k − l=χ�Þ



−1
; ð11Þ
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where BXδgT�ð−k − l=χ�;k;l=χ�Þ is the bispectrum be-
tween the true field, X, and the two fields in the quadratic
estimator (δg and T), and Ptot

gg ðkÞ, PXXðkÞ and Ctot
l are the

power spectra where the superscript “tot” denotes that the
power spectra include all contributions: signal, instrument
noise, foregrounds and shot-noise—as appropriate. For
reconstructing scalar modes from the kSZ, this is huδgTi
and is [26]

BuδgT−kSZ
�
K;k;

l
χ�

�

¼ aσTn̄ee−τ

χ2�
i cos θK

	
PuuðKÞPgeðkÞ −

K
k
PueðKÞPugðkÞ



:

ð12Þ
where n̄e is the mean electron density at the scattering
redshift, Pge, Pug and Pue are the galaxy-electron, velocity-
galaxy and velocity-electron power spectra. Similarly for
scalar sources with the ML effect we have

BuδgT−ML

�
K;k;

l
χ�

�

¼ 2

χ2�

	
PuuðKÞ

K
PgΦðkÞ þ PuΦðKÞPguðkÞ

k




×

	
K

l
χ�

sin θK cosðϕK − ϕlÞ − K2sin2θK



: ð13Þ

It is trivial to form a combined estimator by using the com-
bined bispectra, i.e., BuδgT−Comb ¼ BuδgT−kSZ þ BuδgT−ML.
Extending these estimators to reconstruct the vorticity

modes is also straightforward. A quadratic estimator, ω̂þ,
can be formed in an identical manner to Eq. (10) with the
vorticity bispectra used instead. For a reconstruction from
kSZ anisotropies, this is

BωþδgT−kSZ
�
K;k;

l
χ�

�
¼−

aσTn̄ee−τ

χ2�
i sinθKPegðkÞPωωðKÞ;

ð14Þ

where Pωω is the vorticity power spectrum and for recon-
struction from ML anisotropies this is

BωþδgT−ML

�
K;k;

l
χ�

�

¼PΦgðkÞPωωðKÞ
	
l
χ�
cosθK cosðϕK−ϕlÞ−K sinθK cosθK



:

ð15Þ

As for the scalar case a combined estimator can be formed
by using the sum of the bispectra.
However, these vorticity estimators are not orthogonal

to the scalar velocity estimators. This is problematic as

measurements of the vorticity modes will likely be biased
by the scalar modes, which are expected to be much larger
than the vorticity terms. To avoid these biases we can
construct vorticity estimators which are orthogonal, i.e.,
have zero response, to the scalar modes.
The quadratic estimator that is unbiased, minimum

variance and orthogonal to the scalar modes is given by

ω̂þðKÞ ¼
Z

d2l
ð2πÞ2 TðlÞδg

�
K −

l
χ�

�
1

Ptot
gg

�
K − l

χ�

�
Ctot
l

×
1

AωωAuu − AωuAuω

�
AuuB̄�ωgT − AuωB̄�ugT�;

ð16Þ

where

AXYðKÞ ¼
Z

d2l
ð2πÞ2

B̄XgTB̄�YgT

PðK − l
χ�
ÞCl

; ð17Þ

and B̄XgT ¼ BXgT=PXX. Note that the vector power spec-
trum in the estimator completely cancels with equivalent
terms implicit in the bispectra, so the estimator is inde-
pendent of the shape of the velocity power spectrum.

VI. FORECAST CONSTRAINTS

Using the formalism from Smith et al. [26] we inves-
tigate the constraining power on this method. Specifically
the noise power spectrum per mode for the standard
estimator is given by

NkSZ−scalarðKÞ ¼ 1

AuuðKÞ ; ð18Þ

and for the orthogonal vorticity estimator

NvorticityðKÞ ¼ AuuðKÞ
AωωðKÞAuuðKÞ − AuωðKÞAωuðKÞ ; ð19Þ

—note that the noise is highly anisotropic. Then the
uncertainty on the signal power spectrum, with an inverse
noise weighting is

1

σ2ðPXXðKÞÞ ¼ V
Z

K2dK sin θdθKdϕK

ð2πÞ3
1

NXXðKÞ : ð20Þ

We consider how well a spectroscopic galaxy survey, like
DESI [49], in combination with a next generation CMB
survey, such as CMB-S4 [50], can measure these modes. For
the DESI-like survey we use the experimental setup from
Smith et al. [26] [also see Ref. [51] ], thus we assume a mean
redshift of z ¼ 0.75, a survey volume of 116 ðh−1GpcÞ3, a
galaxy number density of 1.7×10−4Mpc−3 and a galaxy bias
of bg ¼ 1.51. We use the CMB-S4 configuration described
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in Abazajian et al. [52] and compute the noise curves after
component separation with the ILC method [53].
First, we consider what can be learnt from only studying

the kSZ anisotropies. The expected constraining power is
shown in Fig. 1. Enforcing that the vector estimator has
no response to the standard, scalar kSZ contribution comes
at a huge noise cost. As stated earlier, this condition is
necessary as the scalar modes are expected to be signifi-
cantly larger than any vector contribution and without it
vorticity measurements can be biased. The reason for the
large noise cost can be seen from Eq. (7)—while in
principle the two sources have different angular depend-
encies and so could be separated, the region of phase space
where there are purely scalar or vector sources is vanishing.
Thus the vector modes constraints come from modes that
are close to perpendicular to the line of sight. If the scalar
perturbations have an anisotropic power spectrum of the
form ∼ sin θK= cos θKPuuðjKjÞ, their kSZ signature from
this region of phase space would be highly similar to the
vector modes. Our estimator makes no assumptions on the
properties of the scalar perturbations and the large noise
cost arises from accounting for the possibility of aniso-
tropic scalar modes.
For sufficiently low noise measurements it is possible to

disentangle the two contributions with kSZ alone. Though a
further complication arises as this separation requires mod-
eling the bispectrum beyond the squeezed limit and, while
the squeezed limit can be modeled with high accuracy [54],

accurately modeling the full bispectrum can be challenging.
The ML-effect on its own can similarly be used to constrain
vorticity modes, however it suffers the same issues and has
even larger noise than kSZ based estimator (similar to that
found for scalar velocity modes [23]).
To alleviate these issues we consider using a combined

estimator from the kSZ and ML effects. The ML and kSZ
effects are sensitive to orthogonal velocities which is the
precisely what is required to completely break the degen-
eracy. The result of the combined estimator is shown in
Fig. 1. The combined estimator provides powerful con-
straints on the large scale vorticity that are comparable to
those of the scalar velocity mode. Note that this is achieved
despite the low constraining power of the ML estimator; the
contribution of the estimator is removal of the possibility of
anisotropic scalar modes—as these would lead to a very
large ML signal. Note that on small scales the scalar and
vector bispectra have different shapes, driven by the fact
that the vector modes are linearly uncorrelated with the
galaxy field. Thus, the hardening procedure does not
degrade the constraints and so the noisy ML measurements
do not help improve the kSZ only constraints.

VII. CONCLUSIONS

Large-scale, cosmic vorticity modes in the late time
Universe are an interesting cosmological observable. In
the standard cosmological model these modes should be
absent. Thus, searching for these modes is a powerful
consistency test of our model and a discovery of these
modes would represent the detection of new physics.
In this work we show that the kSZ and ML effects, in

combination with a galaxy survey, are an ideal method to
search for these signals. Using tomography with galaxy
surveys, we are able to separate vorticity modes from velo-
city perturbations from scalar, density modes. Tomography
enables the differentiation of fluctuations in the velocity
field that are parallel to the velocity vector (density-source
velocity modes) from those perpendicular to the velocity
vector, vorticity modes. This joint method leads to almost
white noise up to the largest scales accessible with the
surveys, allowing for powerful constraints on the largest
scales. Through combining galaxy and CMB measure-
ments in a quadratic estimator to reconstruct the large
scales, the method should have fewer large scale systematic
effects. Especially as the nontrivial parity of the signal
[see e.g., [26] ] provides an extra means to suppress
systematic biases.
As a demonstration of the power of this approach, we

consider constraining topological defects, a well known
source of vorticity. Within this model the vorticity power
spectrum is given as

PωωðkÞ ¼
14ðGμÞ2

k3

�
kτ=12

1þ ðkτ=12Þ3.13
�

ð21Þ

FIG. 1. A Fisher forecast for how well the DESI and CMB-S4
experiments can constrain the vorticity power spectrum. We show
the constraints obtained using the kinetic Sunyaev-Zel’dovich
effect alone and combining it with the moving lens effect. The
joint analysis of these two effects allows the vorticity modes to
be constrained independently of the scalar velocity modes. For
comparison we show the constraints obtainable on the scalar
velocity power spectrum, the expected ΛCDM scalar velocity
power spectrum (dotted) and the topological defect spectrum
given in Eq. (21). We use a logarithmic k-binning of width
Δ ln k ¼ 0.2.
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where Gμ characterizes the amplitude of the topical
defects [55]. Using our formalism we find that we can con-
straint ðGμÞ2 ≤ 1.6 × 10−10. While topological defects leave
strong and distinct signatures on the CMB, so are con-
strained significantly better by CMBmeasurements [56–59],
constraints obtainable with this kSZ formalism are more
than two orders of magnitude tighter than those obtainable
redshift space distortions [30]. This approach provides com-
parable constraints to those from CMB curl lensing [21] and
by probing vector modes on a redshift slice, rather than the
integrated over the lensing kernel, is highly complementary.
This highlights the potential of this approach to probe new
regimes in the late-time Universe.
Here we have only discussed one way to separate these

scalar and vorticity modes, by combing the kSZ and ML
estimators, when in practice many methods would be
explored to ensure robust results. These could include
using direct measurements of the density perturbations,
such as through clustering measurements, to remove the
scalar velocity modes (that are linearly related to density
perturbations). We focused on the combined method as it is
always necessary to account for both effects simultaneously
to avoid biases from scalar modes from the other effect.
This is necessary as separating the two effects in CMB
maps is not possible with standard component separation
methods, as both effects produce anisotropies with the
same spectrum—the same as the primary temperature
anisotropies. The key other possible contaminants to this
measurement are the thermal-kinetic SZ effect [51], which
can be removed due to its distinct frequency spectrum, and
gravitational lensing, which can be removed with estab-
lished delensing techniques [60–62].
A second use of the methods outlined here is as a null-

test for the measurement of scalar velocity modes. A key
goal of upcoming kSZ measurements is to search for
primordial non-Gaussianity [e.g., [29] ] and one of the
biggest challenges for such analyses is mitigating system-
atic biases [63,64]. If we assume there is no new physics,
then the vector-mode velocity estimator can be used as a
null-test for these analyses. This is analogous to how curl
lensing [65] is ubiquitously used to test for systematic
effects in weak lensing analyses.
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APPENDIX A: LIGHT CONE GEOMETRY

In this work we focused on discussing this analysis in the
“snapshot” geometry picture, however equivalent expres-
sions can be derived for the “light cone” picture. From this
perspective we no longer work in a periodic box at a single
redshift but instead in terms of spherical harmonic coef-
ficients on the full sky and account for a more complex line
of sight.
In Terrana et al. [27]; Deutsch et al. [66] an optimal,

quadratic estimator is derived for the remote dipole field,
veff , from galaxy data in redshifts bins, denoted by α. This
estimator is

v ˆeff
α;lm ¼ Nαl

X
l1m1l2m2

ð−1ÞmΓkSZ
l1l2lα

�
l1 l2 l

m1 m2 −m

�

×
aTl1m1

δαg;l2m2

CTT
l C

δgδg
αl2

ðA1Þ

where v ˆeff
α;lm is the estimated dipole spherical harmonic

coefficients in a given redshift bin, Nαl is a normalization
constant, ΓkSZ

l1l2lα
is a coupling matrix which combined with

the Wigner 3j symbol is the equivalent of the bispectrum in
Eqs. (10)–(11), aTl1m1

and δαg;l2m2
are the spherical harmonic

coefficients of the CMB map and galaxy density map
and CXX

l are the power spectra of those maps. This can be
thought of as an equivalent expression to Eq. (10).
The expected contribution to this estimator from a scalar

mode is given by

veffα;lm ¼
Z

dχWαðχÞ
Z

d3k
ð2πÞ3

4πil

2lþ 1
ΦðkÞY�

lmðk̂Þ

×
�
ljl−1ðkχÞ − ðlþ 1Þjlþ1ðkχÞ

� ðA2Þ

where jlðxÞ are the spherical Bessel functions and WαðχÞ
defines the redshift bin. Computing the equivalent expres-
sion for vector modes gives

veffα;lm ¼
Z

dχWαðχÞ
Z

d3k
ð2πÞ3

4πilþ1

2lþ 1
ωsðkÞ−sY�

lmðk̂Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ

2

r �
jl−1ðkχÞ þ jlþ1ðkχÞ

�
: ðA3Þ

The key difference between the two contributions is in
the spherical Bessel projections—one plus the other
minus—that is equivalent to the sin and cos terms in the
vector/scalar kSZ estimator. Thus the scalar and vector
modes can be differentiated by combining observations at a
range of redshift bins with different weightings.
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