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We search for a stochastic gravitational wave background (SGWB) generated by a network of cosmic
strings using six millisecond pulsars from Data Release 2 (DR2) of the European Pulsar Timing Array
(EPTA). We perform a Bayesian analysis considering two models for the network of cosmic string loops,
and compare it to a simple power-law model which is expected from the population of supermassive black
hole binaries. Our main strong assumption is that the previously reported common red noise process is a
SGWB. We find that the one-parameter cosmic string model is slightly favored over a power-law model
thanks to its simplicity. If we assume a two-component stochastic signal in the data (supermassive black
hole binary population and the signal from cosmic strings), we get a 95% upper limit on the string tension
of log10ðGμÞ < −9.9 (−10.5) for the two cosmic string models we consider. In extended two-parameter
string models, we were unable to constrain the number of kinks. We test two approximate and fast Bayesian
data analysis methods against the most rigorous analysis and find consistent results. These two fast and
efficient methods are applicable to all SGWBs, independent of their source, and will be crucial for analysis
of extended datasets.
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I. INTRODUCTION

All regional pulsar timing array (PTA) collaborations
have recently, and independently, reported the presence of a
common red noise process in the observed data [1–3].
Furthermore, the combined dataset shows even stronger
evidence for its presence [4]. The exact nature of this signal
is as yet very uncertain. While its spectral properties are
consistent with an expected stochastic gravitational wave
background (SGWB), the data is not sensitive enough to
make any informative statement for or against its gravita-
tional wave (GW) nature.1

In this paper, we make a strong assumption that it is, in
fact, a SGWB and work toward its possible interpretation.
The most favorable model for an anticipated SGWB is a
superposition of monochromatic GW signals from a pop-
ulation of supermassive black hole binaries (SMBHBs) in the
local Universe [1,10]. This signal, assuming SMBHBs in
circular orbits, is a power-law with theoretical spectral index
γ ¼ 13=3 in the power spectral density of the residuals [11].

However, realistic astrophysical simulations suggest that the
spectral index could vary based on the realization of the
observed Universe [12]. For this reason, the spectral index is
usually inferred from the data, giving a two-parameter
model: A, γ. The amplitude A is referenced at the frequency
1=year.
We propose an alternative to SMBHBs, namely a SGWB

from an early universe source, and in particular a network of
cosmic string loops. (See [13–17] for previous work on
cosmic strings in the nHz band.) Cosmic strings are topo-
logical defects that could have emerged from symmetry-
breaking phase transitions in the early Universe [18–21].
These quasi one-dimensional objects are characterized by
their dimensionless tension Gμ, where G is Newton’s
constant. Numerical simulations show that on large scales,
cosmic string networks reach an attractor “scaling” regime
in which all the characteristic length scales in the network
grow as t [22–25]. Cosmic string loops are formed at
all times by the scaling infinite string network, oscillate
with periodl=2, and decay intoGWs.2 The superposition of
the GW emitted generates a SGWB that depends on the
cosmic string loop distribution. While the loop distribution
is well understood on large scales close to the Hubble
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1After submission of this paper on the ArXiV and during the

peer review process, the results from the regional PTA collab-
orations became public [5–9]. These papers have demonstrated
evidence of GW-induced correlations in their respective datasets
with a considerable statistical significance.

2Field theory simulations show that cosmic string loops also
decay into particles [26,27]. Although the balance between GW
and particle emission is still under debate, preliminary quanti-
tative studies tend to show that the SGWB from cosmic string is
unaffected at the frequency of PTAs [28,29].
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radius, there is an active debate regarding the distribution of
smaller loops. To account for this theoretical uncertainty, in
the following we consider two loop distributionmodels that
have been used by the LIGO-Virgo-Kagra [30,31] and
LISA [32,33] collaborations.
In this paper we use the six pulsars (see Table I) from the

early Data Release 2 (DR2) of European PTA (EPTA)
collaboration [1]3 Six pulsars, at the current sensitivity and
observational time span, are not sufficient to detect the
stochastic GW signal, however the presence of the common
red process is evident. More pulsars are required to
populate the expected Hellings-Downs (HD) [34] correla-
tion curve and to get a high statistical significance for a
SGWB. Nevertheless, in our study, we still utilize Hellings-
Downs correlations to analyze the common red noise
among pulsars. This approach allows us to account for
the correlations among pulsars when characterizing the
common red noise (CRN), resulting in a distinct interaction
with the individual red noises. Given that we consider only
6 pulsars, the diagonal noise component (autocorrelation
part of the noise matrix) will dominate and we expect only a
small difference from the inclusion of Hellings-Downs
correlation. Here we describe in detail the methodology of
inferring parameters of the string network. This same
methodology will later be applied on the extended data-
set [5].
Assuming that the observed common red noise is a

SGWB, we use Bayesian methods to infer the character-
istics of the string network using a one-parameter model
(Gμ) and a two-parameter model (Gμ, Nk) where Nk is the
average number of kinks on a loop per oscillation period,
see Sec. II. In addition to the SGWB signal, we also model
the three components of the noise: white noise, pulsar red
noise and chromatic noises (dispersion measurement var-
iations and scattering variations) (see [35] for details).
We carry the Bayesian analysis through three different

approaches with varying accuracy of description and
computational cost. The first approach, dubbed in this

paper as the “full method” [36,37], is the standard approach
in which the parameters of the SGWB and of the noise are
explored simultaneously. This method is the most accurate
but also the most computationally expensive due to the
high-dimensionality of the analysis and because we con-
sider Hellings-Downs correlations for the SGWB. The
second approach, dubbed as the “resampling method”
[38], neglects at first the spatial correlation between pulsars
considering a common uncorrelated signal. The resulting
posterior distributions are then resampled by taking into
account GW-induced correlation. In this approach, the like-
lihood is factorized into a product of likelihoods for each
pulsar [39], and the computational cost is significantly
reduced with respect to the full method as the number of
pulsars increases. Finally, the third method, dubbed as “free
spectrum” [40,41], amounts to obtaining the correlated
power of the common noise for each frequency bin inde-
pendently, marginalizing over the single pulsar noise param-
eters, before inferring the SGWB parameters. This method
drastically reduces the dimensionality of the analysis and
allows for a very fast parameter estimation of the SGWB
models.
The paper is organized as follows. We start with a

description of the SGWB produced by cosmic string loops
in Sec. II. In Sec. III we explain the three data analysis
approaches used. In Sec. IV, we present the constraints on
single parameter models ðGμÞ and two parameter models
ðGμ; NkÞ. We perform a Bayesian model comparison
between the different cosmic string models and a simple
power-law SGWB. Finally, we conclude in Sec. V.

II. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND FROM COSMIC STRINGS

The SGWB generated by a cosmic string network has
been studied in depth, see, e.g., [32,42]. It includes a
contribution from the uncorrelated superposition GW
bursts emitted from cusps, kinks, and kink-kink collisions
on oscillating loops [43]. Cusps, which are points at which
the loop reaches ultra relativistic velocities, emit a short
beam of GWs.

TABLE I. Noise model used for each of six pulsars. For each pulsar, we also consider white noise whose parameters are set to the
maximum likelihood values obtained through single pulsar analysis. We indicate the number of Fourier bins [Nf in Eq. (9)] employed
for each noise type and pulsar. In cases where a particular noise type is not included in the pulsar’s noise model, we denote it
with a � � � sign.
Pulsar Time span (years) Number of ToAs Red noise DM variations Scattering variations Deterministic signals

J0613 − 0200 22.89 2909 10 144 � � � � � �
J1012þ 5307 23.68 5325 149 45 � � � � � �
J1600 − 3053 14.32 2982 � � � 26 137 � � �
J1713þ 0747 24.46 5003 11 148 � � � Two exponential dipsa

J1744 − 1134 24.01 1946 9 151 � � � � � �
J1909 − 3744 15.74 2503 20 151 � � � � � �

aInterested readers are directed to Section 5.2.2 of [35] for further details regarding these events.

3This dataset is a subset of the full DR2 dataset recently used in
[5] which includes a total of 25 pulsars.
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Kinks, which are discontinuities in the tangent vector of
the loop, propagate along the string at the speed of light and
emit a one-dimensional “fanlike” GW burst with the same
beaming angle as for cusps [43]. Finally, when left- and
right-moving kinks collide (kink-kink collisions), an iso-
tropic burst of GW emission is emitted [44].
A loop of length l oscillates periodically with corre-

sponding fundamental frequency f0 ¼ 2=l. For the nth
oscillatory mode of the loop, the power (in units of Gμ2)
emitted in GWs by each of these burst events (labeled by b)
is given by4 [43]

PðbÞ
n ¼ ΓðbÞ

ζðqbÞ
n−qb : ð1Þ

Here ζðqbÞ is the Riemann zeta function, qb ¼ 4=3, 5=3,
and 2 for cusps, kinks and kink-kink collisions respectively
and [43,44]

Γc ¼ 3ðπgc1Þ2
21=3g2=32

; Γk ¼ 3ðπgk1Þ2
22=3g1=32

; Γkk ¼ 2ðπgkk1 Þ2; ð2Þ

where g2 ¼
ffiffiffi
3

p
=4, gc1 ≈ 0.85, gk1 ≈ 0.29, gkk1 ≈ 0.1.

Given the exponents qb in Eq. (1), one might expect that,
compared to the cusp contribution, the kink and kink-kink
collision contributions could be neglected. However, as
already noted in [44], if many kinks are present they can
dominate the power emitted in GWs. Indeed, since two
kinks (right and left moving) are formed when two pieces
of strings intercommute, the number of kink-kink collisions
on a loop with Nk kinks per oscillation period should
scale as N2

k=4, which can then dominate for high Nk.
Furthermore, kinks can proliferate on loops with junctions
[45,46]. To summarize, for a loop containing Nc cusps and
Nk kinks per oscillation period, the total power emitted, in
units of Gμ2, is

Γ ¼ NcΓc þ NkΓk þ N2
k

4
Γkk: ð3Þ

The fractional energy density of the SGWB per loga-
rithmic interval of frequency is

Ωgwðt0; fÞ≡ 8πG
3H2

0

f
dρgw
df

; ð4Þ

where H0 is the Hubble constant, and dρgw=df is the
energy density in gravitational waves per unit frequency f,
observed today (at t ¼ t0). Following [31,47], for a net-
work of cosmic string loops with distribution nðl; tÞ, this is
given by

dρgw
df

¼ 2Gμ2

f

X
b

NbΓðbÞ

ζðqbÞ

×
Xþ∞

n¼1

Z
n1−qbdz

ð1þ zÞ5HðzÞn
�

2n
ð1þ zÞf ; tðzÞ

�
; ð5Þ

where we have summed over the cusp, kink and kink-kink
contributions, and HðzÞ is the Hubble parameter. In the
following we consider standard ΛCDM cosmology with
the Planck-2018 fiducial parameters [48].
We consider the most updated loop distribution models

nðl; tÞ available, calibrated with numerical simulations,
that have also been used in LVK collaboration papers
[30,31] and LISA [33,49]. They are denoted in the
following as BOS [42,50] and LRS [51]. Each has an
intersection probability p ¼ 1, and the largest loops pro-
duced are of size 0.1t. The main difference between these
models is that, relative to the BOS model, the LRS model
has an additional population of very small loops which aim
to account for physics at the gravitational backreaction scale.
These small loops emit high frequency GWs, and lead to
modifications of the SGWB at high frequencies f ≫
H0ðΓGμÞ−1 [52]. This can be seen in Fig. 1 which plots
the numerical evaluation of Eq. (5) for Nc ¼ 2, Nk ¼ 0 for
the BOS model (continuous lines) and LRS model (dashed
lines) for different values of Gμ.
Notice that as a consequence, the two models considered

give a significantly different spectrum in PTA frequency
range only for ΓGμ≳ 2 × 10−11 (as seen for Gμ ¼ 10−14

and Γ ¼ 57 in Fig. 1).
In this work, we consider two cases (i) smooth cosmic

string loops with two cusps only (as in Fig. 1), (ii) fixed

FIG. 1. SGWB from a network of cosmic string loops, ex-
pressed in terms of characteristic energy density. The spectrum is
computed using the BOS (resp. LRS) loop number density model
for the solid (resp. dashed) lines. Here we have taken Nc ¼ 2,
Nk ¼ 0 leading to Γ ¼ 57. For each model, computations using
three different tension values Gμ are represented. The sensitivity
frequency range of EPTA corresponds to the yellow band.

4Formally this expression is only valid for large n, but as
elsewhere we assume that extrapolating to n ≥ 1 is a good
approximation to describe low-harmonic modes.
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number of cusps, Nc ¼ 1, but a varying number of kinks
Nk with N2

k=4 kink-kink collisions. Our aim is to quantify
how well the SGWB from cosmic string loops can explain
the common red process that is already seen with strong
evidence in three PTAs, namely the EPTA, NANOGRAV,
and PPTA consortiums [1–3].

III. DATA ANALYSIS METHOD

In this section, we use a Bayesian analysis to perform
parameter estimation and model selection. We will not
repeat the basis of Bayesian inference in the context of
PTA, and instead refer the reader to [1,35] for a more
detailed description. In the following subsection, we briefly
describe the noise and SGWB models which we test.
We have applied three Bayesian approaches to the six

pulsars of the early second EPTA data release (DR2) [1]:
(1) We directly infer the parameters of each model using

the spectral shape of the SGWB as a prior, consid-
ering HD correlation between pulsars. This is the
most computationally expensive path, which is
referred to as “full.”

(2) Similar to 1, but initially we neglect all correlations
between pulsars, assuming an uncorrelated common
process. Then, we resample the posterior points
using “correct” likelihood with HD correlation
following the procedure outlined in [38]. This path
is significantly faster, we refer to it as “resam-
pling” (RS).

(3) Finally, we also use the method suggested in [41]
and further developed in [40]. There, we first
estimate the correlated power at each Fourier bin
with a relatively large log-uniform prior: we refer to
this as the “free spectrum.” Then, we perform
Bayesian analysis using the free spectrum as ob-
servational data. This is the computationally cheap-
est path, which we refer to as the free spectrum (FS)
method.

A. PTA data analysis principles

In PTA, we work with time residuals, obtained as the
difference between observed and predicted time of arrivals
of the pulsars’ radio pulses

δti ¼ tobsi − tTMi ðβ⃗bÞ; ð6Þ

where i is the index of each observation and tTM is the
timing model attempting to explain the deviations from the
observed time-of-arrival using a set of parameters β⃗b.
Following the usual path [36,37] we marginalize analyti-
cally over timing model parameters.
We assume that the noise in each pulsar consists of the

radiometer white noise, intrinsic pulsar spin noise,
dispersion measurement and finally scattering variations.
These last two components are referred to as chromatic

noises, since they are due to the propagation of the radio
pulses through the interstellar medium and depend on the
observational radio frequency. We follow the standard
procedure [35], initially we infer the noise model in each
pulsar individually, and then we use these results as a
starting point in the search for the SGWB common to all
pulsars.
Besides these individual noise components, we also

introduce SGWB into the data model. It is characterized
by the spectral shape (subject to its source) and exhibits a
particular correlation across pulsar pairs which depends on
the angular separation of pulsars in the sky and is described
by the Hellings-Downs (HD) curve [34].
We assume that the data does not contain any determin-

istic signals, with the exception of the two deterministic
chromatic signals, referred to as exponential dips, of PSR
J1713þ 0747 (see Table I).
We can summarize the data model in the form of the total

covariance matrix

CðaiÞðbjÞ ¼ N a;ðijÞδab þ ðCRN
a;ðijÞ þ CChRN

a;ðijÞ Þδab þ ΓabCCRN
ðijÞ ;

ð7Þ

where δð���Þ is the Kronecker delta function, a, b are
indexing the pulsars, i, j the timing residuals, N a is the
white noise covariance matrix of pulsar a, CRN

a its intrinsic
red-noise covariance matrix and CChRN

a its chromatic red-
noise covariance matrix. CCRN is the common red noise
covariance matrix, and Γab is the overlap reduction function
giving the correlations between pulsars a and b. The
function Γab reduces to δab for an uncorrelated common
red noise and is described by the HD correlations for a
SGWB,

Γab ¼
3

2
x ln x −

1

4
xþ 1

2
ð1þ δabÞ; ð8Þ

where x ¼ 1−cos ξab
2

, ξab being the angular separation
between pulsars a and b.
In PTA data analysis, red stochastic processes are often

described via Gaussian processes with truncated Fourier
basis (see [37] for details)

δtredðtiÞ ¼
XNf

n¼1

�
an cos

�
2πnti
T

�
þ bn sin

�
2πnti
T

��
; ð9Þ

where T is the observational time span and an, bn are
random variables (weights) defined by the spectral shape of
the underlying process. In this work, we use Nf ¼ 30 for
the common red process while for the individual pulsar
noises, we employ a custom number of Fourier bins
determined through single pulsar analysis, following the
method detailed in [35] (see Table I for an overview of
the different Nf values used for each pulsar noise).
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For the chromatic noises, we use a similar approach but
introduce a scaling with the observational radio frequency ν,
δtred ∝ ν−χ , where χ is a chromatic index equals to 2 for
dispersionmeasure variations and 4 for scattering variations.
For all intrinsic red noise components attached to each

pulsar, we assume a power-law shape for the one-sided
power spectral density (PSD) of the residuals

Sðf;A; γÞ ¼ A2

12π2

�
f

yr−1

�
−γ

yr3; ð10Þ

characterized by the spectral index γ and the amplitude A
defined at the reference frequency of 1=year.
Here we assume that the CRN is a SGWB with the one-

sided power spectral density given in terms of the fractional
energy density by

Sðf; η⃗Þ ¼ H2
0

8π4
1

f5
ΩSGWBðf; η⃗Þ; ð11Þ

where η⃗ are the hyperparameters of the SGWB model
considered. The SGWB from a population of SMBHB is
well approximated by a power-law model, and takes the
same form as in (10), see [10]. Moreover, for the SMBHBs
in circular orbits with GW-driven evolution, we expect
γ ≈ 13=3. The spectral shape for the network of cosmic
strings is obtained by integration of Eq. (5) which adds
computational time.
In the following analysis, we fix the parameters (and,

therefore the level) of the white noise based on each pulsar
investigation [35]. We vary the parameters of all red noise
components together with the parameters of SGWB. In
total, there are 30þ NCRN parameters, where NCRN is the
number of hyperparameters of the CRN (varies from model
to model).

B. Full method

This is the standard path one would follow to infer the
parameters of each model (pulsars and SGWB). The
likelihood for the concatenated array of observations
(residuals) δ⃗t is given by the usual Gaussian form

pðδ⃗tjη⃗Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffij2πCjp exp

�
−
1

2
δ⃗tTC−1δ⃗t

�
; ð12Þ

where C is the full covariance matrix of Eq. (7). It is
parametrized by Aa, γa for each red noise component for
each pulsar a and by parameters describing the SGWB
spectrum.We use the Python package ENTERPRISE [53] for its
computation (with an extension to include cosmic string
models). We sample parameters using PTMCMC sampler
[54]. Note that we do not employ the “parallel tempering”
features due to technical reasons.
For the SGWB we have used either the power-law

model, the BOS or the LRS models with fixed and variable

number of kinks. This is computationally themost expensive
(but most rigorous) approach. There are two bottlenecks in
the analysis: (i) integration of Eq. (5), and (ii) accounting for
the correlation between pulsars (inverting the Γab part in the
covariance matrix). However, thanks to the low dimension-
ality of the parameter space of the cosmic string spectrum
(f, Gμ, Nk), we were able to address point (i) by using
numerical interpolation method over a precomputed grid to
speed-up the computation of its power spectrum.
We can also perform Bayesian model selection. We use

the Bayes factor (BF) as a way to measure which model is
preferred by the data. The Bayes factor is equivalent to the
posterior odds ratio O if we assume (and we do) equal
model priors

BM1

M2
¼ pðdjM1Þ

pðdjM2Þ
¼ pðM1jdÞ

pðM2jdÞ
pðM2Þ
pðM1Þ

¼ OM1

M2

pðM2Þ
pðM1Þ

: ð13Þ

It is computationally prohibitive to compute the evidence
for each model directly using the nested sampling method.
Instead, we used the product-space sampling approach
described in [55] and already used in several PTA analysis
(e.g., in [1,56]). The artificially introduced hyperparameter
(model index) allows the sampler also to jump between
several models and the BF is given by a ratio of the number
of samples accumulated in each model.

C. Resampling method

This approach is based on importance sampling and
described in detail in [38]. The main idea is to perform
sampling like in the full method neglecting the correlation
between pulsars, taking Γab ¼ δab in (7). This way the
likelihood is factorized into a product of likelihoods for
each pulsar [39]. The likelihood computational time is
reduced by a factor 6 for six pulsars, but this gain increases
as the number of pulsars analyzed increases. Once it is
done, we resample (reweigh) the posteriors by recomputing
the likelihood for each sample using Γab defined by the HD
curve. As a result, it is possible to parallelize the calculation
and therefore gain even more speed. This method works
well if the difference in the posteriors obtained with and
without HD correlation is not very large (not disjoint
distributions).
We can use the same approach to get a cheap estimation

of the Bayes factors. To the best of our knowledge, it was
not used before, so we provide here some detailed
computation.
We refer the reader to Sec. II of [38] for details on the

resampling of the posterior from an approximate model “A”
to a target posterior “T.” We apply this method to the
product space approach for computing the Bayes factor. We
consider two hypermodels M, MHD with the same model
parameters θ and hyperparameter n indexing the models
describing the common red noise we want to compare. The
difference between the two hypermodels is in the likelihood

HIPPOLYTE QUELQUEJAY LECLERE et al. PHYS. REV. D 108, 123527 (2023)

123527-6



computation: we consider uncorrelated common process in
the hypermodelM. Computations of Bayes factor withM
are significantly faster and more reliable, we want to
evaluate the Bayes factor of models inMHD by resampling
the hyperchain (product space) M. We repeat the steps
outlined in Sec. 3 of [55] but introducing the approximate
likelihood in the posterior probability of n for MHD

PðnjD;MHDÞ ¼ πðnÞ
ZMHD

Z
LHDðθnÞπðθnjnÞdθn

¼ πðnÞ
ZMHD

Z
LHDðθnÞ
LðθnÞ

LðθnÞπðθnjnÞdθn

≈
πðnÞ
ZMHD

1

NðnÞ
s

XNðnÞ
s

i¼1

wðnÞ
i Zn: ð14Þ

Here we introduced πðnÞ the prior on the model index
(chosen to be uniform), LHD=L are likelihood functions
with/without HD spatial correlations and ZMHD is the
evidence of the hypermodel with HD (in our case just
normalization factor which cancels out). In the last line, we
have approximated the integral using Monte Carlo

approach, with NðnÞ
s being the number of samples corre-

sponding to the model associated to n in the hypermodel

M posterior. The weights wðnÞ
i ¼ LHDðθðiÞn Þ=LðθðiÞn Þ are

computed at each posterior points (indexed by i) ofM, the
θn being the θ parameters attached to the model n.
The Bayes factor [assuming uniform prior across the

models πðnÞ] between the models within each hypermodel
posterior is given as

BMa
Mb

≡ Ba=b ¼
Pðbnc ¼ najD;MÞ
Pðbnc ¼ nbjD;MÞ ; ð15Þ

where b:c is the floor function.
Applying this expression to the resampled hypermodel

posterior, we obtain

BMHD

a=b ¼ ZHD
a

ZHD
b

¼ w̄ðaÞ
w̄ðbÞ

× BM
a=b; ð16Þ

where w̄ðnÞ ¼ 1

NðnÞ
s

PNðnÞ
s

i¼1 w
ðnÞ
i is a posterior average weight

of the model indexed by n. As previously mentioned, the
Bayes factor for the hypermodel M (without HD corre-

lations) is simply given by BM
a=b ≈ NðnaÞ

s =NðnbÞ
s . The per-

formance of this method depends on the sampling
efficiency, as described in [38]. Note that the novelty of
this method is in the efficient evaluation of Bayes factor
between two or more GWB models via resampling.

D. Free spectrum method

As mentioned, this method was suggested in [41] and
further developed in [40]. The main idea is to get rid of the
high dimensionality of the problem by marginalizing over
the single pulsar noise parameters. We want to estimate the
PSD assuming the HD correlation at each frequency bin
fk ¼ k=T, where T is the total time span of the array. Using
MCMC we get a posterior distribution for the amplitude ρk
at each frequency bin, where

ρ2k ¼
SðfkÞ
T

; ð17Þ

where SðfÞ is the one-sided PSD of the SGWB we want to
characterize, see Eq. (11). We assume that all bins are
independent and impose log-uniform prior for each ampli-
tude, log10 ρk ∈ ½−12;−4�, a justification for this range is
given in Sec. IV B.
We use a kernel density estimator to obtain a smooth

probability distribution function pðρkjδ⃗tÞ. In this study, we
use Gaussian kernels, and their bandwidth is selected using
Scott’s rule of thumb [57]. We use the estimated PSD of a
common process with HD correlation as our new data. We
can then build a factorized likelihood that depends only on
the parameters of the SGWB η⃗, following [40], we get

pðδ⃗tjη⃗Þ ≈
YNf

k¼1

Z
dρkpðδ⃗tjρkÞpðρkjη⃗Þ

∝
YNf

k¼1

Z
dρk

pðρkjδ⃗tÞ
pðρkÞ

pðρkjη⃗Þ: ð18Þ

We have used the following notation: pðρkjδ⃗tÞ are the
posterior distributions of the ρk describing our observations
in Fourier domain, pðρkÞ is the prior on the ρk and pðρkjη⃗Þ
is the probability to have ρk given the CRN parameters η⃗.
For the latter, we consider that the PSD is perfectly
deterministic such that

pðρkjη⃗Þ ¼ δðρk − ρSGWB
k ðη⃗ÞÞ; ð19Þ

where ρSGWB
k ðη⃗Þ is derived from the PSD of a correspond-

ing SGWB model computed at fk ¼ k=T for a set of
background parameters η⃗.
Note that the Fourier frequency bins are not entirely

independent as the PTA data are not evenly sampled and
pulsars do not have the same observational duration. We
have computed the associated Pearson correlation coeffi-
cient matrix Pi;j ¼ Ci;j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ci;iCj;j

p
where Ci;j is the covari-

ance matrix of the ρ’s. We have found that the frequency
bins are approximately independent: the average of the
nondiagonal coefficients being hjPi;jjii<j ≈ 0.02.
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Taking all into account, the likelihood of Eq. (18) takes
the form

pðδ⃗tjη⃗Þ ∝
YNc

k¼1

pðρSGWB
k ðη⃗Þjδ⃗tÞ: ð20Þ

This method is extremely fast and drastically reduces the
dimensionality of the problem, making it possible to use the
Nested sampling [58,59] algorithm to obtain the evidence
for each model and posterior distributions of the SGWB
parameters η⃗. We used a particular implementation of
nested sampling, DYNESTY, described in [60,61].

IV. RESULTS

Before discussing our results, we should mention that the
six pulsars dataset considered here is noninformative about
the presence of the HD correlations, as was shown in
[1,35]. Consequently, we expect that the results of the
analysis will be similar (though not identical) using CURN
or GWB assumptions for the CRN. The main purpose of
this paper is to introduce the methodology which will be
applied to the extended (25-pulsar) EPTA dataset.
We start by considering the cosmic string models with

the fixed average number of cosmic string bursts per
oscillation to Nc ¼ 2 and Nk ¼ Nkk ¼ 0, leading to
Γ ¼ 57, which is expected by a population of smooth
loops [62]. Later we extend our analysis by allowing the
number of kinks to vary (and so the value of Γ).

A. Parameter estimation

1. Smooth loops

When we infer a SGWB from a network of smooth loops
with Nk ¼ 0 and Nc ¼ 2 (alongside the individual pulsar
noise models), we find a very constrained distribution for
the tension Gμ for both loop density distribution models,
see Fig. 2. As one can see the posterior distributions given
by the full, the RS, and the FS methods agree very well,
though we find that the FS method gives slightly broader
posteriors. The string tension 90% credible (symmetric)
intervals for each Bayesian method can be found in the two
first lines of Table II. These intervals show nice consistency
across all three Bayesian methods: log10Gμ ∼ −10.1 (resp.
−10.6) for the BOS (resp. LRS) model.
These results can be understood as follows. For the BOS

model, the SGWB exhibits a peak around f ∼ F0 ≡
3H0ðΓGμÞ−1 before decreasing to reach a plateau at higher
frequencies (see Fig. 1) [52]. According to the posterior for
Gμ, the peak is in the middle of the PTA band, thus the
spectral index of ΩSGWB transits from 1 to 0 (flat spectrum)
throughout the PTA frequency range. This is comparable to
the value of 2=3 (corresponding to γ ¼ 13=3) expected for
a SMBHB background. As can be seen in Fig. 5, the BOS
model slope is very compatible with the spectral estimated
from the data.
Regarding the LRS model, the extra population of small

loops (see [52]) is responsible for the fact that instead of
decreasing to a plateau for f > F0, the characteristic energy

FIG. 2. Comparison of the string tension posteriors (for two string models, BOS and LRS) obtained with the full method (dashed
lines), resampling (RS) method (dotted lines), and with the free spectrum (FS) method (solid lines). We assume here that the loops are
populated by two cusps, leading to Γ ¼ 57.
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density rather increases again up to a second peak at very
high frequencies compared to the PTA band, see Fig. 1. The
fractional energy density follows there a power-law of
spectral index ≈0.4, which also fits well the spectral shape
of the data (see Fig. 5).
As an alternative, we also consider a two-component

SGWB model: a SGWB generated by a population of
circular binary black holes with γ ¼ 13=3 plus a stochastic
signal from the cosmic strings.
We find a very strong correlation between those two

components as one can see in Fig. 3. The 2D-posteriors
exhibit a pronounced L-shape, meaning that both model can

explain the data. Based on the obtained posterior distribution,
we can extract an upper limit which we evaluate to be
log10Gμ < −9.9 (resp. −10.5) for the BOS (resp. LRS)
model using the full method, and it corresponds to 95% con-
fidence. In addition, the evaluation obtainedwith the two fast
methods (RS, [FS]) give very consistent upper bounds:
log10Gμ < −9.8½−9.5� (resp. −10.5½−10.4�) for the BOS
(resp. LRS model). The slightly broader posterior obtained
with FS earlier leads to a less stringent upper bound for the
BOS model. One can notice that we constrain better the
tension, Gμ, for the LRS model, this is due to the excess of
power that the small loop population introduces.

TABLE II. For each Bayesian analysis method (columns), we write the cosmic string parameters posteriors for each loop distribution
(BOS/LRS) with a varying number of kinks (_kk) or without. The 5% and 95% quantiles are used to set up the credible interval. The
second column quotes the linear Bayes factors comparing each of the cosmic string (CS) models against a power-law (PL) PSD for
the SGWB.

Full method RS method FS method

CS posterior BF (PL/CS) CS posterior BF (PL/CS) CS posterior BF (PL/CS)

BOS log10Gμ ¼ −10.08þ0.32
−0.26 0.3 −10.08þ0.30

−0.27 0.2 −9.95þ0.56
−0.45 0.1

LRS log10Gμ ¼ −10.60þ0.17
−0.17 0.2 −10.60þ0.16

−0.18 0.3 −10.59þ0.27
−0.28 0.2

BOS_kk log10Gμ ¼ −8.92þ1.12
−1.42 0.2 −8.98þ1.17

−1.38 0.3 −8.66þ1.24
−1.65 0.1

Nk ¼ 105þ86
−96 101þ90

−96 100þ88
−87

LRS_kk log10Gμ ¼ −10.90þ0.29
−0.27 0.2 −10.89þ0.29

−0.27 0.3 −10.86þ0.35
−0.40 0.2

Nk ¼ 102þ89
−92 103þ89

−95 104þ85
−92

FIG. 3. Left panel: posterior for the two-component SGWB model composed of (i) a signal originating from a population of circular
GW-driven SMBHB, parametrized by its PSD amplitude log10 A at f ¼ 1=year, and (ii) a SGWB from smooth CS loops background
using the BOS loop number density model; different lines styles (dashed, dotted, solid) corresponding to three methods (full, RS, FS)
show good consistency. The 95-quantile for each SGWB parameter posterior is plotted in black, using the line style associated with its
respective method. Right panel: the same for the LRS loop number density model.
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2. Kinky loops

Next we also vary the number of kinks (and thus kink-
kink collisions) in addition to the string tension, consid-
ering two-dimensional models ðlog10Gμ; NkÞ. The PSD of
the SGWB created by such a model is calculated from
Eq. (5) by setting Nc ¼ 1 (in order to still have some GW
power at the low number of kinks) and Nkk ¼ N2

k=4.
We took a uniform prior for Nk letting it vary between 0

and 200, the same prior was used in the LVK analysis [31].
This large prior on Nk accounts for theoretical uncertainties
on the initial number of kinks at loop creation and on the
efficiency of the gravitational backreaction that is expected
to smooth out the loop.
In the case of the BOS model, if we increase the number

of kinks (and so Γ), the SGWB in the PTA band now
corresponds to the transition between the peak of the
spectrum and the high frequency plateau and thus increases
the characteristic slope of its PSD while decreasing the
amplitude. This increase in spectral index will be disfa-
vored as it will be too steep to fit the data properly.
However, to compensate the decrease in amplitude, an
increase of the string tension Gμ can both correct the
amplitude and the spectral index by placing the high
frequency plateau in the PTA frequency band. One can
see such interplay between Gμ and Nk in the left panel of
Fig. 4. The data equally allows two joined solutions: low
tension with low number of kinks and very kinky loops
(Nk ≳ 120) with high tension, log10Gμ ∼ −8.3.
Contrary to the BOS case, the PSD slope of the LRS

increases only slightly at low frequency with increasingNk.
Once F0 ≲ 1=T ∼ 10−9, the spectrum is dominated by the
extra population of small loops that the LRS model
introduces and the associated power is now independent
of Γ and proportional to Gμ [32]. Therefore, the only shift
in amplitude is caused by the domination of kinks (instead

of cusp) in the GW power emission leading to an increase
by a factor ∼1.6 [32], that can be simply compensated by a
slight decrease in the tension leading to log10Gμ ∼ 10.9.
As a result, adding kinks has practically no effect in the
LRS model, and we recover the prior for Nk, as seen the
right panel of Fig. 4.
According to the posterior, the model with a high

number of kinks is supported by the observed data,
especially for BOS where it suggests a possible very high
number of kinks. For example, Nk ¼ 120 corresponds to
Γ ≈ 960, which is well above the value of 50 expected in
the latest simulations of cosmic string loops. Finally, all
three methods (depicted with different line styles in Fig. 4)
show very consistent results, even if the FS method
struggles more to recover the double peak solution in
the BOS model case.

B. Model comparison

The fact that the cosmic string parameters are well
constrained does not tell us how well it explains the
observed data. The Bayes factor, defined as the ratio of
evidence between two models, is often used to quantify the
ability of two different models to fit a set of data. Note that
the Bayes factor can tell us which model is preferred based
on the observations, but still does not tell us how well it
describes the data. In what follows, we want to compute the
Bayes factors of the considered cosmic string models
against the power-law (PL) (SMBHB-inspired) model.
Results are reported in Table II. We find that the cosmic
string models are slightly preferred over PL model thanks
to its simplicity: only one parameter. However, Fig. 5
shows that all models fit the spectral shape similarly well.
Considering the two-component model of SGWB

(SMBHBþ CS, see previous subsection), we have found
no statistical support for this complex model as compared

FIG. 4. Left panel: posterior for two-dimensional (string tension and the average number of kinks on loops of the network) BOS
model; different lines styles corresponding to three methods (full, RS, FS) show full consistency. Right panel: the same for the LRS loop
number density model.
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to a simple SMBHB, BSMBHBþCS
SMBHB ≈ 1 for both BOS and

LRS cosmic string networks (using full, RS and FS
methods).
We have demonstrated earlier that the kinks had no

strong impact and were not constrained by the data in the
models with the variable number of kinks. This is also
reflected in the evaluated Bayes factors.
Both full and the RS methods give very consistent Bayes

factors for all models, as shown in Table II.
The Bayes factors computed with FS method depend on

the prior chosen for evaluating the FS amplitude compo-
nents ρk. The main reason is that power at all low frequency
bins is not fully constrained. The posteriors have a long tail
toward the low values of power (see Fig. 5). Choosing a
wider prior makes those tails longer, spreading the prob-
ability across a long range of ρk (draining it from the
“bumps” located at high power). Despite the fact that the
tails are thin, they go all the way to minus infinity in log-
scale (zero in power) and the probability distribution is then
strongly affected (through normalization). So we are facing
the question of what we should use as a prior range for
the log10 ρk?.
The choice of the prior range has a direct impact on the

evidence calculation: some values of the SGWB model
parameters have no support (zero contribution to the
evidence integral) because of the truncation of the ρk
imposed by the prior (which is not the case in the full
or RS approach). Even more important is the indirect
impact caused by the correlation of pulsar spin noise (red
noise intrinsic to each pulsar) and common red noise at the
lowest frequencies. In Fig. 6, we show the inferred
distribution for the parameters of the spin red noise in

one of the best pulsars, PSR J1909-3744. Extending the
prior range for ρk leads to steeper and stronger spin red
noise in that pulsar (dashed brown line compared to the
solid brown line). This implies that the (artificially)

FIG. 5. Posterior distributions of the 30 ρk coefficients (in log10-scale). We over-plotted the best fit [using the FS likelihood of
Eq. (20)] for three different PSDs: powerlaw, SGWB using BOS and LRS models (in the case of smoothed loops). We see that all three
spectra behave in a similar way at low frequency bins.

FIG. 6. Marginalized red noise parameters posteriors for the
pulsar J1909-3744 obtained with the full method including HD
correlation for the common red noise process. Brown dashed and
solid lines were obtained using different prior on the power in the
Fourier bins (passing from −10 to −15 for the log10 ρk lower
bound). The solid line (restricted prior) suggests a truncated
correlation of the common red noise with the spin red noise of
J1909-3744. We also plotted for comparison those posteriors
when using as common red noise, a SGWB from cosmic string
following the BOS (blue line)/LRS (orange line) models.
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overconstrained prior on ρk truncates the noise estimation
in the pulsar J1909-3744. We empirically determined a
fiducial value of power in terms of log10ρth (that can be
roughly regarded as common to all frequency bins) which
represents the threshold below which our data becomes
insensitive. We selected a symmetric range centered around
this specific value, which we set at log10ρth ¼ −8. For the
upper limit, we opted for −4, leading to a lower bound of
−12 for the log10 ρ prior. This prior answers direct (albeit
partially) and indirect (by preserving correlations) impact
on the Bayes factor while avoiding an overblow of the
prior range.
In addition, it is worth noting5 that the posteriors given

by the FS method typically have a broader spread compared
to other methods. Moreover, the FS method encounters
difficulties in accurately capturing the double peak feature
observed in the Gμ posterior for the BOS model in Fig. 4.
This issue is mainly due to the width of the prior for the ρk
parameters. Indeed, if a ρk posterior is not well-constrained,
which is the case for several frequency bins as evident in
Figure 5, taking a wider prior results in a longer tail and less
constrained posterior at its upper bound (due to normali-
zation). This gives a likelihood function [Eq. (20)] with less
pronounced peaks, leading to the spread in the posterior
distributions. By running the FS method using a narrower
prior range of ½−10;−4� for the ρk, we recover the posterior
distribution which is much closer to the one obtained with
the full method.
In general, we have found the choice for the prior for the

free spectrum evaluation (or rather a lack of rigorously
defined cut) is a weak point of the FS approach in
computing the evidence, despite that it perfectly falls into
Bayesian philosophy.
Accumulating high-quality data and using more pulsars

in the array, will hopefully result in the well-constrained
power at low frequencies. Consequently, this will make
the choice of the prior for the ρk parameters much less
relevant for evaluation of the Bayes factors using the FS
method.

V. CONCLUSION AND DISCUSSION

In this work, we demonstrated that the free spectrum and
resampling methods are very powerful tools to determine
rapidly the posterior distributions for the parameters
describing the SGWB. Moreover, those methods (taking
into account caveats for FS method discussed above) could
be used to evaluate the Bayes factor between various
SGWB models. We have demonstrated these methods
using the 6-pulsar early DR2 EPTA dataset and comparing
several models of SGWB produced by a network of cosmic
strings.

For this 6-pulsars only dataset, we could perform
rigorous inference (full method) of SGWB parameters
(in addition to pulsar noise parameters) and Bayes factors
evaluation Table II. Note that the full method took several
days to complete, whereas the execution time for RS/FS
methods is reduced to hours/minutes. Extending the data by
including more pulsars, more back-ends and new obser-
vations will hugely explode the dimensionality of the
problem and make the full method computationally not
tractable. The computational power scaling quadratically
with the number of pulsars and the number of observations.
We hope that this work convinces the reader of the validity
of the fast and approximate methods which have to be used
in the future PTA data analysis. The attractiveness of FS
method is that it is not very sensitive to the number of
pulsars in the array. Of course the evaluation of the free
spectrum does heavily depend on the volume of the data
and dimensionality of parameters space (pulsars noise
models), but it can then be cheaply used to infer parameters
for multiple SGWBmodels. The resampling method is also
relatively cheap, the sampling step scales linearly with
number of pulsars in the array and can be efficiently
parallelized (if needed). Even though we have demon-
strated the fast methods using simplistic power-law model
for SMBHB and two cosmic string SGWB models, the
methods are generic and can be used to infer parameters of
any SGWB.
The second result of this paper are the constraints on the

cosmic string tension Gμ for the BOS and LRS models.
Assuming that the observed red noise process is GWs,
we have obtained the preferred value for the string
tension Gμ ≈ 10−10.1 (resp. 10−10.6) for BOS (resp.
LRS). Moreover, we find that the power-law model with
HD correlations is slightly disfavored compared to the
simpler one-parameter cosmic strings model. The posterior
is not informative about the number of kinks when we
consider the two-parameter ðGμ; NkÞ cosmic string models.
However, it also implies that the possibility of having a
large number of kinks is not ruled out, though it might be
disfavored on the theoretical grounds. Considering a two-
component SGWB model (SMBHBþ CS) shows a strong
correlation between two components, and we set the upper
bounds log10Gμ≲ −9.9 (BOS model) and log10Gμ ≲
−10.5 at 95% (LRS model) confidence.
Compared to previous EPTA constraints [63,64] on

log10Gμ which were obtained using the EPTA sensitivity
curve, here we use more up to date models and consider
directly the PSD of the cosmic string SGWB through a wide
range of frequencies to obtain our constraints. Our upper
bounds on the string tension are well under the one given by
CMB experiment log10Gμ≲ −7 [65] and the LVK collabo-
ration [31] for theBOSmodel (log10Gμ≲ −8).However, for
the LRSmodel, due to the population of small loops emitting
at higher frequencies, the LVK constraint is more strin-
gent, log10Gμ ≲ −14.5We thank the referee for pointing us in this direction.
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This paper lays the path for the search and interpretation
of a SGWB signal of any origin. The fast methods
suggested here will be applied to the extended
EPTA dataset containing 25 pulsars [5]. In addition to
EPTA data, the new dataset which combines the
most sensitive observations from all PTAs, International
PTA data combination, is being produced. We expect
the future data to be more sensitive to GWs and give
better constraints on the string tension in BOS and LRS
models.
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