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We utilize the probability distribution function (PDF) of normalized convergence maps reconstructed
from the Subaru Hyper Suprime-Cam (HSC) year 1 shear catalogue, in combination with the power

spectrum, to measure the matter clustering amplitude S8 ¼ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωm=0.3
p

. The large-scale structure’s
statistical properties are incompletely described by the traditional two-point statistics, motivating our
investigation of the PDF—a complementary higher-order statistic. By defining the PDF over the
standard-deviation-normalized convergence map, we are able to isolate the non-Gaussian information.
We use tailored simulations to compress the data vector and construct a likelihood approximation. We
mitigate the impact of survey and astrophysical systematics with cuts on smoothing scales, redshift bins,

and data vectors. We find S8 ¼ 0.860þ0.066
−0.109 from the PDF alone and S8 ¼ 0.798þ0.029

−0.042 from the
combination of the PDF and power spectrum (68% confidential level (CL)). The PDF improves the
power-spectrum-only constraint by about 10%.

DOI: 10.1103/PhysRevD.108.123526

I. INTRODUCTION

Weak lensing surveys are rapidly catching up with
the precision afforded by cosmic microwave background
(CMB) experiments [e.g., [1–3]]. Weak lensing directly
probes the clustering of matter through statistical mea-
surements of the distortion of galaxy shapes. In recent
years, weak lensing surveys have produced increasingly
precise measurements of the matter clustering amplitude
S8 [e.g., [4–8] ], showing hints of a discrepancy between
galaxy lensing and CMB determinations, dubbed the
S8-tension. Typically, these studies adopt two-point
statistics—the two-point correlation function or the
power spectrum.
While two-point statistics are sufficient to describe

Gaussian fields such as the CMB, the large-scale structure
that sources the weak lensing signal has undergone
nonlinear growth and is thus far from Gaussian.
Therefore, weak lensing non-Gaussian statistics have

been proposed to extract complementary information.1

Equally importantly, non-Gaussian statistics are affected
by systematics differently than two-point statistics. This
is especially relevant for the S8-tension, since whether its
origin stems from new physics or systematics is currently
under hot debate. Non-Gaussian statistics will be par-
ticularly beneficial for upcoming surveys such as Rubin
LSST [54], Euclid [55], and Roman [56]. These surveys
will provide a high source density and hence probe deeper
into the nonlinear regime.
In this work, we focus on the probability distribution

function [PDF, [57–60] ] of the lensing convergence map2

*lthiele@princeton.edu

1Popular non-Gaussian statistics includeminima, peaks [9–17],
voids [18], Minkowski functionals [19–25], Betti numbers
[26,27], persistent homology [28,29], wavelets [30], scattering
transform [31,32], moments [21,22,33–37], higher-order correla-
tion functions [38–43], density-split statistics [44], and convolu-
tional neural networks [45–47].A comparison of some of these in a
forecast setting for Euclid has been carried out by [48], finding
about similar performance for many of these statistics, but it is
limited to the Fisher approximation. An even more ambitious
attempt uses forward-model, field-level methods [e.g., [49–53] ].

2Also called the mass map.
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from the Subaru Hyper Suprime-Cam (HSC) year 1 (Y1)
data release [61,62]. HSC is currently the deepest large-
scale lensing survey and is thus considered a precursor of
Stage-IV surveys. The PDF collects the amplitudes—but
not shapes—of correlation functions of all orders. Thus, it
is a highly non-Gaussian statistics and contains distinct
information “far” from the power spectrum. Forecasts
have shown promise in tightening the constraints on not
only S8 but also the neutrino mass sum and the dark
energy equation of state [63–68]. Formally, the PDF and
moments are closely related. Moments can suffer from
instabilities due to a few extreme pixels. This implies that,
in practice, with a limited range of convergence values
included in the PDF’s bins, the PDF can still be comple-
mentary to moments.
Our work is the first to obtain cosmological constraints

from the lensing PDF with observations. While there exist
analytic models of the PDF based on large-deviation theory
[69–71] and the halomodel [66,72,73], they are not yet at the
level of accuracy and flexibility required to incorporate the
complex survey configurations and systematics. Therefore,
we use a large set of cosmological simulations tailored to
HSC Y1 data to model the lensing PDF and its likelihood.

II. METHODS

In this section, we provide a brief overview of the HSCY1
data, the PDF and power spectrum measurements, the
simulations suite, the likelihood, our blinding procedure,
and systematics.More detail may be found in our companion
paper on counts of lensing peaks and minima [74].

A. HSC Y1 data

We use lensing convergence maps estimated from the
HSCY1galaxy shapes catalogue [75].After applyingmasks,
the shear maps span 136.9 deg2 in six spatially disjoint
fields. We adopt galaxy redshifts determined using the MLZ

code [76]. After applying redshift cuts of 0.3 < zs < 1.5
and restricting to sources with reliable shape measurements,
we obtained a total number density of ∼17 arcmin−2. We
split source galaxies into four tomographic redshift bins
with edges [0.3, 0.6, 0.9, 1.2, 1.5] and construct convergence
maps via Kaiser-Squires inversion [77].

B. PDF and power spectrum

The primary summary statistic we consider is the lensing
PDF, calculated as histograms of pixels in normalized
convergence maps. One crucial step in our computation is
that we define the PDF over the signal-to-noise ratio—i.e.,
each convergence map is divided by its standard deviation
before its pixels are histogrammed. This is important in
order to remove information duplicated in the power
spectrum. The PDF’s non-Gaussian character becomes
apparent in Fig. 1, where the tails deviate from a
Gaussian (which is dominated by galaxy shape noise).

We measure PDFs on maps with 0.88 arcmin side-length
pixels smoothed with Gaussian filters ∝ expð−θ2=θ2sÞ,
where we choose θs ¼ f5; 7; 10g arcmin to mitigate sys-
tematics while retaining non-Gaussian information. A
Gaussian filter has optimal joint localization in configura-
tion and reciprocal space and is thus a common choice
[e.g., [17,47,48]]. The presence of masking (where we set
shear to zero) means that the filter may decrease the signal-
to-noise ratio slightly, but no biases can arise, since the
mask is consistently implemented in data and simulations.
For each smoothing scale, we histogram in 19 equally
spaced bins between −4 and 4 (cf. Fig. 1). Of these, we
remove the first three bins to minimize contamination
by baryons according to tests described in Sec. II E [also,
cf. [78]]. Finally, we remove the tenth bin, as otherwise, the
linear constraint from fixing the first three moments would
render the PDF’s auto-covariance almost singular.
We also consider the auto-power spectrum for each

tomographic redshift bin, deconvolving the survey mask
using the pseudo-Cl method as implemented in NaMaster

[79,80]. We measure Cκκ
l in 14 logarithmically spaced bins

in angular multipole 81 < l < 6580. Of these, we remove
l < 285, as Ref. [81] found unmodeled systematic errors
for these scales in HSC Y1 data. Furthermore, we remove
l > 1000 due to possible contamination by baryons. We
note that lmax ∼ 1000 is also comparable to the minimum
smoothing scale of 5 arcmin used in the PDF data vector.
This leaves us with four l bins. In contrast to previous two-
point analyses [82,83] we do not include cross spectra
between tomographic redshift bins. Upon unblinding the
power-spectrum-only posteriors, we found that the highest
tomographic redshift bin causes significant shifts in S8.

3

Thus, we exclude the highest-redshift bin in our analysis.

FIG. 1. Example of the non-Gaussian lensing convergence
PDFs from the HSC Y1 data (orange) and the fiducial simulation
(blue) for the tomographic redshift bin 0.6 < zs < 0.9 and with a
smoothing scale θs ¼ 5 arcmin. For most of the data points, the
error bars are invisible. Unfilled data points are not used in the
analysis. The PDF’s deviation from a Gaussian (black) provides
the cosmological information to be exploited in this work.

3This may be due to deficiencies in our simulations; for
example, the simulations use lower resolution at high redshifts,
which may not be sufficient. Alternatively, the highest source
redshift bin may be subject to photo-z calibration errors [7,8].
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In summary, our raw data vector consists of the
PDF with 135 dimensions (3 smoothing scales × 3 redshifts
× 15 bins) and the power spectrum with 12 dimensions
(3 redshifts × 4 bins).

C. Simulations

We adopt two sets of N-body simulations in our
analysis:
(1) To model the covariance, we use 2268 realizations of

the HSC Y1 footprint at a fiducial point (S8 ¼ 0.791,
Ωm ¼ 0.279), generated from the 108 quasi-
independent [84] full-sky maps of Ref. [85].

(2) To model our statistics, we use simulations at 100
different cosmological models with varying values
of S8 and Ωm, as introduced in Ref. [86]. For each
cosmology, 50 quasi-independent realizations are
generated by randomly placing observers within the
periodic box. These simulations are used to con-
struct emulators for the mean theory prediction; thus,
they are designed to have better accuracy than the
fiducial simulations.

For each of these 7768 (¼ 2268þ 100 × 50) realizations,
mock galaxy shapes are generated followingRefs. [87–89].
Convergence map generation and summary statistic
measurements are performed on these simulated mocks
identically to the processes used for the real data.

D. Likelihood and inference

For the PDF, to reduce the size of the data vector and
Gaussianize its likelihood, we score-compress the loga-
rithmic PDF under the approximation of a Gaussian like-
lihood [MOPED, [90]].4 This reduces the number of PDF
bins from 135 to only 2, corresponding to the number of
parameters (S8 and Ωm). We then construct at each of the
100 cosmological models a 2 × 2 covariance matrix, using
the 50 realizations. Finally, we build emulators of both the
compressed PDF and the cosmology-dependent inverse
covariance using Gaussian processes.5 If we use a
cosmology-independent covariance, the S8-posterior tight-
ens, and its peak is almost unchanged. However, with that
choice, the ranks plot discussed below would indicate an
overconfident posterior.
The power spectrum data vector is small enough, and its

distribution is known to be close to Gaussian. Therefore,
we apply no data compression to the power spectrum.
We build a Gaussian process emulator to model the
power spectrum and estimate a cosmology-independent

covariance matrix using the fiducial simulations. To jointly
analyze the compressed PDF and the power spectrum, we
approximate the cross-correlation between them as con-
stant and estimate it from the fiducial simulations.
We adopt uniform priors on our parameters S8 andΩm, in

the intervals [0.5, 1.0] and [0.2, 0.4], respectively. Our prior
is well covered by the available simulations. Markov chain
Monte Carlo (MCMC) sampling is performed using
EMCEE [92,93].
We validate our likelihoods with a “ranks plot”

[e.g., [94]], shown in Fig. 2. The rank statistic is a simple
calibration test which relies on the fact that for a valid
likelihood, random draws from the posterior should be
statistically indistinguishable from the true parameter
vector. To construct the ranks plot, we run MCMC on
realizations drawn from the 30 cosmology-varied simula-
tions within our prior. To cleanly separate our training and
test sets, all emulators are rebuilt without the test cosmol-
ogy. We then order each Markov chain by its S8 values and
find the rank of the true S8. For a valid likelihood, it should
be impossible to statistically distinguish the true S8 from
randomly selected Monte Carlo samples, so the ranks
should follow a uniform distribution. If the posterior is
overconfident (underconfident), the histogram exhibits a
U-shape (inverse U). However, because we only have a
relatively small number of simulated cosmologies available
within our prior, a perfectly uniform distribution may not
be possible to attain. Indeed, Fig. 2 shows an approximately
uniform distribution for all data vector choices (PDF, power
spectrum, and the two of them jointly), except for spikes at
the edges for the power spectrum and joint statistic. These
spikes are attributable to a small number of simulations
near the prior boundary, where the power spectrum
emulation appears to work less well. We do not expect
these to affect our results, as they have little overlap with
our final posterior, and the problem is mostly due to
underestimated tails, which are less important for the
confidence levels typically considered.

FIG. 2. Validations of our likelihoods. The histograms are over
hundreds of Markov chains, run with realizations from the
cosmo-varied simulation set as “observation.” The x axis is
the position of the simulation’s true S8 value in the ordered chain.
A uniform distribution is expected for a valid likelihood. The gray
band represents the 2σ interval, approximating the bin counts as
Poissonian.

4We note that upon combining the PDF with the power
spectrum, the compression is likely suboptimal; future work
could investigate more rigorous ways to preserve a maximum of
information. Of course, the choice of likelihood to compute the
score cannot induce biases, only information loss.

5Analytic methods to compute the covariance have been
presented in Refs. [66,91].
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E. Systematics

We study potential biases caused by effects not included
or wrongly described in the simulated model by running
inference on fiducial mocks contaminated with the follow-
ing methods:
(1) We simulate miscalibration of multiplicative bias by

shifting it by �1%, corresponding to the uncertainty
on the mean quoted in Ref. [95].

(2) We assess the impact of photometric redshift un-
certainty by generating fiducial mocks with source
redshifts from two other codes, FRANKENZ and
MIZUKI.

(3) We model the impact of baryonic effects using the
κTNG simulations [96]—two sets of convergence
maps with and without baryons. We contaminate the
fiducial mocks with the ratio of hydrodynamic to
dark-matter-only data vectors.

(4) We estimate the impact of intrinsic alignments
similarly to the baryons’ case by multiplying the
fiducial data vectors with a fixed ratio which we
obtain from mocks with nonlinear intrinsic align-
ments [97]. We choose alignment amplitudes,
AIA ¼ f−0.32; 1.18g, comparable to the 1σ con-
straints in Refs. [82,83].

We show the resulting biases on S8 for these systematics in
the left panel of Fig. 3 (also see the more comprehensive
discussion in Ref. [74]). The most constraining joint
PDFþ Cκκ

l data vector is used. We do not find biases
exceeding 0.45σ in S8.
In addition, we also consider potential biases caused by

imperfections in the simulations and emulators:
(1) The mean recovered S8 on the fiducial simulations

is about 1σ higher than the input, indicating a
systematic difference with the cosmology-varied

simulations. This is likely due to the lower fidelity
of the fiducial simulations. With this in mind, the
observed 1σ bias can be considered an upper bound
on biases caused by resolution effects in the N-body
simulations.

(2) To assess biases caused by the limited training set
size, at each cosmology we divide the realizations
into 25 samples each for training and testing. We
match the realization indices (i.e., observer posi-
tions) between cosmologies so as to maximize
statistical independence between training and testing
samples. In addition, all realizations at the test
cosmology are removed from the training. The right
panel of Fig. 3 shows the average biases on S8 within
our prior range, in units of the standard deviation.
The bias is computed using the mode of the
marginalized S8 posterior to minimize the effect
of the prior, which can shift the mean. The bias is a
few tens of percent for most of the points, except at
the edges, where the emulator quality decreases.
Since the described test aggressively reduces the
training set size, our bias estimates are likely a
conservative upper bound.

F. Blinding

To help build best practices for non-Gaussian statistical
analyses with Stage-IV surveys [e.g., [48] ], we follow a
three-step blinding procedure in our analysis:
(1) We build the mock generation pipeline using one

random realization from the fiducial model as
“observation.” This includes shear bias correction,
convergence map reconstruction, masking, in-paint-
ing, and summary statistics measurements.

(2) We construct the inference pipeline using the ranks
plot and similar tests. This includes data compres-
sion, covariances, emulators, and MCMC sampling.

(3) We select smoothing scales, redshift bins, and
cuts on data vectors to minimize the impact of
systematics.

(4) First unblinding: B-modes. We compare the power
spectra and PDFs measured in B-mode maps of
the HSC Y1 data and our fiducial simulation.6 We
validate that the two distributions are statistically
consistent.

(5) Second unblinding: power spectrum. We apply
inference to the measured HSC Y1 power spectrum
and compare our results internally between different
redshift bins and to the official HSC Y1 analyses by
Refs. [82,83]. We discover systematics in the highest
tomographic redshift bin and remove it from our
final analysis.

FIG. 3. Left: estimate of systematic errors. We contaminate the
PDFþ Cκκ

l data vector with various systematics as described in
the text. No systematic exceeds 0.45σðS8Þ. Right: assessment of
training set and emulator quality. Each point is one of the
cosmologies for which cosmo-varied realizations exist. The bias
indicated is estimated by averaging over chains run on 25
realizations, while the emulator is trained with the other 25
realizations, and without including the cosmology where the
inference is performed.

6B-mode maps are built by rotating galaxy shapes by
45 degrees.
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(6) Third unblinding: PDF. We unblinded the PDF-
only posterior during an invited presentation
at the HSC weak lensing working group telecon.
The initial posterior was approximately uniform.
This failure was due to a bug in computing the
standard deviations of the HSC data maps.7

The bug did not affect our previous steps, so once
we resolved it, we did not change any other parts of
the pipeline.

(7) After the initial submission of this paper, we
learned that there are two additional multiplicative
bias parameters arising from galaxy size selection
and redshift-dependent responsivity corrections.
Post-unblinding, we updated our analysis to ac-
count for this total multiplicative bias. The correc-
tion is very small and hence did not change our
conclusions. However, it made our power-spec-
trum-only results more consistent with the official
analysis [82].

Since the HSC Y1 data are already public, our blinding
procedure is rather an honor system.8

III. RESULTS

We show the S8 posteriors obtained from the power
spectrum, the PDF, and the two combined in Fig. 4. In all
cases, the constraint on Ωm is prior dominated, and thus is
not shown here for brevity. For reference, we also show the
68% intervals from the official HSC Y1 two-point analyses
with the power spectrum [82] and the two-point correlation
function [83].
Our two-point result (blue) agrees well with the previous

analyses in terms of mean value. However, our posterior is
wider: σ ≃ 0.042, compared to σ ≃ 0.03 in the previous
two-point analyses. This is expected, as these analyses
differ in many respects, such as additional cross spectra
between tomographic redshift bins, choices of priors,
treatment of systematic errors, data vector binning, and
scale cuts.
Our PDF-only posterior (orange) shows a clear detection

of S8, or specifically nonlinear clustering, at 9σ. This is
after removing variance information from the PDF and thus
is almost independent of the two-point results. The mean S8
value is slightly higher than the one from Cκκ

l , but it is
statistically consistent. Upon combining the PDF and Cκκ

l ,
we observe a slight upwards shift in the mean S8 and a

≈10% tightening of the posterior. This shows that the PDF
indeed contains complementary information to the power
spectrum.
In many aspects, our results match the CNN analysis

from Ref. [47], including the S8 posterior and an Oð10%Þ
improvement compared to the power spectrum.

IV. CONCLUSIONS

In this work, we obtained the first cosmological
constraints using the probability distribution function
of weak lensing convergence. We built convergence
maps using the HSC Y1 shear catalogue, constructed a
likelihood based on tailored numerical simulations, and
validated that known survey and astrophysical system-
atics are under control after applying cuts on smoothing
scales, redshift, and data vectors. We designed and
followed a three-step blinding procedure to minimize
confirmation bias. We make our inference code publicly
available at this URL [99].
The PDF improves the power-spectrum-only constraint

by about 10%. For the clustering amplitude, we obtain
S8 ¼ 0.860þ0.066

−0.109 and S8 ¼ 0.798þ0.029
−0.042 from the lensing

PDF alone and the combination of PDF and power
spectrum, respectively (68% CL). We computed the PDF
on convergence maps normalized by their standard
deviation; hence, we maximally removed two-point infor-
mation from the PDF. Our results are consistent with
previous analyses on the same data and show that the
PDF provides additional information not contained in the
power spectrum.
We find no tension between the S8 inferred from HSC

Y1 lensing and from primordial CMB measurements.

FIG. 4. S8 posteriors from different data vector choices. Since
the posteriors are slightly asymmetric, we quote their modes as
well as the symmetric 68% confidence interval. For comparison,
we include 68% intervals from Refs. [82,83]. Note that these
analyses differ in various details. The inset compares the best-fit
model to the data (PTE ¼ 0.86). We remind the reader that the
PDF does not contain information on the variance.

7Thanks to the feedback from the HSC weak lensing working
group, we learned a valuable lesson of comparing the PDFs
before moving on to inferences. They also pointed out
that a more sophisticated blinding policy, as typically employed
by collaborations, would have flagged this issue before
unblinding.

8During our study, we also became aware of other recently
completed non-Gaussian statistical analyses using the same
dataset [47,98]. To avoid confirmation bias, we refrained from
reading these papers until we finalized our results.
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Future work could investigate alternatives to the prob-
ably lossy compression step, as well as the forward
modeling of systematics to allow inclusion of smaller
scales. Additionally, Stage-IV data will be sensitive to
cosmological parameters beyond S8—for example, the
neutrino mass sum. The PDF could be instrumental in
complementing two-point statistics in order to optimally
constrain such model extensions.
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APPENDIX A: INFORMATION

In Fig. 5, we illustrate where the information in the PDF
is primarily coming from.
In the left panel, we focus on redshift bins and smoothing

scales. We observe that, analogously to the two-point
statistics, the highest redshift bin is the most informative.
Furthermore, the largest smoothing scale (10 arcmin) is
quite uninformative, due to the nearly Gaussian character of
the field. On the other hand, the smaller smoothing scales
contain information, and the compression appears to use
the difference between them.
In the right panel, we focus on the convergence bins.

Even though it might be expected that the higher signal-to-
noise ratio close to the PDF’s peak would make these bins
the most informative, we observe that the high-κ tail is
actually where most of the information is coming from.
This is consistent with our picture in Fig. 1, where the
deviations from Gaussianity in the tail are the focus of
this work.

APPENDIX B: DATA VECTOR CHOICES

In Fig. 6, we explore the effects of various modifications
to the data vector. First, we remove the lowest and highest
tomographic redshift bins (orange, green) and observe that
the higher one contributes much more of the signal-to-noise
ratio. Then, we add the tomographic redshift bin that was
excluded in our baseline analysis, cf. Sec. II B (red). As
discussed in the text, including this bin leads to a
substantial shift in the posterior.
The last three tests apply only to the PDF part of the data

vector. First, we remove the smallest smoothing scale

FIG. 5. Illustration of the compression weights for the PDF. We
picked a high-S8 cosmology (with close to fiducial Ωm) from our
simulations. By taking the elementwise product between the first
MOPED compression vector (corresponding to S8) and the data
vector, we can gain intuition as to where information is coming
from. For this figure, we subtract the corresponding product for
the fiducial simulations. Note that the data vector shown in
orange is just for illustration and has been rescaled and shifted for
convenience. Left: contributions from different source redshifts
and smoothing scales (with the κ-bins summed over). Right:
contributions from different κ-bins with source redshifts and
smoothing scales summed over.

FIG. 6. The effect of various cuts and extensions in the data
vector on the final posterior. All posteriors plotted are for
PDFþ Cκκ

l , the blue baseline being the same curve as in Fig. 4.

THIELE, MARQUES, LIU, and SHIRASAKI PHYS. REV. D 108, 123526 (2023)

123526-6



(purple). Then, we add a 2 arcmin smoothing scale (brown).
We observe that using the smaller smoothing scale tightens
the posterior substantially, indicating that there is useful
information. However, in our baseline analysis, such small
scales are not used due to concerns about baryonic
systematics. Finally, we delete the 17th convergence bin
(instead of the tenth, cf. Sec. II B), and we find that this
modification of the data vector does not alter the posterior.

APPENDIX C: LIKELIHOOD CHOICES

In Fig. 7, we show what happens to the PDF-only
posterior when various choices in our likelihood construc-
tion are altered. As shown in the upper panel, the baseline
used in the main text (blue) exhibits the best rank statistics
(closest to uniform distribution). The modifications deviate
from uniform distribution. The resulting posteriors are still
broadly consistent.

APPENDIX D: TOMOGRAPHY

For two-point analyses, including the auto- and cross-
power spectra from tomographic redshift bins saturates the
information. The situation is more complicated with non-
Gaussian statistics, because the shape noise propagates in a
nonlinear way into the data vector and posteriors. In the
main text, we used a tomographic analysis, motivated by
previous work that indicated benefits to tomography [65].
In Fig. 8, we show what happens when we collapse all
sources in a single bin (orange). We observe that the
tomographic analysis does yield a somewhat tighter pos-
terior. Of course, one can also combine tomographic and
nontomographic data vectors, or use various other mergers
of redshift bins. We do not expect such strategies to
significantly affect the constraining power in our case,
but more generally, they warrant further study.

FIG. 7. The effect of changing the PDF likelihood in various
ways (cf. Sec. II D). In all plots, the data vector considered is PDF
only. The top panel is the ranks plot, cf. Fig. 2, and the bottom
panel shows the posteriors on real data obtained with the different
likelihoods. We observe that the baseline likelihood used in the
main part of the paper exhibits the healthiest calibration diag-
nostics. Furthermore, we see that the different likelihood as-
sumptions lead to visible but mild shifts in the posterior.

FIG. 8. Impact of tomography in the PDF-only analysis.
We consider only the lower three redshift bins, as explained in
Sec. II B. We observe that the posterior obtained with tomogra-
phy (blue) is tighter than the one obtained without it (orange).
The combined posterior (green) is consistent with the individual
ones but slightly broader then the tomographic result, presumably
due to small inefficiencies in the compression.
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