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In Starobinsky inflation with a Weyl squared Lagrangian −αC2, where α is a coupling constant, we study
the linear stability of cosmological perturbations on a spatially flat Friedmann-Lemaître-Robertson-Walker
background. In this theory, there are two dynamical vector modes propagating as ghosts for α > 0. This
condition is required to avoid tachyonic instabilities of vector perturbations during inflation. The tensor
sector has four propagating degrees of freedom, among which two of them correspond to ghost modes.
However, the tensor perturbations approach constants after the Hubble radius crossing during inflation, and
hence the classical instabilities are absent. In the scalar sector, the Weyl curvature gives rise to a ghost mode
coupled to the scalaron arising from the squared Ricci scalar. We show that two gauge-invariant
gravitational potentials, which are both dynamical in our theory, are subject to exponential growth after the
Hubble radius crossing. There are particular gauge-invariant combinations like the curvature perturbations
whose growth is suppressed, but it is not possible to remove the instability of other propagating degrees of
freedom present in the perturbed metric. This violent and purely classical instability present in the scalar
sector makes the background unviable. Furthermore, the presence of such classical instability makes the
quantization of the modes irrelevant, and the homogeneous inflationary background is spoiled by the Weyl
curvature term.
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I. INTRODUCTION

The inflationary paradigm [1–4] can successfully resolve
several shortcomings in big bang cosmology, e.g., the
horizon and flatness problems. Moreover, it can explain the
origin of large-scale structures in the Universe by stretching
quantum fluctuations over super-Hubble scales during the
accelerated expansion [5–9]. The spectra of scalar and
tensor perturbations predicted in standard slow-roll infla-
tion are consistent with the observed cosmic microwave
background (CMB) temperature anisotropies. After the
data release of WMAP [10] and Planck [11] satellites,
we have been able to distinguish between many different
models of inflation. In particular, the first model advocated
by Starobinsky [5] is still one of the best-fit models to the
Planck CMB data [12].
In the Starobinsky model, inflation is driven by a

quadratic Ricci scalar term βR2, where β is a positive
coupling constant. The period of cosmic acceleration ends
when the βR2 term drops below the Ricci scalar R [13–17].
The quadratic curvature scalar gives rise to a new

propagating degree of freedom (d.o.f.) dubbed the
“scalaron” [5] with a mass squared m2

S ¼ 1=ð6βÞ on the
Minkowski background [18–22]. Indeed, the fðRÞ gravity
given by the Lagrangian fðRÞ ¼ Rþ βR2 is equivalent to
Brans-Dicke theory [23] with a scalaron potential arising
from the gravitational sector [24–26]. From the observed
amplitude of CMB temperature fluctuations, the scalaron
mass is constrained to be ms ≃ 10−5Mpl, where Mpl is the
reduced Planck mass [15,27–29]. The Starobinsky model
predicts the scalar spectral index ns ≃ 1–2=N and the
tensor-to-scalar ratio r ≃ 12=N2 [29–31], where N is the
number of e-foldings counted backward from the end of
inflation. On scales relevant to the CMB observations
(N ≃ 55 ∼ 60), the theoretical predictions of ns and r are
well-consistent with the Planck data combined with other
data [12].
From the viewpoint of an ultraviolet completion of

gravity, there are also other quadratic curvature contribu-
tions to the Lagrangian constructed from scalar products of
the Riemann tensor Rμνρσ and the Ricci tensor Rμν [32].
Given that the Gauss-Bonnet curvature invariant G ¼
R2 − 4RμνRμν þ RμνρσRμνρσ is a topological term that does
not affect the field equations of motion [33], the general
quadratic-order Lagrangian can be expressed in the form
L2 ¼ −αC2 þ βR2, where C2 ¼ 2RμνRμν − 2R2=3þ G is a
squared Weyl curvature. This quadratic theory of gravity,

*antonio.defelice@yukawa.kyoto-u.ac.jp
†ryodai0602@fuji.waseda.jp
‡mizmiz8612@akane.waseda.jp
§tsujikawa@waseda.jp

PHYSICAL REVIEW D 108, 123524 (2023)

2470-0010=2023=108(12)=123524(21) 123524-1 © 2023 American Physical Society

https://orcid.org/0000-0002-1560-3205
https://orcid.org/0009-0002-8520-782X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.123524&domain=pdf&date_stamp=2023-12-12
https://doi.org/10.1103/PhysRevD.108.123524
https://doi.org/10.1103/PhysRevD.108.123524
https://doi.org/10.1103/PhysRevD.108.123524
https://doi.org/10.1103/PhysRevD.108.123524


which was originally advocated by Stelle [34], is renor-
malizable and also asymptotically free [35]. However, the
Weyl curvature generally gives rise to ghost d.o.f.s asso-
ciated with derivative terms higher than second order in the
field equations of motion [36].
Albeit the appearance of ghosts in Weyl gravity with the

Lagrangian −αC2, the perturbative expansion about the
Minkowski vacuum shows that all the linear perturbations
in scalar, vector, and tensor sectors propagate with the
speed of light [37–39]. This means that, in the absence of
additional matter sources, the perturbations are not subject
to Laplacian instabilities. Hence, on Minkowski, the Weyl
ghosts can be of “soft” types [40], i.e., even in the presence
of the ghosts, the classical perturbations do not grow by
either Laplacian or tachyonic instabilities on the given
background. However, this situation should be different by
introducing some matter fields or by taking into account the
βR2 term on curved backgrounds. The latter corresponds to
Stelle’s quadratic curvature theory mentioned above, in
which case the scalaron field arising from the βR2 term can
be gravitationally coupled to the Weyl ghost.
In this paper, we would like to address the stability of

linear perturbations on the inflationary background realized
by Stelle’s theory. We note that there are some related
works in which the dynamics of cosmological perturbations
during inflation were discussed in the presence of the Weyl
curvature term [41–45]. Most of those papers assumed the
existence of a canonical scalar field besides the Weyl and
Einstein-Hilbert terms. Since the squared Weyl curvature is
conformally invariant, the Lagrangian L ¼ R − αC2 þ βR2

of Stelle’s theory can be transformed to that in the Einstein
frame with kinetic and potential energies of the scalaron
field as well as the Weyl term [46–49].
The analysis of tensor perturbations on a spatially-flat

Friedmann-Lemaître-Robertson-Walker (FLRW) back-
ground [41] showed that the tensor ghosts can be soft
during inflation in that they do not grow by classical
instabilities. In the vector sector, there are two dynamical
propagating d.o.f.s arising from the Weyl curvature term
−αC2 [42]. The ghosts do not appear if α < 0, but vector
perturbations are subject to tachyonic instabilities. For
α > 0 the ghosts are present, but vector perturbations
decay during inflation. Thus, despite the presence of ghosts
for α > 0, both tensor and vector perturbations are not
prone to classical Laplacian or tachyonic instabilities.
These results were already recognized in Refs. [41,42]
according to the analysis in the Einstein frame, but we will
study whether a similar property holds in the Jordan frame.
Indeed, for α > 0, the classical instabilities are absent for
both the tensor and vector sectors.
In the scalar sector, the analysis of Ref. [42] in the

Einstein frame of Stelle’s theory showed that gravitational
potentials in a Newtonian gauge exhibit rapid growth after
the Hubble radius crossing during inflation. On the other
hand, the same paper also found that the curvature

perturbation in a comoving gauge remains bounded. In
Ref. [44], it was claimed that the former growth of
gravitational potentials is a gauge artifact and that scalar
perturbations are not prone to real instabilities. So far, it is
not yet clear whether the instability in the scalar sector
induced by the Weyl term corresponds to a real, physical
one. To clarify this issue, we need to scrutinize whether the
instability of scalar perturbations generally persists or not
independent of the gauge choices.
In this paper, we will study the evolution of cosmological

perturbations during inflation in the Jordan frame of
Stelle’s theory by paying particular attention to the classical
stability of the scalar modes. For this purpose, we choose
several different physical gauges and analytically derive the
closed fourth-order differential equations for the gravita-
tional potentials as well as other gauge-invariant variables
like curvature perturbations. We will explicitly show that
two dynamical propagating d.o.f.s arise from the βR2 term
(i.e., scalaron) and the Weyl curvature, one of which always
behaves as a ghost mode. Therefore, in general, there are
four independent initial conditions necessary to uniquely
specify the classical evolution of the scalar sector, and that
is the reason why the system can be described in terms of a
closed fourth-order differential equation for one single
scalar mode, or evidently, by two second-order differential
equations for two independent fields.
We will show that the two gravitational potentials Ψ and

Φ, which are both propagating d.o.f.s, exponentially grow
after the Hubble radius crossing. This instability ofΨ andΦ
occurs independently of the gauge choice made to study
their dynamics. Among other relevant gauge-invariant
variables, we also find that the curvature perturbation is
a specific variable approaching a constant in the large-scale
limit. However, the exponential increase of at least one
dynamical scalar d.o.f. appearing in the perturbed line
element does not allow the FLRW spacetime to be a stable
cosmological background. Thus, the inflationary back-
ground is violated by this real, physical, and classical
instability of scalar perturbations induced by the Weyl
ghost coupled to the scalaron. Therefore, we conclude the
propagating ghost d.o.f. in the scalar sector is not of the soft
type. Well before the end of inflation, the cosmological
background is spoiled by the classical instability and it
changes to a highly inhomogeneous Universe. In such a
context, we believe that this lack of a homogeneous
background makes the quantization of perturbations irrel-
evant. If the ghost modes were soft, then the quantization
procedure would acquire relevance and the results could be
interesting. However, this is not the case for inflation in
quadratic gravity with the Weyl term.
This paper is organized as follows. In Sec. II, we briefly

review the background dynamics of inflation realized in
Stelle’s theory. In Sec. III, we revisit how vector perturba-
tions propagate as truly dynamical d.o.f.s and show that the
absence of tachyonic instabilities requires the condition
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α > 0. In Sec. IV, we see that, despite the appearance of
ghosts arising from the Weyl term, the four dynamical
d.o.f.s of tensor perturbations approach constants after the
Hubble radius crossing. In Sec. V, we study the evolution of
scalar perturbations by choosing several different gauges
and show that, independently of the gauge choices, two
modes propagate and the FLRW background is spoiled by
the presence of instabilities of at least one of the dynamical
d.o.f.s present in the perturbed line element. Although the
classical instability itself is present for any nonzero initial
conditions of scalar modes, we confirm in Sec. VI its
presence by numerically integrating the perturbation equa-
tions of motion with proper initial conditions. Section VII is
devoted to conclusions.

II. INFLATION IN QUADRATIC GRAVITY

The action in quadratic gravity contains scalar products
of two contractions of the Riemann tensor Rμνρσ, Ricci
tensor Rμν, and Ricci scalar R. On using the property that
the Gauss-Bonnet term G ¼ R2 − 4RμνRμν þ RμνρσRμνρσ is
topological, the Riemann products RμνρσRμνρσ can be
eliminated from the action. Taking the Einstein-Hilbert
term M2

PlR=2 into account, the action of quadratic gravity
can be expressed in the form [34]

S ¼ M2
pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − αC2 þ βR2Þ; ð2:1Þ

where g is a determinant of the metric tensor gμν, α, and β
are constants, and C2 is the Weyl tensor squared given by

C2 ¼ 2RμνRμν −
2

3
R2 þ G: ð2:2Þ

Up to boundary terms, the action (2.1) can be expressed as

S¼M2
pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
R−2αRμνRμνþ

�
2

3
αþβ

�
R2

�
: ð2:3Þ

We consider a spatially flat FLRW background described
by the line element

ds2 ¼ −N2ðtÞdt2 þ a2ðtÞδijdxidxj; ð2:4Þ

where aðtÞ is a time-dependent scale factor, and NðtÞ is a
lapse function. Varying the action (2.3) with respect to NðtÞ
and aðtÞ, respectively, and setting NðtÞ ¼ 1 at the end, it
follows that

H2 þ 6βð6H2Ḣ − Ḣ2 þ 2HḦÞ ¼ 0; ð2:5Þ

2Ḣþ3H2þ6βð18H2Ḣþ9Ḣ2þ12HḦþ2 ⃛HÞ¼ 0; ð2:6Þ

where H ¼ ȧ=a is the Hubble expansion rate, with a dot
being the derivative with respect to t. At the background
level, the Weyl curvature term does not contribute to the
field equations of motion. This is an outcome of the
conformal invariance of the Weyl curvature term, whose
components vanish for the conformally flat background.
Taking the time derivative of (2.5) and combining it with
Eq. (2.5), we obtain the same equation as (2.6). This means
that there is only a single independent equation of motion,
Eq. (2.5), governing the background dynamics.
During inflation, the Hubble expansion rate is nearly

constant, and hence the last two terms in the parenthesis of
Eq. (2.5) are suppressed relative to the term 6H2Ḣ. Then,
there is the approximate relation

Ḣ ≃ −
1

36β
¼ −

m2
S

6
; ð2:7Þ

where m2
S corresponds to the mass squared of a scalaron

field given by [18–22]

m2
S ¼

1

6β
: ð2:8Þ

Provided that

β > 0; ð2:9Þ

there is no tachyonic instability arising from the nega-
tive value of m2

S. Under the condition (2.9), the Hubble
parameter (2.7) also decreases during inflation. We will
impose the condition (2.9) throughout the discussion
below.
From Eq. (2.7), we obtain the following integrated

solutions:

HðtÞ ≃Hi −
m2

S

6
ðt − tiÞ; ð2:10Þ

aðtÞ ≃ ai exp

�
Hiðt − tiÞ −

m2
S

12
ðt − tiÞ2

�
; ð2:11Þ

where Hi and ai are the values of H and a at the onset of
inflation, respectively. We introduce the slow-roll param-
eter ϵ, as

ϵ≡ −
Ḣ
H2

≃
m2

S

6H2
: ð2:12Þ

The end of inflation is characterized by the Hubble
parameter Hf when ϵ becomes equivalent to 1, so that

Hf ≃mS=
ffiffiffi
6

p
. As we will see below, Hi is larger than mS.

Then, by using Eq. (2.10), we can approximately estimate
the time tf at the end of inflation, as tf ≃ ti þ 6Hi=m2

S.
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The number of e-foldings acquired during inflation is
given by

N≡
Z

tf

ti

Hdt≃Hiðtf− tiÞ−
m2

S

12
ðtf− tiÞ2≃

3H2
i

m2
S
: ð2:13Þ

Taking N ¼ 60 as a typical minimal e-folding number
required to address the horizon and flatness problems, we
obtain the initial Hubble parameter Hi ≃ 4.5mS. This value
translates to

βH2
i ≃ 3.4; ð2:14Þ

and hence βH2 is of order 1 during inflation. From the
viewpoint of ultraviolet completion of gravity, it is natural
to consider the value of jαj same order as β.
We note that quadratic gravity given by the action (2.1)

corresponds to the fðRÞ ¼ Rþ βR2 theory with the Weyl
squared term −αC2. Under a conformal transformation of
the metric tensor gμν, the theory can be transformed to a
metric frame described by Einstein’s gravity in the presence
of a scalaron field with the potential and the Weyl squared
term [46–49]. In this Einstein frame, the dynamics of
cosmological perturbations during inflation were carried
out in Refs. [41–45] without necessarily relating the
scalaron potential with the one arising from the original
Lagrangian fðRÞ ¼ Rþ βR2. In this paper, we will per-
form all the analysis in the physical Jordan frame. To study
the dynamics of perturbations during inflation, we do not
need to take into account additional matter sources to the
Jordan-frame action (2.1).
Around the background (2.4) with NðtÞ ¼ 1, we con-

sider metric perturbations which depend on the cosmic time
t and spatial coordinates xi. The perturbed line element is
given by

ds2 ¼ −ð1þ 2AÞdt2 þ 2aðtÞð∂iBþViÞdtdxi þ a2ðtÞ
× ½ð1þ 2ψÞδij þ 2∂i∂jEþ ∂iFj þ ∂jFi þ hij�dxidxj;

ð2:15Þ

wherewe used the notation ∂i ¼ ∂=∂xi, and the Latin indices
represent spatial coordinates. The four quantitiesA,B,ψ , and
E correspond to scalar perturbations, while Vi and Fi are
vector perturbations satisfying the divergence-free condi-
tions δij∂jVi ¼ 0 and δij∂jFi ¼ 0. The intrinsic tensor
perturbation is given by hij, which satisfies the traceless
and transverse conditions hii ¼ 0 and δik∂khij ¼ 0.

III. VECTOR PERTURBATIONS

In quadratic gravity given by the action (2.3), we first
study the dynamics of vector perturbations during inflation.
Since there is the residual gauge d.o.f., we choose the
following gauge condition

Fi ¼ 0; ð3:1Þ

where i ¼ 1; 2; 3. Then, the perturbed line element in the
vector sector is given by

ds2 ¼ −dt2 þ 2aðtÞVidtdxi þ a2ðtÞδijdxidxj: ð3:2Þ

For practical computations, it is convenient to choose the
vector-field configuration in the form

Vi ¼ ½V1ðt; zÞ; V2ðt; zÞ; 0�; ð3:3Þ

which satisfies the divergence-free condition ∂
iVi ¼ 0.

Expanding the action (2.3) up to quadratic order in vector
perturbations, integrating it by parts, and using the back-
ground Eq. (2.5), the second-order action yields

Sð2Þ
v ¼−

M2
Pl

2
α
X
i¼1;2

Z
d4x

×a

�
U̇2

i −
U02

i

a2
−
�
1

2α
þ6β

α
ð2H2þ ḢÞ

�
U2

i

�
; ð3:4Þ

where a prime represents the derivative with respect to z,
and Ui ≡ V 0

i. The Weyl curvature term gives rise to two
dynamical vector perturbations U1 and U2. For α > 0, it is
clear from the action (3.4) that both U1 and U2 behave as
ghosts. On the other hand, the vector ghosts are absent
if α < 0.
Varying the action (3.4) with respect to Ui (with

i ¼ 1; 2), we obtain their equations of motion in real space.
Then, we perform the Fourier transformation

Ui ¼
1

ð2πÞ1=2
Z

dkŨiðt; kÞeikz; ð3:5Þ

where k is a comoving wave number, and Ũi is a function
of t and k. Omitting the tilde from Ũiðt; kÞ in the following,
we obtain the vector perturbation equations of motion in
Fourier space, as

Üi þHU̇i þ
�
k2

a2
þm2

W þ 6β

α
ð2H2 þ ḢÞ

�
Ui ¼ 0; ð3:6Þ

where

m2
W ≡ 1

2α
; ð3:7Þ

is the mass squared arising from theWeyl curvature [36–39].
We note that the Lagrangian βR2 contributes to the vector
mass through the term ð6β=αÞð2H2 þ ḢÞ. During inflation
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(jḢj ≪ H2), the effective mass squared of vector perturba-
tions is approximately given by

m2
eff ≃m2

W þ 12β

α
H2 ¼ 1þ 24βH2

2α
: ð3:8Þ

Since we are considering a positive coupling β, we have
m2

eff > 0 if α > 0 and m2
eff < 0 if α < 0.

For the Weyl coupling constant in the range jαj≲ β, the
effective mass squared (3.8) is at least of order H2. Then,
after ðk=aÞ2 drops below jm2

eff j during inflation, Eq. (3.6)
approximately reduces to

Üi þHU̇i þm2
effUi ≃ 0: ð3:9Þ

Since H and m2
eff can be approximated as constants during

inflation, we obtain the following solution

Ui ¼ c1 exp

�
−H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 − 4m2

eff

p
2

t

�

þ c2 exp

�
−H −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 − 4m2

eff

p
2

t

�
; ð3:10Þ

where c1 and c2 are integration constants.
For α > 0 (i.e., m2

eff > 0), if H is initially in
the range H > 2meff , the amplitude of vector perturba-
tions first decreases in proportion to Ui ∝
exp½ð−H þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 − 4m2

eff

p
Þt=2�. After H decreases below

2meff , the vector perturbation starts to oscillate with the
decreasing amplitude (jUij ∝ e−Ht=2). This means that,
even though the two vector ghosts are present for α > 0,
vector perturbations decay exponentially during inflation.
For α < 0, the negative mass squared m2

eff leads to the
tachyonic growth of Ui. During inflation, the first term on
the right-hand side of Eq. (3.10) corresponds to a growing
mode. The increase of Ui is particularly prominent
after H2 drops below the order of −m2

eff , during which
Ui ∝ expð

ffiffiffiffiffiffiffiffiffiffiffi
jm2

eff j
p

tÞ. Then, for α < 0, the FLRW back-
ground is destroyed by the growth of vector perturbations.
To avoid such an instability problem, we will focus on the
coupling in the range

α > 0; ð3:11Þ

in the following.
We recall that, in the above discussion, we have focused

on the case jαj≲ β. In the coupling range jαj ≫ β with βH2
i

of order 1, jm2
eff j is much smaller than H2 during inflation.

Taking the limit jm2
eff j=H2 → 0 in Eq. (3.10), the rapid

growth of Ui is absent. In Sec. V, however, we will show
that scalar perturbations are subject to exponential insta-
bilities in the coupling range jαj ≫ β.

IV. TENSOR PERTURBATIONS

We proceed to study the dynamics of tensor perturba-
tions hij with the perturbed line element given by

ds2 ¼ −dt2 þ a2ðtÞðδij þ hijÞdxidxj; ð4:1Þ

with the traceless and transverse conditions hii ¼ 0 and
∂
ihij ¼ 0. Without loss of generality, we can consider
gravitational waves propagating along the z direction,
whose nonvanishing components are

h11 ¼ −h22 ¼
h1ðt; zÞffiffiffi

2
p ; h12 ¼ h21 ¼

h2ðt; zÞffiffiffi
2

p ; ð4:2Þ

where h1 and h2 are functions of t and z. These components
of hij automatically satisfy the traceless and transverse
conditions mentioned above.
Expanding the action (2.3) up to second order in h1 and

h2 and integrating the action by parts, we obtain the
following quadratic-order action

Sð2Þ
t ¼ M2

Pl

4

Z
d4xa3

X
i¼1;2

�
−αḧ2i −

α

a4
h002i þ 2α

a2
ḣ02i

þ
�
1

2
þ ðαþ 6βÞð2H2 þ ḢÞ

�
ḣ2i

−
�
1

2
þ 6βð2H2 þ ḢÞ

�
h02i
a2

�
; ð4:3Þ

where we also used the background Eq. (2.5). The presence
of the Weyl curvature term gives rise to the fourth-order
differential equation for hi. We perform the Fourier trans-
formation of hi, as

hi ¼
1

ð2πÞ1=2
Z

dkh̃iðt; kÞeikz; ð4:4Þ

where h̃i depends on t and the wave number k. In Fourier

space, the second-order action S̃ð2Þ
t ¼ R

dtd3kLt can be

obtained under the replacements ḧ2i →
̈h̃2i , h002i → k4h̃2i ,

ḣ02i → k2 ˙̃h
2
i , ḣ2i →

˙̃h
2
i , and h02i → k2h2i in Eq. (4.3).

Omitting the tilde from h̃i, the second-order Lagrangian
density in Fourier space is given by

Lt ¼
a3M2

Pl

4

X
i¼1;2

�
−αḧ2i

þ
�
1

2
þ ðαþ 6βÞð2H2 þ ḢÞ þ 2αk2

a2

�
ḣ2i

−
k2

a2

�
1

2
þ 6βð2H2 þ ḢÞ þ αk2

a2

�
h2i

�
: ð4:5Þ
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To understand the appearance of ghost d.o.f.s, we
introduce Lagrangian multipliers χi (with i ¼ 1; 2) such
that

L̄t ¼ Lt þ
a3M2

Plα

4

X
i¼1;2

ðḧi þ c1ḣi þ c2hi − c3χiÞ2; ð4:6Þ

where ci’s are time-dependent coefficients. We note that the
coefficient a3M2

Plα=4 in front of ḧ2i has been introduced to
cancel the first term in Eq. (4.5). We fix ci’s in Eq. (4.6) to
obtain the Lagrangian density containing a canonical form

of the kinetic terms ḣi and χ̇i, without the product ḣiχi. For
this purpose, we choose

c1 ¼ 3H;

c2 ¼
k2

a2
þ 4αðH2 − ḢÞ þ 12βð2H2 þ ḢÞ − 3

4α
;

c3 ¼
2

α
: ð4:7Þ

After integration by parts, the Lagrangian density (4.6)
reduces to

L̄t ¼
1

2
a3M2

Pl

X
i¼1;2

�
ḣ2i þ 2ḣiχ̇i þ

�
3βðH2 − ḢÞð2H2 þ ḢÞ − 5H2

4
þ Ḣ

2
−
k2

a2
þ 9f1 − 4βð2H2 þ ḢÞg2

32α

þ α

12

�
6H2ðH2 − 2ḢÞ − 1

β
ðH2 − ḢÞ − 12Ḣ

�
2k2

a2
− 5Ḣ

���
h2i þ

2

α
χ2i

−
�
2H2 − 2Ḣ þ 2k2

a2
þ 3½4βð2H2 þ ḢÞ − 1�

2α

�
hiχi

�
: ð4:8Þ

From this expression, we find that there are four dynamical
perturbations h1, h2, χ1, and χ2 in the tensor sector, in
agreement with the analysis of Refs. [38,41,42]. Terms
containing the product of time derivatives in Eq. (4.8) can
be expressed in the form

ðL̄tÞK ¼
X
i¼1;2

˙ψ⃗ iK ˙ψ⃗T
i ; ð4:9Þ

where ψ⃗ i ¼ ðhi; χiÞ, and K is a 2 × 2 symmetric matrix
whose components are

K11¼
1

2
a3M2

Pl; K12¼K21¼
1

2
a3M2

Pl; K22¼0: ð4:10Þ

The absence of ghosts requires the following conditions

K11¼
1

2
a3M2

Pl > 0; and −K2
12¼−

1

4
a6M4

Pl > 0: ð4:11Þ

While the former is satisfied, the latter is always violated.
Hence the two ghosts are present, besides the other two
no-ghost modes.
In the following, we will study the propagation of tensor

perturbations during inflation. Varying the Lagrangian
density (4.6) with respect to χi, it follows that:

χi ¼
1

2
αḧiþ

3

2
αHḣi

þ1

2

�
αk2

a2
þαðH2− ḢÞþ3βð2H2þ ḢÞ−3

4

�
hi; ð4:12Þ

where we used the coefficients (4.7). We also vary Eq. (4.8)
with respect to hi and eliminate χi and their time derivatives
by exploiting Eq. (4.12). Then, we obtain the following
fourth-order differential equation

h
::::

i¼−6Hh
:::

i−
�
2k2

a2
þð4αþ6βÞḢ

α
þ1þð22αþ24βÞH2

2α

�
ḧi

−
�
2Hk2

a2
þðαþ6βÞḢ2

2αH
þ4ðαþ6βÞHḢ

α

þHf72βðαþ6βÞH2−αþ12βg
12αβ

�
ḣi

−
�
k4

a4
þ
�
1þ24βH2

2α
þ6βḢ

α

�
k2

a2

�
hi: ð4:13Þ

We note that the same equation also follows by directly
varying the original Lagrangian density (4.5) with respect
to hi. Equation (4.13) governs the dynamics of tensor
perturbations.
We first solve Eq. (4.13) in the high-momentum regime,

namely, for the modes deep inside the Hubble radius
(k=a ≫ H). After the Hubble radius crossing during
inflation, the perturbations enter the super-Hubble region
k=a < H. The evolution of hi in the latter large-scale
regime will be discussed later. Keeping only the most
dominant terms for sub-Hubble perturbations and express-

ing the Fourier components as hiðt; kÞ ¼ h̃iðtÞe−i
R

ωðt;kÞdt,
where h̃i is a function of t, and ω depends on t and k, the
Wentzel-Kramers-Brillouin (WKB) approximation gives
the relation ḣi ≃ −iωhi. In this WKB regime, we also
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have the inequality jω̇j ≪ ω2. Then, Eq. (4.13) approx-
imately reduces to

ω4 þ 6iHω3 −
2k2ω2

a2
−
2iHk2ω

a2
þ k4

a4
≃ 0: ð4:14Þ

We search for solutions of the kind ω ¼ ctk=a, where ct is
the tensor propagation speed. Substituting this dispersion
relation into Eq. (4.14) and taking the small-scale limit
k=ðaHÞ ≫ 1, it follows that

ðc2t − 1Þ2 k
4

a4

�
1þO

�
aH
k

��
¼ 0: ð4:15Þ

At leading order in the expansion of the small parameter
aH=k, we obtain

c2t ¼ 1; ð4:16Þ

for all the four dynamical modes h1, h2, χ1, and χ2. Since
the propagation speeds are luminal, there are no classical
Laplacian instabilities in the tensor sector for perturbations
deep inside the Hubble radius.
Let us consider the evolution of super-Hubble tensor

modes after the Hubble radius crossing, i.e., k=a ≪ H.
Since jḢj ≪ H2 during slow-roll inflation, Eq. (4.13)
approximately reduces to

h
::::

i þ 6Hh
:::

i þ 12λ1H2ḧi þ 36λ2H3ḣi ≃ 0; ð4:17Þ

where

λ1 ¼
ð22αþ 24βÞH2 þ 1

24αH2
;

λ2 ¼
72βðαþ 6βÞH2 − αþ 12β

432αβH2
: ð4:18Þ

The difference between λ1 and λ2 is given by

λ2 − λ1 ¼ −
3

4
−

1

72αH2
−

1

432βH2
: ð4:19Þ

For the coupling constants α and β with αH2 ≳Oð1Þ and
βH2 ≳Oð1Þ during inflation, we can neglect the last two
terms in Eq. (4.19) relative to −3=4. On using the
approximate relation λ2 ≃ λ1 − 3=4 in this case and assum-
ing that H is constant during inflation, the solution to
Eq. (4.17) can be expressed as

hi ¼ Ai þ Bie−3Ht þ Cie
−½3−

ffiffiffiffiffiffiffiffiffiffiffiffi
45−48λ1

p
�Ht=2

þDie
−½3þ

ffiffiffiffiffiffiffiffiffiffiffiffi
45−48λ1

p
�Ht=2; ð4:20Þ

where Ai, Bi, Ci, and Di are integration constants, and

λ1 ≃
11

12
þ β

α
>

11

12
: ð4:21Þ

In the last inequality, we exploited the fact that both α and β
are positive.1 For 11=12 < λ1 ≤ 15=16, the last three terms
in Eq. (4.20) decrease exponentially. For λ1 > 15=16, the
last two terms in Eq. (4.20) exhibit damped oscillations
with a decreasing amplitude proportional to e−3Ht=2. This
means that hi approaches the constant value Ai.
If we consider the small Weyl coupling constant α ≪ β

with βH2 ≳Oð1Þ, then we have λ1 ≃ λ2 ≃ β=α ≫ 1. In the
limit that β=α → ∞, the solution to Eq. (4.17) is given by

hi ¼ Ai þ Bie−3Ht þ Cie−ð3þiΩÞHt=2

þDie−ð3−iΩÞHt=2; ð4:22Þ

where Ω is a constant. In this case, the amplitude of hi
decreases in time as well and finally reaches a constant, Ai.
We have thus shown that, despite the appearance of

ghosts, the tensor perturbation does not exhibit rapid
growth during inflation. In other words, the higher-order
derivatives of hi appearing in the action (4.3) hardly affect
the standard conservation property of hi, after the Hubble
radius crossing.

V. SCALAR PERTURBATIONS

Let us next study the evolution of scalar perturbations for
the perturbed line element given by

ds2 ¼ −ð1þ 2AÞdt2 þ 2aðtÞ∂iBdtdxi
þ a2ðtÞ½ð1þ 2ψÞδij þ 2∂i∂jE�dxidxj: ð5:1Þ

We consider an infinitesimal-gauge transformation

t̃ ¼ tþ ξ0; x̃i ¼ xi þ δij∂jξ; ð5:2Þ

from one coordinate xμ ¼ ðt; xiÞ to another coordinate
x̃μ ¼ ðt̃; x̃iÞ, where ξ0 and ξ are scalar quantities. Then,
the four scalar perturbations A, B, ψ , and E transform,
respectively, as [50–53]

Ã ¼ A − ξ̇0; B̃ ¼ Bþ ξ0

a
− aξ̇;

ψ̃ ¼ ψ −Hξ0; Ẽ ¼ E − ξ: ð5:3Þ

The gauge-invariant gravitational potentials are defined
by [50]

1In the limit α ≫ β and βH2 ≳Oð1Þ, we find that hi ¼
Ai þ Bie−3Ht þ Cie−Ht þDie−2Ht, so that hi tends to Ai also
in this case.
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Ψ ¼ Aþ d
dt
½aðB − aĖÞ�;

Φ ¼ ψ þ aHðB − aĖÞ: ð5:4Þ

We can also construct the following gauge-invariant
variables

A≡ A −
d
dt

�
ψ

H

�
; B≡ aBþ ψ

H
− a2Ė: ð5:5Þ

While B is related to Φ as B¼Φ=H,A¼Ψ−ðd=dtÞðΦ=HÞ
is not proportional to Ψ.
It is known that fðRÞ gravity with nonlinear functions of

R gives rise to a scalar d.o.f. ϕ ¼ df=dR [5,31]. The
quadratic action (2.1) contains the function fðRÞ¼RþβR2,
in which case ϕ ¼ 1þ 2βR. Then, the perturbation of
the new scalar d.o.f. is equivalent to δϕ ¼ 2βδR. We
can construct a gauge-invariant quantity ζ ¼ ψ −Hδϕ=ϕ̇
[54,55], or, equivalently,2

ζ ¼ ψ −
H
Ṙ
δR: ð5:6Þ

There is also the following combination analogous to the
Mukhanov-Sasaki variable [56,57]:

δRf ¼ δR −
Ṙ
H
ψ : ð5:7Þ

which is related to ζ, as δRf ¼ −Ṙζ=H.
We expand the action (2.3) up to quadratic order in scalar

perturbations without fixing gauges and then derive the
field equations of motion by varying the second-order
action with respect to A, B, ψ , and E. These perturbation
equations of motion are written in a gauge-ready form
[58–60], in that they are ready for the reader to choose a
particular gauge. To fix the spatial part of the gauge
transformation vector ξμ, we choose the gauge

E ¼ 0: ð5:8Þ

In the following, we will work in Fourier space with the
three dimensional comoving wave number k. We omit a
tilde for perturbed quantities in the Fourier space. Then, the
perturbation of the Ricci scalar is given by

δR ¼ 6ðψ̈ þ 4Hψ̇Þ þ 4k2

a2
ψ − 6HȦ − 12ð2H2 þ ḢÞA

þ 2k2

a2
Aþ 2

a
k2ðḂþ 3HBÞ; ð5:9Þ

where k ¼ jkj. For the temporal part of ξμ, we can consider
several different gauge choices, including (A) Newtonian
gauge (B ¼ 0), (B) flat gauge (ψ ¼ 0), and (C) unitary
gauge (δR ¼ 0). The physical results, including the stabil-
ity conditions and the evolution of scalar perturbations, are
independent of the gauge choices.
We first study conditions for the absence of ghosts and

then proceed to address the dynamics of gauge-invariant
perturbations for several different gauge choices.

A. No-ghost conditions

In the flat gauge with ψ ¼ 0 and E ¼ 0, the gauge-
invariant variables in Eq. (5.5) reduce to A ¼ A and
B ¼ aB, respectively. We expand the action (2.3) up to
quadratic order in two perturbations A and B. In Fourier
space, the second-order perturbed scalar Lagrangian den-
sity Ls contains products of the time derivatives ofA and B
in the form

Ls ⊃ K11Ȧ
2 þ K22Ḃ

2 þ 2K12Ȧ Ḃ; ð5:10Þ

with the coefficients

K11 ¼ 18a3βH2M2
Pl; K22 ¼ −

2ðα − 3βÞM2
Plk

4

3a
;

K12 ¼ −6aβHM2
Plk

2: ð5:11Þ

Thus, both the fields A and B propagate as dynamical
perturbations. The absence of ghosts requires the following
two conditions

K11 ¼ 18a3βH2M2
Pl > 0; ð5:12Þ

K11K22 − K2
12 ¼ −12a2αβH2M4

Plk
4 > 0: ð5:13Þ

The kinetic term K11Ȧ
2 corresponds to that of the scalaron

perturbationA, which does not behave as a ghost for β > 0.
Under the no-ghost condition β > 0 of the scalaron, the
second equality (5.13) is always violated for α > 0.
Hence the other propagating DOF corresponds to a ghost
mode, which is induced by the presence of the Weyl
curvature term. To see this property more explicitly, we
define the following fields that make the kinetic matrix
diagonal

A1 ≡Aþ K12

K11

B; B1 ≡ B: ð5:14Þ

2Note that the field ζ is not well-defined on an exact de Sitter
space where H is constant. In the background for this model, the
Hubble expansion rate varies due to the slow-roll evolution of the
scalaron d.o.f., so we can still introduce ζ.
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Then, the products of the time derivative of the new fields
can be expressed in the form

Ls ⊃ K11Ȧ
2
1 þ

K11K22 − K2
12

K11

Ḃ2
1

¼ a3
�
18βH2M2

PlȦ
2
1 −

2M2
Plαk

4

3a4
Ḃ2
1

�
: ð5:15Þ

For positive values of α and β, we also introduce the
canonically normalized fields

A2 ≡ 6MPlH
ffiffiffi
β

p
A1; B2 ≡MPl

ffiffiffiffiffiffi
4α

3

r
k2

a2
B1; ð5:16Þ

so that the kinetic products of the Lagrangian density can
be expressed as

ðLsÞK ¼ a3
�
1

2
Ȧ2

2 −
1

2
Ḃ2
2

�
: ð5:17Þ

From this expression, it is clear that A2 and B2 are the
canonically normalized perturbations corresponding to
the no-ghost scalaron field and the Weyl scalar ghost,
respectively.
In the above discussion we have chosen the flat gauge,

but independent of the gauge choices, the scalar sector
contains one ghost and the other no-ghost d.o.f.s. In
summary, for positive values of α and β, there are two
vector ghosts, two tensor ghosts, and one scalar ghost
among the total eight propagating d.o.f.s.3 In the following,
we study the evolution of scalar perturbations in detail by
choosing three different gauges.

B. Newtonian gauge

The Newtonian gauge corresponds to setting B ¼ 0 and
E ¼ 0. In this case the gauge-invariant gravitational poten-
tials in Eq. (5.4) reduce to Ψ ¼ A and Φ ¼ ψ , so the
perturbed line element is given by

ds2 ¼ −ð1þ 2ΨÞdt2 þ a2ðtÞð1þ 2ΦÞδijdxidxj: ð5:18Þ

In the Newtonian gauge, the coordinate transformation
vector ξμ is fixed on the FLRW background without any
singularity. For this gauge choice, both Ψ and Φ play the
role of two dynamical perturbations. From Eqs. (5.6)
and (5.9), the relation between ζ and the gravitational
potentials is

ζ ¼ Φ −
H
Ṙ

�
6ðΦ̈þ 4HΦ̇Þ þ 4k2

a2
Φ − 6HΨ̇

− 12ð2H2 þ ḢÞΨþ 2k2

a2
Ψ
�
: ð5:19Þ

Varying the second-order action of scalar perturbations
with respect to A, B, ψ , and E, we obtain the four
perturbation equations of motion, respectively, for which
we express in the form

EA ¼ 0; EB ¼ 0; Eψ ¼ 0; EE ¼ 0; ð5:20Þ

After setting B ¼ 0 ¼ E in the end, two of the above
equations are independent, but the other two equations can
be also used to obtain the closed differential equations for
Ψ and Φ.
For example, the fourth-order differential equation for Ψ

can be derived by the following procedure. We first solve

the two equations EA ¼ 0 and EB ¼ 0 for Φ
:::
and Φ̈. Taking

the time derivative of the latter and combining it with the

former, we can eliminate the term Φ
:::

to obtain the other
equation containing Φ̈. Then, we can solve for Φ̇ and Φ̈ by
combining the two equations containing Φ̈. Performing a
similar procedure further, we can express Φ̇ and Φ in terms
of the derivatives of Ψ up to third order. Taking the time
derivative of theΦ equation and eliminating the Φ̇ term, we
obtain the fourth-order differential equation for Ψ in the
form

Ψ
::::
þ μ1HΨ

:::
þ μ2H2Ψ̈þ μ3H3Ψ̇þ μ4H4Ψ ¼ 0; ð5:21Þ

where μ1;2;3;4 are time-dependent dimensionless functions
containing the k dependence. Due to its complexities, we
do not write the explicit forms of these coefficients.
Similarly, we can derive the fourth-order differential

equation for Φ in the form

Φ
:::: þ ν1HΦ

::: þ ν2H2Φ̈þ ν3H3Φ̇þ ν4H4Φ ¼ 0; ð5:22Þ

where the functions νi (i ¼ 1; 2; 3; 4) are not the same as μi,
respectively.
For the modes deep inside the Hubble radius (k ≫ aH),

the coefficients in Eqs. (5.21) and (5.22) reduce to

μ1 ≃ ν1 ≃ 6; μ2 ≃ ν2 ≃
2k2

ðaHÞ2 ;

μ3 ≃ ν3 ≃
2k2

ðaHÞ2 ; μ4 ≃ ν4 ≃
k4

ðaHÞ4 : ð5:23Þ

In the WKB regime, we substitute the solutions Ψ ¼
Ψ0e

−i
R

ωdt and Φ ¼ Φ0e
−i
R

ωdt into Eqs. (5.21) and
(5.22) with the coefficients (5.23), where Ψ0 and Φ0 are

3The recent analysis of black hole perturbations in Weyl
gravity without the βR2 term [61] shows that there are seven
dynamical d.o.f.s on a static and spherically symmetric back-
ground. Adding the βR2 term gives rise to one scalar d.o.f., so
the total dynamical d.o.f.s match each other on two different
backgrounds.
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constants. This process leads to the same relation as
Eq. (4.14). Writing the dispersion relation as ω ¼ csk=a
and taking the limit k=a ≫ H, we obtain the squared
propagation speeds

c2s ¼ 1; ð5:24Þ

for both Ψ and Φ. This means that, for the modes deep
inside the Hubble radius, the Laplacian instabilities are
absent for the two gravitational potentials.
For super-Hubble modes, we take the limit k=ðaHÞ ≪ 1

in the coefficients μi and νi. Moreover, we also take the
limit where the slow-roll parameter ϵ ¼ −Ḣ=H2 goes to 0.
Then, the coefficients are simplified to

μ1 ≃
864β2ðαþ βÞH4 þ 18βðαþ 4βÞH2 − αþ 3β

6βH2½48βðαþ 3βÞH2 þ αþ 12β� ; ð5:25Þ

μ2 ≃ −
288ðα − 12βÞβ2ðαþ 3βÞH4 − 6βð7α2 þ 36αβ þ 216β2ÞH2 þ α2 − 6αβ − 36β2

6αβH2½48βðαþ 3βÞH2 þ αþ 12β� ; ð5:26Þ

μ3 ≃ −
1728β2ðα2 − 15αβ − 24β2ÞH6 − 12βð17α2 þ 120αβ þ 216β2ÞH4 − αð7αþ 36βÞH2 þ α − 3β

12αβH4½48βðαþ 3βÞH2 þ αþ 12β� ; ð5:27Þ

μ4 ≃
41472β4ðαþ βÞH6 − 96β2ðα2 þ 33αβ þ 36β2ÞH4 þ 6βðα2 − 38αβ − 72β2ÞH2 − αðα − 3βÞ

24αβ2H4½48βðαþ 3βÞH2 þ αþ 12β� ; ð5:28Þ

and

ν1 ≃
36βðαþ βÞH2 þ 2αþ 3β

12βðαþ 3βÞH2
; ð5:29Þ

ν2 ≃ −
2βðα − 12βÞH2 − α − β

2αβH2
; ð5:30Þ

ν3 ≃ −
144β2ðα2 − 15αβ − 24β2ÞH4 þ 4βð2α2 − 15αβ − 36β2ÞH2 − 2α2 − 7αβ − 6β2

48αβ2ðαþ 3βÞH4
; ð5:31Þ

ν4 ≃
864β2ðαþ βÞH4 þ 72βðαþ βÞH2 þ 2αþ 3β

24αβðαþ 3βÞH4
: ð5:32Þ

Let us first consider the case in which the inequality

βH2 ≫ 1 ð5:33Þ

is satisfied during inflation. Then, Eqs. (5.25)–(5.32)
approximately reduce to

μ1 ≃ ν1 ≃
3ðαþ βÞ
αþ 3β

; μ2 ≃ ν2 ≃ −
α − 12β

α
;

μ3 ≃ ν3 ≃ −
3ðα2 − 15αβ − 24β2Þ

αðαþ 3βÞ ;

μ4 ≃ ν4 ≃
36βðαþ βÞ
αðαþ 3βÞ : ð5:34Þ

On using these approximate coefficients and exploiting the
approximation that H is constant during inflation, the

solutions to Eqs. (5.21) and (5.22) in the super-Hubble
regime k=ðaHÞ ≪ 1 are given by

Ψ ¼ C1e−Ht þ C2e
−3ðαþβÞ

αþ3β Ht þ C3e
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−48β=α

p
ÞHt=2

þ C4e
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−48β=α

p
ÞHt=2; ð5:35Þ

Φ ¼ D1e−Ht þD2e
−3ðαþβÞ

αþ3β Ht þD3e
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−48β=α

p
ÞHt=2

þD4e
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−48β=α

p
ÞHt=2; ð5:36Þ

where Ci’s andDi’s are constants. For α > 0 and β > 0, the
third and fourth terms in Eqs. (5.35) and (5.36) grow in
time, while the first and second terms decay. Depending on
the values of α and β, the amplitudes ofΨ andΦ increase as

fjΨj; jΦjg ∝ eHt=2 for α < 48β; ð5:37Þ
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fjΨj; jΦjg ∝ eð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−48β=α

p
ÞHt=2 for α > 48β: ð5:38Þ

In the coupling range (5.37), Ψ and Φ exhibit oscillations
with the growing amplitudes. In the other coupling regime
(5.38), Ψ and jΦj increase even faster than eHt=2. In the
large Weyl coupling limit α ≫ 48β, the gravitational
potentials grow rapidly in proportion to eHt.
The above results are valid for βH2 exceeding the order 1

during inflation. In particular, for the couplings in the
ranges α ≪ β and βH2 ≳Oð1Þ, the solutions to Ψ and Φ
correspond to the limits β=α → ∞ in Eqs. (5.35) and (5.36).
This means that even a small Weyl coupling constant α
induces the exponential growth of gravitational potentials.
Then, the homogeneous FLRW background is violated by
the rapid growth of Ψ and Φ in the perturbed metric (5.18).
In the above analytic estimation we used the approximation
βH2 ≫ 1, but in Sec. VI C, we will show that, even for
βH2 ¼ Oð1Þ, both the amplitudes of Ψ and Φ increase
exponentially. The fact that Ψ and Φ are subject to
exponential growth does not depend on the gauge choices
either. Since all scalar perturbations are always determined
through two independent modes, at least one of them needs
to be unstable. It should be also pointed out that this
instability is purely classical.
Besides Ψ and Φ, there are also other gauge-invariant

scalar perturbations. Let us consider the evolution of the
curvature perturbation ζ defined in Eq. (5.6). In the
Newtonian gauge, we will describe a method to find a
closed differential equation for ζ, where ζ is given by
Eq. (5.19). We can think of Eq. (5.19) as an equation that
sets, on shell, ζ as a function of the other fields. Therefore,
we proceed by adding a term to the second-order scalar
Lagrangian density Ls, as follows:

L̄s ¼ Ls þ b1ðtÞ
�
Φ −

H
Ṙ

�
6ðΦ̈þ 4HΦ̇Þ þ 4k2

a2
Φ − 6HΨ̇

− 12ð2H2 þ ḢÞΨþ 2k2

a2
Ψ
�
− ζ

�
2

; ð5:39Þ

where b1ðtÞ is a function of t. It is clear that at this level ζ is
just a Lagrange multiplier, and its equation of motion,
algebraic for ζ itself, makes L̄s reduce to the original
Lagrangian density Ls. We choose the coefficient b1ðtÞ to
cancel the term in Ψ̇2, and, by doing so, also the term in Φ̈2

cancels out from the Lagrangian.
After a few integrations by parts, we see that the field Ψ

can be set to be a Lagrangian multiplier, and as such, it is
integrated out from the Lagrangian by using its equation of
motion. By doing so, we arrive at an equivalent Lagrangian
density, L̄s ¼ L̄sðζ̇; Φ̇; ζ;ΦÞ, which then depends on two
propagating d.o.f.s, Φ and ζ, as expected. The reduced
Lagrangian density contains the products of kinetic terms
of the form

L̄s ⊃ K̄11ζ̇
2 þ K̄22Φ̇2 þ 2K̄12ζ̇ Φ̇ . ð5:40Þ

For positive values of α and β, we have K̄11 > 0 and
K̄11K̄22 − K̄2

12 < 0 in the slow-roll limit. Hence there is one
ghost mode besides the other no-ghost mode. This property
agrees with the no-ghost conditions derived in Sec. VA for
the flat gauge.
To derive the closed-form perturbation equation of ζ, we

proceed as follows. From the equation of motion for the
field Φ, which we write in the form EΦ ¼ 0, we find an
expression for Φ̈ that can be inserted into the equation for ζ,
i.e., Eζ ¼ 0. Now, we take the time derivative of this last
equation to obtain Ėζ ¼ 0. We can still substitute this new
equation into the expression of Φ̈, previously found, and
solve it for Φ̇. We repeat the step on considering now the
equation Ëζ ¼ 0, and after replacing it with the two
expressions for Φ̈ and Φ̇, we can solve it with respect to
Φ itself. At this point, we replace all these Φ-related
expressions into the equation of motion Eζ ¼ 0. Then, we
obtain the fourth-order differential equation

ζ
::::
þ λ1Hζ

:::
þ λ2H2ζ̈ þ λ3H3ζ̇ þ λ4H4ζ ¼ 0; ð5:41Þ

where λi’s are time-dependent dimensionless coefficients.
Taking the sub-Hubble limit k=ðaHÞ ≫ 1 with ϵ → 0,

the coefficients in Eq. (5.41) reduce to

λ1 ≃
168βH2 þ 1

12βH2
; λ2 ≃

2k2

ðaHÞ2 ;

λ3 ≃
ð120βH2 þ 1Þk2

12βH4a2
; λ4 ≃

k4

ðaHÞ4 : ð5:42Þ

Using the solution ζ ¼ ζ0e
−i
R

ωdt under the WKB approxi-
mation ω ¼ csk=a ≫ H, the leading-order dispersion rela-
tion is given by ω4 − 2k2ω2=a2 þ k4=a4 ≃ 0. Hence the
curvature perturbation propagates with the luminal speed
for the modes deep inside the Hubble radius.
For super-Hubble perturbations, we take the limits

k=ðaHÞ → 0 and ϵ → 0 for the coefficients λi. For the
coupling in the range βH2 ≫ 1, we approximately have

λ1 ≃
8ð8αþ 3βÞ
5αþ 3β

; λ2 ≃
157α2 þ 111αβ þ 36β2

αð5αþ 3βÞ ;

λ3 ≃
2ðαþ 6βÞð49αþ 15βÞ

αð5αþ 3βÞ ; λ4 ≃ 0: ð5:43Þ

In this regime, we can integrate Eq. (5.41) to give

ζ ¼ c1 þ c2e
−ð49αþ15βÞHt

5αþ3β þ c3e
ð−3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−48β=α

p
ÞHt=2

þ c4e
−ð3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−48β=α

p
ÞHt=2: ð5:44Þ
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For positive values of α and β, the last three terms in
Eq. (5.44) decay in time. Hence, the curvature perturbation
approaches a constant c1 after the Hubble radius crossing.
In the above estimation, we have used the approximation
βH2 ≫ 1, but we have numerically confirmed that ζ
approaches a constant even for βH2 ¼ Oð1Þ.
Despite the exponential increase of two gravitational

potentials during inflation, there is a particular gauge-
invariant combination ζ that does not grow in the large-
scale limit. Unlike the standard single-field slow-roll
inflation, however, we have two propagating d.o.f.s in
the scalar sector. In the description of Lagrange multipliers
explained above, the two dynamical d.o.f.s correspond to
the perturbations Φ and ζ. Even though ζ is not enhanced
after the Hubble radius crossing, the other dynamical field
Φ is subject to exponential growth. Thus, the analysis in the
Newtonian gauge shows that the Weyl curvature term
violates the homogeneous inflationary background.

C. Flat gauge

In the flat gauge with the gauge conditions ψ ¼ 0 and
E ¼ 0, we have A ¼ A and B ¼ aB in Eq. (5.5). Then, the
perturbed line element is given by

ds2¼−ð1þ2AÞdt2þ2∂iBdtdxiþa2ðtÞδijdxidxj: ð5:45Þ
On the expanding cosmological background (H ≠ 0), the
coordinate transformation vector ξμ is always regular for
the flat gauge. The gauge-invariant variables A and B are
related to Ψ and Φ according to

A ¼ Ψ −
d
dt

�
Φ
H

�
; B ¼ Φ

H
: ð5:46Þ

While B is directly proportional to Φ, A corresponds to a
combination of Ψ and Φ.
After setting ψ ¼ 0 ¼ E in the perturbation equations of

motion, the dynamical system in the flat gauge has two
propagating d.o.f.s A and B (or Φ). To derive the closed
differential equation for A, we solve the two equations
EA ¼ 0 and EB ¼ 0 for B̈ and Ḃ. Following a similar
procedure to that performed in the Newtonian gauge, we
can express the terms Ḃ and B in terms of A and its
derivatives. Taking the time derivative of the B equation
and combining it with the Ḃ equation, we obtain the fourth-
order differential equation of A in the form

A
::::
þ τ1HA

:::
þ τ2H2Äþ τ3H3Ȧþ τ4H4A ¼ 0; ð5:47Þ

where τi’s are time-dependent functions.
Taking the sub-Hubble limit k ≫ aH with ϵ → 0, the

coefficients in Eq. (5.47) reduce to

τ1≃10; τ2≃
2k2

ðaHÞ2 ; τ3≃
6k2

ðaHÞ2 ; τ4≃
k4

ðaHÞ4 : ð5:48Þ

On using the WKB approximation, it follows that the field
A propagates with the speed of light.
For super-Hubble modes k ≪ aH with the coupling

βH2 ≫ 1, taking the slow-roll limit ϵ → 0 gives

τ1 ≃ 6; τ2 ≃
11αþ 12β

α
;

τ3 ≃
6ðαþ 6βÞ

α
; τ4 ≃ −

αþ 6β

3αβH2
: ð5:49Þ

In this regime, Eq. (5.47) can be integrated to give

A ¼ c1e−ð9αβHþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1−12αβH

ffiffiffiffi
Δ2

pp
Þt=ð6αβÞ

þ c2e−ð9αβH−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1−12αβH

ffiffiffiffi
Δ2

pp
Þt=ð6αβÞ

þ c3e−ð9αβHþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1þ12αβH

ffiffiffiffi
Δ2

pp
Þt=ð6αβÞ

þ c4e−ð9αβH−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ1þ12αβH

ffiffiffiffi
Δ2

pp
Þt=ð6αβÞ; ð5:50Þ

where

Δ1 ≡ 9H2αβ2ð5α − 24βÞ; ð5:51Þ

Δ2 ≡ 3βðαþ 6βÞ½3βH2ðαþ 6βÞ þ α�: ð5:52Þ

The amplitudes of the first two terms in Eq. (5.50) decrease
in proportion to e−3Ht=2, while the third term decreases as
∝ e−3Ht. Taking the limit βH2 ≫ 1, the leading-order
contribution to the term Δ1 þ 12αβH

ffiffiffiffiffiffi
Δ2

p
is ð9αβHÞ2.

Then, for α > 0 and β > 0, the leading-order contribution
to the last term in Eq. (5.50) is the constant c4. Picking up
the next-to-leading correction, we obtain the following
solution

A ≃ c4

�
1þ t

18βH

�
: ð5:53Þ

For the number of e-foldings N of order 10, the correction
induced by the time-dependent terms in Eq. (5.53) is
suppressed compared to the leading-order constant term.
Following a similar procedure performed for the pertur-

bation A, we can also derive the fourth-order differential
equation for B in the form

B
::::
þ η1HB

:::
þ η2H2B̈ þ η3H3Ḃ þ η4H4B ¼ 0; ð5:54Þ

where the ηi’s are time-dependent coefficients and are not
identical to the νi’s in Eq. (5.22). If we use the variable Φ
instead of B, the coefficients of the fourth-order differential
equation for Φ exactly coincide with those derived in the
Newtonian gauge.
Using the WKB approximation for the modes deep

inside the Hubble radius, the perturbation B obeys

B
::::
þ 2k2

a2
B̈ þ k4

a4
B ≃ 0; ð5:55Þ
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so that B propagates with the speed of light. Taking the super-Hubble limit (k ≪ aH) with ϵ → 0, the coefficients in
Eq. (5.54) reduce to

η1 ≃
36ðαþ βÞβH2 þ 2αþ 3β

12ðαþ 3βÞβH2
; ð5:56Þ

η2 ≃
2ð12β − αÞH2 þ 1

2αH2
; ð5:57Þ

η3 ≃ −
72βðα2 − 15αβ − 24β2ÞH4 − 2ðα2 þ 42αβ þ 36β2ÞH2 − 2α − 3β

24αβðαþ 3βÞH4
; ð5:58Þ

η4 ≃
5184β3ðαþ βÞH4 þ 12αβðαþ 9βÞH2 þ αð2αþ 3βÞ

144αβ2ðαþ 3βÞH4
: ð5:59Þ

For βH2 ≫ 1, the coefficients η1;2;3;4 approximately reduce to the values ν1;2;3;4 given in Eq. (5.34), respectively. The field B
is subject to exponential growth during inflation analogous toΦ, see Eqs. (5.37) and (5.38). This means that, even thoughA
does not grow significantly, the other metric perturbation B in the line element (5.45) increases rapidly to violate the FLRW
background.
In the flat gauge, the perturbation ζ is given by

ζ ¼ −
H
Ṙ
δR ¼ −

H
Ṙ

�
2k2Ḃ
a2

− 6HȦþ
�
2k2

a2
− 24H2 − 12Ḣ

�
Aþ 4BHk2

a2

�
: ð5:60Þ

To derive the fourth-order differential equation for ζ, we build the following Lagrangian density

L̄s ¼ Ls þ b2ðtÞ
�
ζ þH

Ṙ

�
2k2Ḃ
a2

− 6HȦþ
�
2k2

a2
− 24H2 − 12Ḣ

�
Aþ 4BHk2

a2

��
2

; ð5:61Þ

which is equivalent to the original Lagrangian density Ls.
The function b2ðtÞ needs to be chosen so that the kinetic
term of A vanishes identically. After a few integrations by
parts, the fieldA becomes a Lagrange multiplier which can
be integrated out, leaving ζ and B as two dynamical d.o.f.s.
After varying L̄s with respect to ζ and B, we can proceed
along the same lines as finding the equations of motion for
the fields A and B. This leads to the closed differential
equation for ζ in the form (5.41), where λi’s are exactly the
same as those derived in the Newtonian gauge. Hence ζ
approaches a constant after the Hubble radius crossing.
However, the fact that the other dynamical perturbation B
grows exponentially means that the instability of the FLRW
background cannot be avoided. We also note that the
fourth-order differential equation of Ψ exactly coincides
with the one obtained in the Newtonian gauge. Hence the
two gravitational potentials Ψ and Φ are unstable in the flat
gauge as well, by reflecting the fact that both Ψ and Φ
contain the dependence of aB.

D. Unitary gauge

Let us finally discuss the evolution of scalar perturba-
tions in the unitary gauge with δR ¼ 0. Since the curvature

perturbation ζ is equivalent to ψ , the gauge condition
translates to

δR ¼ 6ðζ̈ þ 4Hζ̇Þ þ 4k2

a2
ζ − 6HȦ − 12ð2H2 þ ḢÞA

þ 2k2

a2
Aþ 2k2

a
ðḂþ 3HBÞ ¼ 0: ð5:62Þ

Using this condition together with the perturbation
equations of motion, we can derive the fourth-order differ-
ential equation for ζ. We first solve the perturbation
equation EA ¼ 0 for B̈ and take the time derivative of
Eq. (5.62) to obtain the first derivative Ḃ. Using Eq. (5.62)
to solve for Ḃ, one can express B and its time derivatives in
terms of ζ, A, and their time derivatives. In this way, all the
B-dependent quantities can be eliminated from the pertur-
bation equations of motion. The next step is to remove the
A-dependent terms. On using the two equations Eψ ¼ 0 and

EE ¼ 0, we can solve for A
:::
and Ä. Then, following a similar

procedure as before, it is possible to express A in terms of
the derivatives of ζ up to third order. Taking the time
derivative of this equation and eliminating the Ȧ term,
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we obtain the fourth-order differential equations of ζ with
the exactly same coefficients as λ1;2;3;4 in Eq. (5.41). Then,
the constancy of ζ after the Hubble radius crossing also
holds in the unitary gauge. This result is consistent with the
analysis of Ref. [42] in the Einstein frame. Similarly, we
obtain the same fourth-order differential equation for A as
Eq. (5.47), so the solution in the super-Hubble regime is
given by Eq. (5.53).
The closed differential equations forΨ andΦ can be also

obtained by using the following relations

A ¼ Ψ − Ḃu; ζ ¼ Φ −HBu; ð5:63Þ

where

Bu ≡ aB: ð5:64Þ

The gauge condition (5.62) and the perturbation equations
of motion can be now expressed in terms of the gauge-
invariant variables Ψ, Φ, Bu and their time derivatives.
Indeed, the above change of variables automatically
removes the Bu-dependent terms from the two perturbation
equations EA ¼ 0 and EB ¼ 0. Combining these two, it is
straightforward to derive the fourth-order differential equa-
tions for Ψ and Φ. Again, we find that they are identical to
Eqs. (5.21) and (5.22) derived in the Newtonian gauge,
respectively, with the completely same coefficients. Hence
the same instabilities of Ψ and Φ are present after the
Hubble radius crossing, while the growth of ζ and A is
suppressed.
In terms of the gauge-invariant variables, the perturbed

line element in the unitary gauge can be expressed as

ds2 ¼ −
�
1þ 2Aþ 2

d
dt

�
ζ

H

��
dt2 þ 2

H
ð∂iΦ − ∂iζÞdtdxi

þ a2ðtÞð1þ 2ζÞδijdxidxj: ð5:65Þ

Due to the suppressed growth of A and ζ, metric pertur-
bations in the g00 and gij components are not subject to
classical instabilities. However, the ∂iΦ term in the g0i
component exhibits an exponential increase after the
Hubble radius crossing. Since the ∂iζ term approaches a
constant in the super-Hubble regime, the dominance of ∂iΦ
over ∂iζ in g0i leads to the instability of the FLRW
background. Indeed, we numerically confirmed that the
gauge-invariant perturbation Bu ¼ ðΦ − ζÞ=H grows expo-
nentially in the super-Hubble regime due to the enhance-
ment of Φ. We have thus analytically shown that, for any
physical gauge choices, the Weyl curvature makes the
inflationary FLRW background unstable.

VI. NUMERICAL SIMULATIONS WITH THE
DISCUSSION OF INITIAL CONDITIONS

In this section, we will numerically confirm the insta-
bility of the FLRW background in Weyl gravity with the
βR2 term. For this purpose, we first discuss the choice of
initial conditions of perturbations and then proceed to the
numerical analysis.

A. Fourth-order system and initial conditions

We have learned so far that each of the considered
perturbation fields obeys a fourth-order differential equa-
tion, which, under theWKB approximation, is solved as the
solutions describing waves propagating with the speed of
light. We will show that it is indeed possible, starting from
the reduced action of a single scalar field v possessing the
term v̈2, to find an equivalent Lagrangian density of two
scalar fields with second-order equations of motion. The
discussion in this section can be applied to any dynamical
perturbation v with some gauge choices, but in Sec. VI B
we will consider the flat gauge for concreteness.
For the modes deep inside the Hubble radius, we should

expect the field v in Fourier space to satisfy a fourth-order
equation of motion, which can be derived by the following
approximate Lagrangian

Lv ≃Q

�
v̈2 − 2

k2

a2
v̇2 þ k4

a4
v2
�
: ð6:1Þ

Here and in the following, we assume that the functionQ ¼
Qðt; k2Þ can be either positive or negative. In Sec. VI B, we
will see that it is possible to obtain a Lagrangian density4

reducing to the form (6.1) in the high-k regimewith v related
to the perturbations A and B. We note that, in the action
(6.1), we are assuming the highmomentum regime in which
the WKB approximation holds for the dynamics of v.
Then, we can introduce an auxiliary field, w, as

Lv ≃Q

�
v̈2 − 2

k2

a2
v̇2 þ k4

a4
v2 − ðb2wþ v̈Þ2

�
; ð6:2Þ

where b2ðt; k2Þ is a general function, so far undetermined.
By integrating out the field w, we find once more the
original Lagrangian density. Therefore, the two Lagrangian
densities (6.1) and (6.2) are equivalent to each other, both
of which lead to the same dynamics. It is also clear that the
term in v̈2 vanishes in Eq. (6.2) for the new Lagrangian
density. At this level, we can introduce the quantity

v ¼ v2 þ
a2b2
2k2

w; ð6:3Þ

4The Lagrangian, in this case, will take the following general
form Lv ¼ Qðv̈2 − 2Q1v̇2 þQ2v2Þ, where Q, Q1, and Q2 are
functions of time and k2.
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which is meant to diagonalize the kinetic matrix. Then, we
perform the other field redefinitions

v2 ¼
a
k
v3; w ¼ k

a
w3; ð6:4Þ

as to make the kinetic terms only background dependent,
i.e., independent of the wave number k.
Having assumed thatQ ≠ 0, we can further introduce the

following field redefinitions

v3 ¼
a3=2

2
ffiffiffiffiffiffiffijQjp v4; w3 ¼

a3=2

b2
ffiffiffiffiffiffiffijQjp w4; ð6:5Þ

to obtain canonical kinetic terms for the fields v4 and w4. At
this level, the Lagrangian for the modes deep inside the
Hubble radius reduces to

Lv ≃ −signðQÞ
�
a3

2
ðv̇24 − ẇ2

4Þ −
k2a
4

ðv24 − 3w2
4 þ 2v4w4Þ

�
:

ð6:6Þ

This Lagrangian still leads to the dynamics of perturbations
propagating with the speed of light. However, the effective
mass matrix C ¼ 1

4
k2að1

1
1
−3Þ cannot be diagonalized by any

real (finite and constant-in-time) Lorentz transformation
that would leave instead the kinetic matrix in the canonical
form. Therefore, the two modes v4 and w4 are not
completely decoupled.
Nonetheless, we can use the WKB approximation

and look for solutions of the kind v4 ∝ e−i
R

ωdt and

w4 ∝ e−i
R

ωdt, for which v̈4 ∝ −ω2v4 and ẅ4 ∝ −ω2w4.
In this case, it follows that the dispersion relation ω ¼ k=a
needs to hold, which means that both modes propagate with
the luminal speeds. Furthermore, we obtain the relation
w4 ¼ v4, and hence the dynamics of the mode w4 − v4 is
set to vanish. Still, proper initial conditions need to be
imposed on the field v4 (or w4).
To better understand the behavior of solutions or the

choice of initial conditions, we use the perturbation
equations of motion in the high-k regime expressed in
terms of the conformal time η ¼ R

a−1dt,

d2v4
dη2

≃ −
k2

2
ðv4 þ w4Þ;

d2w4

dη2
≃
k2

2
ðv4 − 3w4Þ: ð6:7Þ

Then, we obtain the following general solutions

w4 ¼ c1 sinðkηÞ þ c2 cosðkηÞ þ c3kη sinðkηÞ
þ c4kη cosðkηÞ; ð6:8Þ

v4 ¼ c1 sinðkηÞ þ c2 cosðkηÞ þ c3½kη sinðkηÞ þ 4 cosðkηÞ�
þ c4½kη cosðkηÞ − 4 sinðkηÞ�; ð6:9Þ

where c1, c2, c3, and c4 are integration constants. The choice
of exact plane wave initial conditions corresponds to
c3 ¼ 0 ¼ c4, so that v4 ¼ w4. As in the usual normalization
scheme of the Bunch-Davies vacuum,5 we choose a positive
frequency solution v4 ¼ w4 ¼ C0e−ikη and impose the con-
ditions

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv24jjða3v̇4Þ2j

p
¼ 1=2 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jw2

4jjða3ẇ4Þ2j
p

¼ 1=2.
This fixes the coefficient C0 to be 1=ða ffiffiffiffiffi

2k
p Þ, and hence

v4 ¼ w4 ¼
1

a
ffiffiffiffiffi
2k

p e−i
R

k
adt: ð6:10Þ

In terms of the original perturbation v, we have

v ¼ a5=2

2k
ffiffiffiffiffiffiffijQjp ðv4 þ w4Þ ¼

a3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3jQj

p e−i
R

k
adt: ð6:11Þ

Wewill choose this as the initial condition of v for themodes
deep inside the Hubble radius. Note that we will not discuss
the quantization of perturbations in our theory. We have
already shown analytically the presence of violent classical
instabilities for themodes after theHubble radius crossing. In
other words, the scalar ghost is not of the soft type in our
theory. The classical instabilities induced by the ghost make
the quantization of perturbations irrelevant. Only for a stable
classical background, it would be worth investigating the
quantization procedure.

B. Initial conditions for the
perturbations A and B

In Sec. VI A, we assumed the existence of the
Lagrangian density (6.1) leading to the closed fourth-order
differential equation. In this section, we will prove its
existence by considering perturbations in the flat gauge.
For this purpose, we will proceed as follows. In the flat
gauge, the kinetic Lagrangian for the fields A and B was
already discussed in Eq. (5.10). We remind the reader about
the field redefinitions that were introduced to obtain
canonical kinetic terms. The field redefinitions given in
Eqs. (5.14) and (5.16) allow us to obtain the Lagrangian
density of two canonically normalized fields A2 and B2 in
the form (5.17). The original perturbations A and B are
related to A2 and B2, as

A¼ 1

6MPlH

�
A2ffiffiffi
β

p þ
ffiffiffi
3

p
B2ffiffiffi
α

p
�
; B¼

ffiffiffi
3

p
a2B2

2MPlk2
ffiffiffi
α

p : ð6:12Þ

5From a purely classical point of view, the initial condition
representing a plane wave consists of setting dv4=dη ¼ −ikv4,
and so on for all other higher derivatives. The normalization of v4
itself is not established as the field Cv4 is still a solution of the
equations of motion (C is a constant). In this case, the physical
quantity to consider is v4ðηÞ=v4ðηiÞ.
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From the canonical expression (5.17), we wish to find
the Lagrangian density of the form (6.1). We perform the
following field redefinitions

A2 ¼
1ffiffiffi
2

p ðY − ZÞ; B2 ¼
1ffiffiffi
2

p ðY þ ZÞ; ð6:13Þ

so that the kinetic terms are simplified to

Ls ∋ −a3Ẏ Żþ… ¼ Z
d
dt
ða3ẎÞ þ…; ð6:14Þ

up to total derivatives. Varying the full Lagrangian density
Ls with respect to Z, it follows that Z can be expressed in
terms of Y and its first and second-time derivatives.
Substituting Z into the second expression of Eq. (6.14),
we find that the Lagrangian density can be expressed in the
form

Ls ¼ QðŸ2 − 2Q1Ẏ2 þQ2Y2Þ; ð6:15Þ

where Q, Q1, and Q2 depend on t and k2. It should be
noticed that, up to this point, we have not made any
approximation for particular wavenumbers. However, if we
look for the behavior of the three quantities Q, Q1, and Q2

in the high-k regime, we find

Q≃
27αβa7H2

ðα−3βÞð ffiffiffi
α

p
−

ffiffiffiffiffi
3β

p Þ2k4 ; Q1≃
k2

a2
; Q2≃

k4

a4
; ð6:16Þ

which means that6 signðQÞ ¼ signðα − 3βÞ. The behavior
of Q1 and Q2 makes sure that the propagation of the mode
Y is luminal in the WKB approximation scheme.
Using the discussion given in Sec. VI A, Y plays the role

of the field v with Q given in Eq. (6.16). Then, we can
choose the initial condition of Y, as

Y ¼ a3=2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k3jQj

p e−i
R

k
adt

≃
k1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijα − 3βjp j ffiffiffi
α

p
−

ffiffiffiffiffi
3β

p j
3

ffiffiffiffiffiffiffiffi
6αβ

p
a2H

eikðe−N−1Þ=ðaiHiÞ; ð6:17Þ

where N ¼ lnða=aiÞ is the e-folding number, and we set
N ¼ 0 at the initial time. Substituting this solution into the
relation between Z and Y, Ẏ, Ÿ, we find

Z ¼
ffiffiffi
α

p þ ffiffiffiffiffi
3β

p
ffiffiffi
α

p
−

ffiffiffiffiffi
3β

p Y −
6i

ffiffiffiffiffiffiffiffi
3αβ

p
ð ffiffiffi

α
p

−
ffiffiffiffiffi
3β

p Þ2
aH
k

Y

þO
�
a2H2

k2

�
Y; ð6:18Þ

which is valid for the modes deep inside the Hubble radius.7

On using Eqs. (6.12), (6.13), and (6.18), the WKB
solutions to A and B are

A ¼ 1

6
ffiffiffi
2

p
MPlH

�
1ffiffiffi
β

p ðY − ZÞ þ
ffiffiffi
3

α

r
ðY þ ZÞ

�

¼
ffiffiffi
6

p
ai

2ð ffiffiffi
α

p
−

ffiffiffiffiffi
3β

p ÞMPlk
Y
�
1þO

�
aH
k

��
; ð6:19Þ

B ¼
ffiffiffi
6

p
a2

4MPlk2
ffiffiffi
α

p ðY þ ZÞ

¼
ffiffiffi
6

p
a2

2ð ffiffiffi
α

p
−

ffiffiffiffiffi
3β

p ÞMPlk2
Y
�
1þO

�
aH
k

��
; ð6:20Þ

where we used the relation (6.18). Recall that Y is
given by Eq. (6.17). The ratio between the leading-order
terms to A and B is B=A ¼ −ia=k, so the amplitude
jHB=Aj is of order aH=k ≪ 1 for sub-Hubble modes.
We will use Eqs. (6.19) and (6.20) as the initial conditions
of perturbations for the modes deep inside the Hubble
radius.

C. Numerical integration

In the flat gauge, we numerically integrate the closed
fourth-order differential equations for A and B together
with those of Ψ, Φ, and ζ. For this purpose, we introduce
the following quantities:

h ¼ H
Hi

; K ¼ k
aHi

; ᾱ ¼ αH2
i ;

β̄ ¼ βH2
i ; χ ¼ HiB; ð6:21Þ

whereHi is the Hubble parameter at the onset of integration
(with scale factor ai). We also define the following
perturbed variables

6For the special case where α ¼ 3β, by looking at Eq. (5.10),
we can see that the field B can be easily integrated out in terms of
A and its first and second time derivatives. Alternatively, we can
still use the procedure described here, but now Q ≃ −a3=ð6H2Þ
and Z ≃ ikY=ðaHÞ ≫ Y.

7Alternatively, we can write the Lagrangian density in the form
Ls ¼ Yðd=dtÞða3ŻÞ þ � � � and vary the action with respect to Y
and use the equation of motion for Y to express Ls with respect to
Z and its derivatives. In the high-k regime, the Lagrangian
density is given by Ls ≃ Q̃½Z̈2 − ð2k2=a2ÞŻ2 þ ðk4=a4ÞZ2�,
where Q̃ ¼ 27αβa7H2=½ðα − 3βÞð ffiffiffi

α
p þ ffiffiffiffiffi

3β
p Þ2k4�. The WKB

solution to Z derived by this procedure is consistent with the
leading-order relation of Eq. (6.18).
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Ak ¼
k3=2ffiffiffiffiffiffiffi
2π2

p A; Bk ¼
k3=2ffiffiffiffiffiffiffi
2π2

p B; χk ¼HiBk;

Ψk ¼
k3=2ffiffiffiffiffiffiffi
2π2

p Ψ; Φk ¼
k3=2ffiffiffiffiffiffiffi
2π2

p Φ; ζk ¼
k3=2ffiffiffiffiffiffiffi
2π2

p ζ: ð6:22Þ

Then, the two gravitational potentials can be expressed as

Ψk ¼ Ak þ hχ0k; and Φk ¼ hχk; ð6:23Þ

where a prime in this section denotes the differentiation
with respect to the number of e-foldings N ¼ lnða=aiÞ.
Together with solving the perturbation equations of motion,
we integrate the following background equations of motion

h0 ¼ −hϵ; ϵ0 ¼ 3

2
ϵ2 − 3ϵþ 1

12β̄h2
: ð6:24Þ

The initial value of ϵ is chosen to realize the sufficient
number of e-foldings (N > 70) during inflation. On using
Eqs. (6.19) and (6.20), we choose the initial conditions of
Ak and χk at N ¼ 0, as8

Akð0Þ ¼ iKi
jᾱ − 3β̄j1=2signð ffiffiffī

α
p

−
ffiffiffiffiffi
3β̄

p
Þ

6
ffiffiffi
2

p
π

ffiffiffiffiffiffi
ᾱ β̄

p Hi

MPl
;

dnAk

dNn ð0Þ ≃ ð−iKiÞnAkð0Þ; ð6:25Þ

χkð0Þ ¼
jᾱ − 3β̄j1=2signð ffiffiffī

α
p

−
ffiffiffiffiffi
3β̄

p
Þ

6
ffiffiffi
2

p
π

ffiffiffiffiffiffi
ᾱ β̄

p Hi

MPl
;

dnχk
dNn ð0Þ ≃ ð−iKiÞnχkð0Þ; ð6:26Þ

where Ki ¼ Kð0Þ ¼ k=ðaiHiÞ. Notice that there is a simple
relation Akð0Þ ¼ iKiχkð0Þ for the leading-order solution.
The ratioHi=MPl and the couplings α, β determine the initial
amplitude of χk. The typical Hubble scale for Starobinsky
inflation is Hi=MPl ¼ Oð10−5Þ, so that jχkðN ¼ 0Þj ¼
Oð10−6Þ for the couplings α and β whose orders are similar
to eachother. The initial conditions of gravitational potentials
are Ψkð0Þ ¼ Akð0Þ þ χ0kð0Þ and Φkð0Þ ¼ χkð0Þ.
From Eq. (5.60), the curvature perturbation ζk can be

expressed, in terms of Ak and χk, as

ζk ¼
4β̄½hð2χk þ χ0kÞ þAk�
1 − 6β̄ϵðϵ − 2Þh2 K2

−
12β̄h2½2Akð2 − ϵÞ þA0

k�
1 − 6β̄ϵðϵ − 2Þh2 : ð6:27Þ

From Eq. (6.25), we find that Akð0Þ is proportional to
KiHi=MPl and hence ζkð0Þ contains a large term
K3

i ðHi=MPlÞ for the sub-Hubble modes Ki ≫ 1. Because
of the relation Akð0Þ ¼ iKiχkð0Þ, this term exactly cancels
the other contribution χ0kð0ÞK2

i for the leading-order initial
condition χ0kð0Þ ¼ −iKiχkð0Þ. This cancellation implies that
we need to take into account terms of orderOða2H2=k2Þ in
Eq. (6.18) to estimate the initial value of ζkð0Þ correctly. We
also note that Eq. (6.27) contains theN derivatives ofAk and
χk. Since the amplitudes of Ak and χk change in time, we
take theN derivatives of these fields without neglecting their
time dependence. These precisemanipulations show that the
leading-order contributions to the first and second terms in
Eq. (6.27) cancel each other with respect to the large Ki
expansion. Then, the initial value of ζkð0Þ is typically of
order β̄χkð0ÞKi. After deriving the precise numerical value
of ζkð0Þ from Eq. (6.27) without using the approximation,
the N derivatives of ζk at N ¼ 0 can be estimated as
ðdnζk=dNnÞð0Þ ≃ ð−iKiÞnζð0Þ.
As we will show in the numerical calculation below, the

perturbation χk is unstable, but the decrease of the K2 term
(proportional to a−2) in Eq. (6.27) suppresses the growth of
χkK2. Therefore, after the Hubble radius crossing, ζk
depends mostly on Ak and its N-derivative. Hence, if
the growth ofAk is insignificant, this is also the case for ζk.
Furthermore, this shows that, in the super-Hubble regime,
ζk is related only to Ak and vice versa. Thus, the whole
scalar sector, which consists of two independent dynamical
d.o.f.s, cannot be described by ζk and Ak alone in the
regime k=a ≪ H.
In Fig. 1, we plot the evolution of jΦkj ¼ jhχkj, jΨkj,

jAkj, and jζkj for ᾱ ¼ 1, β̄ ¼ 6, and Kð0Þ ¼ 100 with the
slow-roll parameter ϵð0Þ ¼ 0.0047. The initial conditions
for χk are instead chosen as to fulfill Eq. (6.26), with
Hi ¼ 10−5MPl. We solved the fourth-order differential
equations of χk and Ak and computed Φk, Ψk, and ζk
by exploiting the relations (6.23) and (6.27). We also
performed the direct integration of the fourth-order differ-
ential equations for Φk, Ψk, and ζk by implementing the
initial conditions for each of them in terms of those given
for χkð0Þ and found that the results are in perfect agreement
with those computed from χk and Ak.
In Fig. 1, we observe that both the amplitudes of

Φk ¼ HBk and Ψk grow in proportion to eHt=2 ≃ eN=2.
We recall that we used the approximation βH2 ≫ 1 to
derive the analytic solutions (5.37), but the numerical
results show that this estimation is valid even for βH2 of
order 1. In Fig. 1, the gravitational potentials exceed the
order 1 around the e-foldings N ¼ 30 ∼ 35 after the onset
of inflation. Thus, the exponential growth of B in the
perturbed line element (5.45) invalidates the FLRW back-
ground. Due to the uncertainty principle, the initial value of
the perturbation χk has a nonvanishing value related to the
energy scaleHi=MPl during inflation. SinceHi=MPl should

8All the perturbations labeled by k, for instance, χk, ζk, etc.,
satisfy the same closed fourth-order differential equation as their
unnormalized counterparts, χ, ζ, etc., with different initial
conditions only by the factor k3=2=

ffiffiffiffiffiffiffi
2π2

p
.
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not be much smaller than 10−5, the gravitational potentials
reach order 1 after the amplification of eN=2 times with
N > 30. As we estimated analytically in Sec. V, the
perturbation ζk approaches a constant after the Hubble
radius crossing, while Ak shows very mild growth. We
recall that ζk and Ak are related to each other in the super-
Hubble regime and that they are not sufficient to describe
the dynamics of scalar perturbations with two propagating
d.o.f.s. Indeed, we cannot eliminate the instability of the
other dynamical perturbation Bk ¼ Φk=H.
In Fig. 2, we show the evolution of gauge-invariant

perturbations by keeping the same initial conditions and
model parameters as those in Fig. 1, except for ᾱ which is
set to a smaller value (ᾱ ¼ 1=400) and for the initial values
of the fields χk, Ak, and ζk. Even with this small value of
the Weyl coupling, both jΦkj and jΨkj increase in propor-
tion to eHt=2 ≃ eN=2 after the Hubble radius crossing, while
the growth of jζkj and jAj is suppressed. Indeed, this
behavior is expected according to the analytic estimations
ofΦk ¼ HBk,Ψk,Ak, and ζk. For small values of α, the last
two terms in Eqs. (5.35) and (5.36) grow in proportion to
eHt=2 with oscillations.9 Note that Starobinsky inflation

without the Weyl term (α ¼ 0) cannot be recovered by
simply taking the limit α → 0 in our theory. For α ¼ 0 there
is only a single scalar d.o.f. arising from the βR2 term, in
which case the exponential growth of gravitational poten-
tials is absent. However, as we saw for the vector and tensor
perturbations, the squared mass of the extra modes, when
the Weyl-squared term is present, is typically of order α−1.
Then, in the limit α → 0, the extra modes become very
massive and we should expect them to acquire a mass larger
than an ultraviolet cutoff scale of order MPl. In this case,
they may be integrated out from the theory. On the other
hand, the instability of scalar perturbations persists for the
Weyl coupling constant in the range α≳M−2

Pl .
In Fig. 3, the evolution of gauge-invariant perturbations

is plotted for the large Weyl coupling ᾱ ¼ 400 with β̄ ¼ 6.
In this case, the condition α > 48β is satisfied and hence
the two gravitational potentials grow as Eq. (5.38) without
oscillations. Indeed, our numerical results in Fig. 3 dem-
onstrate that, after the Hubble radius crossing, the growth of
jΦkj and jΨkj occurs faster than in the case ᾱ ¼ 1.
The suppressed growth of the other perturbations Ak
and ζk also agrees with the analytic estimation in the
regime βH2 ≫ 1.
In general, out of two exponentially growing modes Φk

and Ψk, one can find some linear combinations of them,
like ζk, whose growth is suppressed in the super-Hubble
regime. In this theory, however, two scalar perturbations
determine the stability of the background and not only one.
Therefore, the stability of one linear combination is not
sufficient for guaranteeing the stability of the whole
dynamical system. In the flat gauge, the instability of
the field B appearing in the perturbed metric (5.45) is
enough to make the whole background unstable in the
super-Hubble regime. We also note that, in the flat gauge,
the Weyl tensor component C0

i0j in real space can be
expressed as

FIG. 1. Exponential increase of jΦkj ¼ jhχkj and jΨkj for the
couplings ᾱ ¼ 1 and β̄ ¼ 6. In the regime k ≪ aH, the growth of
both jΦkj and jΨkj can be well-fitted by an exponential function
proportional to eN=2. The initial conditions are chosen to be
hð0Þ ¼ 1, ϵð0Þ ¼ 0.0047, Hi=MPl ¼ 10−5, and Φkð0Þ ¼ χkð0Þ ≃
−6.31 × 10−7 [which is determined by Eq. (6.26)] for the sub-
Hubble mode Kð0Þ ¼ 100. We also show two exponential func-
tions proportional to eN=2 as a dashed pink line and a dash-dotted
light blue line, which fit well with the numerical solutions of jΦkj
and jΨkj, respectively. The initial conditions of Ak and ζk are
known from Eqs. (6.25) and (6.27), as Akð0Þ ≃ −6.34 × 10−7 −
6.32 × 10−5i and ζkð0Þ ≃ 1.3 × 10−4 − 5.9 × 10−4i. To show the
evolution of ζk, we have solved its own closed fourth-order
differential equation. We see that jζkj approaches a constant after
the Hubble radius crossing, while Ak exhibits very mild growth.

FIG. 2. The same as Fig. 1, but for theWeyl coupling ᾱ ¼ 1=400,
χkð0Þ ≃ −1.3 × 10−5, Akð0Þ ≃ −1.3 × 10−5 − 0.0013i, and
ζkð0Þ ≃ 0.0028–2.86 × 10−5i. Also for this small coupling con-
stant ᾱ, the gravitational potentials grow as eN=2.

9In Fig. 2, the oscillations of jΨkj and jΦkj are not clearly seen
at large N, but we confirmed that they are present by enlarging
the figure.
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C0
i0j ¼ −

1

2

�
∂i∂j −

1

3
δij∇2

�
ðAþ Ḃ −HBÞ; ð6:28Þ

which vanishes on the FLRWbackground. In Fourier space,
we can also consider the evolution of the perturbation Ck ≡
Ak þ Ḃk −HBk to see the departure from the background.
While Ak does not exhibit the exponential growth, the
amplitude of Bk ¼ Φk=H evolves as Bk ¼ b0eλHt after the
Hubble radius crossing, where b0 and λ are nonzero
constants and H is assumed to be constant during inflation.
From Eqs. (5.37) and (5.38), the power λ is in the range
1=2 ≤ λ < 1. Since the amplitude of Ḃk −HBk has the time
dependence Ḃk −HBk ¼ b0ðλ − 1ÞHeλHt ≠ 0 for super-
Hubble modes, the perturbation Ck grows exponentially
to spoil the FLRW background. Indeed, we have numeri-
cally found the exponential growth of the amplitude of Ck.
We also solved the perturbation equations in the

Newtonian gauge and obtained the same numerical sol-
utions for the gauge-invariant fields Ψk, Φk, ζk, and Ak as
those in the flat gauge. In the Newtonian gauge, the
violation of the FLRW background occurs by the growth
of two gravitational potentialsΨ andΦ in the perturbed line
element (5.18). For this gauge choice, the Weyl tensor
component C0

i0j in real space is given by [62]

C0
i0j ¼ −

1

2

�
∂i∂j −

1

3
δij∇2

�
ðΨ −ΦÞ: ð6:29Þ

As we can see in Figs. 1 and 2, the gravitational potentials
Ψk and Φk in Fourier space are generally different from
each other. Hence, the amplitude of the combination
Ψk −Φk also grows exponentially after the Hubble radius
crossing. For increasing α relative to β, the difference
between Ψk and Φk tends to be smaller (see Fig. 3).
Provided that α is finite, however, the exponential growth

of C0
i0j always occurs by reflecting the fact that the

amplitude of C0
i0j is proportional to jλ − 1jHeλHt with

1=2 ≤ λ < 1, as we discussed for the flat gauge above.
Indeed, irrespective of the values of α, we numerically
confirmed the exponential increase of jΨk −Φkj in the
Newtonian gauge.
In the unitary gauge, we numerically observed the same

exponential growth of Φk and the constancy of ζk after the
Hubble radius crossing. In this case, the gauge-invariant
combination Bu ¼ ðΦ − ζÞ=H appearing in the perturbed
metric (5.65) is subject to the exponential growth, thereby
invalidating the FLRW background.

VII. CONCLUSIONS

In this paper, we studied the dynamics of cosmological
perturbations during inflation in quadratic gravity contain-
ing theWeyl term −αC2 besides the Ricci squared term βR2

in the action. Although the Weyl curvature does not affect
the background inflationary dynamics driven by the βR2

term, the evolution of perturbations is modified by the
presence of derivatives higher than second order. Since
these higher-order derivatives can give rise to ghosts, it is of
interest to explore whether or not the ghosts can lead to
instabilities of the FLRW background.
As we discussed in Sec. II, geometric inflation is realized

by the βR2 term with β > 0, where the coupling constant β
is related to the mass squared m2

S of a new scalar d.o.f.
(scalaron) as β ¼ 1=ð6m2

SÞ. To realize the number of
e-foldings larger than 60, we require that the Hubble
parameter Hi at the onset of inflation is in the range
βH2

i ≳Oð1Þ. If we transform the action (2.1) to that in the
Einstein frame, the quadratic gravity can be interpreted as
the conformally invariant Weyl theory in the presence of a
canonical scalaron field with the potential. Unlike the past
related works [41–45], we have carried out all the analysis
in the physical Jordan frame.
In Sec. III, we showed that the Weyl term gives rise to

two dynamical vector d.o.f.s propagating with the speed of
light. For the Weyl coupling α > 0 the two ghosts are
present with the positive mass squared m2

W ¼ 1=ð2αÞ,
while, for α < 0, there are no ghosts. In the latter case,
however, the negative value of m2

W leads to the tachyonic
instability of vector perturbations for jαj at most of order β.
To avoid such an instability which violates the inflationary
FLRW background, we demand the condition α > 0 at the
expense of admitting the existence of ghosts.
In Sec. IV, we derived the second-order action of tensor

perturbations and introduced Lagrange multiplier fields χi
(i ¼ 1; 2) associated with higher-order time derivatives.
There are four dynamical d.o.f.s in the tensor sector, two of
which behave as ghosts. Using the WKB approximation for
the modes deep inside the Hubble radius (k=a ≫ H), the
speed of tensor perturbations is equivalent to 1 with
vanishing masses. Despite the presence of the Weyl ghost,

FIG. 3. The same as Fig. 1, except for ᾱ ¼ 400, χkð0Þ ≃
1.5 × 10−7, Akð0Þ ≃ 1.5 × 10−7 þ 1.5 × 10−5i, ζkð0Þ ≃ −3.2×
10−5 − 0.0025i, and for the Weyl coupling ᾱ ¼ 400. For this
large coupling constant ᾱ, the gravitational potentials grow as fast
as e3N=4.
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the classical perturbations are not subject to either
Laplacian or tachyonic instabilities for subhorizon modes.
In the super-Hubble regime (k=a ≪ H), tensor perturba-
tions hi obey the fourth-order differential Eq. (4.17).
Provided that the couplings α and β are in the ranges
α > 0 and βH2 ≳ 1, we showed that hi’s approach con-
stants after the Hubble radius crossing. This means that,
despite the presence of ghosts, tensor perturbations are
subject to neither Laplacian nor tachyonic instabilities.
In Sec. V, we studied the stability and evolution of scalar

perturbations by choosing several different gauge conditions.
There are two dynamical propagating d.o.f.s in the scalar
sector arising from the Lagrangians −αC2 and βR2. For
α > 0 and β > 0, the scalaron is not a ghost, but the other
dynamical mode behaves as a ghost. To study the dynamics
of perturbations, we also introduced several gauge-invariant
perturbations such as those defined in Eqs. (5.4)–(5.6). We
chose theNewtonian, flat, and unitary gauges and derived the
closed differential equations for Ψ, Φ, A, B ¼ Φ=H, and ζ.
We found that the coefficients of these differential equations
are uniquely fixed independent of the gauge choices. We
showed that, after the Hubble radius crossing, bothΨ andΦ
grow exponentially, while A and ζ approach constants.
In the Newtonian gauge given by the perturbed line

element (5.18), the exponential growth of Ψ and Φ occurs
in the g00 and gii metric components. This violates the
stability of the FLRW background after the perturbations
cross the Hubble radius during inflation. For the flat-gauge
line element (5.45) the growth of A is suppressed, but the
exponential increase of B ¼ Φ=H occurs together with the
enhancement of Φ. We have also numerically confirmed
this behavior for the gauge-invariant perturbations in
the numerical simulations of Figs. 1–3 performed in
Sec. VI. In the unitary gauge, the perturbed line element
(5.65) also contains the instability mode Φ in the g0i
metric component. We stress that these instabilities are the

physical ones arising from the gravitational interaction
between the scalaron and the other ghost d.o.f.
We have thus shown that the inflationary FLRW back-

ground realized by the βR2 term is violated by the presence
of the Weyl term. In other words, the Universe becomes
highly inhomogeneous during inflation, being incompat-
ible with the observations of CMB temperature anisotro-
pies. This instability of scalar perturbations is present for
the wide coupling range α≳M−2

Pl in which the mass term
1=

ffiffiffi
α

p
associated with the Weyl term does not exceed the

ultraviolet scale of order MPl. Unless the scalar ghost
arising from the Weyl term is suitably eliminated as a
physical propagating d.o.f. and the classical instability of
the background is removed, the quadratic curvature theory
with α ≠ 0 is excluded as a viable model of inflation (or at
most, the coupling α must be so small that the mass of the
extra modes becomes larger than the cutoff of the theory).
Related to the ghost issue, there is an approach of “fakeon”
where the ghost does not appear as a physical state after
quantizing it as a fake d.o.f. [63–65]. There are also some
approaches to the ghost problem in quantum field theory
by keeping its physical status intact [66–69]. In such
approaches to the ghost problem, it will be of interest to
study the stability of cosmological perturbations and
resulting observational consequences in detail.
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