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We explore the hypothesis that the abundant presence of relativistic antimatter (positrons) in the
primordial Universe is the source of the intergalactic magnetic fields we observe in the Universe today. We
evaluate both Landau diamagnetic and magnetic dipole moment paramagnetic properties of the very dense
primordial electron-positron eþe−-plasma, and obtain in quantitative terms the relatively small magnitude
of the eþe− magnetic moment polarization asymmetry required to produce a consistent self-magnetization
in the Universe.
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I. INTRODUCTION

Macroscopic domains of magnetic fields have been
found around compact objects (stars, planets, etc.); between
stars; within galaxies; between galaxies in clusters;
and in deep extragalactic void spaces. The bounds for
intergalactic magnetic fields (IGMF) at a length scale of
1 Mpc are today [1–5]

10−8 G > BIGMF > 10−16 G: ð1Þ

Considering the ubiquity of magnetic fields in the Universe
[6–8], we search for a common cosmic primordial
mechanism considering the electron-positron eþe−-pair
plasma [9,10].
Faraday rotation from distant radio active galaxy nuclei

(AGN) [11] suggests that neither dynamo nor astrophysical
processes would sufficiently account for the presence of
magnetic fields in the Universe today if the IGMF strength
was around the upper bound of BIGMF ≃ 30–60 nG as
found in Ref. [5]. The presence of magnetic fields of this
magnitude would then require that at least some portion of
IGMFs arise from primordial sources predating the for-
mation of stars. The presence of a primordial magnetic field
(PMF) BPMF ≃ 0.1 nG according to Ref. [12] could be
sufficient to explain the Hubble tension.
We investigate the novel hypothesis that the observed

IGMF originates in the large scale non-Ampèrian (i.e.
noncurrent sourced in the “Gilbertian” sense [13]) PMFs
created in the dense cosmic eþe−-pair plasma by magnetic

dipole moment paramagnetism competing with Landau’s
diamagnetism.
We evaluate the Gilbertian magnetic properties of the

very dense eþe− cosmic matter-antimatter plasma. The
abundance of eþe− is considered in Sec. II and its thermal
properties in Sec. III. We establish the Gilbertian (non-
Ampèrian ¼ noncurrent) magnetism present in the plasma
in Sec. IVand demonstrate in Sec. V that the noninteracting
plasma is nonferromagnetic. We characterize that such
ferromagnetism can occur if a tiny polarization asymmetry
arises from residual interactions.
Since the Gilbertian and Ampèrian mechanisms of

magnetization are distinct physical phenomena, the result-
ing spectral decomposition of magnetic domains in a
cosmological context cannot be assumed as identical. We
return to this question, albeit briefly, in Sec. V C. In fact
our study of prerecombination Gilbertian dipole moment
magnetization of the eþe−-plasma is in part motivated by
the difficulty in generating Ampèrian PMFs with large
coherent length scales implied by the IGMF [14], though
currently the length scale for PMFs are not well con-
strained either [15]. The conventional elaboration of the
origins for cosmic PMFs are detailed in [15–17].
In our framework, themagnetization of the earlyUniverse

requires a large density of strong magnetic dipoles. Due to
their large magnetic moment (∝ e=me), electrons and
positrons magnetically dominate the Universe. The dense
eþe−-plasma is characterized in Fig. 1: We show the
antimatter (positron) abundance as a ratio to the prevailing
baryon density as a function of cosmic photon temperature
T. In this work we measure T in units of energy (keV); thus
we set the Boltzmann constant to kB ¼ 1. We consider all
results in temporal sequence in the expandingUniverse; thus
we begin with high T and early times on the left in Fig. 1 and
end at lower T and later times on the right.
We evaluate the magnetic moment polarization required

for spontaneous Gilbertian magnetization. Magnetic flux
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persistence implies that once the eþe−-pair plasma fades
out, the ambient large scale Gilbertian magnetic field is
maintained by the induced Ampèrian (current) sources
arising in the residual e−pþαþþ-plasma ultimately leading
to the observed large scale structure IGMF.
As we see in Fig. 1 at T > mec2 ¼ 511 keV the eþe−-

pair abundance was nearly 450 million pairs per baryon,
dropping to about 100 million pairs per baryon prior to
Big Bang Nucleosynthesis (BBN) at T ¼ 100 keV. The
number of eþe−-pairs is large compared to the residual
“unpaired” electrons neutralizing the baryon charge locally
down to Tsplit ¼ 20.3 keV. Since electrons and positrons
have opposite magnetic moments, the magnetized dense
eþe−-plasma entails negligible net statistical average local
spin density. The residual very small polarization of
unpaired electrons complements the magnetic field induced
polarization of the proton component.
As shown in Fig. 2 in Ref. [9], following hadronization

of the quark-gluon plasma (QGP) and below about
T ¼ 100 000 keV, in terms of energy density, the early
Universe’s first hour consists of photons, neutrinos and the
eþe−-pair plasma. Massive dark matter and dark energy are
negligible during this era. While we study the magnetic
moment polarization of eþe−-plasma, we do not address its
origin. However, we recall that the pair plasma decouples
from the neutrino background near to T ¼ 2000 keV [18].
Therefore, we consider the magnetic properties of the
eþe−-pair plasma in the temperature range 2000 keV >
T > 20 keV and focus on the range 200 keV > T >
20 keV where the most rapid antimatter abundance
changes occur and where the Boltzmann approximation
is valid. This is notably the final epoch where antimatter
exists in large quantities in the cosmos [9].
The abundance of antimatter shown in Fig. 1 is obtained

and discussed in more detail in Sec. II. Our analysis in
Sec. III describes the four relativistic fermion gases
(particle and antiparticle and both polarizations) where

the spin and spin-orbit contributions are evaluated in
Sec. III A. The influence of magnetization on the charge
chemical potential is determined in Sec. III B. We show in
Sec. IV, accounting for the matter-antimatter asymmetry
present in the Universe, that magnetization is nonzero. Our
description of relativistic paramagnetism is covered in
Sec. IVA. The balance between paramagnetic and dia-
magnetic response is evaluated as a function of particle
gyromagnetic ratio in Sec. IV B. The per-lepton magneti-
zation is examined in Sec. IV C distinguishing between
cosmic and laboratory cases; in the latter case the number
of magnetic dipoles is fixed, while in the Universe the
(comoving) number can vary with T.
Section V covers the consequences of forced magneti-

zation via a magnetic moment polarization potential. We
find in Sec. VA that magnetization can be spontaneously
increased in strength near the IGMF upper limit seen in
Eq. (1) given sufficient magnetic moment polarization. A
model of self-magnetization is explored in Sec. V B which
indicates the need for flux conserving currents at low
temperatures. Our findings are summarized in Sec. VI. We
also suggest and a wealth of future follow-up projects
mostly depending on the introduction of transport theory
that accounts for particle spin in cosmic magnetic fields.

II. COSMIC ELECTRON-POSITRON PLASMA
ABUNDANCE

As the Universe cooled below temperature T ¼ me (the
electron mass), the thermal electron and positron comoving
density depleted by over 8 orders of magnitude. At
Tsplit ¼ 20.3 keV, the charged lepton asymmetry (mirrored
by baryon asymmetry and enforced by charge neutrality)
became evident as the surviving excess electrons persisted
while positrons vanished entirely from the particle inven-
tory of the Universe due to annihilation.
The electron-to-baryon density ratio ne−=nB is shown

in Fig. 1 as the solid blue line while the positron-to-
baryon ratio neþ=nB is represented by the dashed red line.
These two lines overlap until the temperature drops
below Tsplit ¼ 20.3 keV as positrons vanish from the
Universe. This marks the end of the eþe−-plasma and
begins the dominance of the electron-proton ðe−pÞ-
plasma. The two vertical dashed green lines denote
temperatures T ¼ me ≃ 511 keV and Tsplit ¼ 20.3 keV.
These results were obtained using charge neutrality and
the baryon-to-photon content (entropy) of the Universe;
see details in [9]. The two horizontal black dashed lines
denote the relativistic T ≫ me abundance of ne�=nB ¼
4.47 × 108 and the postannihilation abundance of
ne−=nB ¼ 0.87. Above temperature T ≃ 85 keV, the
eþe− primordial plasma density exceeded that of the
Sun’s core density ne ≃ 6 × 1026 cm−3 [19].
Conversion of the dense eþe−-pair plasma into photons

reheated the photon background [18] separating the photon

FIG. 1. Number density of electron e− and positron eþ to
baryon ratio ne�=nB as a function of photon temperature in the
Universe. See text in Sec. II for further details.
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and neutrino temperatures. The eþe− annihilation and
photon reheating period lasted no longer than an afternoon
lunch break. Because of charge neutrality, the postannihi-
lation comoving ratio ne−=nB ¼ 0.87 [9] is slightly offset
from unity in Fig. 1 by the presence of bound neutrons in α
particles and other neutron containing light elements
produced during the BBN epoch.
To obtain a quantitative description of the above evolu-

tion, we study the bulk properties of the relativistic charged/
magnetic gasses in a nearly homogeneous and isotropic
primordial Universe via the thermal Fermi-Dirac or Bose
distributions. For matter ðe−; σ ¼ þ1Þ and antimatter
ðeþ; σ ¼ −1Þ particles, a nonzero relativistic chemical
potential μσ ¼ σμ is caused by an imbalance of matter
and antimatter. While the primordial electron-positron
plasma era was overall charge neutral, there was a
small asymmetry in the charged leptons from baryon
asymmetry [20,21] in the Universe. Reactions such as
eþe− ↔ γγ constrains the chemical potential of electrons
and positrons [22] as

μ≡ μe− ¼ −μeþ ; λ≡ λe− ¼ λ−1eþ ¼ exp
μ

T
; ð2Þ

where λ is the fugacity of the system.
During the eþe−-plasma epoch, the density changed

dramatically over time (see Fig. 1) changing the chemical
potential in turn. We can then parametrize the chemical
potential of the eþe−-plasma as a function of temperature
μ → μðTÞ via the charge neutrality of the Universe which
implies

np ¼ ne− − neþ ¼ 1

V
λ
∂

∂λ
lnZeþe− : ð3Þ

In Eq. (3), np is the observed total number density of
protons in all baryon species. The parameter V relays the
proper volume under consideration, and lnZeþe− is the
partition function for the electron-positron gas. The chemi-
cal potential defined in Eq. (2) is obtained from the
requirement that the positive charge of baryons (protons,
α particles, light nuclei produced after BBN) is exactly and
locally compensated by a tiny net excess of electrons over
positrons.
The abundance of baryons is itself fixed by the known

abundance relative to photons [23], and we employed the
contemporary recommended value nB=nγ ¼ 6.09 × 10−10.
The resulting chemical potential needs to be evaluated
carefully to obtain the behavior near Tsplit ¼ 20.3 keV,
where the relatively small value of chemical potential μ
rises rapidly so that positrons vanish from the particle
inventory of the Universe while nearly one electron per
baryon remains. The detailed solution of this problem is
found in Refs. [9,20] leading to the results shown in Fig. 1.
These results are obtained allowing for Fermi-Dirac and

Bose statistics; however it is often numerically sufficient to
consider the Boltzmann distribution limit; see Sec. III A.
The partition function of the eþe−-plasma can be under-

stood as the sum of four gaseous species,

lnZeþe− ¼ lnZ↑
eþ þ lnZ↓

eþ þ lnZ↑
e− þ lnZ↓

e− ; ð4Þ

of electrons and positrons of both polarizations. In the
presence of a magnetic field B along a primary axis, there is
some modification of the usual relativistic fermion partition
function which is now given by

lnZeþe− ¼ eBV
ð2πÞ2

X�1

σ

X�1

s

X∞
n¼0

Z
∞

−∞
dpz

×

�
ln

�
1þ λσξσ;s exp

�
−
E
T

���
ð5Þ

λσξσ;s ¼ exp
μσ þ ησ;s

T
; ð6Þ

where pz is the momentum parallel to the field axis and
electric charge is e≡ qeþ ¼ −qe− . The index σ in Eq. (5) is
a sum over electron and positron states while s is a sum
over polarizations. The index s refers to the spin along the
field axis: parallel ð↑; s ¼ þ1Þ or antiparallel ð↓; s ¼ −1Þ
for both particle and antiparticle species.
As the gas is electrically neutral, we will for the time

being ignore charge-charge interactions. There is an addi-
tional deformation of the distribution from particle creation
and destruction correlations; see Chap. 11 of [24] in the
context of quark flavors. These will be not included as the
considered volume is always large. The quantum numbers
of the energy eigenstate E will be elaborated in Sec. III.
We are explicitly interested in small asymmetries, such

as baryon excess over antibaryons, or one polarization over
another. These are described by Eq. (6) as the following two
fugacities:
(a) Chemical fugacity λσ.
(b) Polarization fugacity ξσ;s.
The chemical fugacity λσ [defined in Eq. (2) above]
describes deformation of the Fermi-Dirac distribution
due to nonzero chemical potential μ. An imbalance in
electrons and positrons leads, as discussed earlier, to a
nonzero particle chemical potential μ ≠ 0. We then intro-
duce a novel polarization fugacity ξσ;s and polarization
potential ησ;s ¼ σsη. We propose the polarization potential
follows analogous expressions as seen in Eq. (2) obeying

η≡ηþ;þ¼η−;−; η¼−η�;∓; ξσ;s≡exp
ησ;s
T

: ð7Þ

An imbalance in polarization within a region of volume
V results in a nonzero magnetic moment potential η ≠ 0.
Conveniently, since antiparticles have opposite sign of
charge and magnetic moment, the same magnetic moment
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is associated with opposite spin orientation for particles and
antiparticles independent of degree of spin-magnetization.
A completely particle-antiparticle symmetric magnetized
plasma will have therefore zero total angular momentum.
This is of course very different from the plasma situations
of today in our matter dominated Universe.

III. THEORY OF MAGNETIZED
MATTER-ANTIMATTER PLASMAS

As the Universe undergoes isotropic expansion, the
temperature decreases adiabatically [25] and conserves
entropy as

TðtÞ ¼ T0

a0
aðtÞ → TðzÞ ¼ T0ð1þ zÞ; ð8Þ

where aðtÞ is the scale factor defined by the Friedmann-
Lemaître-Robertson-Walker (FLRW) metric [26] and z is
the redshift. The comoving temperature T0 is given by the
present day temperature of the CMB, with contemporary
scale factor a0 ¼ 1. Within a homogeneous magnetic
domain, the magnetic field magnitude varies [17] over
cosmic expansion as

BðtÞ ¼ B0

a20
a2ðtÞ → BðzÞ ¼ B0ð1þ zÞ2; ð9Þ

where B0 is the comoving value of the magnetic field
obtained from the contemporary value today given in
Eq. (1). Nonprimordial magnetic fields (which are gen-
erated through other mechanisms such as dynamo or
astrophysical sources) do not follow this scaling [11].
The presence of matter and late Universe structure for-
mation also contaminates the primordial field evolution
in Eq. (9). It is only in deep intergalactic space where
primordial fields remain preserved and comoving over
cosmic time.
From Eqs. (8) and (9) emerges a natural ratio of interest

here which is conserved over cosmic expansion,

b≡ eBðtÞ
T2ðtÞ ¼

eB0

T2
0

≡ b0 ¼ const: ð10Þ

10−3 > b0 > 10−11; ð11Þ

given in natural units (c ¼ ℏ ¼ kB ¼ 1). We computed
the bounds for this cosmic magnetic scale ratio by
using the present day IGMF observations given by
Eq. (1) and the present CMB temperature T0 ¼ 2.7 K ≃
2.3 × 10−4 eV [27].
To evaluate magnetic properties of the thermal eþe−-pair

plasma we take inspiration from Chap. 9 of Melrose’s
treatise on magnetized plasmas [28]. We focus on the
bulk properties of thermalized plasmas in (near) equilib-
rium. In considering eþe−-pair plasma, we introduce the

microscopic energy of the charged relativistic fermion
within a homogeneous (z-direction) magnetic field [29].
The energy eigenvalue is given by

En
σ;sðpz;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e þ p2
z þ eB

�
2nþ 1þ g

2
σs

�s
; ð12Þ

where n∈ 0; 1; 2;… is the Landau orbital quantum number.
Equation (12) differentiates between electrons and posi-
trons which is to ensure the correct nonrelativistic limit is
reached; see Fig. 2. The parameter g is the gyromagnetic
(g-factor) of the particle. Following the conventions found
in [30], we set g≡ geþ ¼ −ge− > 0 such that electrons and
positrons have opposite g-factors and opposite magnetic
moments which is schematically shown in Fig. 2.
As statistical properties depend on the characteristic

Boltzmann factor E=T, another interpretation of Eq. (10) in
the context of energy eigenvalues [such as those given in
Eq. (12)] is the preservation of magnetic moment energy
relative to momentum under adiabatic cosmic expansion.
We rearrange Eq. (12) by pulling the spin dependency

and the ground state Landau orbital into the mass writing

En
σ;s ¼ m̃σ;s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

z

m̃2
σ;s

þ 2eBn
m̃2

σ;s

s
; ð13Þ

εnσ;sðpz;BÞ¼
En
σ;s

m̃σ;s
; m̃2

σ;s¼m2
eþeB

�
1þ g

2
σs

�
; ð14Þ

where we introduced the dimensionless energy εnσ;s and
effective polarized mass m̃σ;s which is distinct for each spin
alignment and is a function of magnetic field strength B.
The effective polarized mass m̃σ;s allows us to describe the

FIG. 2. Organizational schematic of matter-antimatter (σ) and
polarization (s) states with respect to the sign of the non-
relativistic magnetic dipole energy UMag [obtainable from
Eq. (12)] and the chemical μ and polarization η potentials as
seen in Eq. (17).
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eþe−-plasma with the spin effects almost wholly separated
from the Landau characteristics of the gas when consid-
ering the plasma’s thermodynamic properties.
Since we address the temperature interval 200 keV >

T > 20 keV where the effects of quantum Fermi statistics
on the eþe−-pair plasma are relatively small, but the
gas is still considered relativistic, we employ the
Boltzmann approximation to the partition function in
Eq. (5). However, we extrapolate our results for presentation
completeness up to T ≃ 4me.
In general, modifications due to quantum statistical

phase-space reduction for fermions are expected to sup-
press results by about 20% in the extrapolated regions. We
will continue to search for semianalytical solutions for
Fermi statistics in relativistic eþe−-pair gasses to compli-
ment the Boltzmann solution offered here.

A. Unified treatment of para and diamagnetism

We will proceed in this section with the Boltzmann
approximation for the limit where T ≲me. The partition
function shown in equation Eq. (5) can be rewritten
removing the logarithm as

lnZeþe− ¼ eBV
ð2πÞ2

X�1

σ;s

X∞
n¼0

X∞
k¼1

Z þ∞

−∞
dpz

×
ð−1Þkþ1

k
exp

�
k
σμþ σsη − m̃σ;sε

n
σ;s

T

�
; ð15Þ

σμþ σsη − m̃σ;sε
n
σ;s < 0; ð16Þ

which is well behaved as long as the factor in Eq. (16)
remains negative. We evaluate the sums over σ and s as

lnZeþe− ¼
eBV
ð2πÞ2

X∞
n¼0

X∞
k¼1

Z þ∞

−∞
dpz

ð−1Þkþ1

k

×

�
exp

�
k
þμþη

T

�
exp

�
−k

m̃þ;þεnþ;þ
T

�

þ exp

�
k
þμ−η

T

�
exp

�
−k

m̃þ;−ε
nþ;−

T

�

þ exp

�
k
−μ−η

T

�
exp

�
−k

m̃−;þεn−;þ
T

�

þ exp

�
k
−μþη

T

�
exp

�
−k

m̃−;−ε
n
−;−

T

��
: ð17Þ

We note from Fig. 2 that the first and forth terms and the
second and third terms share the same energies via

εnþ;þ ¼ εn−;−; εnþ;− ¼ εn−;þ: εnþ;− < εnþ;þ: ð18Þ

Equation (18) allows us to reorganize the partition
function with a new magnetization quantum number s0

which characterizes paramagnetic flux increasing states
ðs0¼þ1Þ and diamagnetic flux decreasing states ðs0 ¼ −1Þ.
This recasts Eq. (17) as

lnZeþe− ¼ eBV
ð2πÞ2

X�1

s0

X∞
n¼0

X∞
k¼1

Z þ∞

−∞
dpz

ð−1Þkþ1

k

×

�
2ξs0 cosh

kμ
T

�
exp

�
−k

m̃s0ε
n
s0

T

�
; ð19Þ

with dimensionless energy, polarization mass, and polari-
zation redefined in terms of s0,

ϵns0¼þ1
¼ ϵnþ;−; ϵns0¼−1 ¼ ϵnþ;þ; ð20Þ

m̃2
s0 ¼ m2

e þ eB
�
1 −

g
2
s0
�
; ð21Þ

η≡ ηþ ¼ −η− ξ≡ ξþ ¼ ξ−1− : ð22Þ

We introduce the modified Bessel function Kν (see
Chap. 10 of [24]) of the second kind,

Kν

�
m
T

�
¼

ffiffiffi
π

p
Γðν − 1=2Þ

1

m

�
1

2mT

�
ν−1

ð23Þ

Z
∞

0

dpp2ν−2 exp

�
−
mε

T

�
;

ν > 1=2; ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=m2

q
; ð24Þ

allowing us to rewrite the integral over momentum in
Eq. (19) as

1

T

Z
∞

0

dpz exp

�
−
km̃s0ε

n
s0

T

�
¼ W1

�
km̃s0ε

n
s0 ð0;BÞ
T

�
: ð25Þ

The functionWν serves as an auxiliary function of the form
WνðxÞ ¼ xKνðxÞ. The notation εð0;BÞ in Eq. (25) refers to
the definition of dimensionless energy found in Eq. (14)
with pz ¼ 0.
The standard Boltzmann distribution is obtained by

summing only k ¼ 1 and neglecting the higher order terms.
The Euler-Maclaurin formula [31] is used to convert the
summation over Landau levels into an integration given by

X∞
n¼0

W1ðnÞ ¼
Z

∞

0

dnW1ðnÞ þ
1

2
½W1ð∞Þ þW1ð0Þ�

þ 1

12

�
∂W1

∂n

����
∞
−
∂W1

∂n

����
0

�
þR; ð26Þ

where R is the resulting power series and error remainder
of the integration defined in terms of Bernoulli polyno-
mials. Euler-Maclaurin integration is rarely convergent, and
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in this case serves only as an approximation within the
domain where the error remainder is small and bounded;
see Ref. [32] for the nonrelativistic case. In this analysis, we
keep the zeroth and first order terms in the Euler-Maclaurin
formula. We note that regularization of the excess terms in
Eq. (26) is done in the context of strong field QED [33]
though that is outside our scope.
After truncation of the series and error remainder and

combining Eq. (15) through Eq. (26), the partition function
can then be written in terms of modified Bessel Kν

functions of the second kind, yielding

lnZeþe− ≃
T3V
π2

X�1

s0

�
ξs0 cosh

μ

T

�

×

�
x2s0K2ðxs0 Þþ

b0
2
xs0K1ðxs0 Þþ

b20
12

K0ðxs0 Þ
�
;

ð27Þ

xs0 ¼
m̃s0

T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e

T2
þ b0

�
1 −

g
2
s0
�s
: ð28Þ

The latter two terms in Eq. (27) proportional to b0K1 and
b20K0 are the uniquely magnetic terms present containing
both spin and Landau orbital influences in the partition
function. The K2 term is analogous to the textbook free
Fermi gas [32] modified only by spin effects.
This “separation of concerns” can be rewritten as

lnZS ¼
T3V
π2

X�1

s0

�
ξs0 cosh

μ

T

�
ðx2s0K2ðxs0 ÞÞ; ð29Þ

lnZSO ¼ T3V
π2

X�
s0

�
ξs0 cosh

μ

T

�

×

�
b0
2
xs0K1ðxs0 Þ þ

b20
12

K0ðxs0 Þ
�
; ð30Þ

where the spin (S) and spin-orbit (SO) partition functions
can be considered independently. When the magnetic scale
b0 is small, the spin-orbit term Eq. (30) becomes negligible
leaving only paramagnetic effects in Eq. (29) due to spin. In
the nonrelativistic limit, Eq. (29) reproduces a quantum gas
whose Hamiltonian is defined as the free particle (FP)
Hamiltonian plus the magnetic dipole (MD) Hamiltonian
which span two independent Hilbert spaces HFP ⊗ HMD.
Writing the partition function as Eq. (27) instead of

Eq. (15) has the additional benefit that the partition function
remains finite in the free gas ðB → 0Þ limit. This is because
the free Fermi gas and Eq. (29) are mathematically
analogous to one another. As the Bessel Kν functions
are evaluated as functions of x� in Eq. (28), the “free” part
of the partition K2 is still subject to dipole magnetization

effects. In the limit where B → 0, the free Fermi gas is
recovered in both the Boltzmann approximation k ¼ 1 and
the general case

P∞
k¼1.

B. Charge chemical potential response

In presence of a magnetic field in the Boltzmann approxi-
mation, the charge neutrality condition Eq. (3) becomes

sinh
μ

T
¼ np

π2

T3

�X�1

s0
ξs0

�
x2s0K2ðxs0 Þ þ

b0
2
xs0K1ðxs0 Þ

þ b20
12

K0ðxs0 Þ
��

−1
: ð31Þ

Equation (31) is fully determined by the right-hand-side
expression if the magnetic moment fugacity is set to unity
η ¼ 0. This implies no external bias to the number of
polarizations except as a consequence of the difference in
energy eigenvalues. In practice, the latter two terms in
Eq. (31) are negligible to chemical potential in the bounds
of the primordial eþe−-plasma considered and only becomes
relevant for extreme (see Fig. 3)magnetic field strengthswell
outside our scope.
Equation (31) simplifies in the limit of zero external

magnetic field b0 → 0 into

sinh
μ

T
¼ np

π2

T3

�
2 cosh

η

T

�
me

T

�
2

K2

�
me

T

��
−1
: ð32Þ

FIG. 3. The chemical potential over temperature μ=T is plotted
as a function of temperature with differing values of magnetic
moment potential η and magnetic scale b0.
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In Fig. 3 we plot the chemical potential μ=T in Eqs. (31)
and (32) which characterizes the importance of the charged
lepton asymmetry as a function of temperature. Since the
baryon (and thus charged lepton) asymmetry remains fixed,
the suppression of μ=T at high temperatures indicates a
large pair density which is seen explicitly in Fig. 1. The
black line corresponds to the b0 ¼ 0 and η ¼ 0 cases.
The paradiamagnetic contribution from Eq. (30)

does not appreciably influence μ=T until the magnetic
scales involved become incredibly large well outside the
observational bounds defined in Eqs. (1) and (10) as
seen by the dotted blue curves of various large values
b0 ¼ f25; 50; 100; 300g. The chemical potential is also
insensitive to forcing by the magnetic moment potential
until η reaches a significant fraction of the electron massme
in size. The chemical potential for large values of magnetic
moment potential η ¼ f100; 200; 300; 400; 500g keV are
also plotted as dashed black lines with b0 ¼ 0.
It is interesting to note that there are crossing points

where a given chemical potential can be described as either
an imbalance in magnetic moment polarization or presence
of external magnetic field. While magnetic moment poten-
tial suppresses the chemical potential at low temperatures,
external magnetic fields only suppress the chemical poten-
tial at high temperatures.
The profound insensitivity of the chemical potential to

these parameters justifies the use of the free particle
chemical potential (black line) in the ranges of magnetic
field strength considered for cosmology. Mathematically
this can be understood as ξ and b0 act as small corrections
in the denominator of Eq. (31) if expanded in powers of
these two parameters.

IV. GILBERTIAN MAGNETIZATION OF
ELECTRON-POSITRON PLASMA

The total magnetic flux within a region of space can be
written as the sum of external fields and the magnetization
of the medium via

Btotal ¼ B þM: ð33Þ

For the simplest mediums without ferromagnetic or hys-
teresis considerations, the relationship can be parametrized
by the susceptibility χ of the medium as

Btotal ¼ ð1þ χÞB; M ¼ χB; ð34Þ

with the possibility of both paramagnetic materials (χ > 1)
and diamagnetic materials (χ < 1). The eþe−-plasma
however does not so neatly fit in either category as given
by Eqs. (29) and (30). In general, the susceptibility of the
gas will itself be a field dependant quantity given by

χ ≡ ∂M
∂B

: ð35Þ

In our analysis, the external magnetic field always
appears within the context of the magnetic scale b0;
therefore we can introduce the change of variables,

∂b0
∂B

¼ e
T2

: ð36Þ

The magnetization of the eþe−-plasma described by the
partition function in Eq. (27) can then be written as

M≡ T
V

∂

∂B
lnZeþe− ¼ T

V

�
∂b0
∂B

�
∂

∂b0
lnZeþe− : ð37Þ

Magnetization arising from other components in the cosmic
gas (protons, neutrinos, etc.) could in principle also be
included. Localized inhomogeneities and matter evolution
are often nontrivial and generally are solved numerically
using magnetohydrodynamics (MHD) [28,34–36]. In the
context of MHD, primordial magnetogenesis from fluid
flows in the electron-positron epoch was considered in
[37,38]. We note in passing that the possible conservation
of magnetic helicity [39] relates to current induced mag-
netic fields. We do not expect this conservation law to hold
for our Gilbertian spin based magnetization.
We introduce dimensionless units for magnetization M

by defining the critical field strength,

BC ≡m2
e

e
; M≡M

BC
: ð38Þ

The scale BC is where electromagnetism is expected to
become subject to nonlinear effects, though luckily in our
regime of interest, electrodynamics should be linear. We
note however that the upper bounds of IGMFs in Eq. (1)
[with b0 ¼ 10−3; see Eq. (10)] brings us to within 1% of
that limit for the external field strength in the temperature
range considered.
The total magnetization M can be broken into the sum

of magnetic moment parallel Mþ and antiparallel M−
contributions,

M ¼ Mþ þM−: ð39Þ

We note that the expression for the magnetization simplifies
significantly for g ¼ 2 which is the “natural” gyromagnetic
factor [40,41] for Dirac particles. For illustration, the g ¼ 2
magnetization from Eq. (37) is then

Mþ ¼ e2

π2
T2

m2
e
ξ cosh

μ

T

�
1

2
xþK1ðxþÞ þ

b0
6
K0ðxþÞ

�
; ð40Þ

−M− ¼ e2

π2
T2

m2
e
ξ−1 cosh

μ

T

×

��
1

2
þ b20
12x2−

�
x−K1ðx−Þ þ

b0
3
K0ðx−Þ

�
; ð41Þ
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xþ ¼ me

T
; x− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

e

T2
þ 2b0

r
: ð42Þ

As the g-factor of the electron is only slightly above two at
g ≃ 2.00232 [30], the above two expressions for Mþ and
M− are only modified by a small amount because of
anomalous magnetic moment (AMM) and would be
otherwise invisible on our figures. We will revisit AMM
in Sec. IV B.

A. Magnetic response of electron-positron plasma

In Fig. 4, we plot the magnetization as given by Eqs. (40)
and (41) with the magnetic moment potential set to unity
ξ ¼ 1. The lower (solid red) and upper (solid blue) bounds
for cosmic magnetic scale b0 are included. The external
magnetic field strength B=BC is also plotted for lower
(dotted red) and upper (dotted blue) bounds. Since the
derivative of the partition function governing magnetization
may manifest differences between Fermi-Dirac and the here
used Boltzmann limit more acutely, out of abundance of
caution, we indicate extrapolation outside the domain of
validity of the Boltzmann limit with dashes.
We see in Fig. 4 that the eþe−-plasma is overall para-

magnetic and yields a positive magnetization which is
contrary to the traditional assumption that matter-antimatter
plasma lack significant magnetic responses of their own in
the bulk. With that said, the magnetization never exceeds
the external field under the parameters considered which
shows a lack of ferromagnetic behavior.

The large abundance of pairs causes the smallness of the
chemical potential seen in Fig. 3 at high temperatures. As
the Universe expands and temperature decreases, there is a
rapid decrease of the density ne� of eþe−-pairs. This is the
primary cause of the rapid paramagnetic decrease seen
in Fig. 4 above Tsplit ¼ 20.3 keV. At lower temperatures
T < 20.3 keV there remains a small electron excess (see
Fig. 1) needed to neutralize proton charge. These excess
electrons then govern the residual magnetization and
dilutes with cosmic expansion.
An interesting feature of Fig. 4 is that the magnetization

in the full temperature range increases as a function of
temperature. This is contrary to Curie’s law [32] which
stipulates that paramagnetic susceptibility of a laboratory
material is inversely proportional to temperature. However,
Curie’s law applies to systems with a fixed number of
particles which is not true in our situation; see Sec. IV C.
A further consideration is possible hysteresis as the eþe−

density drops with temperature. It is not immediately obvious
the gas’s magnetization should simply “degauss” so rapidly
without further consequence. If the very large paramagnetic
susceptibility present for T ≃me is the origin of an overall
magnetization of the plasma, the conservation of magnetic
flux through the comoving surface ensures that the initial
residual magnetization is preserved at a lower temperature by
Faraday induced kinetic flow processes. However our model
presented here cannot account for such effects. Some con-
sequences of enforcedmagnetization are considered inSec.V.
Early Universe conditions may also apply to some

extreme stellar objects with rapid change in ne� with
temperatures above Tsplit ¼ 20.3 keV. Production and
annihilation of eþe−-plasmas is also predicted around
compact stellar objects [42,43] potentially as a source of
gamma-ray bursts (GRB).

B. g-factor balance between para and diamagnetism

As discussed at the end of Sec. IV, the AMM of eþe− is
not relevant in the present model. However out of academic
interest, it is valuable to consider how magnetization is
effected by changing the g-factor significantly.
The influence of AMM would be more relevant for

the magnetization of baryon gasses since the g-factor for
protons (g ≈ 5.6) and neutrons (g ≈ 3.8) are substantially
different from g ¼ 2. The influence of AMM on the
magnetization of thermal systems with large baryon content
(neutron stars, magnetars, hypothetical bose stars, etc.) is
therefore also of interest [44,45].
Equations (40) and (41) with arbitrary g reintroduced is

given by

M ¼ e2

π2
T2

m2
e

X�1

s0
ξs0 cosh

μ

T
½C1

s0 ðxs0 ÞK1ðxs0 Þ þ C0
s0K0ðxs0 Þ�;

ð43ÞFIG. 4. The magnetization M, with g ¼ 2, of the primordial
eþe−-plasma is plotted as a function of temperature.
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C1
s0 ðx�Þ ¼

�
1

2
−
�
1

2
−
g
4
s0
��

1þ b20
12x2s0

��
xs0 ; ð44Þ

C0
s0 ¼

�
1

6
−
�
1

4
−
g
8
s0
��

b0; ð45Þ

where xs0 was previously defined in Eq. (28).
In Fig. 5, we plot the magnetization as a function

of g-factor between 4 > g > −4 for temperatures
T ¼ f511; 300; 150; 70g keV. We find that the magnetiza-
tion is sensitive to the value of AMM revealing a transition
point between paramagnetic ðM > 0Þ and diamagnetic
gasses ðM < 0Þ.
Curiously, the transition point was numerically deter-

mined to be around g ≃ 1.1547 in the limit b0 → 0. The
exact position of this transition point however was found to
be both temperature and b0 sensitive, though it moved little
in the ranges considered.
It is not surprising for there to be a transition between

diamagnetism and paramagnetism given that the partition
function [see Eqs. (29) and (30)] contained elements of
both. With that said, the transition point presented at
g ≈ 1.15 should not be taken as exact because of the
approximations used to obtain the above results.
It is likely that the exact transition point has been

altered by our taking of the Boltzmann approximation
and Euler-Maclaurin integration steps. It is known that the
Klein-Gordon-Pauli solutions to the Landau problem in

Eq. (12) have periodic behavior [29,40,41] for jgj ¼ k=2
(where k∈ 1; 2; 3…).
These integer and half-integer points represent when the

two Landau towers of orbital levels match up exactly.
Therefore, we propose a more natural transition between
the spinless diamagnetic gas of g ¼ 0 and a paramagnetic
gas is g ¼ 1. A more careful analysis is required to confirm
this, but that our numerical value is close to unity is
suggestive.

C. Laboratory versus the relativistic
electron-positron-universe

Despite the relatively large magnetization seen in Fig. 4,
the average contribution per lepton is only a small fraction
of its overall magnetic moment indicating the magnetiza-
tion is loosely organized. Specifically, the magnetization
regime we are in is described by

M ≪ μB
Neþ þ Ne−

V
; μB ≡ e

2me
; ð46Þ

where μB is the Bohr magneton and N ¼ nV is the total
particle number in the proper volume V. To better dem-
onstrate that the plasma is only weakly magnetized, we
define the average magnetic moment per lepton along the
field (z-direction) axis as

jm⃗jz ≡ M
ne− þ neþ

; jm⃗jx ¼ jm⃗jy ¼ 0: ð47Þ

Statistically, we expect the transverse expectation values
to be zero. We emphasize here that despite jm⃗jz being
nonzero, this does not indicate a nonzero spin angular
momentum as our plasma is nearly matter-antimatter
symmetric. The quantity defined in Eq. (47) gives us an
insight into the microscopic response of the plasma.
The average magnetic moment jm⃗jz defined in Eq. (47) is

plotted in Fig. 6 which displays how essential the external
field is for “per lepton”magnetization. Both the b0 ¼ 10−11

(lower plot, red curve) and b0 ¼ 10−3 (upper plot, blue
curve) cosmic magnetic scale bounds are plotted in the
Boltzmann approximation. The dashed lines indicate where
this approximation is only qualitatively correct. For illus-
tration, a constant magnetic field case (solid green line)
with a comoving reference value chosen at temperature
T0 ¼ 10 keV is also plotted.
If the field strength is held constant, then the average

magnetic moment per lepton is suppressed at higher temper-
atures as expected for magnetization satisfying Curie’s law.
The difference in Fig. 6 between the nonconstant (red and
blue solid curves) case and the constant field (solid green
curve) case demonstrates the importance of the conservation
of primordialmagnetic flux in the plasma, required byEq. (9).
While not shown, if Fig. 6 was extended to lower

temperatures, the magnetization per lepton of the constant

FIG. 5. The magnetization M as a function of g-factor plotted
for several temperatures with magnetic scale b0 ¼ 10−3 and
polarization fugacity ξ ¼ 1.
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field case would be greater than the nonconstant case which
agrees with our intuition that magnetization is easier to
achieve at lower temperatures. This feature again highlights
the importance of flux conservation in the system and the
uniqueness of the primordial cosmic environment.

V. MAGNETIC MOMENT POLARIZATION
AND FERROMAGNETISM

A. Magnetic moment chemical potential

Up to this point, we have neglected the impact that a
nonzero polarization potential η ≠ 0 (and thus ξ ≠ 1)
would have on the primordial eþe−-plasma magnetization.
In the limit that ðme=TÞ2 ≫ b0, the magnetization given in
Eqs. (43) and (44) is entirely controlled by the polarization
fugacity ξ generated by the polarization potential η yielding
up to first order Oðb0Þ in magnetic scale,

lim
m2

e=T2≫b0
M ¼ g

2

e2

π2
T2

m2
e
sinh

η

T
cosh

μ

T

�
me

T
K1

�
me

T

��

þ b0

�
g2 −

4

3

�
e2

8π2
T2

m2
e
cosh

η

T
cosh

μ

T
K0

�
me

T

�
þOðb20Þ: ð48Þ

Given Eq. (48), we can understand the polarization
potential as a kind of “ferromagnetic” influence on the

primordial gas which allows for magnetization in the
absence of external magnetic fields. This interpretation is
reinforced by the fact that the leading coefficient is g=2. We
suggest that a variety of physics could produce a small
nonzero η within a domain of the gas. Such asymmetries
could also originate statistically as while the expectation
value of free gas polarization is zero; the variance is
likely not.
As sinh η=T is an odd function, the sign of η also controls

the alignment of the magnetization. In the high temperature
limit Eq. (48), with strictly b0 ¼ 0, magnetization at lowest
order is

lim
me=T→0

Mjb0¼0 ¼
g
2

e2

π2
T2

m2
e

η

T
: ð49Þ

While Eq. (49) was calculated in only the Boltzmann
limit, it is noteworthy that the high temperature (and
m → 0) limit of Fermi-Dirac distributions only differs
from the Boltzmann result by a proportionality factor.
The natural scale of the eþe− magnetization with only a

small magnetic moment fugacity (η < 1 eV) fits easily
within the bounds of the predicted magnetization during
this era if the IGMF measured today was of primordial
origin. The reason for this is that the magnetization seen in
Eqs. (40), (41) and (48) are scaled by αBC where α is the
fine structure constant.

B. Self-magnetization

One exploratory model we propose is to fix the magnetic
moment polarization asymmetry, described in Eq. (7), to
generate a homogeneous magnetic field which dissipates as
the Universe cools down. In this model, there is no pre-
existing external primordial magnetic field generated by
some unrelated physics, but rather the eþe−-plasma itself is
responsible for the creation of the ðBPMF ≠ 0Þ field by
virtue of magnetic moment polarization.
This would obey the following assumption of

Mðb0Þ ¼
Mðb0Þ
BC

↔
B
BC

¼ b0
T2

m2
e
; ð50Þ

which sets the total magnetization as a function of itself.
The magnetic moment polarization described by η →
ηðb0; TÞ then becomes a fixed function of the temperature
and magnetic scale. The underlying assumption would be
the preservation of the homogeneous field maintained by
scattering within the gas (in thermal equilibrium) modu-
lating the polarization to conserve total magnetic flux.
The result of the self-magnetization assumption in

Eq. (50) for the potentials is plotted in Fig. 7. The solid
lines indicate the curves for η=T for differing values of
b0 ¼ f10−11; 10−7; 10−5; 10−3g which become dashed
above T ¼ 300 keV to indicate that the Boltzmann

FIG. 6. The magnetic moment per lepton jm⃗jz along the field
axis as a function of temperature.
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approximation is no longer appropriate though the general
trend should remain unchanged.
The dotted lines are the curves for the chemical potential

μ=T. At high temperatures we see that a relatively small
η=T is needed to produce magnetization owing to the large
densities present. Figure 7 also shows that the chemical
potential does not deviate from the free particle case until
the magnetic moment polarization becomes sufficiently
high which indicates that this form of self-magnetization
would require the annihilation of positrons to be incom-
plete even at lower temperatures.
This is seen explicitly in Fig. 8 where we plot the

numerical density of particles as a function of temperature
for spin aligned (þη) and spin antialigned (−η) species for
both positrons (−μ) and electrons (þμ). Various self-
magnetization strengths are also plotted to match those
seen in Fig. 7. The nature of Tsplit changes under this
model since antimatter and polarization states can be
extinguished separately. Positrons persist where there is
insufficient electron density to maintain the magnetic flux.
Polarization asymmetry therefore appears physical only in
the domain where there is a large number of matter-
antimatter pairs.
The low-T behavior of Fig. 8 will need further corrobo-

ration after Ampérian currents as a source of magnetic field
are incorporated: The Gilbertian sources, here magnetic
dipole moment paramagnetism and Landau diamagnetism,
may not be dominant magnetic sources when eþe−-pairs
are of comparable number to the residual electron and
proton abundance.

C. Macroscopic magnetization length scale and
statistical fluctuations

It is of interest to consider the spatial length scale λ over
which the dipole induced magnetization is constant. When
generated by Ampèrian currents, this is referred to as
coherence length in literature. As noted in Sec. I, mag-
netogenesis through Ampèrian matter currents or
Gilbertian dipole alignment are distinct physical sources
of magnetic field and produce different spectra across
varying length scales.
We have yet to determine what the typical length scale

of induced magnetization could be. Similarly, the obser-
vational situation is in flux. The length scale of IGMFs are
not well constrained [14,15,17] and are bounded by the
range λ ∼ 10−2–103 Mpc for the external field strengths
we considered. It has been argued that inhomogeneous
PMFs of λ≲ 400 pc are subject to dissipating effects [46].
Inhomogeneous field dissipation would affect not only the
external PMFs, but also the induced magnetization which
restricts the spectrum of fluctuations. However, length
scales above λ≳ 103 Mpc are not disallowed if generated
during a sufficiently early epoch such as inflation. Such
large scales would require that the coherence of the PMF
is beyond the size of the present day visible Universe.
Our theoretical model should be improved by consid-

eration of interactions including the background nuclear
dust from BBN in order to allow for the introduction of a
collective magnetization length scale sourced by dipoles.
Moreover, we note possibility of coupling to the cosmo-
logical expansion dynamics [47]. Similarly, we are working
to understand the thermal fluctuations hðΔMÞ2i which
could be important to exploring the eþe− plasma magneti-
zation coherence length.

VI. SUMMARY AND DISCUSSION

This work is an effort to interpret the intergalactic
magnetic fields of today as originating in primordial fields

FIG. 7. The magnetic moment potential η and chemical
potential μ are plotted under the assumption of self-magnetization
through a nonzero magnetic moment polarization in bulk of the
plasma.

FIG. 8. The number density ne� of polarized electrons and
positrons under the self-magnetization model for differing values
of b0.

MATTER-ANTIMATTER ORIGIN OF COSMIC MAGNETISM PHYS. REV. D 108, 123522 (2023)

123522-11



generated in the first hour of the Universe’s existence. In
Sec. II have demonstrated that the eþe−-pair plasma is an
appropriate nonelectrical current candidate source for the
primordial field: It is (a) very dense, (b) made of particles
with highest magnetic moment in nature, (c) and displays
a strong paramagnetic response. Therefore expanding
on our work in [9], we explored its paramagnetic mag-
netization in the early Universe temperature range
between 2000 keV > T > 20 keV.
In Sec. III we define the comoving scale, b0, of the

magnetic field expressed in dimensionless units estimated
between 10−3 > b0 > 10−11. We believe considering con-
servation of magnetic flux that b0 once created is most
likely a conserved property of the expanding Universe.
Antiparticles ðeþÞ have the opposite sign of charge, and
thus magnetic moment, compared to particles ðe−Þ.
Therefore in an eþe−-pair plasma, net magnetization can
be associated with opposite spin orientations for particles
and antiparticles without the accompaniment of a net
angular momentum in the volume considered. This is of
course very different from the matter dominated universe
arising below T ≃ 20 keV which includes the cur-
rent epoch.
The eþe−-pair plasma environment is well beyond the

reach of all present day laboratory and known astrophysical
environments. As seen in Fig. 1 the lower temperature limit,
where the last eþe−-pair disappeared, is 15 times the Sun’s
core temperature [19] T⊙ ¼ 1.37 keV. Laboratory condi-
tions to explore our results depend on presence of eþe−-
pair abundance which in turn depends on sufficiently stable
thermal photon content.
Both Landau diamagnetism and magnetic dipole

moment paramagnetism are relevant in the analysis of
dense eþe−-plasma Gilbertian (noncurrent) magnetization.
The high temperature relevance of paramagnetism relies on
the high abundance of pairs. In the theoretical treatment
of Sec. III, this is accounted for by introducing effective
polarization mass m̃ in Eq. (14). This allows for the
separation of the spin portion of the relativistic partition
function from the spin-orbital portion (Landau diamagnet-
ism) in Sec. III A. In Sec. III B we determined the effect of
magnetism on the chemical potential; see Fig. 3.
This novel approach to high temperature magnetization

allows using Sec. IV to show that the eþe−-plasma para-
magnetic response [see Eqs. (40) and (41)] is dominated by
the varying abundance of electron-positron pairs, decreas-
ing with decreasing T for T < mec2. This is unlike conven-
tional laboratory cases where the number of magnetic
particles is constant.
In our domain of interest, we determine in Sec. IV B

that cosmic magnetization is not sensitive to the anoma-
lous magnetic moment of the electron. Considering
magnetization as a function of g-factor we find a transition
seen in Fig. 5 between paramagnetic and diamagnetic
gasses. The per-lepton magnetization is shown in

Sec. IV C and Fig. 6 indicating the plasma is only weakly
organized in its response.
In Sec. V B we explored spin asymmetry [defined in

Sec. II and Eq. (7)] via the magnetic moment chemical
potential. We showed in Sec. V how self-magnetization can
be induced by magnetic moment polarization via a novel
magnetic moment fugacity. We obtained in Sec. V B the
required primordial degree of magnetic moment polarization
necessary to understand today’s IGMF. Our study demon-
strates that the early Universe required at high temperatures
only a minute asymmetry in magnetic moment polarization
to produce required spontaneous magnetization.
Our results lead to extensions of present day paradigms

but offer many opportunities for improvement. The high
temperature domain would require a full inventory of
particles including neutrinos and muons before their dis-
appearance or decoupling. The full Fermi-Dirac and Bose-
Einstein statistics instead of the Boltzmann approximation
would then be employed.
Beyond eþe−-plasma, the quark-gluon plasma at T >

150 000 keV is also of great interest. The up-quark has the
largest natural charge-to-mass e=m ratio among elementary
particles besides the electron. A connection from the quark-
gluon plasma to the eþe−-plasma then requires under-
standing of the impact of the hadronization process on
magnetization, and vice versa, a consideration of hadroni-
zation as a magnetization mechanism. We note that the
contribution of μþμ−-plasma to magnetization is reduced
by a factor ≃200 compared to eþe−-plasma due to the
∝ e=mμ behavior of magnetic moments. We also note
that the complex neutrino decoupling process near to
T ¼ 2000 keV should be explored as a source of mag-
netization mechanism.
Near to T ¼ 80 keV just prior to BBN we have

4.47 × 108 eþe−-pairs per baryon and a primordial mag-
netic field in range of 109–101 Gauss. BBN thus occurs in
an environment as different as can be imagined from the
empty space network of nuclear reactions explored. Our
work creates the question in what way the presence of a
primordial magnetic field could have impacted BBN and
vice versa, if BBN could provide the mechanism for
spontaneous magnetization. The eþe−-pair impact is
already being considered [10].
Below Tsplit ¼ 20.3 keV the Universe’s particle inven-

tory is dominated by electrons, protons, and α-particles. In
order to conserve the magnetic flux originating in the
polarized homogeneous eþe−-pair plasma a very different
model will need to be developed allowing for fragmenta-
tion of the homogeneous plasma universe into polarization
domains and evolving Ampèrian kinetic current curl
responses. The effort to connect the bulk magnetization
due to discrete dipoles by Ampèrian magnetization gen-
erated through currents and inhomogeneous flows will
require study of transport equations allowing for magnetic
moment polarization.
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Recent measurements by the James Webb Space
Telescope (JWST) [48–50] indicate that maturing galaxies
already present at a large redshift value of z≳ 10 within
the first 500 million years of the Universe. This requires
gravitational collapse to begin earlier in a hotter environ-
ment. Additionally the observation of supermassive (with
millions of solar masses) black holes already present [51]
in this same high redshift era indicate the need for
exceptionally small-scale high mass density regions in
the early Universe. There is a natural mechanism present
in our work needed to create the above condition: As the
Universe evolved, the rapid 108 drop in eþe− abundance
within the temperature range 100 keV > T > 20.3 keV
shown in Fig. 1 could be inducing dynamical currents
preserving (comoving) magnetic flux in the emerging
pþαþþe−-plasma and in turn generate vortex seeds for

small scale baryonic matter localization which could
support anisotropies in the cosmic microwave background
(CMB) [25,52].
To conclude: This work shows that the paramagnetic and

diamagnetic eþe−-plasma properties may play a pivotal
role in understanding the primordial Universe. In particular
we have shown that the possible self-magnetization of the
cosmic eþe−-plasma provides a novel and credible pro-
posal for interpretation and exploration of magnetic fields
in the Universe.
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