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We measure weak lensing cosmic shear power spectra from the 3-year galaxy shear catalog of the Hyper
Suprime-Cam (HSC) Subaru Strategic Program imaging survey. The shear catalog covers 416 deg2 of the
northern sky, with a mean i-band seeing of 0.59 arcsec and an effective galaxy number density of
15 arcmin−2 within our adopted redshift range. With an i-band magnitude limit of 24.5 mag, and four
tomographic redshift bins spanning 0.3 ≤ zph ≤ 1.5 based on photometric redshifts, we obtain a high-
significance measurement of the cosmic shear power spectra, with a signal-to-noise ratio of approximately
26.4 in the multipole range 300 < l < 1800. The accuracy of our power spectrum measurement is tested
against realistic mock shear catalogs, and we use these catalogs to get a reliable measurement of the
covariance of the power spectrum measurements. We use a robust blinding procedure to avoid confirmation
bias, and model various uncertainties and sources of bias in our analysis, including point spread function
systematics, redshift distribution uncertainties, the intrinsic alignment of galaxies and the modeling of the
matter power spectrum. For a flat ΛCDM model, we find S8 ≡ σ8ðΩm=0.3Þ0.5 ¼ 0.776þ0.032

−0.033 , which is in
excellent agreement with the constraints from the other HSC Year 3 cosmology analyses, as well as those
from a number of other cosmic shear experiments. This result implies a ∼2σ-level tension with the Planck
2018 cosmology. We study the effect that various systematic errors and modeling choices could have on
this value, and find that they can shift the best-fit value of S8 by no more than ∼0.5σ, indicating that our
result is robust to such systematics.

DOI: 10.1103/PhysRevD.108.123519

I. INTRODUCTION

The Λ Cold Dark Matter (ΛCDM) model is considered
the standard model for describing both the expansion
history and the growth of large-scale structure (LSS) of
the Universe. The parameters of the ΛCDM model have
been measured to percent-level precision using a number
of cosmological probes [1], including the cosmic micro-
wave background (CMB) [2–5] and type Ia supernovae
[6–9], as well as the distribution of galaxies and other
tracers of LSS [10–21].
With these measurements, ΛCDM has been shown to be

consistent across a wide range of cosmological experi-
ments. However, as the precision of these measurements
has grown, tensions have begun to emerge. In particular, a
4 − 5σ tension has been seen between measurements of the
Hubble constant [22], H0, from the local Universe cosmic
distance ladder [23] and the early-Universe CMB [2].
Cosmological surveys have also observed a 2–3σ tension
in measurements of the parameter S8 ≡ σ8ðΩm=0.3Þ0.5
[2,14–20,24], where σ8 is the root-mean-square variation
in the mass in spheres of radius 8 Mpc=h (where
h≡ H0=100), and Ωm is the matter density of the
Universe. Larger, improved data sets as well as more
accurate and precise measurement and modeling methods

will help us better understand these tensions, namely
whether they suggest a need for new physics, or whether
they are caused by unaccounted for, or as yet unknown,
systematic effects.
Some of the strongest LSS constraints on S8 come from

the study of cosmic shear, i.e. the weak gravitational
lensing of distant galaxies by the LSS along the line of
sight [25,26]. These small, coherent distortions of galaxy
shapes are sensitive to both the strength of matter density
fluctuations and the growth of these fluctuations over
cosmic time. This makes cosmic shear a powerful cosmo-
logical probe. Cosmology constraints from cosmic shear
are known to be degenerate in the Ωm-σ8 plane, but provide
strong constraints on S8, which is defined perpendicular to
this degeneracy direction.
Measurements of cosmic shear, in practice, use two-

point statistics, which describe the correlation between the
shear of a galaxy at a given position with the shear of
galaxies some distance away. Two methods by which this
information can be summarized are the two-point correla-
tion function (2PCF or ξ�) and its Fourier transform, the
angular power spectrum (Cl). Other summary statistics
include Complete Orthogonal Sets of E=B Integrals
(COSEBIs) [27] and band-power estimates derived from
correlation functions [28–30]. This paper uses cosmic shear
angular power spectra, while a companion paper [31] uses
the two-point correlation function. These two statistics*rdalal@princeton.edu
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contain the same information in principle, but in practice,
differ in terms of effective scale cuts, and sensitivity to
different scales and systematic effects. For this reason, it is
important that surveys carry out measurements of the
cosmic shear signal and subsequent cosmological analyses
using both sets of summary statistics.
Measurements of the cosmic shear signal require

deep optical or near-infrared imaging with good seeing
over large solid angles in multiple bands. The first
detections of cosmic shear were made just over two
decades ago [32–35], and a number of studies over the
past years have carried out analyses with ∼10% level
precision (e.g. [36–39]). Today, cosmic shear analyses are
being carried out by surveys covering larger sky areas,
collectively known as “Stage III” surveys [40]. These
include the Kilo-Degree Survey (KiDS; [41]), the Dark
Energy Survey (DES; [42,43]), and the Hyper Suprime-
Cam (HSC) survey [44,45]. As mentioned above, the
measurements of S8 from these surveys appear to be in
2–3σ tension with those from the CMB. In the flat ΛCDM
model, the Planck temperature and polarization power
spectra (excluding CMB lensing) constrain S8 ¼ 0.834�
0.016 [2]. The HSC Year 1 analysis using angular power
spectra constrains S8 ¼ 0.780þ0.030

−0.033 [14], while the two-
point correlation function analysis finds S8 ¼ 0.823þ0.032

−0.028
[15]. The most recent DES Year 3 analyses measure S8 ¼
0.759þ0.025

−0.023 using 2PCFs [16,17] and S8 ¼ 0.793þ0.038
−0.025

using Cls [46]. The KiDS-1000 analysis with 2PCFs
constrains S8 ¼ 0.759þ0.024

−0.021 [19] while the analysis with
Cls finds S8 ¼ 0.754þ0.027

−0.029 [20]. In this paper, we present a
new measurement of S8 using weak lensing data from
the Year 3 data release of the HSC survey, along with
careful modeling of systematics, as a step forward in
understanding the S8 tension.
The Hyper Suprime-Cam Subaru Strategic Program

(HSC-SSP, hereafter the HSC survey) is an imaging
survey using the 8.2 m Subaru telescope [45]. The
Hyper Suprime-Cam is a wide-field camera with 870
Megapixels covering a 1.5 deg diameter field of view
[47–50]. In this paper, we use data from the wide layer
of the survey (although it also has deep and ultradeep
components), which is observed in the grizy broad-band
filters [51]. HSC is a very deep survey (a 5σ point-source
depth in the wide layer of i ∼ 26 mag), with excellent
seeing (a median i-band seeing of ∼0.59”). This allows the
measurement of cosmic shear signals up to higher red-
shifts with higher accuracy than other Stage III surveys.
Moreover, the HSC depth is just ∼1 order of magnitude
shallower than the 10-year Wide, Fast, Deep survey depth
of the Vera C. Rubin Observatory Legacy Survey of Space
and Time (LSST) [52]. This makes HSC the Stage III
survey that, in terms of depth and galaxy number density,
most closely resembles Stage IV cosmological surveys,
including the Rubin LSST [53], Euclid [54], and the
Nancy Grace Roman Space Telescope [55,56].

There have been weak lensing studies with earlier
incarnations of the HSC data, using the S16A (Year 1)
internal data release, which covered 137 deg2 of the sky
[14,15,57–60]). The survey has continued, adding addi-
tional area and observations in each filter. In this work, we
use data from the S19A internal data release, hereafter
referred to as the Year 3, or Y3, data. This includes data
collected between March 2014 and April 2019, and is part
of the third public data release from the survey [61]. The
Year 3 shear catalog for weak lensing science, presented
in [62], is based on this data release, and covers 416 deg2

of the northern sky, with an effective galaxy number density
of 15 arcmin−2 in the redshift range used in this analysis.
By calibrating the measured galaxy shapes with image
simulations, the galaxy property-dependent shear estima-
tion bias is removed to the level of jδmj < 9 × 10−3 [62].
[62] further carried out a number of null tests for system-
atics related to point spread function (PSF) modeling and
shear estimation, and demonstrated that the shear catalog
meets the requirements set out for using these data for
cosmological analyses.
In this paper, we present results from a tomographic

cosmic shear analysis in harmonic space using the HSC-
Y3 shear catalog. The use of tomography, i.e. adding the
redshift information of source galaxies to the measure-
ment, allows us to improve cosmological constraints by
breaking parameter degeneracies [63,64]. Our cosmic
shear power spectrum measurement shows no significant
detection of a B-mode signal, indicating that our meas-
urement is not impacted by systematics such as those
related to the PSF. In the process of our cosmological
analysis, we have been careful to account for various
sources of systematic error, including residual biases in
our measurements, and uncertainties in our theoretical
modeling. We show that our results are robust to these
modeling choices. We also conduct a number of internal
consistency checks to show that our results remain
consistent across various splits of the data.
This paper is accompanied by several other HSC-Y3

cosmology analysis papers, including 3 × 2-point analyses
combining cosmic shear, galaxy clustering, and galaxy-
galaxy lensing [65–67], as well as a cosmic shear analysis
using 2PCFs [31]. In particular, we are careful to unify,
as much as possible, the analysis choices between this
analysis and the 2PCF analysis, facilitating the comparison
of results between the two methods.
This paper is organized as follows. Section II describes

the data used in this paper, including the shear catalog, as
well as our blinding procedure used to prevent confirmation
bias from affecting our results. In Sec. III, we describe the
measurement of our data vector using the pseudo-Cl
method to correct for biases due to incomplete sky cover-
age. We show the resulting measurement, as well as other
ingredients in our analysis (the covariance matrix, source
redshift distribution, and PSF systematics measurements)
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in Sec. IV. We describe our modeling and analysis choices
in Sec. V. Our cosmological constraints and their robust-
ness to different systematics are presented in Sec. VI.
Finally, we give our conclusions in Sec. VII.
Throughout this paper, we quote the mode of the

posterior distribution, along with 68% credible intervals
for parameter values and uncertainties, unless otherwise
stated. We also report “MAP” values of parameters, where
for notational convenience, we use “MAP” to refer to both
the maximum a posteriori point (the maximum posterior of
the parameter space, as determined using an optimization
algorithm) as well as the maximum posterior (a noisy
estimate of the maximum a posteriori based on the point in
a sampling chain with the maximum posterior value). We
assume a standard ΛCDM cosmological model, with no
curvature (Ωk ¼ 0), adiabatic Gaussian initial conditions,
and a dark energy equation-of-state parameter w ¼ −1.
When discussing galaxy photometry, we quote cmodel
magnitudes [68] on an AB system, with the extinction
correction from [69]. The figures presented throughout the
paper, unless otherwise noted, were made prior to unblind-
ing the analysis (see Sec. II B), with only the axes updated
to show true parameter values after unblinding.

II. HSC YEAR 3 DATA

The Hyper Suprime-Cam Subaru Strategic Program [45]
is an imaging survey which uses the 8.2 m Subaru
Telescope, along with the Hyper Suprime-Cam wide-field
camera. The camera has 870Megapixels covering a 1.5 deg
diameter field of view [47–50]. The survey consists of a
wide, a deep and an ultradeep layer, each observed in the
grizy broad-band filters [51], along with narrowband filters
in the deep and ultradeep layers. The median seeing for the
wide layer in the i band is 0.59 arcsec, allowing for
excellent image quality for galaxy shape measurements.
In this paper, we use the wide survey, which, for this data
release, covers an area of ∼450 deg2 with a point source 5σ
depth of r ∼ 26 mag. The survey is spread out over six
distinct fields, five of which are equatorial, which will
eventually be combined into three fields with the added sky
coverage from the final data release.
The survey data is reduced by a pipeline, presented in

[68], that has been developed in parallel with the pipeline
for the Vera C. Rubin Observatory Legacy Survey of Space
and Time (the LSST science pipelines) [52,70,71].
Astrometric and photometric calibrations are carried out
by comparison with data from the Pan-STARRS1 survey
[72]. The photometric calibration is accurate to ∼1% [73],
while the astrometric calibration accuracy is ∼40 mas [44].
There have been three public data releases from the survey,
presented in [44,61,73].
Here, we describe the different data components that

enter this analysis, including the shear catalog (Sec. II A)
and the blinding strategy (Sec. II B), as well as the photo-
metric redshift catalogs, which are used for the source

redshift distribution inference (Sec. II C), the star catalogs
for quantifying PSF systematics (Sec. II D), and the mock
catalogs from which the covariance matrix is measured
(Sec. II E). The analysis in this paper is done in parallel
with an analysis using cosmic shear two-point correlation
functions [31]. As these analyses share the same data sets,
much of the discussion in the sections below can also be
found in [31].

A. HSC-Y3 shear catalog

The HSC-Y3 shear catalog is based on data from the
S19A internal data release of the HSC survey, consisting of
data taken between March 2014 and April 2019. The
catalog was described in detail in [62]; we provide a brief
summary below.
In constructing the shear catalog, a number of cuts were

applied to the S19A data in order to obtain a catalog that
satisfied the requirements (defined in [62]) for carrying out
cosmological weak lensing analyses. This includes con-
sidering only full-depth full-color regions of the sky, i.e.
those reaching the approximate full depth of the survey in
all five broadband filters, and thus allowing the measure-
ment of accurate shapes and photometric redshifts for the
galaxies. We use a magnitude-limited sample in the i band,
with a cmodel magnitude i < 24.5 mag (see [68] for the
definition of cmodel magnitudes in the context of HSC).
Given the 5σ point source depth of i ¼ 26.2 mag, this is a
relatively conservative magnitude cut [61]. We use addi-
tional cuts, detailed in Table 2 of [62], to ensure that the
sample is not contaminated by galaxies whose shapes are
difficult to measure, including a signal-to-noise ratio cut in
the i band, requirements on the blendedness, shape meas-
urement error, and the extent to which the galaxy is
resolved compared to the PSF, as well as cuts on bad
pixels and masks on regions of the sky around bright stars.
The catalog covers 433.48 deg2 of the sky, split into six
disconnected fields: XMM, GAMA15H, HECTOMAP,
GAMA09H, VVDS, and WIDE12H, in order of increasing
area. Five of these regions are on the celestial equator,
and one (HECTOMAP) is at a declination of δ ∼þ43° (see
Fig. 2 of [62]).
After the shear catalog was presented in [62], we

introduced a few additional cuts to improve the quality
of the data for weak lensing science. In particular, we apply
a cut to remove potential contamination from unresolved
binary stars, following [74]: we remove objects with an
extremely large i-band ellipticity, jej > 0.8 and an i-band
determinant radius rdet < 10−0.1rþ1.8 arcsec (where r is the
r band magnitude), amounting to 0.46% of the sample.
Additionally, as described in detail in Sec. II C, we remove
12% of the galaxies in the shear catalog due to difficulties
in calibrating their redshifts. Finally, we find that a small
(∼20 deg2) region of sky in the GAMA09H field has large
PSF model residuals when looking at the fourth moments
of the PSF (see Fig. B1 of [75]). This is due to
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exceptionally good seeing in this region, ∼0.4.”We remove
this region due to our inability to accurately model the
PSF in this limit. After these cuts, the final shear catalog
contains ∼25 million galaxies over 416 deg2 of the sky.
Given this galaxy sample, the galaxy shapes are esti-

mated on the i-band coadded images using the re-
Gaussianization (reGauss) shape measurement method
[76]. This method measures the two components of galaxy
ellipticity:

ðe1; e2Þ ¼
1 − ðrb=raÞ2
1þ ðrb=raÞ2

ðcos 2ϕ; sin 2ϕÞ; ð1Þ

where rb=ra is the observed minor-to-major axis ratio and
ϕ is the position angle of the major axis with respect to the
equatorial coordinate system. The shear of each galaxy can
then be estimated from the measured ellipticity:

γ̌α ¼
1

1þ hmi
�

eα
2R

− aepsfα

�
; ð2Þ

where α ¼ 1, 2. Here, hmi and aepsfα are the multiplicative
and additive biases in shear estimation (where a is the
fractional additive bias), and R is the responsivity, i.e. the
response of the average galaxy ellipticity to a small shear
distortion [77,78], and is given by

R ¼ 1 −
P

iwie2rms;iP
iwi

; ð3Þ

where erms;i is the intrinsic root-mean-square ellipticity per
component for galaxy i, and the weight wi is the inverse
variance of the shape noise:

wi ¼ ðσ2e;i þ e2rms;iÞ−1: ð4Þ

Here σe;i is the shape measurement error for each galaxy.
The multiplicative and additive shear estimation biases

introduced in Eq. (2) are estimated for each object using
image simulations which downgrade Hubble Space
Telescope images from the COSMOS region to HSC
survey quality. The image simulations were described in
detail in [62,79]. The additive bias is corrected for each
object, while the multiplicative bias is corrected using a
weighted average, hmi, over the ensemble of galaxies in
each field, in each tomographic bin.
A bias may also be introduced by selection cuts that

correlate with the true lensing shear and/or anisotropic PSF
systematics (see [62] for more details). The bias caused by
the former is multiplicative (msel), while that caused by the
latter is additive (asel).
These biases are also measured from the image simu-

lations described in [62], and are used to correct the
estimated shear, using a weighted average over the ensem-
ble of galaxies in each tomographic bin:

γ̂α ¼
γ̌α − ĉselα

1þmsel ; ð5Þ

where

ĉselα ¼ asel
P

iwie
psf
α;iP

iwi
: ð6Þ

Here, epsfi is the PSF ellipticity for galaxy i. The estimated
galaxy shear of a given object is then

γα ¼
1

1þmsel

�
1

1þ hmi
�

eα
2R

− aepsfα

�
− ĉselα

�
: ð7Þ

The image simulations used for the calibration of
these biases are based on postage stamps cut out from
COSMOS HST images, with the galaxies distorted by a
single constant shear. To assess the effect of redshift-
dependent blending, i.e. the galaxies in a blend having
different shears due to being at different redshifts, [62] (as
described in Section 3.8) use additional image simulations
based on parametric galaxy models fit to the galaxies in
the HST F814W shape catalog [80]. We find that due to the
excellent seeing of HSC, the multiplicative bias due to
the redshift-dependent blending that is not captured by the
fiducial calibration does meet the 3-year HSC requirement,
although only marginally. The excess multiplicative bias is
marginalized over in this analysis, as described in Sec. V F.
Our redshift distribution inference, described in

Sec. IV E, assumes that the flux and redshift of each
galaxy are drawn independently of any other. However, this
is not true in the presence of blending. As discussed in [81],
correctly accounting for this effect would require signifi-
cant changes to the flux likelihoods used in the redshift
inference or pixel-level likelihood updates to facilitate a
joint inference with both photometry and shear. We do not
expect this approximation to dominate our error budget,
and therefore leave such updates to future work.

B. Blinding strategy

In the era of precision cosmology, with a persistent
tension in certain measurements between different
probes, it is essential to protect one’s analysis against
experimenters’ biases, particularly confirmation bias. To
avoid confirmation bias in the HSC cosmology analyses,
we proceed with the analyses in a blinded manner. This is
done by adding a random multiplicative bias to the values
in the shear catalog. We use a two-level blinding scheme,
such that

mi
cat ¼ mtrue þ dmi

1 þ dmi
2; ð8Þ

where mtrue is the actual multiplicative bias estimated from
image simulations, and the index i runs from 0 to 2,
resulting in three different shear catalogs for each analysis.
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Each analysis uses catalogs with different values of dm1

and dm2.
The first blinding term, dm1 is a user-level blinding,

to prevent accidental unblinding via comparison of
blinded catalogs across different analysis teams (where
“analysis team” refers to each of the cosmology analyses
simultaneously underway, including those described in
[31,65–67]). The values of dm1 are encrypted with the
public keys from the analysis lead of each team. These
values are decrypted and subtracted from the multipli-
cative bias values for each catalog entry before the
analysis begins.
The collaboration-level blinding is done through dm2.

The values for dm2 for the three blinded catalogs are
randomly selected from the following three different
choices (dm0

2, dm
1
2, dm

2
2): ð−0.1;−0.05; 0Þ, ð−0.05; 0; 0.05Þ,

(0, 0.05, 0.1). Thus, the true catalog (with dm2 ¼ 0) can be
any of the three blinded catalogs. The values of dm2

are encrypted by a public key from a person not involved
in the cosmology analyses.
We carry out the same analysis on all three catalogs

after subtracting dm1 from each catalog. In addition to the
catalog-level blinding, we also employ analysis-level blind-
ing. We do not compare the cosmic shear power spectra
obtained from any blinded catalog to theoretical predictions
from known cosmological parameters. Additionally, prior
to unblinding, any plots of cosmological constraints from
the data are centered at zero, by subtracting the mean values
from the chains.
Prior to starting the analysis, we define a number of tests

and conditions that must be passed prior to unblinding.
These include code reviews by members of the collabora-
tion, tests of the code with mock data sets (Appendix B), as
well as a number of tests of the cosmological constraints to
ensure the goodness of fit, internal consistency and robust-
ness to modeling choices (Secs. VI A–VI C).
Once the collaboration agrees to unblind the analysis, the

analysis-level unblinding is first removed by the analysis
team. The final catalog-level unblinding happens a few
hours later, and the analysis setup and fiducial results are
not changed after unblinding. The figures shown in this
paper, unless otherwise noted, were made prior to unblind-
ing, with only the axes changed after unblinding to show
true values.

C. Photometric redshift catalogs

The HSC S19A data include photometric redshift
(photo-z) estimates based on three different photo-z codes.
These are DNNz [82] and DEmPz [83,84], which are both
neural-network-based conditional density estimation algo-
rithms, as well as mizuki, which uses a spectral energy
distribution fitting technique [85]. All three codes were
trained with available spectroscopic redshifts as well as
30 band photometric redshifts from COSMOS2015 [86].
We refer the reader to [87] for further details.

As described in [81], the shear catalog galaxies are
divided into four tomographic redshift bins, in the intervals
(0.3, 0.6], (0.6, 0.9], (0.9, 1.2], and (1.2, 1.5], using the
“best” photo-z estimation by the DNNz algorithm. Here, the
“best” estimate refers to the point estimate where a given
risk function is minimized (see Sec. 4.2 of [84]).
It was shown in [81] that a number of galaxies have

secondary solutions at z≳ 3.0 in their redshift distributions
from DNNz and mizuki. Since these secondary solutions
lie outside of the redshift coverage of the Luminous Red
Galaxy (LRG) sample used to calibrate our source redshift
distribution (see Sec. IV E), we remove them from our
sample. Galaxies with such secondary solutions are iden-
tified by the distance between the 2.5 and 97.5 percentiles
of the mizuki and DNNz photo-z probability density
function (PDF) estimations:

ðzmizuki
0.975;i−zmizuki

0.025;iÞ<2.7 AND ðzdnnz0.975;i−zdnnz0.025;iÞ<2.7; ð9Þ

where zmizuki ðdnnzÞ
0.975;i and zmizuki ðdnnzÞ

0.025;i denote the 97.5 and
2.5 percentiles for galaxy i derived using the mizuki
(DNNz) estimates of the photo-z PDF. This cut reduces the
number of galaxies in the first redshift bin by 31%, and the
number of galaxies in the second redshift bin by 8%. No
galaxies are removed from the third and fourth bins.
After this cut, the number of galaxies in each tomo-

graphic bin, in order of increasing redshift, is 5 889 826,
8 445 233, 7 023 314, and 3 902 504 galaxies respectively.

D. Star catalog

We use a star catalog from Y3 data to estimate PSF
systematics and their impact on our cosmological analysis,
particularly PSF leakage due to imperfect shear estimation
and PSF modeling error due to an incorrect PSF model (see
Sec. IV D). We refer readers to [75] for the details of the
star catalog selection.
The star catalog contains stars that were used for the PSF

modeling of the coadded images in the HSC-Y3 data
release (“PSF stars”), as well as stars that were not used in
the process (“non-PSF stars”). We refer the reader to [68]
for details regarding the selection of PSF stars. In the
processing of single exposures,∼20% of stars are randomly
selected to not be used in the PSF modeling, and are instead
reserved for validation of the PSF model. Each i-band
coadded image is made using at least four exposures.
Different exposures will not necessarily use the same sets
of PSF and non-PSF stars, so at the level of a coadded
image, stars that were used in the PSF model in at least 20%
of the input visits are labeled as “PSF stars,” while the
others are labeled as “non-PSF stars.”
We consider both PSF and non-PSF stars when esti-

mating the impact of PSF systematics on our cosmic shear
power spectrum measurement. As shown in [75], we find
that the additive bias to the power spectrum from PSF
systematics is consistent for PSF and non-PSF stars.
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As the PSF star sample is much larger than the non-PSF
star sample, the estimation of the PSF systematics
from the former has a higher signal-to-noise ratio. For
this reason, we use the PSF star sample in our PSF
systematics estimation and modeling (described in
Secs. IV D and V D).

E. Mock catalogs

We use a suite of 1404 mock shape catalogs to measure
the covariance matrix of our cosmic shear power spectra.
These mock catalogs are generated following the method
described in [88], with updates to account for the new
survey footprint, galaxy shape noise, shape measurement
error, and photometric redshift error of the Y3 shear
catalog, compared to the Year 1 version.
In short, the mock catalogs use actual galaxy positions

and shapes from the Y3 shear catalog, but erase the true
lensing signal and impose a simulated lensing signal
following the method described in [89,90] and summarized
here. The galaxies are populated in the mock catalog
following their measured angular positions and redshifts
(from DNNz) in the Y3 shape catalog. The galaxies are
then rotated at random to erase any lensing or intrinsic
alignment signal. Finally, the lensing distortion on each
galaxy is simulated by adding the lensing contribution at
each foreground lens plane, following the full-sky lensing
simulations of [91]. The full-sky lensing simulation is a
ray-tracing simulation based on 108 realizations of
N-body simulations using the WMAP9 cosmology [3].
The light-ray deflection on the celestial sphere is calcu-
lated using the projected matter density field in 38
spherical shells. Each shell has a radial thickness of
150h−1 Mpc. The angular resolution of the shear map
is 0.43 arcmin. To get a larger number of mock catalogs,
each full-sky map is divided into 13 regions with the
HSC-Y3 survey geometry, resulting in 108 × 13 ¼ 1404
mock catalogs. After each galaxy’s intrinsic shape is
distorted based on the shear map, a shape measurement
error is also added, which is generated from a zero-mean
Gaussian distribution with the standard deviation mea-
sured in the HSC-Y3 shear catalog. These mock catalogs
are then used to measure the covariance matrix of the
cosmic shear power spectra, as described in Sec. IV B. We
note that unlike in the real Universe, the galaxy positions
in these mock catalogs are not correlated with the matter
density in the lensing simulations; however we expect the
impact of this to be negligible.

III. COSMIC SHEAR POWER SPECTRUM
MEASUREMENT METHOD

The shear catalog allows us to make a map of the
shear field, which is a spin-2 field, and therefore can be
decomposed into two scalar fields on the basis of spherical
harmonics as

ðγ1 � iγ2ÞðθÞ ¼ −
X
lm

½Elm � iBlm��2YlmðθÞ; ð10Þ

where sYlm are the spin-weighted spherical harmonics
[92]. This is a Fourier transform on a sphere. The Emode is
the curl-free component of the field, and the B mode is the
divergence-free component.
In order to fit a cosmological model to this shear field,

we need to compress our data into a summary statistic.
The statistical properties of the shear field can be measured
through the cosmic shear angular power spectrum. The
power spectrum is defined as the expectation value of the
product of the spherical harmonic coefficients ψlm and ϕlm
(where ψ and ϕ are either E or B):

hψ�
lmϕl0m0 i ¼ δll0δmm0Cψϕ

l : ð11Þ

For a full-sky map of the shear field, the power spectrum
estimator averages over the m’s for each l. An optimal
estimator for the different power spectra on the full sky is

ĈEE
l ¼ 1

2lþ 1

X
m

ElmE�
lm; ð12Þ

ĈEB
l ¼ 1

2lþ 1

X
m

ElmB�
lm; ð13Þ

ĈBB
l ¼ 1

2lþ 1

X
m

BlmB�
lm: ð14Þ

However, this method does not account for incomplete
sky coverage of the map, due to the finite survey area as
well as pixels that are masked due to bright stars or other
reasons. In reality, we apply a survey mask, or weight map,
WðθÞ to the map, giving a observed, masked map of

γ̂ðθÞ ¼ WðθÞγðθÞ: ð15Þ

The power spectrum obtained from a spherical harmonic
transform of this pixelized shear field is biased due to
the convolution with the survey window function W. The
mask also leads to coupling between E and B modes. To
correct for these effects, we estimate our angular power
spectra using the pseudo-Cl formalism, developed for
shear fields in [92] and implemented in NaMaster [93].
We briefly summarize the formalism here and refer the
reader to [94] for a more detailed description.
For two shear fields γ̂iðθÞ and γ̂jðθÞ in redshift bins i

and j, with survey window functionsWiðθÞ andWjðθÞ, the
cross-power spectrum of the two fields, i.e. the pseudo-
spectrum of the fields, has an expectation value

hC̃ij
l i ¼

X
a;b;l0

MðijÞ;ðabÞ
ll0 CðijÞ;ðabÞ

l0 ; ð16Þ
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where a and b refer to E or Bmodes, andMij
ll0 is the mode-

coupling matrix of the window functions, which describes
how the window function correlates different multipoles,
as well as the leakage between E and B modes. Here Cij

l
describes the cross-power spectrum of the two fields in the
ideal of a full-sky survey. The mode-coupling matrix can be
computed analytically from the spherical harmonic coef-
ficients of the window functions (see [94] for details). We
can estimate the power spectrum by inverting the mode
coupling matrix, which requires binning in l. The estimator
for the binned power spectrum is then

hĈij
Li ¼

X
a;b;L0

�
MðijÞ;ðabÞ

LL0

�
−1
C̃ðijÞ;ðabÞ

L0 ; ð17Þ

where the binning is done by

CðijÞ;ðabÞ
L0 ≡ X

l∈L

ωl
LC

ðijÞ;ðabÞ
l ; ð18Þ

and

MðijÞ;ðabÞ
LL0 ≡ X

l∈L

X
l0 ∈L0

ωl
Lω

l0
L0M

ðijÞ;ðabÞ
ll0 : ð19Þ

Here, ωl
L is a set of weights defined for multipoles l in

band power L, normalized such that
P

l∈L ω
l
L ¼ 1. In this

work, we use an equal-weight binning scheme, such that
ωl
L ¼ 1=jLj if l∈L, and 0 otherwise. The mean multipole

of each bin is defined as L0 ≡P
l∈L ω

l
Ll.

Additionally, one must also subtract from the power
spectrum the additive noise bias, which arises from shape
noise (due to the intrinsic ellipticities of galaxies). We
analytically estimate the constant binned noise pseudo-
power spectrum following [94]:

NL ¼ Ωpix

�X
i∈ pix

w2
i

e21;i þ e22;i
2

�
pix

; ð20Þ

where i now represents each galaxy in a given pixel, and
wi is the weight of the galaxy, defined in Eq. (4). One
could also estimate this term empirically by creating
many realizations of randomized galaxy shapes and
taking the mean of the power spectra over the realiza-
tions. [94] showed that the analytical and empirical
approach agree to within ∼3% for the range of multipoles
considered here, and that any disagreement is due to
stochasticity in the empirical approach, rather than any
biases in the analytic estimate.
In this work, we create a pixelized map of the shear field,

γðθÞ, for each of the six fields on the sky. We make use of
the flat-sky approximation, as most fields are equatorial and
cover a small area of the sky (between 33 and 120 deg2).
[95] demonstrated that using this approximation is

appropriate for the HSC-Y3 data. In making the maps,
we follow [94,96], and use a rectangular pixelization
scheme which uses the plate carrée projection [97]. In this
scheme, pixels are defined in equal intervals of colatitude θ
and azimuth ϕ. For this analysis, we use pixels of size
1 arcmin × 1 arcmin. In order to minimize the distortions
caused by the flat-sky approximation, we place the pro-
jection reference point, i.e. a point on the equator
(θ ¼ π=2), at the center of each field. To compute the
power spectra, the galaxy weights, wi, which are used as the
mask WðθÞ, are taken from the Y3 shear catalog. Despite
the potential for the measured lensing weights to be mildly
correlated with the foreground large-scale structure, this
would only lead to a second-order bias in the cosmic shear
power spectrum. We do not expect this to be a significant
effect for our analysis or other current lensing surveys [98],
but it might be necessary to quantify this effect using
simulations for future Stage IV surveys. We compute the
auto- and cross-correlation cosmic shear power spectra for
each tomographic redshift bin using an implementation
of the pseudo-Cl method in the NaMaster code [93]. We
measure the power spectra in 17 bins between lmin ¼ 100
and lmax ¼ 15; 800. These bins are approximately loga-
rithmically spaced, with linear spacing at low multipoles to
avoid bins that would be too narrow at large scales.
We measure EE, EB, and BB power spectra for each of

the ten combinations of our four redshift bins. Although we
do not expect a cosmological B mode signal (i.e. CEB

l and
CBB
l should be zero), B modes can be used to test for

potential systematic effects in the data, including contami-
nation by the PSF. For this reason, we preserve both
components of the field, and use the BB and EB power
spectra as a null test (see Sec. IV C). The incomplete sky
coverage could cause a contamination from B modes in
the E mode component of a given map, and vice versa
[99–104]. This mixing of E and B modes is fully described
by the pseudo-Cl method, and corrected for by the mode-
coupling matrix.
The power spectrum is not the only summary statistic

that is commonly used for cosmic shear data. A companion
paper [31] conducts a similar analysis using the cosmic
shear angular 2PCF (or ξ�), which is the Fourier transform
of the power spectrum. While these two statistics, in
principle, contain the same information, in practice, we
employ scale cuts due to the finite survey area and
theoretical uncertainties in the modeling of baryonic effects
and intrinsic alignments. The scale cuts in 2PCFs and Cl’s
do not directly translate, since the two statistics are related
to each other through an integral of a Bessel function,

ξ�ðθÞ ¼
1

2π

Z
dllClJ0=4ðlθÞ: ð21Þ

This means that a hard scale cut in real space corresponds
to an oscillatory scale cut in Fourier space, and vice versa
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(see [18] for a detailed study of the consistency between the
two statistics).
Cl’s and 2PCFs are complementary approaches to the

cosmic shear analysis. Not only are the two statistics
sensitive to different scales, they also use different treat-
ments of observational effects, such as discrete galaxy
sampling and the correction of irregular survey geometries.
Moreover, the two approaches have different noise proper-
ties and different sensitivities to systematic effects. For
these reasons, the HSC Collaboration performs both sets of
analyses in a coordinated manner. A comparison of the
results of this power-spectrum-based analysis to the 2PCF
analysis of [31] is presented in Sec. VI A.

IV. MEASUREMENTS

Here, we present in Sec. IVA the measurement of tomo-
graphic cosmic shear power spectra from the HSC-Y3 shear

catalog, following the method described in Sec. III.
We additionally describe the measurement of the covariance
matrix of these spectra from realistic mock catalogs
(Sec. IV B), as well as the results of the null tests carried
out with the spectra and covariance (Sec. IV C). Finally, in
Sec. IVD, we estimate the impact of PSF systematics on our
cosmic shear measurement (as described in [75]), and in
Sec. IV E, we describe our source redshift distribution
inference (presented in [81]).

A. Cosmic shear power spectra

We use the pseudo-Cl method described in Sec. III to
measure the tomographic cosmic shear power spectra from
the HSC-Y3 shear catalog, including the EE, BB, and EB
spectra in 17 multipole bins between lmin ¼ 100 and
lmax ¼ 15; 800. While we present, in Fig. 1, the power
spectra up to only lmax ¼ 3000, we measure the power

FIG. 1. Tomographic cosmic shear power spectra of EE (blue circle), BB (orange triangle), and EB (green cross) modes. The galaxy
sample is divided into four tomographic bins, with redshift ranges (0.3, 0.6], (0.6, 0.9], (0.9, 1.2], and (1.2, 1.5], using the “best” photo-z
estimation by the DNNz algorithm. These bins are referred to as bin numbers 1 to 4 respectively. The scales l < 300 and l > 1800
(shaded regions) are excluded in the cosmological analysis, based on the scale cuts described in Secs. IV C, V B 1, and V C. The
combined total signal-to-noise ratio of the EE spectra is 26.4 in the range of our fiducial scale cuts. Both the BB and EB spectra are
consistent with zero.
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spectra and mode-coupling matrices to larger l to correctly
account for mode coupling between smaller scale modes
and those we use in our analysis.
We first measure the power spectra, using the flat-sky

approximation, in each of the six individual fields of the
survey. We then coadd the spectra from individual fields
using inverse variance weighting with the covariance
described in Sec. IV B.
We use the fiducial scale cuts of 300 < l < 1800 for our

analysis. We cut large scales with l < 300 due to excess B
mode signals at these scales (see Sec. IV C). We also cut
small scales with l > 1800 due to theoretical uncertainties
in our modeling of these nonlinear scales (based on tests
described in Secs. V B 1 and V C). This gives us six
multipole bins that we use in our fiducial analysis, from
the 17 that we originally measure.
We are able to obtain a high-significance measurement

of the power spectrum, shown in Fig. 1, with a total signal-
to-noise ratio within our fiducial scale cuts of 26.4, as
measured from the χ2 value of the data points.

B. Covariance matrix

We derive the covariance matrix of our cosmic shear
power spectra using the mock catalogs described in Sec. II E.
We do so by measuring the cosmic shear power spectra,
following the same method as our measurement from data,
from all 1404 realizations of the mocks, and then using these
1404 power spectra to compute the covariance matrix.
The cosmic shear signal in the mock catalogs is based on

full-sky ray-tracing simulations that account for nonlinear
structure formation [91], so the covariance estimated from
mock catalogs includes both Gaussian and non-Gaussian
components. Moreover, the mock catalog survey geometry
is identical to that of the data, so the derived covariance also
includes supersample covariance [105].
We treat these mock catalogs exactly like our real data.

We first measure the power spectra from each mock catalog
on a field-by-field basis. We analytically compute the
additive noise bias from shape noise, and subtract it from
the measured power spectra. Finally, we coadd the spectra
from each field for each mock realization using inverse
variance weighting, with the individual covariances mea-
sured from the mock power spectra for each of the fields.
We then use the 1404 coadded spectra to compute the
covariance matrix. Figure 2 shows the correlation matrix
from this covariance matrix.
We do not account for the dependence of our covariance

on cosmological parameters, since our mock catalogs are
generated based on a set of lensing simulations [91] that all
adopt the WMAP9 cosmology [3]. Reference [106] showed
that not accounting for this dependence will bias cosmo-
logical parameter constraints for current weak lensing
surveys by at most ∼10% of the statistical uncertainties.
For this reason, our covariance estimation should be
appropriate for this analysis.

In addition, we correct for the effect of finite angular
resolution, finite redshift resolution, and finite shell thick-
ness in the lensing simulations (described in detail in [88])
by applying a correction factor to the measured Cl’s from
the mock catalogs based on the ratio of the measured
spectra to the theory prediction. This correction factor is
computed for each redshift bin (1.14, 0.98, 0.95, and 0.99
in order of increasing redshift), and it is approximately
constant across the range of scales considered. [88] showed
that such a correction, for the case of ξþ, is reliable
for scales larger than θ ∼ 1 arcmin, or approximately
l ∼ 10; 000. This limit is much smaller than the scales
considered in this analysis.
The likelihood, described in Sec. VA, uses the inverse

of the covariance matrix. To approximately account for bias
in the inversion of the covariance matrix, due to the fact
that a finite number of simulations were used to estimate
the covariance, we multiply the inverse covariance by the
Hartlap factor [107]: ð1404−60−2Þ=ð1404−1Þ¼ 0.96,
where 1404 is the number of mock realizations and 60
is the number of data points used in the analysis. This
correction assumes Gaussian noise and statistically inde-
pendent data vectors.

C. B mode null test

To first order, we do not expect to see any cosmological
Bmode signal, as lensing is caused by a scalar gravitational
potential in the lens, and should therefore be curl-free. The
presence of B modes may be an indicator of potential
systematic effects in the data, such as contamination by
the PSF. B modes may also be generated by second-order
lensing effects [108], intrinsic alignments [109], and the

FIG. 2. Normalized covariance matrix (correlation coeffi-
cients), measured as described in Sec. IV B, for the fiducial
scale cuts 300 < l < 1800, and the auto- and cross correlations
of four tomographic redshift bins (ten spectra in total, with six
bins each in l).
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clustering of source galaxies [110]. We check the statistical
significance of the B mode signal to assess whether any of
these effects may be impacting our measurements.
As shown in Fig. 1, we find that the B mode signal for

multipoles larger than l ¼ 300, is consistent with zero, as
expected. The overall p-value, i.e. the probability that these
data could have occurred under the hypothesis that the B
modes should be zero, across all ten auto- and cross-
correlation spectra is 0.50, for the BB spectra within our
fiducial scale cuts (300 < l < 1800). Each of the ten auto-
and cross-correlation BB spectra also do not show signifi-
cant Bmodes, with p-values ranging from 0.14 to 0.91. The
EB spectra have an overall p-value of 0.95, with the values
for individual spectra ranging from 0.12 to 0.99, further
confirming that the B modes are not significant. We note
that prior to removing the ∼20 deg2 region in GAMA09H
with extremely good seeing and large fourth moment PSF
residuals (see the discussion in Sec. II A), we had a
significant detection of B modes, motivating the removal
of this region.
We do see excess B modes at multipoles smaller than

l ¼ 300 as shown in Fig. 17 in Appendix A. This is
consistent with the findings of the HSC Year 1 analysis
[14]. l ¼ 300 ∼ 0.6 deg corresponds roughly to the scale
of the field of view of the HSC camera, and could indicate
systematic effects due to variations with pointings on the
sky. To ensure that such systematic effects do not con-
taminate our cosmological analysis, we cut multipoles
below lmin ¼ 300. However, [111] showed that there
may be residual systematic effects on E modes from the
source of the B modes, even after removing scales with
significant B modes. With this in mind, our modeling of
PSF systematics in our cosmological analysis (as described
in Sec. IV D) should further mitigate systematic effects that
could be causing B modes.

D. PSF systematics

Systematics tests of the HSC-Y3 shear catalog in [62]
showed evidence of PSF model shape residual correlations
and additive systematics from star-galaxy correlations.
These effects could produce artificial two-point correlations
and hence bias our cosmic shear results. The PSF system-
atics model and measurement methods for the HSC-Y3
cosmology analyses are described in detail in [75] (where
Appendix F describes the model, map making, and mea-
surements in Fourier space), so we provide only a brief
summary here.
The PSF can contaminate cosmic shear measurements in

two ways. First, if the PSF model inaccurately describes the
actual PSF shape (“PSF modeling error”), then the inferred
shear can get an additive systematics term. In addition, even
if the PSF model is perfect, but the PSF deconvolution is
not, then the PSF will coherently contaminate the inferred
shear (“PSF leakage”). In the past, cosmic shear analyses
have only accounted for these PSF systematics due to the

second moments of the PSF. However, [75] showed that
the fourth moment terms can be significant, potentially
leading to ∼0.3σ biases in cosmological parameters if not
accounted for in the PSF model.
In our PSF model, we assume that the measured galaxy

shears have an additive bias due to PSF systematics,
given by

gsys ¼ αð2ÞePSF þ βð2ÞΔePSF þ αð4ÞMð4Þ
PSF þ βð4ÞΔMð4Þ

PSF:

ð22Þ
The terms, from left to right, represent second-moment
PSF leakage, second-moment PSF modeling error, fourth-
moment PSF leakage, and fourth-moment PSF model-
ing error.
Upon adding gsys to the observed galaxy ellipticity, the

measured cosmic shear power spectrum becomes

Cl → Cl þ
X4
i¼1

X4
j¼1

pipjC
SiSj
l ; ð23Þ

where the parameter vector is defined as p ¼ ½αð2Þ;
βð2Þ; αð4Þ; βð4Þ�, and the PSF moment vectors are S ¼
½ePSF;ΔePSF;Mð4Þ

PSF;ΔM
ð4Þ
PSF�. We refer to the additive term

in Eq. (23) as ΔCl. The correlations C
SiSj
l are estimated

from maps of the measured PSF and PSF modeling error
using NaMaster.
We include ΔCl in the Cl model for our cosmological

analysis, and jointly fit the PSF systematics parameters p as
nuisance parameters in the analysis. To get priors on these
parameters, we estimate them by measuring the shear-star
correlations for the HSC-Y3 shear catalog and star catalog,
and comparing them to our model prediction, which
assumes no redshift dependence of these correlations:

C
ĝgalePSF
l ¼ αð2ÞCePSFePSF

l þ βð2ÞCΔePSFePSF
l þ αð4ÞCMð4Þ

PSFePSF
l

þ βð4ÞCΔMð4Þ
PSFePSF

l ; ð24Þ

C
ĝgalΔePSF
l ¼ αð2ÞCePSFΔePSF

l þ βð2ÞCΔePSFΔePSF
l

þ αð4ÞCMð4Þ
PSFΔePSF

l þ βð4ÞCΔMð4Þ
PSFΔePSF

l ; ð25Þ

C
ĝgalM

ð4Þ
PSF

l ¼ αð2ÞCePSFM
ð4Þ
PSF

l þ βð2ÞCΔePSFM
ð4Þ
PSF

l

þ αð4ÞCMð4Þ
PSFM

ð4Þ
PSF

l þ βð4ÞCΔMð4Þ
PSFM

ð4Þ
PSF

l ; ð26Þ

C
ĝgalΔM

ð4Þ
PSF

l ¼ αð2ÞCePSFΔM
ð4Þ
PSF

l þ βð2ÞCΔePSFΔM
ð4Þ
PSF

l

þ αð4ÞCMð4Þ
PSFΔM

ð4Þ
PSF

l þ βð4ÞCΔMð4Þ
PSFΔM

ð4Þ
PSF

l : ð27Þ

We obtain the following constraints on the parameters p,
which are then used as priors in the cosmological analysis:
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αð2Þ ¼ 0.027� 0.004, βð2Þ ¼ −0.39� 0.04, αð4Þ ¼ 0.17�
0.02, βð4Þ ¼ −0.19� 0.08. As described in Sec. V D, in
practice, we sample four uncorrelated, normally distributed
parameters, which are then transformed into the parameters
p. Figure 3 shows the measured ΔCl based on these best-
fit values of the PSF systematics parameters, compared to
the uncertainty in the cosmic shear power spectrum. We
find that the contribution of PSF systematics is approx-
imately 30% of the uncertainty in the cosmic shear power
spectra, so we marginalize over the PSF systematics in our
cosmological analysis (see Sec. V D for more details). For a
complete description of the results of the PSF systematics
measurements, we refer the reader to Appendix F of [75].

E. Source redshift distribution inference

The source redshift distribution for the HSC-Y3 shear
catalog galaxies was presented in [81]. We summarize the
method and results here, and refer the reader to [81] for
further details. The posterior source redshift distributions
were constructed through a combined Bayesian hierarchi-
cal inference using the galaxies’ photometry (specifically
the DNNz redshifts), and spatial cross correlations with a
catalog of well-measured redshifts. The inference accounts
for cosmic variance due to the limited survey area.
The spatial cross correlations, or clustering redshifts,

utilize the photometric LRG sample [60] from the same
data release of HSC (S19A). The photometric LRGs are
selected using the stellar population synthesis–based red-
sequence technique developed for the Cluster-finding
Algorithm based on Multi-band Identification of Red-
sequence gAlaxies (CAMIRA) optical cluster finding

algorithm [112,113]. The photometric LRG sample has
good redshift quality out to z ∼ 1.2 (with a bias of Δz=
ð1þ zÞ≲ 0.005 and a scatter of ∼0.02) and well understood
clustering properties, making it an ideal sample to use for
clustering redshifts, i.e. redshift inference for a photometric
sample (the HSC-Y3 shear catalog) using spatial cross
correlations with a sample with known redshifts [114–118].
As shown in Fig. 4, we find that the redshift distributions

inferred from photometry and clustering redshifts alone are
consistent with the joint inference, and that the joint
inference gives tighter constraints on the redshift distribu-
tion compared to the individual methods. However, the
LRG sample from CAMIRA only extends up to a redshift
of z ∼ 1.2, and therefore we are unable to calibrate the last
redshift bin in our analysis with this method. For this bin,
we use the redshift distribution inferred from photometry
alone, i.e. the stacked individual galaxy redshift posteriors,
with a correction for cosmic variance.
As described in Sec. V E, we model the uncertainty in

this redshift distribution in our cosmological analysis, by
allowing the shift in the mean redshift of each bin to be a
free parameter.

V. MODELING AND ANALYSIS CHOICES

In this section, we describe the methods by which we fit
a cosmological model to the power spectrum measurement
presented in Sec. IV. The following sections will motivate
the choice of a fiducial model comprised of a total of 23
free parameters, including cosmological, astrophysical and
observational systematics (nuisance) parameters. Table I
shows the full set of parameters used. First, in Sec. VA
we describe the likelihood inference method, including the
computation of the likelihood as well as the nested

FIG. 3. Additive bias to the cosmic shear power spectrum
from PSF systematics, ΔCl (orange triangles; see Sec. IV D for
details), compared to the uncertainty of the nontomographic
cosmic shear power spectrum, σCEE

l
(filled circles). The scales

l < 300 and l > 1800 (shaded regions) are excluded in the
cosmological analysis. We find that the contribution of PSF
systematics is about 30% of the uncertainty in the power spectra,
so we marginalize over these systematics parameters in our
cosmological analysis.

FIG. 4. Source redshift distribution inferred from the stacked
DNNz photometric redshifts, with a cosmic variance correction
(grey contour), the clustering redshifts using the CAMIRA LRG
sample (black points), and the joint inference combining the two
methods (red contour). The mean of the joint inference contour is
used as our fiducial source redshift distribution model. This figure
has been adapted from Fig. 8 of [81].
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sampling implementation. We then describe in detail our
model of the power spectrum. This includes our linear and
nonlinear cosmic shear power spectrum model (Sec. V B),
our intrinsic alignment model (Sec. V C), and our modeling
of systematics from the PSF (Sec. V D), redshift distribu-
tion uncertainties (Sec. V E), and shear calibration biases
(Sec. V F). We discuss our choice of cosmological param-
eters to sample, and their prior ranges in Sec. V G.

We are careful to coordinate our analysis choices
with the parallel analysis using two-point correlation
functions [31]. The analysis tests and choices described
below have also been adopted and described by [31].

A. Likelihood inference

To constrain cosmological, astrophysical and observa-
tional systematics parameters from our data, we use a
Monte Carlo Bayesian analysis to evaluate the posterior in
the 23-dimensional space. We use a Gaussian likelihoodL:

−2 lnLðĈljΘÞ¼ ðĈl−ClðΘÞÞTC−1ðĈl−ClðΘÞÞ; ð28Þ

where Θ is the set of 23 parameters, sampled based on the
priors in Table I, ClðΘÞ is the model prediction for a given
set of parameters (described in detail in the following
sections), Ĉl are the measured power spectra, and C−1 is
the inverse of the covariance matrix estimated from mock
catalogs. As discussed in Sec. IV B, we multiply the inverse
covariance by the Hartlap factor [107], in this case 0.96, to
account for biases in the inversion, and we do not account
for the cosmological parameter dependence of C.
The theoretical power spectrum predictions are con-

volved with the band power windows when comparing
to the measured spectra. The band power windows are
given by

F ij
Ll ¼

X
L0

ðMijÞ−1LL0
X
l0 ∈L0

ωl0
L0M

ij
ll0 ; ð29Þ

where M is the mode coupling matrix introduced in
Eq. (16) and the convolution is

hC̃ij
Li ¼

X
l

F ij
LlC

ij
l : ð30Þ

We use nested sampling to sample the posterior in this
high-dimensional parameter space. Nested sampling algo-
rithms start with a large number of points (called “live”
points), and then repeatedly eliminate the live point with
the smallest value of the posterior density. This now
“dead” point is replaced with a live point that has a
posterior value larger than that of the point that was
eliminated. The set of both live and dead points can then
be used to calculate the evidence while also serving as a
(weighted) sample of the posterior. We use two nested
sampling algorithms in this work: PolyChord [119]
and MultiNest [120]. These algorithms have different
methods of finding new live points (see [121] for a
detailed explanation). We use the implementations of
these algorithms in the CosmoSIS package [122].
We report our fiducial constraints using the PolyChord

nested sampling algorithm, as this has been shown to
provide a more consistent and accurate estimate of the
Bayesian evidence compared to MultiNest, and more

TABLE I. Fiducial parameters and priors for our cosmological
analysis. U represents a flat (uniform) prior, whileN represents a
Gaussian prior.

Parameter Prior

Cosmological parameters (Sections V B and VG)
Ωm Uð0.1; 0.7Þ
Asð×10−9Þ Uð0.5; 10Þ
h0 Uð0.62; 0.80Þ
ωb ≡ Ωbh2 Uð0.02; 0.025Þ
ns Uð0.87; 1.07Þ
Baryonic feedback parameters (Section V B)
Ab Uð2; 3.13Þ
Intrinsic alignment parameters (Section V C)
A1 Uð−6; 6Þ
η1 Uð−6; 6Þ
A2 Uð−6; 6Þ
η2 Uð−6; 6Þ
bta Uð0; 2Þ
PSF systematics (Section V D)
α̃2 N ð0; 1Þ
β̃2 N ð0; 1Þ
α̃4 N ð0; 1Þ
β̃4 N ð0; 1Þ
Redshift distribution uncertainties (Section V E)

Δzð1Þ N ð0; 0.024Þ
Δzð2Þ N ð0; 0.022Þ
Δzð3Þ Uð−1; 1Þ
Δzð4Þ Uð−1; 1Þ
Shear calibration biases (Section V F)

Δmð1Þ N ð0; 0.01Þ
Δmð2Þ N ð0; 0.01Þ
Δmð3Þ N ð0; 0.01Þ
Δmð4Þ N ð0; 0.01Þ
Fixed parametersP

mν ðeVÞ 0.06
w −1
wa 0
Ωk 0
τ 0.0851
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conservative, i.e. wider, parameter credible intervals [121].
However, MultiNest is a much faster nested sampling
implementation, so we use it for the consistency checks
described in Secs. VI B and VI C, where we do not need the
Bayesian evidence or highly accurate parameter credible
intervals. We also check in Sec. VI B 1 that our S8
constraints are not significantly changed when using other
samplers, specifically EMCEE [123] and ZEUS [124].
For our MultiNest runs, we use 500 live points, with a

sampling efficiency¼ 0.3, and a tolerance of 0.1 (see [120]
for a description of these parameters). For the PolyChord
runs, we again use 500 live points, with the number of
repeats set to 20, and a tolerance of 0.01 (see [119] for a
description of these parameters).
We assess the convergence of our chains by checking

that the normalized sample weight (the weight at each
point, divided by the maximum weight) has stopped
increasing and is close to zero. Additionally, we also use
nestcheck [125–127] to check that the posterior mass, i.e.
the total weight assigned to all samples in that region, has
peaked out. This indicates that most of the posterior mass
contribution is well sampled.
For our fiducial constraints, we report the 1D margin-

alized mode and its asymmetric �34% confidence inter-
vals, along with the point with the maximum posterior
(MAP, or maximum a posteriori) in the chain returned by
the nested sampling algorithm:

marginalized modeþ34%CI
−34%CIðMAPÞ: ð31Þ

We report the marginalized mode, rather than the margin-
alized mean, as the former is less sensitive to the tails of
the projected 1D posterior. Additionally, the marginalized
mode is more stable than the MAP with a mathematically
well-defined uncertainty on the estimation. However,
statistics reported from marginalizing the full posterior
over the rest of the multidimensional space are subject
to projection effects, i.e. biases due to significant non-
Gaussianities in the posterior (e.g. see Sec. IVof [128] and
Sec. VA of [129]). In tests with mock data vectors, we find
that projection effects can cause significant biases in the
marginalized mode. For example, when simulating a data
vector with our fiducial model, and analyzing it with the
same model, we find a bias of −0.77σ in the marginalized
mode of Ωm, and a bias of −0.48σ in the marginalized
mode of S8. Upon conducting the same test using a
minimizer to get the MAP, rather than using the margin-
alized mode from nested sampling, we recover these
parameters with biases of −0.01σ and −0.02σ respectively.
This indicates that our likelihood is unbiased, but projec-
tion effects can cause biases in the reported parameter
values. We recommend that the reader keep this in mind
when interpreting reported constraints. The MAP estimate
should be robust to projection effects; however the maxi-
mum posterior point in the chain is a noisy estimate of the

true maximum of the parameter space. More detailed
descriptions of our investigation into projection effects
and our validation of the likelihood inference setup can be
found in Appendix B.

B. Cosmic shear power spectrum model

As described above, we constrain cosmological param-
eters by comparing the observed cosmic shear power
spectra measured in Sec. IVA to model-predicted power
spectra. We compute the latter using the Limber approxi-
mation [130], which is valid as we are not considering
very large scales (small multipoles) in this analysis
[131,132]. Under this assumption, the power spectra can
be computed as

Cij
l ¼

Z
χH

0

dχ
qiðχÞqjðχÞ

χ2
PM

�
k ¼ lþ 1=2

χ
; zðχÞ

	
; ð32Þ

where i and j are tomographic bins, χ is the comoving
distance, χH is the comoving horizon distance, and PM is
the nonlinear matter power spectrum. The lensing effi-
ciency, qiðχÞ is given by

qiðχÞ≡ 3

2
Ωm

H2
0

c2
χ

aðχÞ
Z

χH

χ
dχ0niðχ0Þ χ − χ0

χ0
; ð33Þ

where Ωm is the matter density parameter, H0 is the Hubble
constant today, a ¼ 1=ð1þ zÞ is the scale factor, and niðχÞ
is the redshift distribution of source galaxies in tomo-
graphic bin i. In practice, niðχÞ is taken as the mean of the
joint inference contour described in Sec. IV E and shown
in Fig. 4.
In practice, the linear part of the power spectrum is

commonly computed using publicly available codes, such
as CAMB [133] and CLASS [134,135]. However this can be a
computationally expensive calculation to implement in a
cosmological analysis which has to recompute the power
spectrum at each of the thousands of steps in the parameter
sampling. For our analysis, we speed up this process by
obtaining the linear matter power spectrum from the neural
network-based BACCO emulator [136], which is able to
provide the linear power spectrum with 0.5% accuracy
for redshifts z ≤ 9 and scales 10−4 ≤ k ≤ 50h Mpc−1.
Our linear power spectrum model has five cosmological
parameters, Ωm, H0 (both described above), as well as the
amplitude,As, and tilt, ns, of the primordial power spectrum,
and the baryon density, ωb ≡Ωbh2.
However, the linear matter power spectrum is not a

complete theoretical description of matter clustering. At
small scales, the growth of structure is nonlinear. Moreover,
at small scales, the matter power spectrum is also affected
by baryonic feedback from supernovae and active galactic
nuclei [137]. We model the nonlinear matter power
spectrum, including baryonic effects, using HMCode 2016
[138], implemented in PYHMCODE [139]. HMCode is a
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nonlinear matter power spectrum prediction scheme based
on the halo model [140–143], which uses physically
motivated parameters, fit to both N-body simulations
and hydrodynamical simulations. HMCode parametrizes
baryonic effects using the halo bloating parameter, ηb
and the amplitude of the halo mass concentration, Abary.
The value Abary ¼ 3.13 corresponds to an absence of
baryonic feedback. Following [144], we sample Abary,
and define ηb in terms of it:

ηb ¼ 0.98 − 0.12Abary: ð34Þ

1. Nonlinear model sufficiency

We investigate the sufficiency of HMCode for our non-
linear modeling by investigating the bias in S8 and Ωm
when using HMCode to analyze a mock data vector with
realistic baryonic feedback and nonlinear dark matter
clustering, within a given range of scales. We investigate
two possible scale cuts, lmax ¼ 1800 and lmax ¼ 2200,
keeping the large scale cut fixed (lmin ¼ 300). We consider
our nonlinear model to be sufficient for describing realistic
nonlinear physics if the 2D bias in the S8-Ωm plane is
smaller than 0.3σ2D, following [98]. Here, σ2D is the error
in the 2D S8-Ωm plane [see Eq. (35)].
In practice, we simulate noiseless data vectors in CosmoSIS

with baryonic effects based on the PMðkÞ suppression
observed in the active galactic nuclei (AGN) mode of the
cosmological hydrodynamical simulations, OverWhelming
Large Simulations (owlsAGN, [145,146]), and nonlinear
darkmatter clustering based onCosmicEmu 2022 [147,148]
(an emulator for thematter power spectrumbased on gravity-
only dark matter simulations). Following [98,149], we
assume that the owlsAGN data vector represents a realistic
level of baryonic feedback. Similarly, CosmicEmu has been
shown to agree well with other nonlinear dark matter–only
power spectrum estimates [150].We isolate the two nonlinear
effects by introducing each type of “contamination” indi-
vidually, i.e. we separately study the bias in parameter
recovery due to different models of baryonic feedback and
due to different models of nonlinear dark matter clustering.
We analyze these “contaminated” data vectors with the
fiducial model described above, and a given lmax, and

determine the bias on S8 and Ωm relative to the true values
used in generating the data vectors.
Bearing in mind that the statistics we report, such as the

marginalized mode, are subject to projection effects, we
investigate the bias due to model misspecification in terms
of the MAP point. This allows us to separate any bias due to
model misspecification from biases due to projection
effects, as the impact of projection effects will vary from
model to model. However, the MAP estimation is not
straightforward, as this is a high-dimensional parameter
space with a nontrivial structure, which can make it difficult
to converge on the global maximum posterior point, and the
MAP estimate can be very dependent on the starting point.
To alleviate these effects, we run the MAP estimation with
50 different starting points and take the final MAP to be the
end point with the largest posterior, following [144]. The
starting points are varied in the parameters of interest in
relation to the model choice, namely Ωm, As, Abary and four
intrinsic alignment parameters, A1, A2, η1, and η2 (see
Sec. V C). With these starting points, we then use CosmoSIS

1

[122] to run the SciPy [151] implementation of the Powell
minimizer [152] to find the MAP estimate for each point.
We note that all 23 model parameters are varied during the
minimization, even though the starting points are sampled
in only seven dimensions. We find that our MAP estimation
generally converges with ∼20 starting points, i.e. the
maximum posterior point does not change upon adding
additional points.
We require that our fiducial model, when used to analyze

these “contaminated” data vectors, recovers S8 andΩm with
a bias smaller than 0.3σ2D in the S8-Ωm plane. In practice,
this requirement is checked by computing the distance
d ¼ ½S8;MAP − S8;true;Ωm;MAP − Ωm;true�. We use the covari-
ance matrix of our fiducial run on actual data, Σ (based on
the blinded catalog with the most constraining power, and
therefore the most conservative choice), to check that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dΣ−1dT

p
< 0.3: ð35Þ

The results of this test are summarized in Table II. We find
that our fiducial model passes the test for contamination

TABLE II. Results of model sufficiency tests using the MAP estimation, in terms of the bias in the S8-Ωm plane
from analyzing a “contaminated” data vector with the fiducial model, relative to the parameter uncertainty from the
fiducial run on data.

Mock data 2D bias [Equation (35)] (σ2D) S8 1D bias (σ) Ωm 1D bias (σ)

Fiducial (lmax ¼ 1800) 0.03 −0.01 −0.02
owlsAGN (lmax ¼ 1800) 0.05 0.05 −0.03
CosmicEmu (lmax ¼ 1800) 0.28 0.08 −0.27
owlsAGN (lmax ¼ 2200) 0.11 0.07 −0.08
CosmicEmu (lmax ¼ 2200) 0.19 0.02 −0.19

1https://cosmosis.readthedocs.io/en/latest/.
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from both baryonic effects and nonlinear dark matter
clustering, for both sets of scale cuts, 300 < l < 1800
and 300<l< 2200. Somewhat surprisingly, we find
that the bias in the case of the CosmicEmu data vector,
is larger when using the more conservative scale cut of
lmax ¼ 1800, rather than lmax ¼ 2200. We believe that
this is due to differences between HMCode (and other
nonlinear dark matter models) and CosmicEmu at large
scales, as has been noted in the literature (see, for example,
Fig. 9 of [150]).
Since both sets of scale cuts, lmax ¼ 1800 and lmax ¼

2200 meet the requirements with the MAP estimation
described above, we look at intrinsic alignment modeling
to determine our fiducial scale cuts, as described in
Sec. V C.
We also check the sensitivity of our nonlinear PðkÞ

model to other baryonic feedback and nonlinear dark matter
clustering prescriptions, from other hydrodynamical sim-
ulations and nonlinear PðkÞ emulators. In particular, we
repeat the tests of MAP bias in the Ωm-S8 plane described
above with simulated data vectors based on the Illustris
[153], Horizon-AGN [137], EAGLE [154,155], and
cosmo-OWLS [156] cosmological hydrodynamical simu-
lations, as well as the Euclid Emulator [150] for the
nonlinear dark matter–only power spectrum. The results
of these tests are presented in Table III. We find that
only one of these tests shows a significant bias (larger
that 0.3σ2D), namely the analysis of the data vector
based on cosmo-OWLS. This may be due to the rather
extreme baryonic physics prescription of this simulation
(a minimum heating temperature for AGN feedback of
logTAGN ¼ 8.5). From the small bias in the inferred
cosmological parameters for the other hydrodynamic sim-
ulations and for Euclid Emulator, we infer that our
modeling is robust to fairly large variations in the nonlinear
physics model.

C. Intrinsic alignments

In addition to baryonic effects, cosmic shear analyses
also suffer from astrophysical systematic effects due to
the intrinsic alignment (IA) of galaxy shapes (for recent
reviews, see [157–159]). Since galaxies are extended

objects, they are subject to tidal forces. As a result, their
intrinsic shapes tend to align with the tidal field of the
gravitational potential, and therefore with each other, rather
than being completely random [160]. The observed shear
power spectrum thus has additional contributions from the
correlation of intrinsic shapes, Cl;II (arising from galaxies
being spatially close to one another), and the cross
correlation of intrinsic shapes with cosmological shear,
Cl;GI. The cross-correlation terms are caused by galaxies at
different distances along the same line of sight being lensed
by, or experiencing gravitational tidal interaction with the
same large-scale structure. The observed signal for tomo-
graphic bins i and j is then

Cij;obs
l ¼ Cij

l;GG þ Cij
l;GI þ Cji

l;GI þ Cij
l;II; ð36Þ

where the angular power spectra can be expressed in
terms of the 3D power spectra, assuming the Limber
approximation:

Cij
l;II ¼

Z
χH

0

dχ
niðχÞnjðχÞ

χ2
PII

�
k ¼ lþ 1=2

χ
; zðχÞ

	
; ð37Þ

Cij
l;GI¼

Z
χH

0

dχ
qiðχÞnjðχÞ

χ2
PGI

�
k¼lþ1=2

χ
;zðχÞ

	
: ð38Þ

In order to compute the power spectra PIIðkÞ and PGIðkÞ,
we consider two different intrinsic alignment models for
this analysis, as described below (see [161] for a more
detailed summary).

1. Tidal alignment and tidal torquing

The tidal alignment and tidal torquing (TATT) model
[109] uses nonlinear perturbation theory to expand the field
of intrinsic galaxy shapes γI in terms of the tidal field, s, and
the matter overdensity, δ. We consider terms up to quadratic
order in the tidal field:

γIij ¼ C1sij þ C2

X
k

sikskj þ bTAC1δsij; ð39Þ

where C1, C2, and bTA are free parameters. This gives us
the 3D power spectra:

TABLE III. Results of additional tests of model sensitivity to different nonlinear physics using theMAP estimation,
in terms of the bias in the S8-Ωm plane. These biases were determined from analyzing a “contaminated” data vector
with the fiducial model, and are presented relative to the parameter uncertainty from the fiducial run on data.

Mock data 2D bias [Equation (35)] (σ2D) S8 1D bias (σ) Ωm 1D bias (σ)

Fiducial (lmax ¼ 1800) 0.03 −0.01 −0.02
Illustris (lmax ¼ 1800) 0.26 −0.25 0.06
Horizon-AGN (lmax ¼ 1800) 0.20 0.11 −0.17
EAGLE (lmax ¼ 1800) 0.15 0.02 −0.15
cosmo-OWLS (lmax ¼ 1800) 0.57 −0.49 0.31
Euclid Emulator (lmax ¼ 1800) 0.21 0.09 −0.19
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PEE
GI ðkÞ ¼ C1PδðkÞ þ bTAC1P0j0EðkÞ þ C2P0jE2ðkÞ; ð40Þ

PEE
II ðkÞ ¼ C2

1PδðkÞ þ 2bTAC2
1P0j0EðkÞ

þ b2TAC
2
1P0Ej0EðkÞ þ C2

2PE2jE2ðkÞ
þ 2C1C2P0jE2ðkÞ þ 2bTAC1C2P0EjE2ðkÞ; ð41Þ

where the subscripts of the power spectra indicate corre-
lations between different order terms in the expansion of γI

(see [109] for the full definitions).
The redshift-dependent amplitudes, C1 and C2 are

modeled as power laws in 1þ z:

C1ðzÞ ¼ −A1

C̄1ρcΩM

DðzÞ
�
1þ z
1þ z0

�
η1
; ð42Þ

C2ðzÞ ¼ 5A2

C̄1ρcΩM

D2ðzÞ
�
1þ z
1þ z0

�
η2
; ð43Þ

where DðzÞ is the growth function, and ρc is the
critical density. By convention, we set the constant C̄1¼
5×10−14M⊙h−2Mpc2 (measured using the SuperCOSMOS
Sky Survey [162,163]) and the redshift pivot z0 ¼ 0.62
(following [164]).
Thus, our implementation of the TATT model has five

free parameters: A1, A2, η1, η2, and bTA. A1 and A2 capture
the IA power spectra that scale linearly and quadratically
with the tidal field, while η1 and η2 model possible redshift
evolution beyond what is already encoded in the model.
bTA is a bias parameter that models the fact that galaxies
are oversampled in the highly clustered regions. In this
analysis, we adopt wide, flat priors for these parameters,
where A1; A2; η1; η2 ∈ ½−6; 6�, and bTA ∈ ½0; 2�. Since the IA
signal is very sensitive to the properties of a galaxy sample,
it is difficult to derive reliable Gaussian priors on these
model parameters. The implementation of the TATT model
in CosmoSIS is powered by the FAST-PT algorithm, which
rapidly performs the mode-coupling integrals [165].

2. Nonlinear alignments

A simpler, and more commonly used model is the
nonlinear alignment (NLA) model [162]. This model
assumes that galaxies align linearly with the tidal field.
Under this model, the 3D power spectra are

PEE
GI ¼ C1ðzÞPδ; PEE

II ¼ C2
1ðzÞPδ; ð44Þ

where C1 is parametrized as in Eq. (42). Here, Pδ is the full
nonlinear matter power spectrum, generated using HMCode.
Our implementation of the NLA model has two free
parameters: A1 and η1. As with TATT, we adopt wide, flat
priors on these parameters, with A1; η1; ∈ ½−6; 6�. We note
that NLA is a subset of the TATT model, with A2 ¼ 0
and bTA ¼ 0.

To choose an intrinsic alignment model, we follow the
empirical approach suggested by [161] which is based on
the χ2 difference between fits to the two models based on
the actual data. We take this approach rather than generat-
ing mock “contaminated” data vectors, as it can be difficult
to understand what a realistic level of IA contamination
would be, when the TATT model is not yet well constrained
by data.
We analyze all three blinded catalogs with both

TATT and NLA, using scale cuts of lmax ¼ 1800 and
lmax ¼ 2200. These resulting parameter constraints are
summarized in Fig. 5. We look at the goodness of fit from
each setup, as well as the shifts and errors on our
parameter of interest, S8. We find that the constraints
on S8 are comparable for all four combinations of models
and scale cuts.2 We do not see a significant shift in S8
from any choice of model or scale cut. We use TATT for
our fiducial model, as it is a more complete description
of IA and does not appear to degrade our constraints.
Given that our model sufficiency tests pass for both sets
of possible scale cuts, lmax ¼ 1800 and lmax ¼ 2200,
we choose to use the more conservative option of lmax ¼
1800 as our fiducial scale cut. However, as shown in
Sec. VI C, our results are unchanged by extending the
analysis to lmax ¼ 2200.

FIG. 5. Blinded parameter constraints from different IA models
(described in Sec. V C) and different scale cuts, run on blinded
catalog 0, which has the most constraining power. These results
were used to choose the fiducial IA model and small scale cut.
Since the constraints on our parameter of interest, S8, are
comparable for both NLA and TATT (with no shift in the central
value, or appreciable increase in error bars), we choose to use the
more complete model, TATT. The constraints on S8 are also
similar for the two sets of scale cuts, so we use the more
conservative scale cut of lmax ¼ 1800.

2We note that in the case of blinded catalog 0, which was used
for the model selection tests, the error on S8 increases when
extending the analysis to smaller scales (lmax ¼ 2200) using
TATT, as shown in Fig. 5. This is counterintuitive, as adding
data points should increase the constraining power of the
analysis, and this implied to us that we did not fully understand
how the TATT model was actually making use of data on smaller
scales. For this reason, we made the conservative choice to use
the stricter scale cut. (For the true catalog, blinded catalog 2, the
error on S8 decreases when going to smaller scales, as expected,
so the behavior observed with blinded catalog 0 is not universal
and may couple with other parameters such as multiplicative
bias.)
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D. PSF systematics

As described in Sec. IV D, we model PSF systematics
using four parameters, p ¼ [αð2Þ, βð2Þ, αð4Þ, βð4Þ], which
describe the second-moment leakage, the second-moment
modeling error, the fourth-moment leakage and the fourth-
moment modeling error respectively. In practice, as shown
in [75], the parameters αð2Þ and αð4Þ are correlated. In order
to account for this correlation in the sampling, we instead
sample four uncorrelated parameters (p̃ ¼ [α̃ð2Þ, β̃ð2Þ, α̃ð4Þ,
β̃ð4Þ]), each from a standard normal distribution. We then
transform these parameters into our original parameters by
the following:

p ¼ Λ1=2Up̃þ p̄; ð45Þ

where p̄ is the mean of each of the parametersp, determined
from the measurements described in Sec. IV D, Λ is a
diagonal matrix with the eigenvalues of p − p̄, and U is a
matrix of the eigenvectors.
We find that not accounting for this correlation has

little impact on our parameter estimates, as described in
Sec. VI B.

E. Redshift distribution uncertainties

The source redshift distribution, whose inference is
described in Sec. IV E, is subject to uncertainties. We
marginalize over these uncertainties in our cosmological
analysis with a shift model for the mean redshift of each
tomographic bin i:

niðzÞ → niðzþ ΔziÞ: ð46Þ

In this model, a negative value of Δzi corresponds to a shift
of the niðzÞ distribution to higher redshifts. [166] demon-
strated that this model is sufficient for capturing the redshift
distribution uncertainty for HSC-Y3 data, in addition to
being computationally inexpensive.
This model adds a total of four parameters (one per

redshift bin) to our analysis. The priors on these parameters
are listed in Table I. The priors on Δz1 and Δz2 are
Gaussian priors taken from [81] (see Sec. 5.7), and are
dominated by the differences in the inferred nðzÞ from the
three different HSC-Y3 photometric redshift codes. [81]
also contains a recommendation for Gaussian priors on
Δz3 and Δz4: N ð0; 0.031Þ and N ð0; 0.034Þ respectively.
However, the third redshift bin is only partially calibrated
by the LRG clustering redshifts, and the fourth is not at all
calibrated. Moreover, we suspect that the redshift distribu-
tions in these bins are systematically biased by all three
photo-z codes. This idea is supported by the fact that we see
a large shift in S8 when using the Gaussian priors from [81]
for all four bins and then excluding the fourth redshift bin
from the analysis (Fig. 6). For this reason, we adopt a wide,
flat prior for these parameters: Δz3;Δz4 ∈ ½−1; 1�. We shall

see that these parameters are constrained by the data to be
well within this range.

F. Shear calibration bias

As described in [62], the HSC-Y3 shear catalog is
calibrated using image simulations [79], where Hubble
Space Telescope images are downgraded to HSC
observing conditions. [62] used the image simulations
to model and calibrate the shear estimation bias,
including galaxy model bias [167], noise bias [168],
selection bias [169], and detection bias [170]. It was
also shown that the shear estimation bias due to the
blending of galaxies located at different redshifts is
small for the HSC-Y3 weak lensing science.
We model and marginalize over any residual uncertainty

in the multiplicative bias after this calibration procedure,
following the model from [16]. We introduce the nuisance
parameters ΔmðiÞ to represent the residual redshift-
dependent multiplicative bias in each tomographic bin i.
The cosmic shear power spectra then become

Cij
l → ð1þ ΔmðiÞÞð1þ ΔmðjÞÞCij

l : ð47Þ

We use a Gaussian prior for each of the ΔmðiÞ param-
eters, with a mean of 0 and a standard deviation of 0.01,
since the calibration in [62] confirmed that the multiplica-
tive bias residual is smaller than 1%.

G. Prior distributions

The above sections motivate a fiducial model with 23
free parameters to describe cosmological, astrophysical and
observational systematic effects. The fiducial prior distri-
butions for these parameters are listed in Table I. In this
section, we discuss the choice of cosmological parameters
to sample, as well as the impact of the priors for these
parameters on our analysis.
Our fiducial analysis, as described in Sec. V B, samples

the cosmological parameters Ωm and As. We have adopted
conservative, wide priors for these two parameters,

FIG. 6. Blinded parameter constraints for an analysis using
Gaussian priors for the redshift shift parameters, Δzi, from [81],
compared to the results when removing each of the four redshift
bins from the analysis. The large shift in S8 when removing the
fourth bin is an indication that the calibration of nðzÞ in this
redshift bin is poor. Since the third redshift bin is also only
partially calibrated by the LRG clustering redshifts, we choose to
use conservative, flat priors on both Δz3 and Δz4.
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Ωm ∈ ½0.1; 0.7� and As ∈ ½0.5 × 10−9; 10−8�. A value outside
this prior range would be unrealistic. The As prior in
particular, is tens of σ wider than the posterior determined
by Planck [2]. Moreover, we find that our S8 constraint is
unaffected by increasing these prior ranges.
We note, in particular, our choice to sample As, the

amplitude of the primordial power spectrum, rather than
σ8 or S8. This is motivated by our finding that for our
fiducial scale cuts 300 < l < 1800, there is a strong
degeneracy between Ωm and σ8, much stronger than is
seen in the 2PCF analysis [31]. We can illustrate the
origin of this degeneracy by examining the change in our
observables along it. Figure 7 shows ratios between
theory predictions at extreme points along the degen-
eracy, for both Fourier- and real-space measurements.
While both statistics are sensitive to the degeneracy
direction when we look at their complete possible ranges,
the Cl ratio is close to unity within our scale cuts, unlike
ξ� which varies more strongly. For this reason, Ωm and σ8
are poorly constrained by our analysis, and we do not
focus on these quantities when reporting parameter
values, or when conducting internal consistency and
model robustness checks.
Sampling in As rather than σ8 helps to overcome this

degeneracy. Sampling uniformly in Ωm and As is not
equivalent to sampling uniformly in the Ωm-σ8 parameter
space, as seen in Fig. 8. Instead, the wide, uniform prior on
As acts as an informative prior, which excludes the most
extreme regions along the Ωm-σ8 degeneracy. For this
reason, we find from both mock analyses, and our data, that
our constraints on S8 are tighter when sampling As, rather
than S8 or σ8, without affecting the inferred central value of
S8 (see Sec. VI B).

We find that, for our fiducial analysis, the inferred
posterior hits the prior boundary of As and Ωm (this is
seen for Ωm in Fig. 9, due to the upper boundary on As).
This is likely to happen because, as explained above, these
two parameters are poorly constrained by our data, given
our scale cuts. However, given our conservative priors on
these parameters, we are not excluding realistic regions
of parameter space. For these reasons, we believe that
our S8 inference is robust, but the constraints on Ωm, As,
and σ8 are less so.

FIG. 7. Ratio of different summary statistics–Cl on the left, ξþ (blue, solid) and ξ− (orange, dashed) on the right–for the fourth redshift
bin autocorrelation, for two sets of cosmological parameters along the Ωm-σ8 degeneracy with the same S8 value: ðΩm ¼ 0.21; σ8 ¼
0.95Þ and ðΩm ¼ 0.445; σ8 ¼ 0.65Þ, computed using our fiducial model. The fiducial scale cuts for this analysis and for the 2PCF
analysis [31] are the shaded regions. While the real space statistics, ξ�, are able to distinguish between these extremely different
parameter values, the ratio of Cl ’s in our fiducial scale cut range is nearly unity, making it difficult to constrain parameters along this
degeneracy direction.

FIG. 8. Sampling in the Ωm-σ8 space when sampling uniformly
in Ωm and σ8 (blue dots), and when sampling uniformly in Ωm
and As (orange crosses). Given the inability of our summary
statistic and scale cuts to distinguish between extreme points
along the Ωm-σ8 degeneracy (as shown in Fig. 7), sampling As
provides a more informative prior without affecting the central
value of our S8 constraint.
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After obtaining a parameter chain from a converged
sampling run, we reweight the chain in order to obtain flat
priors for σ8 and Ωm. This correction involves simply
multiplying the weight of each sample by σ8=As (see [129]
for a derivation of this correction).

VI. COSMOLOGICAL CONSTRAINTS

In this section, we present cosmological constraints
from the tomographic cosmic shear power spectra mea-
sured with the HSC-Y3 shear catalog in the flat ΛCDM
model (Sec. VI A). In Sec. VI B, we test the robustness of
our cosmological constraints against different modeling
choices, including the modeling of baryons and intrinsic
alignments, as well as redshift distribution uncertainties
and PSF systematics. As described in Sec. VI C, we also
perform internal consistency checks that ensure our con-
straints are not significantly affected by changing the scale
cuts and redshift bins adopted for the analysis. Finally,
in Sec. VI D, we compare our results to other constraints
from the literature.
The results presented in this section are based on

processing our nested sampling chains with the
ChainConsumer package [171]. However, this package does
not account for biases due to the boundaries of the
projected 1D sample, where the density estimate close to
the boundary may be biased low due to the kernel function
extending beyond the data range. Moreover, the package
has an additional bias from the kernel density estimation
smoothing, which can lead to error bars being overesti-
mated. Upon correcting for these biases, we find that they
have a negligible effect on our S8 constraint, giving a value
of 0.777þ0.028

−0.032 , compared to our fiducial constraint of
0.776þ0.032

−0.033 . As these biases were discovered after unblind-
ing the analysis, the results presented below do not include
these corrections.

A. Fiducial constraints

We derive marginalized posterior contours in the Ωm-σ8
plane from our fiducial model fit to the measured Cl’s.
However, constraints from cosmic shear are known to be
degenerate in this plane, and we have found that with
our scale cuts, these parameters are poorly constrained
(see Sec. VG). Instead, we focus on a combination of
these parameters, S8ðαÞ≡ σ8ðΩm=0.3Þα. While the Year 1
Fourier-space analysis was able to get the tightest con-
straints with α ¼ 0.45 [14], we found that the standard
value of α ¼ 0.5 gives us the tightest constraints with the
Y3 data.
For α ¼ 0.5, we obtain the following constraints for the

cosmological parameters of interest. We report the 1D
marginalized mode and its asymmetric �34% confidence
intervals, with the MAP of the nested sampling chain
shown in parentheses:

S8 ¼ 0.776þ0.032
−0.033ð0.792Þ

Ωm ¼ 0.219þ0.075
−0.052ð0.226Þ

σ8 ¼ 0.900þ0.100
−0.139ð0.913Þ

The 1D and 2D posteriors of these parameters are shown
in Fig. 9.
A parallel analysis used the same data, with coordi-

nated analysis choices, to constrain S8 using 2PCFs [31].
We also show the results of this analysis in Fig. 9, and
find excellent agreement between the inferred value of S8
from the two analyses.
We compare our measured cosmic shear power spectra

with our best-fitting model in Fig. 10. Before unblinding,
we determine the goodness of fit of our data by taking the
χ2 for the best-fit point, i.e. the MAP, or maximum
posterior point, from the PolyChord chain. Rather than
attempting to estimate the effective number of degrees of
freedom in our analysis (accounting for the correlations
between parameters), we follow the method described
in [57]: we compare the χ2 of our data to a reference χ2

distribution obtained from simulating 50 noisy mock
data vectors and applying the same analysis to them as
the real data (using, however, MultiNest rather than
PolyChord due to its faster speed). By comparing our
observed χ2 ¼ 55.38 value to the reference distribution, we
find a p-value of p ¼ 0.42 and conclude that the model
provides a good fit to the data.
We show the one- and two-dimensional posteriors of the

other cosmological, astrophysical and observational sys-
tematics parameters in Appendix C.

B. Robustness to modeling and analysis choices

To check the robustness of our results to our modeling
and analysis choices, we change the setup of the analysis
in various ways to test the impact on our cosmological
constraints. This includes tests of different samplers, differ-
ent sampled parameters, different astrophysical models for
intrinsic alignments and baryonic feedback, as well as
different models for observational systematics, including
redshift distribution uncertainties and PSF systematics.
Prior to unblinding, we check that the shift in our S8
constraint is smaller than 1σ in each of these tests. Any
shifts larger than 1σ are further tested and understood
before unblinding.
The results of these tests are summarized in Table IVand

Fig. 11. As mentioned in Sec. VA, we use the MultiNest
sampler for these checks, as it is significantly faster to run
than PolyChord. The resulting constraints are compared
to our fiducial constraint, which uses PolyChord.
As shown in Sec. VI B 1, the central values of the
constraints on S8 from fiducial runs with PolyChord
and MultiNest are consistent. However, MultiNest
underestimates the width of the posterior by ∼10%, which
causes the constraints from some of these consistency
checks to appear to be stronger than those for our data. We
describe each of the different setups used for these robust-
ness checks in detail below.
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1. Sampler choice

While our fiducial constraints are from the PolyChord
algorithm, we check that our S8 constraint is not signifi-
cantly affected by the choice of sampler. In addition to
MultiNest, we also consider two other Markov chain
Monte Carlo samplers that use ensembles of “walkers”
to explore the parameter space: EMCEE [123] and
ZEUS [124,172]. In all of these cases, we run these samplers
from within the CosmoSIS code [122].

As shown in Table IVand Fig. 11, we find that the central
value of S8 is not affected by the choice of sampler, with
shifts of at most 0.1σ. However, PolyChord, EMCEE, and
ZEUS find a ∼10% wider posterior on S8 compared to
MultiNest. This is consistent with the findings of [121],
who have shown that MultiNest can underestimate the
posterior width compared to PolyChord. We find that
the constraints on Ωm are shifted (by 0.36σpolychord) with a
severely underestimated posterior width (by a factor of 0.5)

FIG. 9. Cosmological constraints (1σ and 2σ contours) from this analysis (blue, solid), which uses angular cosmic shear power spectra
(Cl’s), and the constraints from a parallel cosmic shear analysis ([31], orange, dashed), which uses 2PCFs along with the same data and
coordinated analysis choices. The shading in the 1D posteriors represents the 68% confidence interval for the constraints. We find
excellent agreement between the two analyses. We also include Δz3 and Δz4, the two “nuisance” parameters that have the strongest
covariance with S8.
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when using MultiNest compared to PolyChord,
EMCEE, and ZEUS. We interpret this as an inability of
MultiNest to recover accurate posterior widths for
parameters that are poorly constrained by the data.

2. Sampled parameters

While our fiducial analysis samples As (see Table I), we
test the impact on our S8 constraints if we instead sample S8
or lnð1010AsÞ. As shown in Table IV and Fig. 11, we find
that the shift in our central S8 value from these different
setups is not significant (smaller than 0.15σ), and that we
are able to achieve similar constraining power in both
these cases.

3. Intrinsic alignment model

In our fiducial analysis, we use the TATT intrinsic
alignments model (see Sec. V C 1). We test the robustness
of our cosmological constraints to the intrinsic alignment
model used by checking the S8 constraints obtained using
two different models. First, we use the nonlinear

alignments model, described in Sec. V C 2. We also test
the constraints with no intrinsic alignment modeling, i.e.
assuming that there is no IA signal. The results of these
tests are shown in Table IV and Fig. 11. We find no
significant shift in our S8 constraint from changing the IA
model (at most ∼0.2σ), although the constraints are
stronger when using these simpler models, given that they
have fewer parameters. As discussed in Sec. VII C, we do
not detect an IA signal in our fiducial analysis, further
confirming that our analysis is not sensitive to the choice of
IA model.

4. Matter power spectrum/baryonic
feedback model

Our fiducial analysis models the linear matter power
spectrum with the BACCO emulator [136], and the non-
linear power spectrum using HMCode 2016 [138], imple-
mented in PYHMCODE [139]. We explore the impact of
using other power spectrum models on our S8 constraint by
changing the linear power spectrum modeling to CAMB

FIG. 10. Comparison of the measured tomographic cosmic shear power spectra (blue dots, same as Fig. 1) with our theoretical model
using the best-fit values of our fiducial analysis (orange).
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[133], and subsequently, the nonlinear modeling to HMCode

2020 [173]. We also test the impact of continuing to use the
BACCO emulator and HMCode 2016, without the modeling
of baryonic effects, by fixing the Abary parameter to 3.13.
As shown in Table IV and Fig. 11, we find consistent S8
constraints in the first two cases, and a 0.5σ shift to a lower
S8 value when not modeling baryonic effects. We have
shown, in Sec. V B 1, that our model and choice of scale
cuts should be robust to a range of different baryonic
feedback scenarios.

5. Redshift distribution uncertainties

As described in Sec. V E, there is a potential for biases in
the photometric redshifts in our third and fourth redshift
bins, especially because these bins are respectively only
partially and not at all calibrated by the LRG clustering
redshifts described in Sec. IV E. For this reason, in our
fiducial analysis, we adopt a conservative, wide, flat prior
for the shift of the mean redshift in these tomographic bins.
Here, we explore the impact of using the Gaussian prior
recommended in [81] forΔz3 andΔz4. Table IVand Fig. 11
show a larger than 1σ shift in the S8 constraint when using
these Gaussian priors. As the uniform priors are the
more conservative choice, we believe this to be evidence
of systematic biases in these last two redshift bins. In
fact, the conservative, flat priors used in the fiducial
analysis give the constraints Δz3 ¼ −0.076þ0.056

−0.059 and
Δz4 ¼ −0.157þ0.094

−0.111 , which would be inconsistent with
the Gaussian prior. To further test this, we use 50 noisy
mock data vectors generated from the covariance matrix
using the WMAP9 cosmology [3] and the best-fit fiducial
model for the astrophysical and observational systematics
parameters, with the inputΔz3 andΔz4 set to 0, and run the
fiducial analysis on these mocks.We find that we only get a
shift as large as the fiducialΔz3 constraint five times, and a
Δz4 value as large as the fiducial constraint five times, as
shown in Fig. 12. This indicates that these detections of
shifts in the third and fourth redshift bins are significant at a
∼2σ level. We leave the study and calibration of these
biases to future work. We note that the conservative priors
on Δz3 and Δz4 are a large part of the reason why our
constraints on S8 are not tighter compared to the Year 1
analyses [14], despite the higher significance measurement
of the power spectrum.4

FIG. 11. Constraints on S8 for the tests of modeling and
analysis choice robustness described in Sec. VI B. The asterisk
indicates that only the test with varying neutrino mass was
performed after unblinding the analysis.

TABLE IV. S8 constraints for the tests of modeling and analysis
choice robustness described in Sec. VI B. We report the posterior
mode value and 68% confidence bounds of S8 for each of these
tests, along with the maximum posterior point of the chain (MAP)
in parentheses. We report the shift in each of these tests from the
fiducial constraint as a fraction of the fiducial 68% confidence
bounds.

Consistency test
S8 posterior mode

(MAP) Shift (σfid)

Fiducial 0.776þ0.032
−0.033 ð0.792Þ N=A

MultiNest 0.777þ0.031
−0.028 ð0.775Þ 0.03

EMCEE 0.773þ0.032
−0.029 ð0.804Þ −0.09

ZEUS 0.774� 0.032ð0.814Þ −0.06

Sample S8 0.775þ0.033
−0.031 ð0.770Þ −0.03

Sample lnð1010AsÞ 0.780þ0.030
−0.031 ð0.795Þ 0.12

NLA 0.783þ0.029
−0.027 ð0.799Þ 0.22

No IA 0.779� 0.025ð0.798Þ 0.09

CAMB 0.777� 0.029ð0.778Þ 0.03
HMCode 2020 0.786þ0.032

−0.028 ð0.783Þ 0.31
No baryons 0.759þ0.026

−0.025 ð0.792Þ −0.52

Informative Δz3, Δz4 prior 0.813þ0.025
−0.024 ð0.788Þ 1.14

No PSF parameter correlations 0.781þ0.029
−0.030 ð0.771Þ 0.15

No PSF systematics 0.783� 0.031ð0.774Þ 0.22

Vary neutrino mass (
P

mν)
a

0.769þ0.030
−0.035 ð0.758Þ −0.22

aWe note that this test alone was performed after unblinding
the analysis.

4The sky coverage of HSC Year 3 increases to 416 deg2 from
137 deg2 for HSC Year 1. Based on this increase in area, we
would expect the Y1 error of �0.0315 to shrink by a factor of
∼0.57, giving an error of �0.018. With the Gaussian informative
prior on Δz3 and Δz4, the error on S8 is �0.0245, ∼25% smaller
than the error for the fiducial analysis, �0.0325. This explains a
large percentage of the difference between our fiducial constraints
and those expected from the increase in area. Further differences
might be explained by a number of other conservative modeling
choices made in this Y3 analysis, such as the scale cuts and use of
the TATT model.
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6. PSF systematics model

As described in Sec. V D, we adopt a model of the PSF
systematics that accounts for correlations between
the parameters. We explore the dependence of our S8
constraint on this model choice by first checking the
constraint when sampling the original set of PSF param-
eters p ¼ ½αð2Þ; βð2Þ; αð4Þ; βð4Þ�, such that the correlation
between them is not accounted for. We also check our
constraints when not modeling PSF systematics at all.
Table IV and Fig. 11 show only small changes (0.15σ and
0.22σ respectively) in the S8 constraint from these different
setups, indicating that constraints from cosmological
parameters using this data set are not sensitive to the
choice of PSF systematics model. However, we note that
we still need higher-order PSF moments, as shown in [75],
in order to self-consistently describe the shear two-point
correlations and null tests. Moreover, our fiducial analysis
results in significant detections of the PSF systematics
parameters: αð2Þ ¼ 0.027þ0.004

−0.003 , β
ð2Þ ¼ −0.394þ0.033

−0.036 , α
ð4Þ ¼

0.176þ0.014
−0.017 , and βð4Þ ¼ −0.194þ0.075

−0.070 .

7. Neutrino mass

In our fiducial analysis, we fix the sum of neutrino
masses,

P
mν ¼ 0.06 eV, as we do not expect our data to

be able to constrain this parameter. The effect of a change in
neutrino mass on large-scale structure observables, such as
cosmic shear, would be absorbed by a change in σ8, as a
larger neutrino mass would lead to a suppression in the
matter power spectrum amplitude at small scales over the
range of redshifts that HSC can probe. One would only be
able to constrain

P
mν by adding CMB constraints, which

probe the amplitude of the matter power spectrum at higher
redshifts. As such a joint constraint is outside the scope of

this work, here we simply explore the effect of allowing
neutrino mass to vary in our analysis, with a uniform prior
from 0.06 to 0.6 eV. We note that this test, unlike the others
described above and below, was performed after unblinding
the analysis. We find very little change in our S8 constraint,
with a shift from the fiducial constraint of 0.22σ.

C. Internal consistency

We also check the robustness of our results to various
splits of our data. This includes splitting our data by each
field of the survey, using different photometric redshift
codes for the source redshift distribution inference, remov-
ing each tomographic bin in turn, and adopting different
sets of scale cuts. As with the tests of modeling and analysis
choices, we require that the shifts in our S8 constraint from
each of these internal consistency tests be smaller than 1σ
before unblinding. Any shifts larger than 1σ were inves-
tigated and understood prior to unblinding.
The results of these tests are summarized in Table V

and Fig. 13. Again, we use the MultiNest sampler for
these checks, rather than PolyChord, but compare the

FIG. 12. Δz3 and Δz4 values inferred from 50 noisy mock data
vectors generated using the best-fit fiducial model, with the input
Δz3 and Δz4 set to 0 (blue points). The fiducial inferred values of
Δz3 and Δz4 (black cross), are larger than 90% of the values
inferred from these mocks, suggestive of detections of nonzero
shifts, but with a significance at a less than 2σ level.

TABLE V. S8 constraints for the tests of internal consistency
described in Sec. VI C. We report the posterior mode value and
68% confidence bounds of S8 for each of these tests, along with
the maximum posterior point of the chain (MAP) in parentheses.
We report the shift in each of these tests from the fiducial
constraint as a fraction of the fiducial 68% confidence bounds.

Consistency test S8 posterior mode (MAP) Shift (σfid)

Fiducial 0.776þ0.032
−0.033 ð0.792Þ N=A

XMM 0.733þ0.071
−0.072 ð0.710Þ −1.32

GAMA15H 0.787þ0.055
−0.061 ð0.837Þ 0.34

HECTOMAP 0.760� 0.060ð0.777Þ −0.49
GAMA09H 0.742þ0.049

−0.050 ð0.782Þ −1.05
VVDS 0.744þ0.048

−0.049 ð0.724Þ −0.98
WIDE12H 0.783þ0.043

−0.044 ð0.785Þ 0.22

DNNz 0.782þ0.030
−0.028 ð0.822Þ 0.18

DEmPz 0.776� 0.029ð0.798Þ 0.0
mizuki 0.784þ0.028

−0.026 ð0.802Þ 0.25

No z1 0.772þ0.027
−0.028 ð0.750Þ −0.12

No z2 0.771þ0.026
−0.028 ð0.782Þ −0.15

No z3 0.791þ0.028
−0.027 ð0.810Þ 0.46

No z4 0.773þ0.030
−0.029 ð0.770Þ −0.09

lmin ¼ 200 0.783þ0.030
−0.026 ð0.819Þ 0.22

lmax ¼ 2200 0.777� 0.030ð0.785Þ 0.03
300 < l < 800 0.784� 0.032ð0.783Þ 0.25
800 < l < 1800 0.760þ0.040

−0.039 ð0.765Þ −0.49
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resulting constraints to our fiducial constraints, which use
PolyChord. We describe each of the tests in detail below.

1. Individual fields

The HSC-Y3 data is split into six different fields on the
sky, and as described in Sec. IVA, we measure power
spectra independently for each of these fields. Here, we
assess the consistency in S8 results from carrying out
the fiducial analysis on each field individually. We
note that these fields have a range of sizes; in order of
increasing area, they are XMM (33.17 deg2), GAMA15H
(40.87 deg2), HECTOMAP (43.09 deg2), GAMA09H
(78.85 deg2), VVDS (96.18 deg2), and WIDE12H
(121.32 deg2). As shown in Table V and Fig. 13, we find
that XMM shows a ∼1.3σ shift in S8, while GAMA09H
and VVDS each show a shift of ∼1σ. Since these fields are
each quite small, and essentially independent, these shifts
are not a cause for concern.

2. Source redshift distribution

We compare the constraints on S8 obtained from
the fiducial source redshift distribution inference (see
Sec. IV E) to the stacked photometric redshift PDFs from
each of the three photo-z codes described in Sec. II C.

Table V and Fig. 13 show that the resulting S8 constraints
are consistent with the fiducial model in every case, with
shifts no larger than 0.25σ. Furthermore, we find that the
large shifts in the third and fourth bin redshift distributions
(discussed in Sec. VI B 5) persist when using these differ-
ent source redshift distributions, with Δz3 and Δz4 values
that are consistent with the fiducial analysis.

3. Redshift bins

The comparison of our S8 constraints across different
tomographic bins is an important internal consistency
check [174,175]. For this test, we exclude one tomographic
bin at a time and see whether the results are consistent with
the fiducial result using all four bins. Our fiducial analysis
adopts wide, flat priors on Δz3 and Δz4. The combination
of these conservative priors and the removal of bins z1 or z2
would result in a major reduction in the constraining power
of this test data set. To avoid this issue when conducting
this test, we adopt informative priors onΔz3 andΔz4, taken
from the fiducial posteriors of these parameters, Δz3 ¼
−0.076� 0.0575 andΔz4 ¼ −0.157� 0.1025. We find, as
shown in Table V and Fig. 13, that the resulting S8
constraints from removing each redshift bin are consistent
with the fiducial constraint within 0.5σ. However, we note
that these cases are not entirely independent, as the priors
used for Δz3 and Δz4 come from the fiducial posterior.

4. Scale cuts

Finally, we check the internal consistency among differ-
ent multipole bins. We first check that extending the upper
and lower limits of our scale cuts to lmin ¼ 200 and lmax ¼
2200 does not significantly change the value of S8 (with
shifts of 0.22σ and 0.03σ respectively). This suggests
that our fiducial multipole range of 300 < l < 1800 is a
conservative choice. We then split the fiducial multipole
range in half, first considering only large scales
(300 < l < 800), and then considering only small scales
(800 < l < 1800). While the S8 constraint from large
scales is consistent with the fiducial value (within
0.25σ), there is a ∼0.5σ shift to a lower S8 value when
only considering small scales. However, since this shift is
within 1σ of our fiducial constraint, this does not represent
a significant bias.

D. Comparison to other constraints from the literature

We first combine our fiducial constraints with those from
baryon acoustic oscillations (BAOs). We use the extended
Baryon Oscillation Spectroscopic Survey (eBOSS) DR16
[12] likelihood implemented in CosmoSIS. This analysis
measures the BAO feature in the galaxy clustering power
spectrum using a number of different galaxy samples,
including the SDSS main galaxy sample [176], BOSS
DR12 galaxies [11], eBOSS LRGs [177], eBOSS emission
line galaxies [178], eBOSS quasars [179], and eBOSS
Lyman-α forest samples [180]. We perform a joint

FIG. 13. Constraints on S8 for the tests of internal consistency
described in Sec. VI C.
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likelihood analysis using our fiducial HSC-Y3 likelihood
and the likelihoods for each of these BAO samples,
assuming no correlations between the HSC and BAO
likelihoods. The results of this analysis are shown in
Fig. 14. We find that our S8 constraint is unchanged by
the addition of BAO data; however the BAO data does
greatly improve our constraint on Ωm in the joint analysis.
We now compare our results to other constraints on S8

and Ωm from the literature, including:
Planck 2018 cosmological constraints derived from
primary CMB information (“TT, EE, TEþ lowE”),
without CMB lensing, and using a fixed sum of neutrino
masses of

P
mν ¼ 0.06 eV [2].5

Dark Energy Survey Year 3 (DES-Y3) cosmic shear
constraints with the “Maglim” sample [16,17].6

The Kilo-Degree Survey 1000 (KiDS-1000) cosmic
shear constraints [19].7

The HSC Year 1 cosmic shear constraints from cosmic
shear power spectra [14].8

The HSC Year 1 cosmic shear constraints from cosmic
shear two-point correlation functions [15].9

As shown in Fig. 15, we find that our results are
generally in agreement with those from the HSC Year 1
analyses, although our central value of S8 is lower than that
from both Year 1 analyses. As discussed in Sec. VII A, our
uncertainties on S8 are similar to those of the Year 1
analyses, because we have adopted a conservative flat prior
on Δz3 and Δz4.
A comparison of our results and those from Planck 2018,

DES-Y3, and KiDS-1000 is shown in Fig. 16. We find that
our results agree well with those from the recent cosmic
shear experiments, DES-Y3 and KiDS-1000. However, our
S8 constraint appears to be in modest tension with the
constraint from Planck 2018. To investigate this further, we
quantify the tension in S8 using Method 3 of [181]. We first
use importance sampling to generate chains of equal length
from the original Planck chain and our fiducial chain for
this analysis. We then compute a new chain taking the
difference between the posterior samples from Planck and
those from our analysis, Δp, and evaluate the probability
enclosed within the posterior contour intersecting the point
Δp ¼ 0. From this method, we find that our S8 constraint
has a 96% probability of being in tension with the Planck

FIG. 14. Constraints on Ωm and S8 from this work (blue, solid),
compared to the constraints from a joint analysis with the eBOSS
DR16 BAO likelihoods (orange, dashed). Our fiducial S8 con-
straint is unchanged by the addition of eBOSS data, while the
joint analysis greatly improves our constraint on Ωm.

FIG. 15. Constraints on Ωm and S8 from this work (blue, solid),
compared to the constraints from the HSC Year 1 analyses
based on Cl’s (orange, dashed) and 2PCFs (green, dotted). The
HSC-Y3 Ωm contour is cut off at low values because the As
parameter posterior, which is poorly constrained by this analysis,
hits the prior boundary (at the upper limit of As ¼ 10−8).

5Downloaded from the Planck wiki: https://pla.esac
.esa.int/pla/aio/product-action?COSMOLOGY.FILE_ID=COM_
CosmoParams_fullGrid_R3.01.zip.

6Downloaded from the DES website: https://des.ncsa.illinois
.edu/releases/y3a2/Y3key-products.

7Downloaded from the KiDS website: https://kids.strw
.leidenuniv.nl/DR4/KiDS-1000_cosmicshear.php.

8Downloaded from the HSC Public Data Release 2 website:
https://hsc-release.mtk.nao.ac.jp/archive/filetree/s16a-shape-
catalog/pdr1_hscwl/.

9Downloaded from: http://th.nao.ac.jp/MEMBER/hamanatk/
HSC16aCSTPCFbugfix/index.html.
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2018 constraint, corresponding to a 2.02σ tension. This is a
slightly smaller tension with Planck than seen in DES-Y3
(2.62σ) and KiDS-1000 (3.54σ) analyses, but larger than
the tensions seen in the HSCYear 1Cl analysis (1.71σ) and
HSC Year 1 ξ� analysis (0.51σ). The tensions for these
analyses were computed using publicly available chains
and the tension metric described above. We also assess the
tension with the Planck 2018 S8 constraint in the case
where the sum of the neutrino masses is allowed to vary in
both analyses. When freeing the neutrino mass, the
significance of the tension increases slightly to a level
of 2.50σ.

VII. SUMMARY AND DISCUSSION

We have presented results of the cosmic shear power
spectrum analysis using the HSC third-year data. The data
covers ∼416 deg2 of the sky, with exquisite depth and
image quality, allowing us to measure precise shapes for
galaxies in the redshift range 0.3 ≤ z ≤ 1.5, with an
effective number density of ∼15 arcmin−2 [62].
We have measured cosmic shear power spectra from the

Y3 shape catalog using the pseudo-Cl method to recover
unbiased power spectra estimates. We obtain a power
spectrum measurement with a high signal-to-noise ratio
of 26.4 within the multipole range 300 ≤ l ≤ 1800, and no

FIG. 16. Recent constraints on Ωm, σ8 and S8 from the external experiments listed in Sec. VI D, including the constraints obtained in
this work (HSC, blue, solid), from Planck 2018 primary CMB data (orange, dashed), from DES-Y3 cosmic shear (green, dotted), and
from KiDS-1000 cosmic shear (red, dashed-dotted). The 1D histograms are normalized to be the same height.
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significant detection of B modes in this range. We measure
the covariance matrix of these power spectra using the HSC
mock shear catalogs [88].
We fit the power spectra with a model that includes

astrophysical effects, such as baryonic feedback and the
intrinsic alignments of galaxies, as well as nuisance
parameters to capture uncertainties in the source redshift
distribution, PSF systematics, and shape measurement. We
performed extensive model selection tests to ensure that
model misspecification would not significantly bias our
cosmological parameter constraints. Our best-fit model fits
the measured power spectra well, with a minimum χ2 of
55.38, and a corresponding p-value of 0.42. Throughout
this process, we followed a careful and thorough blinding
process to prevent confirmation bias from affecting our
results.
We constrained the parameter S8 ≡ σ8ðΩm=0.3Þ0.5, and

assuming a flat ΛCDM model, found the posterior mode
S8 ¼ 0.776þ0.032

−0.033 , with a maximum posterior at S8 ¼ 0.792.
We conducted a number of tests of our modeling and
analysis choices, as well as internal consistency checks, and
showed that this constraint is robust, with shifts generally
not exceeding 0.5σ (with one notable exception related
to residual photometric redshift errors, discussed further
below). Our constraints on S8 agree extremely well with
those from other HSC Year 3 cosmology analyses
[31,65,66], and are also in agreement with constraints
from other recent cosmic shear experiments [16,19].
However, these results are 2σ lower than the constraint
from Planck 2018 [2], following a trend seen in a number
of cosmic shear experiments [14,16,19,20,46]. Further
studies will be necessary to understand whether this trend
is an indication that the ΛCDM model is not sufficient to
describe both CMB and large-scale structure data.
Below, we discuss potential current limitations and

future work that will be needed to better understand this
apparent tension.

A. Residual photo-z errors

The constraining power of our analysis is similar to that
of the HSC Year 1 analyses [14,15], despite the threefold
increase in sky coverage. This is largely due to our choice
to use a conservative, wide, flat prior on the shifts in the
third and fourth redshift bins (Δz3 and Δz4). While [81]
suggested an informative, Gaussian prior on these two
parameters (N ð0; 0.031Þ and N ð0; 0.034Þ respectively),
all HSC-Y3 cosmology analyses find evidence for biased
redshifts in these bins [31,65,66].
In particular, when using the Gaussian prior on these

parameters, we saw a large negative shift in S8 when
removing bin 4 from the analysis. Moreover, we found a
1.14σ shift in S8 to higher values when using the Gaussian
Δz3 and Δz4 priors as opposed to the flat, wide priors. In

fact, our fiducial analysis detected large shifts in these
redshift bins,Δz3 ¼ −0.076þ0.056

−0.059 andΔz4 ¼ −0.157þ0.094
−0.111 ,

values that would not be allowed by the Gaussian priors.
We tested these detections using a set of noisy mock data
vectors, generated based on our best-fit model, but with
Δz3 ¼ 0 and Δz4 ¼ 0. Upon running our fiducial analysis
on these mock data vectors, we found that our measured
values of Δz3 and Δz4 are larger than those seen in 90% of
the mocks (Fig. 12), indicating that this is unlikely to be a
spurious detection of a bias in the redshifts.
In this analysis, we have taken the most conservative

possible approach to these residual photometric redshift
errors, by adopting a very wide, flat prior on these
parameters. Improved calibration of the source redshift
distribution at these high redshifts will allow the S8
constraining power of the Y3 analysis to be improved
beyond the Y1 analysis. This will be made possible with
large spectroscopic galaxy catalogs from the ongoing
Dark Energy Spectroscopic Instrument [182] survey, as
well as the upcoming Subaru Prime Focus Spectrograph
[183,184].

B. Impact of Ωm prior

As noted in Sec. V G, our data and scale cuts were unable
to constrain Ωm, as the ratio of Cl ’s at two extremes of
the Ωm-σ8 degeneracy is nearly unity within our fiducial
multipole range. However, our inference of S8 should be
unaffected by this. We explored the impact that a more
informative Ωm prior would have on our S8 constraints. We
used an Ωm prior similar to recent constraints from BAOs,
N ð0.3; 0.01Þ [11]. We found that our S8 constraint is
virtually unchanged by this more informative prior, with no
shift in the posterior mode, and only a ∼3% increase in the
posterior width (likely due to inconsistency with our true
measured Ωm value).
Future work with the HSC-Y3 data may be able to

improve constraints on Ωm by extending the analysis to
smaller angular scales (lmax ∼ 4000), where Cl’s are more
able to differentiate between extreme regions of the Ωm-σ8
degeneracy. However, this will come with the added
challenge of modeling astrophysical effects at such small
scales [149,185–187].

C. Astrophysical effects

Our fiducial model includes the modeling of astrophysi-
cal effects, namely baryonic feedback and intrinsic align-
ments. We have conducted a number of tests using both
mock data and variations on our fiducial analysis with the
HSC-Y3 data to show that our S8 constraints are robust to
our baryonic physics model. Moreover, we have shown that
not modeling baryonic effects leads to a 0.5σ shift in S8 to
lower values. This might be indicative of support for the
proposal that the apparent S8 tension could be resolved by
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strong baryonic feedback [188]. Future cosmology analy-
ses, especially ones aiming to use smaller scale informa-
tion, will have to be careful in defining their scale cuts and
baryonic feedback model.
We do not see a clear detection of intrinsic alignments. In

this analysis, we used the more conservative intrinsic
alignment model, TATT, but this may not yet be necessary
for our current level of constraining power. This will be an
important choice for future analyses to explore.

D. Improvements with future data

Our analysis, like many other preceding cosmic shear
analyses [14,16,19,20,46], found a value of S8 that is 2σ
lower than that inferred by the Planck experiment in
2018 [2]. As weak lensing experiments continue to
improve, we will be able to see whether the central value
of S8 stays robust, and whether the significance of this
apparent tension increases. In particular, we will soon be
able to conduct this cosmic shear analysis with the final
data release of HSC, covering over 1000 deg2 of the sky,
with the same extraordinary depth and image quality of
these data.
The depth and image quality of HSC are a preview of

what we can expect from the upcoming Vera C. Rubin
Observatory LSST [52], which will cover 18; 000 deg2 of
the sky, going 1 order of magnitude deeper than HSC.
While the seeing will be similar to that of HSC, the
additional number of visits contributing to each LSST
coadded image will allow for far better control of the PSF.
The addition of the u band images will allow for improved
photometric redshift estimation. At the same time, ongoing
work to better study and develop modeling choices and
analysis tools will improve our ability to obtain robust
cosmological constraints from the data. We can also expect
to see strong constraints from the weak lensing science
from two upcoming space-based telescopes, Euclid [54]
and the Nancy Grace Roman Space Telescope [55].
Together, these data sets and weak lensing analyses will
allow us to better understand the apparent tension in S8
values inferred from weak lensing and from the CMB, and
whether our current cosmological model is sufficient for
describing the data.
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APPENDIX A: LARGE-SCALE B MODES

As described in Sec. IV C and shown in Fig. 17, we find
evidence of significant B modes at large scales, namely

FIG. 17. Tomographic cosmic shear power spectra of BB (blue circle) and EB (orange triangle) modes, for the auto- and cross
correlations of the four tomographic redshift bins used in our analysis. Note the different y-axis scales from those in Fig. 1. While no
significant B modes are detected for the range of scales used in our fiducial cosmological analysis, evidence of significant B modes is
seen for multipoles smaller than lmin ¼ 300.
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l < 300. Such large-scale B modes were also observed in
the HSCYear 1 analysis [14]. As the scale on which these B
modes appear corresponds approximately to the scale of the
field of view of the HSC camera, they could be indicative of
systematic effects due to variations with pointings on the
sky. We do not include scales larger than lmin ¼ 300 in our
cosmological analysis, due to the potential for contamina-
tion by systematic effects indicated by the presence of a B
mode signal.

APPENDIX B: VALIDATION OF LIKELIHOOD
INFERENCE SETUP

We use a number of tests to ensure that our likelihood
inference setup in CosmoSIS is unbiased. As described in
Sec. VA, we simulate a data vector with our fiducial model,
and analyze it with our fiducial setup. Given that the same
model is used to generate and analyze the data, one might
expect to retrieve the input parameters with no bias.

FIG. 18. Fiducial posteriors of all cosmological (Ωm, S8, As, σ8, ns, h0, Ωbh2) and astrophysical (Abary, AIA
1 , AIA

2 , αIA1 , αIA2 , bIATA)
parameters in our fiducial model. Here, S8 and σ8 are derived parameters.
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However, the statistics we report throughout the paper,
namely the 1D marginalized mode of the posterior, are
subject to projection effects, i.e. they could be biased due to
significant non-Gaussianities in the posterior. Indeed, when
conducting this test with the fiducial model, we find that the
projected mode of Ωm is biased 0.77σ low from the input
value, and S8 is biased 0.48σ low compared to the
input value.
To determine whether these biases are indicative of a

bias in our likelihood inference setup, or whether they
could be attributed to projection effects, we repeat this
analysis using the MAP estimate from a minimization
analysis, rather than the projected mode from nested
sampling. This estimate should be robust to projection
effects. We reanalyze the data vector simulated based
on our fiducial model using the Powell minimizer
(implemented in the maxlike sampler in CosmoSIS),
and find a much smaller bias on our cosmological
parameters: a 0.02σ bias on Ωm and a 0.01σ bias on
S8 (see the first row of Table II). This indicates that the
biases seen in the 1D marginalized mode likely arise
from projection effects.
To further test for potential biases in our likelihood

inference setup, we use the star sampler in CosmoSIS,
which samples the parameter space uniformly across the
prior, one dimension at a time, and computes the
goodness of fit at each point. This removes some of
the complications of the MAP estimation, which
attempts to find the minimum likelihood point simulta-
neously across all dimensions of the parameter space.
When taking 2000 samples of each parameter, while
keeping the other parameters fixed to their input values,
we find that the sampler is able to recover the point
closest to the input value as the minimum χ2 point. This
indicates that the likelihood is unbiased.

APPENDIX C: POSTERIOR DISTRIBUTIONS
OF THE FIDUCIAL MODEL

PARAMETERS

Figure 18 shows the marginalized one-dimensional
and two-dimensional posteriors of cosmological and

astrophysical (intrinsic alignment and baryonic physics)
parameters. The fiducial constraints for all the parameters
sampled in this analysis are shown in Table VI.
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