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Recently, many works have tried to realize cosmological accelerated expansion in string theory models
in the asymptotic regions of field space, with a typical scalar potential VðφÞ having an exponential falloff

e−γφ. Those attempts have been plagued by the fact that V is too steep, namely γ ≥ 2=
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
in a

d-dimensional spacetime. We revisit the corresponding dynamical system for arbitrary d and γ and show

that for an open universe (k ¼ −1) there exists a new stable fixed point P1 precisely if γ > 2=
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
.

Building on the recent work [P. Marconnet and D. Tsimpis, Universal accelerating cosmologies from 10d
supergravity, J. High Energy Phys. 01 (2023) 033], we show in addition that cosmological solutions
asymptoting to P1 exhibit accelerated expansion in various fashions (semieternal, eternal, transient with a
parametrically controlled number of e-folds, or roller coaster). We finally present realizations in string
theory of these cosmological models with asymptotically accelerating solutions, for d ¼ 4 or d ¼ 10. We
also show that these solutions do not admit a cosmological event horizon and discuss the possibility of this
being a generic feature of quantum gravity.

DOI: 10.1103/PhysRevD.108.123515

I. INTRODUCTION AND SUMMARY

Recent years have witnessed a renewed interest in string
theory for the construction of viable cosmological models.
A lot of effort has been put into constructing and testing
de Sitter solutions, namely solutions from string theory
that exhibit a four-dimensional (4D) spacetime with a
positive cosmological constant. Those could reproduce
the observed accelerated expansion of our current Universe
or serve as a first approximation for an early Universe phase
of inflation. The outcome of these attempts is that well-
controlled examples of de Sitter solutions are difficult to
find, if they exist at all (see e.g. [1], Sec. V, for a recent
account). The focus then shifted recently to the study of
rolling scalar fields fφig in a positive scalar potential V, in
d-dimensional gravitational models of the form

S ¼
Z

ddx
ffiffiffiffiffiffiffi
jgdj

p �
Md−2

p

2
Rd −

1

2
gij∂μφi

∂
μφj − VðφkÞ

�
;

ð1:1Þ

where Mp is the Planck mass. Phenomenologically, such
models in d ¼ 4 are known to provide valid cosmological
models with accelerated expansion, namely inflation or
quintessence models. The question is then whether those
can be obtained from string theory.
Since a de Sitter solution would correspond to a critical

point of V, a natural guess is that a potential with a small
slope would also provide an observationally valid model;
while a correct intuition, we will see that this is not the
only option. Characterizing the ratio j∇Vj=V, with slope

j∇Vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij∂iV∂jV

q
, that can be obtained in string theory

models, has thus been an important activity leading to
the de Sitter conjectures of the swampland program (see
e.g. [2] for a recent review). Particular focus has been given
to the asymptotics of field space: those typically correspond
to regions where string corrections are under control (e.g.
small string coupling or large volumes corresponding to
negligible higher derivative corrections). In the asymp-
totics, the following characterization has been proposed:
string theory potentials have been conjectured [3,4] to obey
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j∇Vj
V

≥
2ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p ; ð1:2Þ

with Mp ¼ 1, in a d-dimensional spacetime. This con-
jecture suffers no known counterexample.
String theory potentials typically have an exponential

dependence on the (canonically normalized) fields.
Considering that we will do only a single field, an
exponential potential can be written as V ¼ V0e−γφ, and
the above is then nothing but a lower bound on the
exponential rate γ. This lower bound on γ seems naively
too large for an observationally valid accelerated expansion
model. Indeed, it is not compatible with single-field slow-
roll inflation and related observational constraints [5],
and it is in tension with a valid single-field quintessence
model [6]; see also the recent extensive study [7]. More
dramatically, a dynamical system analysis [8–13] shows
that a stable fixed point in the far future, that we denote P2,
would only admit acceleration for

P2; acceleration∶ γ <
2ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p : ð1:3Þ

Note also that the requirement of stability, i.e. P2 being an
attractor, corresponds to the same inequality. Comparing
(1.2) and (1.3) appears to ruin hopes of realizing accel-
erated expansion in string theory models, at least in the
asymptotics of field space (and asymptotics in time), for
which corrections are under control. This matter has been
the topic of many recent works, including [10–22].
However, upon closer examination of the situation, we

see two important loopholes. First, having no acceleration
at a future fixed point does not mean that acceleration
cannot occur before. It can be realized during a transient
phase (as is actually expected for inflation), as was first
noticed in [23], but also it can be realized for an infinite
amount of time, as was pointed out in [24,25], since the
fixed point only corresponds to the asymptotic limit t → ∞.
Second, the previously mentioned dynamical system and
fixed point analysis was carried out on a spatially flat
spacetime. Using a Friedmann-Lemâitre-Robertson-Walker
(FLRW) metric, this corresponds to k ¼ 0. The analysis can
be extended to k ¼ −1, namely a spatially curved, open
universe. This was done in [26] for d ¼ 4, and we will
provide here a more complete analysis, with arbitrary d and
γ. With this extension, one finds a new stable fixed point P1

leading to different physics. No accelerated expansion is
occurring at P1 itself, but cosmological solutions in its
vicinity as well as away from P1 exhibit accelerated
expansion for an infinite amount of time, as described
before. Those solutions are in addition able to accumulate
an infinite number of e-folds while asymptoting to P1.
Other solutions also allow for transient acceleration, with a
parametric control on the number of e-folds. Last but not
least, as we will show in this paper, a necessary condition
for P1 with k ¼ −1 to exist is

P1; existence∶ γ >
2ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p : ð1:4Þ

Note that P1 is then automatically stable, i.e. an attractor.
Given the claim (1.2) and the possibility of having accel-
erating solutions around P1, Eq. (1.4) brings back the hope
of realizing asymptotic accelerated expansion in string
theory, as was recently discussed in [18]. Note that
“asymptotic” does not refer here to the fixed point itself
but to the infinite time before it.
Realizing accelerating solutions in string theory is

actually not a new idea. Following the time-dependent
compactifications of [23], several solutions coming from
string/M-theory, and exhibiting accelerated expansion
for a finite period of time, were subsequently constructed
in [27–32]. It was thus realized that transient acceleration is
in fact generic in flux compactifications; see [33] for a
review. Until recently, however, all known examples of
transient acceleration coming from string/M-theory were
only able to produce a number of e-folds of order one
and were therefore thought to be unsuitable as models of
inflation [24,34]. This common lore was recently found to
be false in [18], which showed that cosmologies exhibiting
transient accelerated expansion with parametric control of
e-folds are in fact generic in flux compactifications of 10D
supergravity, provided one allows for an open universe with
k ¼ −1. In the present paper, we review some models
of [18] and also provide a new string theory realization of
an accelerated expanding universe. Whether or not such
accelerating cosmological solutions are observationally
valid remains to be seen; we come back to this matter in
the Outlook section.
We start this paper by carrying out in Sec. II a general

dynamical system analysis of a single scalar field model,
minimally coupled to gravity, in a d-dimensional FLRW
spacetime, d > 2, with an arbitrary scalar potential V ≥ 0.
The spatial curvature, related to k ¼ 0;�1, as well
as the ratio γ ¼ −V 0=V at a given fixed point are left free.
We find the fixed points of the system, summarizing them
in Table I; study whether they allow for acceleration;
and further analyze their stability. This analysis and the
corresponding phase space are summarized graphically
in Fig. 1.
We then restrict to k ¼ −1 and to an exponential

potential, with exponential rate γ and study in Sec. III
the solutions that asymptote to the stable fixed point P1. We
first provide, with arbitrary d, γ, analytic expressions for
classes of solutions in the vicinity of P1, some exhibiting
accelerated expansion. We then show numerically the
complete solutions in phase space and discuss the various
ways this acceleration is realized. We also show that these
solutions, asymptoting to P1 in the future, have no
cosmological event horizon; we add a few words on this
observation below.
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While all the above is a pure cosmological analysis, we
finally show in Sec. IV that these solutions can be realized
within string theory models. We first review some results
of [18]; there the authors obtained appropriate d ¼ 4 two-
scalar models with k ¼ −1, as consistent truncations of
10D type IIA supergravity compactifications, with the 6D
compact manifold being Calabi-Yau, Einstein, or Einstein-
Kähler. These models always admit consistent subtrunca-
tions to a single scalar with an exponential potential. Here,
we also show that 10D massive IIA supergravity can itself
provide a realization of such a model in d ¼ 10, where the
scalar field is the dilaton and the exponential potential is
generated by the Romans mass. Provided that these settings

can be realized in the classical string regime, as argued for
in Sec. IV C, we conclude that cosmological solutions with
asymptotic accelerated expansion can be realized in string
theory.
The difficulty in string theory, and more generally

quantum gravity, is therefore not to get asymptotic or
eternal accelerated expansion, contrary to what the attempts
with k ¼ 0, or with de Sitter solutions, suggest. From the
present work, one could rather infer the following claim: in
quantum gravity, the difficulty is to get solutions with
cosmological event horizons. This is in line with an absence
of fully stable (instead of metastable) de Sitter solutions,
and with the solutions in asymptotic accelerated expansion
obtained here for d ≥ 3. Interestingly, the notion of
cosmological event horizon is intrinsically asymptotic
[see e.g. (3.18)]; having a claim related to this concept
then fits well with most swampland conjectures, that also
tend to be asymptotic. Claiming the absence of cosmo-
logical event horizons in quantum gravity is also in line
with the absence of a holographic description for a
cosmological setting, where a horizon at future infinity
would have played the role of holographic boundary. The
difficulty in getting such a holographic description is
known for a de Sitter spacetime, related there to the
nonunitarity of the would-be conformal field theory. A
similar conclusion was reached in [35] after investigating
power-law accelerating solutions. It would be interesting to
investigate in more depth such a no cosmological horizon
conjecture.
Given that we find interesting cosmological solutions

that require k ¼ −1, one may wonder how natural this is in
string theory; let us make a final comment on this matter. At
first glance, it seems that k is an input that one can choose
in any string theory construction. However, as formalized
with the concept of the string landscape [36,37], it became
apparent that string theory may have a huge number of
vacua. It was then argued in [38] that in the early Universe,
transitions between those vacua would necessarily lead to
k ¼ −1. The reason for this is the tunneling between vacua
as described by Coleman and de Luccia [39], which
necessarily requires k ¼ −1 after tunneling. This had led
to the idea that k ¼ −1 is not only possible but actually
necessary in string theory. However, this is too strong a

FIG. 1. Illustration of the phase space for the dynamical system
considered, here in d ¼ 4. The physically relevant regions (value
of k, acceleration) are indicated. Restricting to the upper right
quarter of the plane, the fixed points P0; Pþ; P1; P2 are indicated
in blue when stable and red when unstable. The short blue line
separates the two different stabilities of P1: the node (above) and
the spiral (below). We refer to the main text for more details.

TABLE I. Fixed points ðx; yÞ ¼
�

φ̇

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−1Þðd−2Þ

p ;
ffiffiffiffiffi
2V

p

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−1Þðd−2Þ

p
�
in flow of N-folds or time, with H ≠ 0, V ≥ 0, and their properties. We

denote for V > 0 the ratio at a fixed point γ ¼ −V 0
V j

0
.

Fixed point ðx; yÞ Allowed k Existence constraint Acceleration

P0∶ ð0; 0Þ k ¼ −1 ȧ20 ¼ 1 no (ä ¼ 0)
P�∶ ð�1; 0Þ k ¼ 0 � � � no (ä < 0)

P1∶
�

2

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−1Þðd−2Þ

p ;� 2

γ
ffiffiffiffiffiffi
d−1

p
�

k ¼ 0;�1 γ2 ¼ 4
d−2 ð1þ k

ȧ2
0

Þ−1 no (ä ¼ 0)

P2∶
�

γ
2

ffiffiffiffiffiffi
d−2
d−1

q
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

4
d−2
d−1

q �
k ¼ 0 0 ≤ γ2 < 4 d−1

d−2 if and only if γ2 < 4
d−2
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claim, as was shown in several more recent papers that find
other k values to be possible as well [40–43]. Thus, we
conclude that, while not absolutely necessary, an external
spacetime with k ¼ −1 is still natural in string theory. We
come back in the Outlook on how realistic related cosmo-
logical solutions can be.

II. SETUP AND FIXED POINT ANALYSIS

In this section, we introduce the d-dimensional theory
that will serve as our cosmological model. We then perform
a dynamical system analysis of its equations, identifying
its fixed points, their stability, and the regions with an
accelerating universe. Our results are summarized in Table I
and Fig. 1.

A. d-dimensional setup

We consider a d-dimensional theory, d > 2, describing a
single scalar field minimally coupled to gravity

S ¼
Z

ddx
ffiffiffiffiffiffiffi
jgdj

p �
Md−2

p

2
Rd −

1

2
∂μφ∂

μφ − VðφÞ
�
; ð2:1Þ

where the field φ is canonically normalized and V is the
scalar potential. In the following, we set the Planck mass
Mp ¼ 1. We focus on solutions with FLRW metric

ds2 ¼ −dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2dΩ2

�
; k ¼ 0;�1;

aðtÞ > 0; ð2:2Þ

with scale factor aðtÞ and k determining the curvature of the
(d − 1)-dimensional space. We also restrict ourselves to a
homogeneous scalar field. Then, the equations of motion
(e.o.m.) are given by the two Friedmann equations and the
field e.o.m.,1 namely

ðd − 1Þðd − 2Þ
2

�
H2 þ k

a2

�
¼ ρ;

ðd − 2Þ ä
a
þ d − 3

d − 1
ρþ p ¼ 0 ⇔ Ḣ −

k
a2

þ ρþ p
d − 2

¼ 0;

φ̈þ ðd − 1ÞHφ̇þ V 0 ¼ 0;

ð2:3Þ

where the Hubble parameter, the energy density, and the
pressure are given by

H ¼ ȧ
a
; ρ ¼ 1

2
φ̇2 þ V; p ¼ 1

2
φ̇2 − V: ð2:4Þ

The dot stands for ∂t, and the prime stands for ∂φ.
In this context, it is useful to introduce the equation of

state parameter w ¼ p
ρ, for which we restrict ourselves to

V > 0. Using the second Friedmann equation, one shows
that having an accelerating universe amounts to

ä ≥ 0 ⇔ w ≤ −
d − 3

d − 1
; ð2:5Þ

where we include for future convenience the case without
acceleration, ä ¼ 0.

B. Dynamical system and fixed points

We perform a dynamical system analysis on the previous
equations. Similar analyses were carried out for exponential
potentials in d ¼ 4 [8,9] and arbitrary d in [10,11]. A more
thorough analysis was recently performed in [12,13] in a
multifield situation. All these works focused on k ¼ 0;
the main novelty here is that we allow for k ¼ 0;�1, and
k ¼ −1will provide interesting new physics. We also allow
for a generic positive scalar potential; the only quantity that
will matter is the ratio γ ¼ −V 0=Vj0 at a fixed point. This
analysis has been performed in [18] for d ¼ 4 and specific
values for γ coming from certain classes of string theory
compactifications, a situation we will come back to; here,
we work with arbitrary d, k and γ.
We introduce the following variables:

N ¼ ln a; x ¼ φ̇

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp ;

y ¼
ffiffiffiffiffiffi
2V

p

H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp ; H ≠ 0; V > 0: ð2:6Þ

Using the field e.o.m. and the second Friedmann
equation (without appearance of k), we obtain the follow-
ing system:

dx
dN

¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd−1Þðd−2Þp

2

V 0

V
y2−x

�
d−2−x2ðd−2Þþy2

�
;

dy
dN

¼y

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd−1Þðd−2Þp
2

V 0

V
xþ1þx2ðd−2Þ−y2

�
: ð2:7Þ

Because k is not fixed here, we proceed differently than in
previous references and do not use the first Friedmann
equation when deriving (2.7); we will come back to that
equation later.
We now look at the fixed points, given by

dx
dN

¼ dy
dN

¼ 0; ð2:8Þ

1A formal linear relation between the three equations can be
found in e.g. [44][(A.2)]. One consequence is that satisfying the
first Friedmann equation together with the field e.o.m. implies
that the second Friedmann equation is satisfied, as long asH ≠ 0.
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and we introduce the convenient notations at a given fixed
point,

γ ≡ −
V 0

V

����
0

; λ ¼ γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp
2

: ð2:9Þ

To derive the system (2.7), we considered the restriction
V > 0. It is however possible to extend the fixed point
analysis to include the case V ¼ 0, i.e. y ¼ 0. We get in that
case the following fixed points,

P0∶ ðx; yÞ ¼ ð0; 0Þ;
P�∶ ðx; yÞ ¼ ð�1; 0Þ; ð2:10Þ

and we refer to [18] for more details about them.
We turn to y ≠ 0 and rewrite the fixed point equations as

λy2 ¼ xðd − 1 − λxÞ;
y2 ¼ x2ðd − 2Þ − λxþ 1: ð2:11Þ

If λ ¼ 0, we get x ¼ 0 and y ¼ �1. This fixed point will be
included below in P2. We then consider λ ≠ 0. The
equations above get rewritten into

x2λðd − 1Þ þ λð−λxþ 1Þ ¼ xðd − 1Þ;
ðd − 1Þy2 ¼ 1 −

x
λ

�
λ2 − ðd − 1Þðd − 2Þ

�
; ð2:12Þ

which are solved by the following fixed points,

P1∶ ðx; yÞ ¼
�
1

λ
;�

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p

λ

�

¼
�

2

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp ;� 2

γ
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p
�

ð2:13Þ

P2∶ ðx; yÞ ¼
�

λ

d − 1
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λ2

ðd − 1Þ2

s �

¼
�
γ

2

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 1

r
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

γ2

4

d − 2

d − 1

r �
; ð2:14Þ

where P2 exists iff λ2 < ðd − 1Þ2, i.e. γ2 < 4 d−1
d−2 (P2 is

defined for y ≠ 0).
We finally turn to the first Friedmann equation; it gets

rewritten as

x2 þ y2 ¼ 1þ k
ȧ2

: ð2:15Þ

Let us consider its impact on each fixed point. To start with,
P� require k ¼ 0, while P0 requires k ¼ −1 together with
the value at the fixed point ȧ20 ¼ 1. P2 then requires k ¼ 0.
This fixed point was found in previous references with

k ¼ 0, which made use from the start of the resulting first
Friedmann equation, contrary to here. Last but not least, P1

requires the following relation,

P1∶ γ2 ¼ 4

d − 2

�
1þ k

ȧ20

�
−1
; ð2:16Þ

allowing for k ¼ �1, 0. For k ¼ 0, it fixes γ ¼ � 2ffiffiffiffiffiffi
d−2

p ,

coinciding then with P2 for this value of γ.
Having determined the fixed points, we finally study the

possibility of having acceleration there. Let us start with P0

and P�. As a cosmological solution, P0 corresponds to a
Milne universe, which admits a scale factor linear in t.
Therefore, äðtÞ ¼ 0; i.e., there is no acceleration at this
fixed point. For P�, since φ̇ ≠ 0; V ¼ 0, one obtains there
w ¼ 1 and äðtÞ < 0, i.e. a decelerating universe. We now
turn to P1, P2 for which y ≠ 0 and γ is well defined. By

definition, one has w ¼ x2−y2
x2þy2, and the condition for accel-

eration is (2.5). Using Eqs. (2.11) and (2.12), w gets
rewritten as

w ¼ −1þ 2

ðd − 1Þ xλ ¼ −1þ xγ

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

d − 1

r
: ð2:17Þ

The condition (2.5) for acceleration becomes xλ ≤ 1, i.e.
xγ ≤ 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp
; considered on each fixed point,

we obtain

P1∶ 1 ≤ 1; ð2:18Þ

P2∶ γ2 ≤
4

d − 2
: ð2:19Þ

The condition for P2 is well known from previous
references. Interestingly, for P1, there is no constraint on
γ; the solution at this fixed point is simply never accel-
erating as the inequality is saturated, i.e. ä ¼ 0. Note in
particular the preservation of this property when P1 and P2

coincide with γ ¼ � 2ffiffiffiffiffiffi
d−2

p . We summarize the results in

Table I.
We conclude that k ¼ �1 allows for new fixed points

with respect to k ¼ 0. Of particular interest for string theory
realizations (see Sec. IV), P1 with k ¼ −1 admits

γ2 >
4

d − 2
: ð2:20Þ

Even though the fixed point itself does not allow for
acceleration, we will see in Sec. III that a (semi)eternally
accelerating universe can be found arbitrarily close by.
Prior to this, let us study the stability of these fixed
points.
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C. Stability

We now study the stability of the fixed points listed in
Table I. As a nonlinear autonomous system, the stability is
determined by looking at the sign of the real parts of the
eigenvalues of the Jacobian of the system (2.7), for each
fixed point. A stable fixed point is obtained if these real
parts are negative. The Jacobian to consider is obtained by
acting with ∂x or ∂y on the right-hand side of each equation
in the system (2.7). It is then given by the following matrix:

M ¼
� ð3x2 − 1Þðd− 2Þ− y2 2yðλ− xÞ

yð2xðd− 2Þ− λÞ 1− λxþ x2ðd− 2Þ− 3y2

�
:

ð2:21Þ

In the following, we give its expression at each fixed point,
together with its determinant and trace

P0∶ M ¼
�−ðd − 2Þ 0

0 1

�
; ð2:22Þ

detM ¼ −ðd − 2Þ; TrM ¼ −ðd − 3Þ;

P�∶ M ¼
�
2ðd − 2Þ 0

0 d − 1

�
; ð2:23Þ

detM ¼ 2ðd − 1Þðd − 2Þ; TrM ¼ 3d − 5;

P1∶ M ¼

0
B@−ðd − 2Þ

�
1 − 2

λ2

�
2y1λ

�
1 − 1

λ2

�
−λy1

�
1 − 2ðd−2Þ

λ2

�
− 2ðd−2Þ

λ2

1
CA; ð2:24Þ

detM¼ 2ðd− 2Þ
�
1−

d− 1

λ2

�
¼ 2ðd− 2Þ

�
1−

4

γ2ðd− 2Þ
�
; TrM¼−ðd− 2Þ;

P2∶M¼
 
1−dþ λ2 3d−5

ðd−1Þ2 2y2λ
d−2
d−1

y2λ
d−3
d−1 −2þ λ2 2

ðd−1Þ2

!
;

detM¼ 2ðd− 1− λ2Þ
�
1−

λ2

ðd− 1Þ2
�
¼ 2ðd− 1Þ

�
1−

γ2ðd− 2Þ
4

��
1−

γ2

4

d− 2

d− 1

�
;

TrM¼−ðdþ 1Þþ 3

d− 1
λ2 ¼−ðdþ 1Þþ 3ðd− 2Þ

4
γ2: ð2:25Þ

The sign of the real parts of the eigenvalues can be read
from TrM and detM. Indeed, for a 2 × 2 matrix M, the
eigenvalues are

1

2

�
TrM �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTrMÞ2 − 4 detM

q �
: ð2:26Þ

If detM < 0, then the square root is real, and it is bigger
than jTrMj, so the eigenvalues are real, and there is one
positive and one negative eigenvalue. The fixed point is
then unstable (a saddle point). If detM > 0, then either the
square root is real but smaller than jTrMj or it is purely
imaginary. In either case, the real parts of the eigenvalues
then have the sign of TrM, with corresponding stability
behaviors. Finally, if detM ¼ 0, (at least) one eigenvalue
vanishes, and the stability is determined by the sign of the
other eigenvalue, that of TrM.
We apply the above to the fixed points. We start with P0

for which the situation is clear:

P0∶ unstable ðsaddle pointÞ: ð2:27Þ

For P�, the two eigenvalues are real and positive, giving

P�∶ unstable ðunstable nodeÞ: ð2:28Þ

We turn to P2. There, we recall we must have γ2 < 4 d−1
d−2, so

the sign of detM depends solely on the condition for
acceleration, γ2 < 4

d−2. Provided the latter holds, we can
show that TrM < 0. We conclude

P2; γ2 <
4

d− 2
ðä > 0Þ∶ stable ðstable nodeÞ;

P2; γ2 ¼
4

d− 2
ðä¼ 0Þ∶ Lyapunov stable ðneutral nodeÞ;

P2;
4

d− 2
< γ2 < 4

d− 1

d− 2
ðä < 0Þ∶ unstable ðsaddle pointÞ:

ð2:29Þ

For the case ä ¼ 0, we have one vanishing and one negative
eigenvalue, falling in the category of “Lyapunov stable.” In
addition, one verifies that

P2∶ ðTrMÞ2 − 4 detM ¼
�
γ2ðd − 2Þ

4
þ d − 3

�
2

≥ 0;

ð2:30Þ
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so eigenvalues are always real. This is why we get a stable
node for the accelerating case and not a stable spiral, and
we get a neutral node for ä ¼ 0 and not a neutral center.
We finally turn to P1. The sign of detM is precisely that

of −k, which makes obvious the stability since TrM < 0. In
addition, for detM ≥ 0, let us as above determine whether
the eigenvalues are real or complex conjugate. This is
determined by the sign of

P1∶ ðTrMÞ2 − 4 detM ¼ ðd − 2Þ
�
d − 10þ 32

γ2ðd − 2Þ
�
:

ð2:31Þ

This quantity is positive or zero for d ≥ 10, or for

γ2 ≤ γ2s ≡ 32

ðd − 2Þð10 − dÞ with d < 10; ð2:32Þ

giving then two real eigenvalues. We conclude

P1; k¼þ1∶ unstableðsaddle pointÞ
P1; k¼0∶Lyapunov stableðneutral nodeÞ
P1; k¼−1; d≥10; or d<10; γ2≤ γ2s∶ stableðstable nodeÞ
P1; k¼−1; d<10; γ2> γ2s∶ stableðstable spiralÞ: ð2:33Þ

We end the discussion by highlighting the new stable
fixed point, P1 with k ¼ −1. For d < 10, it is a stable node
with

4

d − 2
< γ2 ≤

32

ðd − 2Þð10 − dÞ ; ð2:34Þ

and for d ≥ 10, it is a stable node for any γ2 > 4
d−2. This is

an interesting range for string theory constructions as we
will see in Sec. IV.

D. Graphical summary

Inspired by [18] (see e.g. Fig. 8), we provide an
illustration of the phase space and fixed points found
above. The system depends on the two real variables
ðx; yÞ, which can be of either sign, so the phase space
can first be represented by the ðx; yÞ-plane. The dynamical
system is made of the two differential equations (2.7) and
the first Friedmann equation (2.15) which is not differential
and thus appears as a constraint. Interestingly, the latter is
given in terms of x2 þ y2, i.e. the distance to the origin, and
it separates the plane in three zones: the circle x2 þ y2 ¼ 1
is the phase space for k ¼ 0, beyond it corresponds to
k ¼ 1, and inside the circle corresponds to k ¼ −1. Note
that the fixed points P2 lie only on the circle.
The dynamical system is symmetric under the following

two independent changes of sign,

y → −y; ð2:35Þ

x → −x;
V 0

V
→ −

V 0

V
; ð2:36Þ

so in the following, when indicating the fixed points, we
will restrict to the upper right quarter of the plane. The
symmetry in y indicates that for any expanding universe
(upper half plane), there is another solution with a con-
tracting one (lower half plane). The symmetry with x and V 0

V
is related to the freedom in the sign of the scalar field.
Further relevant regions in phase space are given by the

acceleration condition (2.5). Using w ¼ x2−y2
x2þy2, it gets

rewritten as

acceleration∶ jyj > jxj
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
: ð2:37Þ

The lines saturating this inequality correspond to the no
acceleration region (where P1 lies) and provide further
distinct regions of the phase space.
Last but not least, the stability of the fixed points

depends on their position. For P2, it is directly related to
the acceleration or deceleration. For P1, in addition to k, the
stability behavior depends on the value of γ for k ¼ −1.
The change happens at a certain distance from the origin
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

q ����
γ¼γs

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
10 − d

8

r
; ð2:38Þ

strictly smaller than 1 and greater than 0 as it should.
We illustrate the above in Fig. 1. Such illustration will be

useful later to view cosmological solutions around the fixed
points, as done already in [18].

III. COSMOLOGICAL SOLUTIONS,
ACCELERATION, AND HORIZON

In this section, we determine cosmological solutions in
the vicinity of the stable fixed point P1 for k ¼ −1, with a
particular interest in those providing acceleration. We then
investigate the way acceleration is realized and whether
each solution admits a cosmological horizon.
We restrict to a positive exponential potential,

VðφÞ ¼ V0e−γφ; V0; γ > 0; ð3:1Þ

where γ ¼ −V 0=V is now a given constant everywhere in
phase space. An extensive study of such cosmological
solutions has been performed in [18] for d ¼ 4 and
particular values for γ coming from certain classes of
string theory compactifications; we will come back to the
latter. We work here with a general d ≥ 3 and an arbitrary
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γ >
2ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p ; ð3:2Þ

where this lower bound is due to k ¼ −1 [see (2.20)]; we
will see that this generically leads to new interesting
solutions.
Motivation for studying those solutions can be found in

string theory models. In such models, it is a common
situation that the scalar potential takes the form (3.1) in
field space asymptotics, φ → ∞. Focusing then on asymp-
totics (in field space but also in time), we are naturally
interested in the physics close to attractive fixed points. As
summarized in Fig. 1, those are P1, P2 for some values of k,
γ. P2 is attractive for γ ≤ 2ffiffiffiffiffiffi

d−2
p (also corresponding to the

accelerating regime). This fixed point was then studied in
previous references. However, typical string theory con-
structions lead to γ ≥ 2ffiffiffiffiffiffi

d−2
p in field and time asymptotics

(see the strong de Sitter conjecture [3,4]), thus forbidding
reaching such a P2. On the contrary, P1 allows for γ in
agreement with that conjecture as indicated in (3.2), as long
as k ¼ −1.2 In addition, it is then attractive, so this
motivates us to focus on that fixed point. Being placed
at the boundary of acceleration, solutions that asymptote to
it can give accelerating universes, as we will see.

We thus turn to the study of solutions close to P1 with
k ¼ −1. As seen in the stability analysis, one needs to
distinguish

stable node∶ γ ≤ γs

stable spiral∶ γ > γs

where γs ¼
4
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið10 − dÞðd − 2Þp ; ð3:3Þ

whenever restricting to d < 10. We thus treat those two
situations one after the other. For d ≥ 10, the solutions
found for the stable node with γ ≤ γs will be valid for any γ.
Before looking at the solutions close to P1, let us add a

word on the fixed point itself. In general, fixed points
correspond by themselves to cosmological solutions. Phase
space trajectories between fixed points are also solutions,
and those asymptote to each fixed point solution in some
late or early time limit. We therefore need to know the
solution corresponding to P1 with k ¼ −1, in order to
reproduce it in the asymptotics. It can easily be found by
solving Eq. (2.3), with the dynamical system variables x, y
being constant; we get

P1; k ¼ −1∶ aðtÞ ¼ γðt − t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4

d−2

q ; eγφðtÞ ¼ γ2V0ðt − t0Þ2
2ðd − 2Þ

⇔ aðtÞ ¼ a0ðt − t0Þ; φðtÞ ¼ φ0 þ φl logðt − t0Þ;

with a0 ¼
γffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − 4
d−2

q ; φ0 ¼
1

γ
log

�
γ2V0

2ðd − 2Þ
�
; φl ¼

2

γ
: ð3:4Þ

This is aMilne universewith an angular defect [18]. The free
constant t0 can be absorbed into a redefinition of t. In the
following, we will find solutions around P1 which asymp-
tote to (3.4) in the limit t → ∞; for this reason, we also drop
t0 from now on.We now turn to these neighboring solutions.

A. Solutions asymptoting to the stable node

To find solutions that approach the fixed point solution
(3.4) for t → ∞, we make the following ansatz with p > 0:

aðtÞ ¼ a0t

�
1þ a1

tp
þ a2
t2p

þ a3
t3p

þ � � �
�
;

φðtÞ ¼ φ0 þ φl logðtÞ þ
φ1

tp
þ φ2

t2p
þ φ3

t3p
þ � � � : ð3:5Þ

The fixed point corresponds to the leading order terms,
given by a0;φ0;φl in (3.4). We then solve equations at
first subleading order. Since there are only two independent
equations, we only fix the two following free parameters,

p� ¼ d − 2

2
� 2

ffiffiffi
2

p

γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

ðd − 10Þðd − 2Þ
32

r
;

φ�
1 ¼ d − 1

4
a1γp�; ð3:6Þ

meaning we find two solution families labeled with � and
parametrized by a1. These solutions are valid for any d ≥ 3.
Restricting to d < 10, we can rewrite p� in terms offfiffiffiffiffiffiffiffiffiffiffi
1 − γ2

γ2s

q
, requiring as expected γ ≤ γs. In the special case

γ ¼ γs, the two families become only one.
As it should in the ansatz, we verify that p� > 0 ⇔

γ > 2=
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
, which is true here. We can proceed further

and solve the equations order by order, with the resulting
expressions for the coefficients becoming more

2k ¼ 0 would allow to saturate the conjecture’s bound. It is
however difficult to construct a string theory scalar potential
precisely matching this bound.
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complicated. While solving, we observe however a prob-
lem for p ¼ 1: in that case, all higher order terms vanish. In
other words, the above solution does not exist for p ¼ 1.
Before focusing on this matter, let us first consider p� ≠ 1
and study the properties of our solutions.
In the large t limit, properties can be read from the

leading and subleading terms above. Of particular interest
is the question of acceleration. From (3.5), one has

äðtÞ ¼ a0a1ðp − 1Þp 1

t1þp þO
�
t−ð1þ2pÞ

�
: ð3:7Þ

Since a0p > 0, the sign of äðtÞ for our solutions is fixed by
a1ðp − 1Þ. Since we consider p� ≠ 1, each family (þ or −)
of solutions then has an accelerating and a decelerating
branch, depending on the sign of a1. In between, äðtÞ ¼ 0
when a1 ¼ 0, which corresponds to the fixed point P1. We
illustrate the two solution families and their branches in
Fig. 2. Note that the two branches of one family are actually
not continuously connected in terms of time, since they
both asymptote to P1 for t → ∞.
As a technical remark, we indicate that the tangent

vectors to the solution curves in Fig. 2, at the point P1,
are known analytically. Those correspond to the eigen-
vectors of the Jacobian (2.24). They agree with the
solution above.
We now come back to the case of p ¼ 1, where the

previous solutions disappear. We verify the following:

d > 4∶ pþ > 1; p− ¼ 1 ⇔ γ ¼ γm ≡ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffi
d − 1

p < γs;

d ¼ 4∶ p� ¼ 1 ⇔ γ ¼ γs ¼ γm;

d ¼ 3∶ p� < 1: ð3:8Þ

It is therefore only for d ≥ 4 and for a specific γ ¼ γm
that one can have p ¼ 1. Note the specificity of d ¼ 4,

for which both solution families disappear when γ ¼ γm,
corresponding in addition to the upper bound γs. And
it is actually for this very particular value that cosmo-
logical solutions around P1 (stable node) were found from
string theory compactifications in [18]. The results of that
reference will thus be helpful as we now explain.
We now consider the following ansatz, which goes

beyond (3.5) for p ¼ 1. This ansatz is inspired from the
explicit solutions of [18] in d ¼ 4. There, solutions are first
expressed in terms of N, the flow variable in the dynamical
system. Relating it to t thanks to aðtÞ, one can reach the
following ansatz:

aðtÞ ¼ a0tþ al logðtÞ þ ac þ
1

t

�
a11 logðtÞ þ a10

�
þ 1

t2

�
a22ðlogðtÞÞ2 þ a21 logðtÞ þ a20

�
þ � � � ;

φðtÞ ¼ φ0 þ φl logðtÞ þ
1

t

�
φ11 logðtÞ þ φ10

�
þ 1

t2

�
φ22ðlogðtÞÞ2 þ φ21 logðtÞ þ φ20

�
þ � � � : ð3:9Þ

Solving the equations at the first subleading order, we find the
following solution family (in terms of the parameters al, ac)

γ ¼ γm ¼ 2
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ;

φ11 ¼
1

2
al

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3Þðd − 1Þ

d − 2

r
;

φ10 ¼
1

2

�
al
5 − 2d
d − 1

þ ac

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 3Þðd − 1Þ

d − 2

r
: ð3:10Þ

The solution family requires us to fix the value of γ to γm.

It can therefore be considered as replacing the previously

lost solutions for p ¼ 1, and it does so by including

logarithms in the ansatz. Note though that for d ¼ 4

and γ ¼ γm ¼ γs, the overall number of solution family is

only 1, while all other cases admit 2.
Equations can be solved order by order, and the para-

meter al remains free. As before, it determines the accel-

eration/deceleration for large t, since we have

FIG. 2. Evolution of the dynamical variables ðx; yÞ, defined
in (2.6), for the solution families þ (orange) and − (green). The
solutions are given at first order by (3.6), here with d ¼ 4,
γ ¼ ffiffiffi

2
p þ 0.05. The figure is a zoomed-in part of Fig. 1 around

the stable node P1 (blue point). The solutions are depicted for
a1 ¼ �1, allowing us to verify that each branch is accelerating or
decelerating.
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äðtÞ ¼ −
al
t2
þO

�
logðtÞ
t3

�
: ð3:11Þ

The solution family has two branches, one accelerating and
one decelerating, depending on the sign of al. For al ¼ 0,
we recover P1 with äðtÞ ¼ 0. We illustrate this solution
family in Fig. 3.
As a final technical remark, we rewrite the Jacobian

(2.24) at P1 as follows,

M� ¼

0
B@

γ2m
γ2
− ðd − 2Þ � 2ffiffiffiffiffiffi

d−2
p

�
d − 2 − γ2m

2γ2

�
� ffiffiffiffiffiffiffiffiffiffiffi

d − 2
p �

γ2m
γ2
− 1
�

− γ2m
γ2

1
CA;

ð3:12Þ

where the sign refers to the sign in y1. We recall that the
eigenvectors of this matrix give the tangent directions to the
solutions, at P1. For γ ¼ γm, the matrix becomes upper
triangular. As a consequence, (1, 0) is an eigenvector. In
other words, the tangent to the solution at P1 is horizontal,
which agrees with the orange line in Fig. 3.

B. Solutions asymptoting to the stable spiral

We now look for solutions approaching the fixed point
solution (3.4) for t → ∞, in the case d < 10, γ > γs,
corresponding to a spiral (3.3). Such solutions were found
in [18] in d ¼ 4 for large γ. We generalize these solutions
here to 3 ≤ d < 10, adapting appropriately the ansatz to the
following one:

aðtÞ ¼ a0t

�
1þ 1

t
d−2
2

�
ac1 cos

�
q logðtÞ	þ as1 sin

�
q logðtÞ	�þ 1

td−2

�
ac21 cos

�
q logðtÞ	þ ac22 cos

�
q logðtÞ	2

þ as21 sin
�
q logðtÞ	þ as22 sin

�
q logðtÞ	2 þ acs cos

�
q logðtÞ	 sin �q logðtÞ	�þ � � �

�
;

φðtÞ ¼ φ0 þ φl logðtÞ þ
1

t
d−2
2

�
φc1 cos

�
q logðtÞ	þ φs1 sin

�
q logðtÞ	�þ 1

td−2

�
φc21 cos

�
q logðtÞ	þ φc22 cos

�
q logðtÞ	2

þ φs21 sin
�
q logðtÞ	þ φs22 sin

�
q logðtÞ	2 þ φcs cos

�
q logðtÞ	 sin �q logðtÞ	�þ � � � : ð3:13Þ

The leading order is given by the P1 solution (3.4). At the first subleading order, we find

q ¼ 2
ffiffiffi
2

p

γ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2

γ2s
− 1

s
;

φc1 ¼
d − 1

8
γðac1ðd − 2Þ − as12qÞ;

φs1 ¼
d − 1

8
γðas1ðd − 2Þ þ ac12qÞ: ð3:14Þ

We have a solution family depending on two real parameters: ac1; as1.
3 We also found a solution with q → −q, but that

change of sign can be compensated by as1 → −as1, with similar changes at higher orders, so we restrict ourselves to q > 0.
We now turn to the question of acceleration. We compute at first subleading order

äðtÞ ¼ γ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 4

d−2

q 1

t
d
2

��
ac14ðd − 3Þqþ as1


ðd − 6Þdþ 8 − 4q2Þ� sin �q logðtÞ	

−
�
as14ðd − 3Þq − ac1


ðd − 6Þdþ 8 − 4q2
��

cos
�
q logðtÞ	�: ð3:15Þ

For any given time t, if one solution is accelerating, flipping simultaneously the signs of ac1; as1 gives a decelerating
solution. We then have four branches of solutions depending on the signs of ac1; as1, as illustrated in Fig. 4.
Whether a solution is accelerating or decelerating is time dependent. More precisely, for any given fixed parameters as1

and ac1, the above solutions undergo an infinite number of accelerating and decelerating phases. This is easiest to see if as1
and ac1 are chosen such that for example the prefactor of the cosine function vanishes. Then, äðtÞ ∝ sin ½q logðtÞ� changes

3One could consider introducing in the ansatz (3.13) a phase in the cosine and sine functions. Such a phase can however be absorbed
in a redefinition of the coefficients ac1; as1, etc. Such a phase would then be a redundant parameter.
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its sign infinitely many times for t → ∞. The same holds
with both prefactors being nonzero.

C. Horizon and acceleration

As a cosmological solution, the stable fixed point P1

with k ¼ −1 is given in (3.4). In Sec. III A and III B, we
have determined cosmological solutions approaching the
latter for t → ∞. While P1 is not a universe undergoing
accelerated expansion, several of the solutions asymptoting
to it are actually accelerating for an infinitely long time.
Those can be completed numerically into full solutions,
asymptoting in the past to another fixed point. Their
acceleration phases are then realized in various manners
that we describe below. Prior to this, let us first discuss an
important common property to all these solutions, which is
the absence of an event horizon.

1. No event horizon

Given a cosmological solution with an aðtÞ, it is
interesting to determine whether it admits an event horizon
at a time ti. To that end, one should compute the distance de
traveled by light until the end of time, denoted by tf

de ¼ ai

Z
tf

ti

dt
aðtÞ ; ð3:16Þ

where ai ¼ aðtiÞ and tf is the largest possible time;
we take here tf ¼ ∞. If de is finite, then the Universe
admits an event horizon of size de. This is the case for the
de Sitter solution with aðtÞ ¼ aieHðt−tiÞ and a constant H,
or for an accelerated expansion with aðtÞ ¼ aiðt=tiÞp
and p > 1. The boundary case p ¼ 1 without accelera-
tion has no horizon, or equivalently has an infinite
horizon size.
Let us now evaluate the horizon size de for the

cosmological solutions considered previously, that
asymptote to P1. The horizon is evaluated at a finite time
ti. We do not take ti to correspond to another asymptotic
time, where the solution would match another fixed point or
hit a singularity. Then, we can cut the integral in two pieces,
the first one being between two finite times ti and ta > ti;
the integral between those two is finite. We choose ta
sufficiently large, in such a way that the solution between ta
and ∞ can be approximated by an expansion around
t → ∞. More precisely, one verifies for the solution
ansatz (3.5), (3.9), and (3.13) that at a sufficiently large
t one has

aðtÞ ¼ a0tð1þ corrÞ; jcorrj < 1: ð3:17Þ

Picking ta in this way, we get

FIG. 4. Evolution of the dynamical variables ðx; yÞ, defined
in (2.6), for the solution family given at first order by (3.14), here
with d ¼ 4; γ ¼ γs þ 1.2. The figure is a zoomed-in part of Fig. 1
around the stable node P1 (blue point). We first verify that P1 is
beyond the blue line and is approached by spirals. The solutions
are depicted for ðac1; as1Þ ¼ �ð1; 1Þ (orange) and �ð1;−1Þ
(green). This allows us to verify each branch of the same color
is accelerating or decelerating.

FIG. 3. Evolution of the dynamical variables ðx; yÞ, defined
in (2.6), for the solution family (in orange) given at first order
by (3.10), here with d ¼ 4; γ ¼ γm. The figure is a zoomed in part
of Fig. 1 around the stable node P1 (blue point). The solutions are
depicted for al ¼ �1, ac ¼ 0, allowing us to verify that each
branch is accelerating or decelerating. We also observe the
particularity of d ¼ 4 for which γm ¼ γs, thus placing P1 on
the blue line; beyond this line, the stable node turns into a stable
spiral.
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de ¼ ai

Z
∞

ti

dt
aðtÞ ¼ ai

Z
ta

ti

dt
aðtÞ þ ai

Z
∞

ta

dt
aðtÞ

¼ ðfiniteÞ þ ai
a0

Z
∞

ta

dt
tð1þ corrÞ

> ðfiniteÞ þ ai
a0

Z
∞

ta

1

2

dt
t
¼ ∞: ð3:18Þ

We conclude there is no event horizon for the solutions
asymptoting to P1, i.e. the horizon size is infinite. This is
true despite the fact that some solutions are accelerating at
any finite time. Thus, we conclude that eternal accelerated
expansion does not necessarily lead to horizons. In Sec. IV
below, we will discuss that eternally accelerating cosmo-
logies do arise in quantum gravity. The difficulty in finding
de Sitter solutions could then be attributed to the existence
of a finite event horizon instead of eternal accelerated
expansion.

2. Stable node: Semieternal or eternal acceleration and
transient acceleration with parametric control of e-folds

In Sec. III A, we have obtained various solution
families asymptoting to P1 when the latter is a stable
node. Each solution family was found to have locally an
accelerating and a decelerating branch, depending on which
side of the acceleration cone they approached P1. This was
illustrated in Figs. 2 and 3. Numerically, one can solve the
system of equations and find complete solutions evolving
in phase space. Those necessarily asymptote in the past to
one of the other fixed points appearing in Fig. 1. We
display in Fig. 5 these complete solutions. As we will see,
they can have transient or (semi)eternal acceleration
phases. Most of our discussion is drawn from the results
of [18], even though the solutions considered here are more
general.
Let us start with a specific solution which asymptotes to

P1 (at t → ∞) and asymptotes in the past to P0 (at t → 0).
This phase space trajectory never leaves the acceleration
cone, thus exhibiting eternal acceleration. While the sol-
ution at P0 is a regular Milne universe (aðtÞ ∼ t), the
solution in its vicinity [aðtÞ corrected at Oðt3Þ] is nothing
but a de Sitter universe. Indeed, it was shown in [18] that,
up to and including terms of order Oðt4Þ, the spacetime
metric becomes that of de Sitter space in the vicinity of P0,

ds2dS ¼ −dt2 þ l2 sinh2
�
t
l

� 

dχ2 þ sinh2ðχÞdΩ2

�
; ð3:19Þ

where the radius l is related to the scalar curvatureR4 of de
Sitter via l2 ¼ 12=R4. Note that this is the de Sitter metric
in hyperbolic slicing (with k ¼ −1), different from the
more familiar one with an exponential scale factor and
k ¼ 0. Recall this is not an asymptotic de Sitter, since
t ¼ 0, where the spacetime becomes a regular Milne
universe, is reached at finite proper time in the past.

One can further show [18] that the flow parameter N,
corresponding to the number of e-folds, is related to
time via

t
l
∼ eN

�
1þOðe2NÞ	; ð3:20Þ

so that t ¼ 0 corresponds to N → −∞. This allows one to
conclude that the number of e-folds accumulated between
t ¼ 0 and any finite t > 0 is infinite. Likewise, we can
conclude that asymptoting to P1 leads to an infinite number
of e-folds since t ∼ eN and thus for t → ∞ we accumulate
an infinite number of e-folds.
Finally, let us point out that the solution between P1

and P0 is actually not geodesically complete. It can be
completed beyond the point P0 in the past to t < 0, by
gluing together its mirror trajectory in the lower half of the
phase space disk. The scale factor vanishes as t → 0, but it
can be shown that the total 4D spacetime remains smooth in
this limit. The phase trajectory actually goes through P0,
instead of asymptoting to it. We refer to [18] for more
details.

FIG. 5. Complete cosmological solutions asymptoting to P1 as
a stable node, displayed as trajectories in the phase space of

Fig. 1, here with d ¼ 4 and γ ¼
ffiffi
8
3

q
− 0.05. The purple solution

exhibits eternal acceleration, the red ones exhibit semieternal
acceleration, and the blue ones exhibit transient acceleration. The
plain versus dashed blue curves correspond to solutions with
different numbers of e-folds, on which we have parametric
control. The thin purple curve corresponds to the geodesic
completion of the thicker one. We refer to the main text for
more details.
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Having understood that the solution between P0 and P1

allows for eternal acceleration and an infinite number of
e-folds, it is easier to understand the features of the other
solutions. As displayed in Fig. 5, there are two possible
types of solutions: those asymptoting to P1 accelerating
(and asymptoting in the past to Pþ) or those asymptoting to
P1 decelerating (and asymptoting in the past to P−). One
such solution of the former type starts accelerating at the
point P000, when entering the acceleration cone, and from
there is eternally accelerating since P1 is only an asymp-
totic point; we then qualify such solutions as having
semieternal acceleration and leading to an infinite number
of e-folds. The other solutions accelerate between two
points only, P0 and P00, and thus have a transient accel-
eration. Interestingly though, the point P0 can be brought as
close as desired to P0, with the result of increasing the
number of e-folds. This was shown numerically in [18] and
can be understood by the fact that the phase space trajectory
becomes close to the one with eternal acceleration, which
has an infinite number of e-folds coming from the vicinity
of P0. For all these solutions, we then have a parametric
control of the number of e-folds.

3. Stable spiral: Roller coaster cosmology and transient
acceleration with parametric control of e-folds

In Sec. III B, we have obtained solution families asymp-
toting to P1, the latter being a stable spiral fixed point. As
above, we now solve numerically the system of equations
to find the complete solutions, which can asymptote to the
various other fixed points indicated in Fig. 1. We display in
Fig. 6 these complete solutions.
Due to the spiraling, each solution asymptoting P1

successively enters and exits the acceleration cone. This
alternation of acceleration and deceleration phases is
reminiscent of the so-called roller coaster cosmology [45].
Each cycle contributes a finite number of e-folds, computed
in first approximation from (3.13) to be

ΔN ¼ 2π

q
¼ πffiffiffi

2
p γγsffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 − γ2s
p : ð3:21Þ

The “initial” phases of the solutions, closer to the other
asymptotics, however differ. The solution passing through
P0 is special, and we refer to the above discussion about it.
This solution accelerates for a finite amount of time
between a finite t and t ¼ 0. As before, it admits an
infinite number of e-folds between any finite time and
t ¼ 0. The other solutions rather have a first transient
acceleration phase between points P0 and P00. As before,
bringing P0 closer to P0 increases at will the number of
e-folds accumulated during this first phase. This provides
again to these solutions a parametric control on the number
of e-folds.

IV. STRING THEORY REALIZATIONS

In this section, we discuss how the cosmological
solutions studied in the previous section can arise in string
theory. In Sec. IVA, we first discuss string compactifica-
tions to four dimensions that were studied in [18]. We
review how they give rise to consistent truncations in four
dimensions that realize the d ¼ 4 theory (2.1) with k ¼ −1
and with an exponential potential (3.1). One example
provides the fixed point P1 as a stable node, and another
one provides it as a stable spiral. Both the node and the
spiral cases allow for transient acceleration with parametric
control of e-folds, as discussed above. The node also allows
for eternal or semieternal acceleration. We then show in
Sec. IV B that massive type IIA supergravity itself can
match (2.1) and give rise to d ¼ 10 cosmologies that are
undergoing accelerated expansion for an infinite amount
of time.

A. 4D realizations as string compactifications

We review here some results of [18] that show that
a string theory origin can be provided for certain 4D
models of the form (2.1) with k ¼ −1 and an exponential
potential (3.1). Remarkably, as argued in Sec. III, this
allows for 4D cosmological solutions, realized in string

FIG. 6. Complete cosmological solutions asymptoting to P1 as
a stable spiral, displayed as trajectories in the phase space of

Fig. 1, here with d ¼ 4 and γ ¼
ffiffiffiffi
32
3

q
. The spiraling leads to an

alternation of accelerating and decelerating phases as in a
rollercoaster cosmology. In addition, the blue solutions have a
“first” transient acceleration phase, whose number of e-folds can
be increased arbitrarily by moving P0 toward P0 as for the dashed
curve. We refer to the main text for more details.
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theory, that are accelerating for an infinite amount of time
and are accumulating an infinite number of e-folds or for
transient acceleration with a parametric control of e-folds.
This is true even though one has γ >

ffiffiffi
2

p
for the exponential

rate of the potential in d ¼ 4, as discussed in the beginning
of Sec. III.
The framework of [18] is a compactification of 10D type

II supergravities with a 10D spacetime of the form (warped)
M4 ×M6. The 6D compact manifold M6 can be either
Calabi-Yau (CY), Einstein, or Einstein-Kähler (EK).
Reference [18] first constructed several classes of 10D
solutions, whereM4 is a FLRW 4D spacetime with k ¼ −1
[see (2.2)], meaning with a negatively curved space giving
an open universe. Then, a subset of these 10D solutions can
equivalently be realized as 4D solutions of the following
4D theory

S4d ¼
Z

d4x
ffiffiffi
g

p �
R − 24gμν∂μA∂νA

−
1

2
gμν∂μϕ∂νϕ − VðA;ϕÞ

�
; ð4:1Þ

which contains gravity and two scalar fields A;ϕ. In other
words, S4d is a two-scalar consistent truncation of 10D

type II supergravities for cosmological solutions; all cosmo-
logical solutions of S4d, with a specific V given below
in (4.4), lift to 10D solutions of type II supergravities.
To see this, it is enough to show that given a certain

compactification ansatz (or a certain class of 10D solu-
tions), the 10D equations of motion and Bianchi identities
of type II supergravities boil down to exactly the equations
of motion of (4.1), with an FLRW metric; those are
given by

ä
a
¼ 1

6
V − 8Ȧ2 −

1

6
ϕ̇2

2

�
ȧ
a

�
2

þ 2k
a2

¼ 1

3
V þ 8Ȧ2 þ 1

6
ϕ̇2

Äþ 3
ȧ
a
Ȧ ¼ −

1

48
∂AV

ϕ̈þ 3
ȧ
a
ϕ̇ ¼ −∂ϕV; ð4:2Þ

where a; A;ϕ are assumed to depend only on time. Note
that we use for now the notations of [18] and will eventually
give a translation to conventions of the previous sections.4

Some cases where such a 4D consistent truncation is
possible were found in [18]5 to be given by

V ¼

8>>>>>><
>>>>>>:

72b20e
−ϕ−12A þ 3

2
c20e

ϕ
2
−14A CY with internal 3- and 4-form fluxes

1
2
c2φe−

ϕ
2
−18A þ 1

2
m2e

5ϕ
2
−6A − 6λe−8A Einstein with external 4-form flux

3
2
c20e

ϕ
2
−14A þ 1

2
m2e

5ϕ
2
−6A − 6λe−8A EK with internal 4-form flux

1
2
c2φe−

ϕ
2
−18A þ 3

2
c2fe

3ϕ
2
−10A − 6λe−8A EK with internal 2-form; external 4-form

; ð4:4Þ

where the right column describes the compactification
ansatz (M6, fluxes). Those examples are all type IIA
compactifications, to which we also restrict in the follow-
ing. The different parameters appearing in the potential are
constants coming from the fluxes of the solution, whose
10D origin is summarized in Table II.

TABLE II. List of the constant coefficients entering the potential
(4.4) of the 4D consistent truncation and their 10D origin as type
IIA supergravity fluxes or curvature. A form is called external
(internal), if all its legs are along the external 4D (internal 6D)
directions.

m 0-form (Romans mass)
cf Internal 2-form
b0 Internal 3-form
cφ External 4-form
c0 Internal 4-form
λ Scalar curvature of M6

4For the reader interested in a further comparison of con-
ventions, let us mention that the dynamical system variables x, z
of [18] match the x, y of Sec. II B. Also, the dynamical
flow parameter ω of [18] should be identified with the number
of e-folds N of (2.6). Moreover, the scale factor aðtÞ was
denoted in [18] by S.

5The full set of 10D solutions presented in [18] is much richer
and allows for more fluxes to be turned on. All the type II 10D
supergravity solutions presented therein can be derived using an
appropriate 1D consistent truncation with potential UðA; B;ϕÞ
[see [18], Eq. (15)]. This is indeed possible due to the fact that all
field profiles only depend on one variable, the time. Such 1D
Lagrangians can be used as a starting point for a minisuperspace
treatment. The potential VðA;ϕÞ of the 4D consistent truncations
given in (4.4) is related to the potential UðA; B;ϕÞ of the 1D
consistent truncations of [18] via

VðA;ϕÞ ¼ e−24A−6BUðA; B;ϕÞ: ð4:3Þ
However, as already mentioned, not all the solutions of [18] admit
4D consistent truncations. For that to be the case, the right-hand
side of the equation above must be B independent. This is indeed
satisfied for the compactifications listed in (4.4).
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Given a 4D consistent truncation from 10D type IIA
supergravity with k ¼ −1, giving rise to the 4D theory (4.1)
with scalar potential (4.4), one still has to get rid of one
scalar field to match (2.1). Note that the potential (4.4) is
already exponential, so one eventually reaches the scalar
potential (3.1). Reaching a single-scalar theory is achieved
by a further consistent truncation, i.e. a subtruncation
of (4.1), that we will describe in two examples below.
Prior to this, let us present the ansatz for the 10D metric,

common to the two 10D solutions and their 4D realizations
to be considered. The 10D metric in the 10D Einstein frame
reads

ds210 ¼ e2Aðe2Bgμνdxμdxν þ gmndymdynÞ; ð4:5Þ

where the scalars A, B are assumed to only depend on time,
while ym are coordinates of the internal 6D space. The
unwarped 4D metric is assumed to be of the form6

gμνdxμdxν ¼ −dη2 þ dΩ2
k; ð4:6Þ

where η is the conformal time, and the spatial 3D part of the
metric is locally isometric to a maximally symmetric 3D
space of scalar curvature 6k, namely

dΩ2
k ¼ γijðx⃗Þdxidxj; Rð3Þ

ij ¼ 2kγij; ð4:7Þ

with i, j ¼ 1, 2, 3 and where Rð3Þ
ij is the Ricci tensor

of the metric γij. In the following, we will take the 3D
metric to be locally that of hyperbolic space (k < 0). We
further set k ¼ −1 without loss of generality, by redefining
B → Bþ constant. Note also that, eventually, the degree of
freedom B will be traded for the scale factor a.
Regarding the 6D manifold M6, we take it for now to be

Einstein, namely

Rmn ¼ λgmn; ð4:8Þ

where Rmn is the Ricci tensor associated to gmn and 6λ is the
scalar curvature of M6.
The rest of the ansatz for the 10D type IIA super-

gravity solutions has to do with the dilaton and the fluxes.
We will specify those for each of the two examples
below and show how they admit an interpretation as
solutions of the 4D consistent truncation (4.1) with (4.4)
and further as a subtruncation to a single-scalar model (2.1)
with (3.1).

1. Stable node example

This first example has been studied in [25] and more
recently in [18], Sec. 6.1. Considering the above 10Dmetric

ansatz, we further specify to a 6D Einstein manifold with
negative curvature, meaning λ < 0. We may set λ ¼ −1
without loss of generality by redefining A → Aþ constant.
Furthermore, we take all the 10D fluxes to vanish. Finally,
we also set the dilaton to a constant; we will see that this
corresponds to a consistent subtruncation of the 4D
theory (4.1).
This ansatz trivially satisfies the 10D equations of

motion and Bianchi identities for all the fluxes, as well
as the dilaton equation of motion. The remaining equations
of motion are as follows. The internal components of the
Einstein equations reduce to

d2τA ¼ −λ e16Aþ6B; ð4:9Þ
where we have introduced a new time variable τ defined by
dη ¼ e8Aþ2Bdτ. The external Einstein equations reduce to
the following two equations,

λ e16Aþ6B − 2k e16Aþ4B ¼ d2τB

−12λ e16Aþ6B − 12k e16Aþ4B ¼ 144ðdτAÞ2 þ 12ðdτBÞ2
þ 96dτAdτB; ð4:10Þ

while the mixed Einstein equations (along time and internal
directions) are automatically satisfied.
The three equations (4.9) and (4.10) can be “integrated”

into the 4D action (4.1); in other words, they correspond to
its equations of motion (4.2) with a subtruncation. To see
this, let us first introduce the cosmological (standard) time
coordinate t and the standard scale factor a via

dt
dτ

¼ a3; a ¼ e4AþB: ð4:11Þ

Taking suitable linear combinations thereof, the three
equations (4.9) and (4.10) can then be written equivalently
as the 4D ones (4.2), with ϕ ¼ constant, and V ¼ 6jλje−8A
as in (4.4). Setting the dilaton to a constant is a consistent
truncation of the 4D theory7; indeed, since the potential is ϕ
independent, the equation ϕ̈þ 3

a ȧ ϕ̇ ¼ −∂ϕV is trivially
satisfied. This leaves only three 4D equations to match the
three 10D equations. It follows that a solution of equa-
tions (4.9) and (4.10) is also automatically a solution of the
subtruncated 4D action (4.1).
It is then straightforward to see that this realizes the

single-scalar 4D theory (2.1) with potential (3.1). The 4D
actions (4.1) and (2.1) then match with an overall rescaling
as follows:

6On the other hand, the 4D Einstein-frame metric is given by
e8Aþ2Bð−dη2 þ dΩ2

kÞ.

7Note that this subtruncation is simply the restriction to the
invariant plane y ¼ 0 of the phase space of the corresponding
dynamical system [see [18], Eq. (91)]. This is a special instance
of a more general result: the existence of the invariant plane [[18]
(68)], which therefore guarantees that all models considered in
that reference admit a consistent one-scalar subtruncation.
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2
ffiffiffi
6

p
A↔φ; 3e−8A↔VðφÞ¼3e−

4ffiffi
6

p φ; γ¼−
V 0ðφÞ
V

¼ 4ffiffiffi
6

p :

ð4:12Þ

As mentioned in Sec. III, this value of γ is precisely the
boundary value γs for d ¼ 4. The fixed point P1 is then a
stable node [see e.g. (3.3)], and one gets in its vicinity the
accelerating solutions previously discussed.

2. Stable spiral example

In this second example, M6 is a CY space such that the
internal metric is Ricci flat: Rmn ¼ 0. In (4.8), we then take
λ ¼ 0. We keep for now a nontrivial dilaton ϕ. All fluxes
are taken to vanish, except for the internal Ramond-
Ramond (RR) 2-form which is given by

F ¼ cfJ; ð4:13Þ

where cf is a constant and J is the Kähler form of M6.
This ansatz can be seen to automatically satisfy all 10D

flux equations of motion and Bianchi identities. Moreover,
the mixed Einstein equations are automatically satisfied.
The four remaining 10D equations, namely the dilaton and
the internal and external Einstein equations [see [18],
Eqs. (425) and (426)], can be put in the form of the four
4D equations (4.2). This is achieved with the potential
V ¼ 3

2
c2fe

3ϕ=2−10A, a particular case of (4.4) with EK and
λ ¼ 0 (CY), and no external 4-form. This way, the 10D
solutions can also be thought of as solutions of the 4D
action (4.1).
We are left with a subtruncation to reach a single-scalar

model. With the previous potential, the right-hand sides of
the last two 4D equations (4.2) become

−
1

48
∂AV ¼ 10

48
V; −∂ϕV ¼ −

3

2
V ¼ −

36

5
×
10

48
V:

ð4:14Þ

It is then straightforward to see that those two equations
become identical when considering8

ϕ ¼ −
36

5
A: ð4:15Þ

As can be checked directly from the equations of motion
(4.2), this choice gives a consistent subtruncation of the
action (4.1) to a single scalar A,

S4d ¼
Z

d4x
ffiffiffi
g

p �
R −

1248

25
gμν∂μA∂νA −

3

2
c2fe

−104
5
A

�
:

ð4:16Þ

We then reach the single field 4D theory (2.1) with (3.1).
This is done with an overall rescaling and the following
matching from (4.16):

4

5

ffiffiffiffiffi
78

p
A ↔ φ;

3

4
c2fe

−104
5
A ↔ VðφÞ ¼ 3

4
c2fe

−
ffiffiffi
26
3

p
φ;

γ ¼ −
V 0ðφÞ
V

¼
ffiffiffiffiffi
26

3

r
: ð4:17Þ

We conclude that we get γ > γs ¼
ffiffi
8
3

q
. As mentioned

around (3.3), the fixed point P1 is then a stable spiral.
This leads to 4D accelerating solutions of the kind
discussed in Sec. III.

B. 10D massive type IIA supergravity

We now show that one of the simplest examples of
accelerated cosmology of the type previously discussed is
realized in massive type IIA supergravity (mIIA) in ten
dimensions [46]. Type IIA supergravity is a low energy
limit of IIA string theory, and the mass parameter of mIIA
appears naturally when considering T-duality between
type IIA and type IIB string theory [47]. As is well known,
mIIA does not admit any straightforward covariant
11-dimensional uplift; see e.g. [48] for a recent discussion.
It is one of the two possible massive deformations of 10D
IIA supergravity [49]. The action of massive type IIA
supergravity is given in 10D Einstein frame by

SmIIA ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffiffiffiffi
jg10j

p �
R10 −

1

2
∂μϕ∂

μϕ

−
1

2
ðe−ϕjH3j2 þ e

5
2
ϕF2

0 þ e
3
2
ϕjF2j2 þ e

1
2
ϕjF4j2Þ

�

−
1

4κ210

Z
B2 ∧ F4 ∧ F4: ð4:18Þ

We are interested in 10D solutions whose 10D metric is the
FLRW metric with k ¼ −1, as given in (2.2). In order to
preserve the symmetry group of the maximally symmetric
9D spatial part, we set all fields except the metric, the
dilaton ϕ, and the mass parameter F0 to zero. It can readily
be verified that this is indeed a consistent truncation. The
action then reduces to

SmIIA ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffiffiffiffi
jg10j

p �
R10 −

1

2
∂μϕ∂

μϕ −
1

2
e
5
2
ϕF2

0

�
;

ð4:19Þ
which is exactly of the type (2.1) and (3.1) studied above.
We can read off

8Note that this subtruncation is simply the restriction to the
invariant plane [see [18], Eq. (427)] of the phase space of the
corresponding dynamical system.
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φ ¼ −
1ffiffiffi
2

p ϕ; VðϕÞ ¼ 1

4
F2
0e

− 5ffiffi
2

p φ; ð4:20Þ

where we set as before Mp ¼ κ
−1
4

10 ¼ 1. Note that the
Bianchi identity dF0 ¼ 0 gives us a constant F0. So, we
get an exponential potential with γ ¼ 5ffiffi

2
p , which is larger

than the lower bound 2=
ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
for d ¼ 10.

This setup then provides a stringy realization of the
above analysis with k ¼ −1. Interestingly, we recall from
Sec. III that d ¼ 10 is special, because the fixed point P1 is
then a stable node for any γ > 2=

ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p
. We deduce that

this setup gives rise to cosmologies that undergo (semi)
eternal accelerated expansion. This is to be contrasted with
the absence of de Sitter solutions in d ¼ 10 [see e.g. [11],
Eq. (31)].

C. Accelerated expansion in the classical regime
of string theory

We have just considered examples based on 10D
type II supergravities and compactifications thereof, that
admit cosmological solutions with accelerated expansion.
Knowing whether those are realized in string theory
requires one to verify that they are in a classical string
regime, i.e. that the supergravity approximations are
justified.
Before doing so, let us recall the existence of other

cosmological solutions with accelerated expansion in
type II supergravity compactifications; those are de Sitter
solutions, a sample of which has been obtained recently
in [50]. Having analyzed few examples of such solutions
as well as considered asymptotic behaviors of related
potentials [51–55], it seems however that these de Sitter
solutions do not fall in a classical string regime. One reason
is the numerous constraints they have to obey [55], one
being the requirement of having orientifolds (often together
with D-branes) leading to the tadpole constraint. Having
these extended objects is problematic for another reason: in
the solution, one would like to take into account their
backreaction. But this is a complicated problem, especially
in the compactification settings considered, so the de Sitter
solutions mentioned only include such objects as smeared.
This refers to the fact that their contribution to the equations
is taken as integrated. Although recent progress has been
made on localizing these solutions [1,56,57], this problem
is not solved.
As we will see, the 10D supergravity solutions consid-

ered in this paper and in [18] face none of these issues; this
is a major improvement toward ensuring control and a
string theory origin. First, these solutions do not have
orientifolds nor D-branes, so the above difficulties (and
related criticisms) are avoided. Second, the classical string
regime appears to be easily reached as we now detail.
The 4D solutions discussed in Sec. IVA have an

internal volume that grows as e6A when A → ∞. In

addition, volumes of internal p-cycles grow as epA. So, 4D
α0-corrections can legitimately be neglected. Turning to the
string coupling constant gs governing loop corrections, we
verify that it can be made small. Indeed, in the stable node
case, the dilaton is fixed to an arbitrary constant that can be
picked to give a small gs. In the stable spiral case, the
relation (4.15) ensures that in the limit where the internal
volume becomes large, gs becomes small. In other words,
the time evolution goes into the direction of the classical
regime.
The same holds true in the 10D realization in Sec. IV B.

The asymptotics considered are ϕ → −∞, corresponding to
the classical regime. Regarding 10D α0-corrections, one
may argue that in a 10D expanding open universe, such
higher derivative corrections can be neglected at a suffi-
ciently late time. Note also that in mIIA as well as in the 4D
stable spiral example, flux needs to be quantized in string
theory, a point for which we do not see any difficulty.
For completeness, one could complain about the lack of

control over the truncated modes in the 4D consistent
truncations, which needs further investigation and is
beyond the scope of this paper. One may also worry about
the (non-) low energy effectiveness of the truncation (see
e.g. [58], Sec. V). In the case of the CY compactification at
least, this criticism may however be lifted: as the modes left
after the truncation are part of a universal consistent
truncation, which is known to be a subsector of the CY
effective action [59,60], we expect them to be light.
However, there could in general be additional light fields
that are not taken into account by the truncation. Another
legitimate criticism could be that we do not address moduli
stabilization. At least in the massive type IIA example in
d ¼ 10, there are no moduli to stabilize. In addition,
specifying further the above d ¼ 4 examples, many flat
field directions can be avoided. Indeed, for the stable node
example, one can pick the Einstein manifold to be the 6D
Poincaré plane divided by a discrete subgroup of SO(1,6).
Due to Moscow’s rigidity theorem (in other words thanks to
the maximal symmetry), the resulting compact 6D mani-
fold has only one modulus, its overall volume, which is the
only one rolling. Similarly, for the stable spiral example,
one can choose a rigid CY manifold. The RR 2-form flux
proportional to the Kähler form generates a potential for all
Kähler moduli except for the overall volume, the latter
contributing again to the running field. In these examples,
there is thus little concern about moduli stabilization, or at
least flat directions.
Finally, let us mention that, as can easily be seen in both

these examples, the Hubble scale goes to zero at future
infinity faster than the overall inverse size of the internal
manifold, as measured in the 10D (and 4D) Einstein frame.
So, these solutions can be viewed as (parametrically scale
separated) 4D cosmologies.
Overall, the “string theory realizations” presented pre-

viously appear to offer a good control over possible
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corrections, avoiding typical problems of other construc-
tions, thus ensuring their string theory origin.

V. OUTLOOK

In this paper, we have presented cosmological solutions
describing a universe undergoing accelerated expansion,
with various realizations in string theory models; our results
are summarized in the Introduction. Such solutions are
obtained provided the spatial curvature is negative, namely
k ¼ −1. One may wonder how realistic these solutions are,
starting with the choice k ¼ −1; we indeed recall that the
minimal ΛCDM cosmological model does not consider the
curvature density parameter Ωk ¼ −k=ðaHÞ2. This is in
agreement with the fact that this quantity is observationally
constrained to be very close to 0 (see e.g. [61,62]). Given its
definition, Ωk can however get very much diluted in a
universe undergoing accelerated expansion; this is the
standard argument in favor of inflation to solve the flatness
problem. For this reason, it is very difficult to exclude the
possibility of k ≠ 0 and of having k ¼ −1 as here.
Nevertheless, it would be surprising to access the new
physics described in this work thanks to k ¼ −1, while
having a negligible Ωk compatible with k ¼ 0. Actually,
we get an expression in terms of the phase space variables:
Ωk ¼ 1 − ðx2 þ y2Þ (i.e. it is given by the distance to the
circle with radius 1 in Fig. 1). In most solutions considered
here, Ωk is then not negligible. Regarding today’s dark

energy, this discussion remains meaningless without includ-
ing nonrelativistic matter captured by Ωm. We therefore
hope to extend our analysis to include matter in future
investigations.
A further question is how well the new cosmological

solutions reproduce the acceleration observed, focusing first
on the late universe. This ismeasured by the equation of state
parameter w. If we consider thatΩk is indeed negligible, we
can use recent constraints on w. Let us take for instance
from [61,63] the observational upper bound w ≤ wup ¼
−0.95 (see also [64] for a recent account). We recall that
w ¼ −1 corresponds to having a cosmological constant, and
theorists typically consider w ≥ −1 to avoid scenarios with
phantom energy for which no good theoretical models exist.
Having −1 < w ≤ wup would then correspond to having a
valid rolling field scenario, i.e. a viable quintessence model.
As discussed in the Introduction, the ratio j∇Vj=V or γ can
sometimes be related to w, but this is not enough in the
complete cosmological solutions. We therefore simply
obtain the value of w numerically, along these solutions,
and show the result in Fig. 7.
We first see in Fig. 7(a) that the region for which

−1 ≤ w ≤ −0.95 is only crossed for a finite amount of
time by the various solutions,9 and sometimes not at all,

FIG. 7. Equation of state parameter w for the cosmological solutions of Fig. 5. Figure 7(a) reproduces Fig. 5 together with the
observationally favored region in which −1 ≤ w ≤ wup, with an upper bound wup ¼ −0.95; this region is the narrower, darker green
double cone. Figure 7(b) gives the evolution of w along the cosmological solutions depicted in Fig. 7(a): the acceleration light green
region corresponds to w < − 1

3
, while the dark green region corresponds to −1 ≤ w ≤ −0.95. Many asymptotic features of these

solutions, discussed in the main text, can be identified in Fig. 7(b). That figure is plotted for −10 ≤ N ≤ 10.

9One verifies that this region corresponds to
jyj ≥ jxj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − wupÞ=ð1þ wupÞ

p
, a double cone, provided

−1 < wup < 1.
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even though the solutions certainly go through the
wider acceleration region (w < − 1

3
). This is made clearer

in Fig. 7(b). It would be interesting to investigate in more
detail how long this duration is, whether this can be
enhanced for the various solutions, and how this compares
with observations.
Last but not least, the accelerating solutions could also be

considered as models of inflation in the early Universe. It
would be interesting to run similar comparisons with
observational constraints. Let us recall that solutions with
transient acceleration allow for a parametric control on the
number of e-folds, an appealing feature when attempting to
construct realistic inflation models; we illustrate this point
in Fig. 8. Of course, not only should the number of e-folds
be in agreement with constraints on inflation, but also the
power spectrum predicted by the model should be

consistent with observational data. Work on these questions
is in progress [65].
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FIG. 8. A realistic single-field slow-roll inflation model should admit an equation of state parameter w ≈ −1 during a certain number
of e-folds. For various solutions asymptoting to P1, we show how this number of e-folds gets tuned when approaching the eternally
accelerating solution, that includes a quasi-de Sitter phase. Solutions in phase space are depicted for P1 being a stable node in Fig. 8(a),
respectively a stable spiral in Fig. 8(c), and the corresponding w are given in Fig. 8(b), respectively Fig. 8(d). The black solutions cannot
be visually distinguished in the phase space figures. Figures 8(b) and 8(d) are plotted for −4 ≤ N ≤ 30.
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