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Previous studies based on Bayesian methods have shown that the constraints on cosmological
parameters from the Baryonic Oscillation Spectroscopic Survey (BOSS) full-shape data using the effective
field theory of large-scale structures (EFTofLSS) depend on the choice of prior on the EFT nuisance
parameters. In this work, we explore this prior dependence by adopting a frequentist approach based on the
profile likelihood method, which is inherently independent of priors, considering data from BOSS, eBOSS
and Planck. We find that the priors on the EFT parameters in the Bayesian inference are informative and
that prior volume effects are important. This is reflected in shifts of the posterior mean compared to the
maximum likelihood estimate by up to 1.0σ (1.6σ) and in a widening of intervals informed from frequentist
compared to Bayesian intervals by factors of up to 1.9 (1.6) for BOSS (eBOSS) in the baseline
configuration, while the constraints from Planck are unchanged. Our frequentist confidence intervals give
no indication of a tension between BOSS/eBOSS and Planck. However, we find that the profile likelihood
prefers extreme values of the EFT parameters, highlighting the importance of combining Bayesian and
frequentist approaches for a fully nuanced cosmological inference. We show that the improved statistical
power of future data will reconcile the constraints from frequentist and Bayesian inference using the
EFTofLSS.
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I. INTRODUCTION

In the last decades, the increasing precision of measure-
ments of the cosmic microwave background (CMB)
temperature fluctuations has reduced the experimental
uncertainties to such an extent, that they are now dominated
by cosmic variance [1]. This places an unavoidable limit on
the amount of information extractable from the CMB and,
therefore, additional cosmological probes are emerging,
predominantly from large-scale structure (LSS) measure-
ments. The Baryon Oscillation Spectroscopic survey
(BOSS) of the Sloan Digital Sky survey [2] is an example
of a modern LSS probe, which will soon be joined by
ambitious missions such as the Dark Energy Spectroscopic
Instrument (DESI, [3]), the Vera Rubin Observatory [4] and
the Euclid space telescope [5], providing exciting new
information about the LSS of the Universe.
As the accuracy of the surveys increases, so does the

demand for accurate theoretical model predictions. In
particular, efficient computations of the statistics of

inhomogeneities at small scales are crucial for drawing
robust conclusions based on the upcoming data. N-body
calculations, while giving accurate predictions, suffer from
high demand for computational resources which usually
make them unfeasible for full cosmological parameter
inferences (although recent approaches based on machine
learning may remedy this [6–8]). Instead, by compromising
accuracy at the smallest scales, semianalytic approaches
based on perturbation theory (see e.g. [9,10], and references
therein) may provide a computationally efficient alternative
to N-body simulations. The recently developed effective
field theory of large-scale structures (EFTofLSS) employs
an effective field theory approach to predict the biased
power spectrum up to mildly nonlinear scales [11–15]. The
one-loop prediction of the EFTofLSS has allowed the
determination of the ΛCDM parameters from the full-
shape analysis of BOSS and eBOSS data at a precision
higher than that from conventional baryon acoustic oscil-
lation (BAO) and redshift-space distortion (RSD) analyses,
and for some parameters even comparable to that of CMB
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experiments (see e.g., Refs. [16–27]). Furthermore, the
EFTofLSS may provide competitive and interesting con-
straints on models beyond ΛCDM (see e.g., Refs. [28–37]).
The EFTofLSS formalism is based on the most general

parametrization of the evolution of the mildly nonlinear
scales admitted by symmetry. The coefficients of this
parametrization, henceforth the EFT parameters, although
in theory obtainable from simulations are taken as free
nuisance parameters in the statistical analyses. It was noted
in Refs. [25,34] that this parameter structure may impact
the results of Bayesian analyses through prior effects,
especially when the data has weak constraining power.
As a consequence, Ref. [25] showed that different—yet
theoretically equivalent—choices of the EFT parametriza-
tion result in discrepant Bayesian credible intervals and in
point-estimate shifts sometimes on the order of 1σ, par-
ticularly affecting the amplitude of matter fluctuations, σ8.
Additionally, Ref. [34] found the priors on the EFT
parameters to be informative and motivate a more com-
prehensive study of the effects of the parameter structure of
the EFT sector. Reference [38] argues that prior effects
lead to a shift in fσ8 in BOSS full-shape analyses based on
an EFT implementation using the VELOCILEPTORS code
[20,39,40], partially explaining the difference with template
fitting methods. Reference [41] finds that confidence
intervals based on the profile likelihood method on a
modified gravity scenario are inflated with respect to the
Bayesian posterior and that volume effects shift the like-
lihood peaks. Moreover, Refs. [42,43] show that the use of
a Jeffreys prior on the EFT parameters can mitigate biases
in the standard EFT analysis.
Motivated by these previous results, in this paper we

complement the results of the standard Bayesian analysis
with a profile likelihood analysis. The profile likelihood is a
frequentist method based only on the maximum likelihood
estimate (MLE) and, therefore, inherently reparametriza-
tion invariant and prior independent. Our goal is to under-
stand the impact of priors on the EFT parameters on the
inferred cosmological parameters and how this will change
with more constraining data. In particular, we wish to
answer the question: Does the seemingly low σ8 value
reconstructed from a Bayesian analysis of BOSS data
under the EFTofLSS come from prior effects inherent to the
Bayesian framework, rather than the true data likelihood?
Ultimately, our analysis demonstrates the importance of
combining Bayesian and frequentist approaches for a fully
nuanced inference from current and future LSS data.
This paper is structured as follows. In Sec. II, we

describe the respective analysis methods employed in the
Bayesian and frequentist approaches and introduce the data
sets used. In Sec. III, we outline the EFTofLSS approach
and give a detailed description of the two predominantly
employed EFT parametrizations to be scrutinized. In
Sec. IVA, we compare the two EFT parametrizations using
the profile likelihood and contrast them to the Markov

Chain Monte Carlo (MCMC) results. In Sec. IV B, we
study the influence of prior effects and discuss the issue
that the EFT parameters take on extreme values in the
frequentist setting. In Sec. IV C, we show that discrepan-
cies between frequentist and Bayesian approaches subside
with increasingly constraining data. Finally, we provide a
profile likelihood analysis of the ΛCDM concordance
model for the parameters σ8, h, Ωm, ns and ln ð1010AsÞ
with data from the BOSS and eBOSS surveys using
the EFTofLSS formalism in Sec. V and conclude in
Sec. VI.

II. ANALYSIS METHODS

The structure of the EFT parameters and their priors may
impact the constraints on cosmological parameters derived
from Bayesian inference. In particular, given a fixed choice
of parametrization, we may classify the prior impact in
terms of two separate effects, as was previously done
in Ref. [25]:

(i) The prior weight effect: Since the Bayesian posterior
is proportional to the product of the prior and
likelihood, nonflat priors will affect the posterior
in a direct way when they do not align with the
likelihood. This can manifest in, for example, a shift
of the posterior peak or a scaling of its width.

(ii) The prior volume effect: Bayesian marginalization of
the full-dimensional posterior involves integrating
out the nuisance dimensions. Since in addition to the
value of the posterior, an integral is sensitive to the
volume in these directions, large parameter regions
(of possibly nonmaximal posterior values) are em-
phasized compared to smaller regions (of possibly
larger posterior values).

Importantly, the volume effect can occur even with flat
priors and is, therefore, an inescapable feature of the
Bayesian method. Therefore, it becomes relevant to study
the extent to which one’s results are affected by volume
effects. Since the profile likelihood is directly inferred from
the likelihood, it is inherently independent of priors [44]
and is, therefore, an ideal tool for this. In Sec. II A, we
briefly review the use of profile likelihoods for inference,
and in Sec. II B we describe our analysis pipeline.

A. Profile likelihood and Markov
Chain Monte Carlo

The profile likelihood is a method in frequentist sta-
tistics, maximizes the likelihood over nuisance parameters
(as opposed to marginalization, which is the commonly
used method in Bayesian statistics). By splitting the
full parameter space Θ into two categories, θ of N
parameters and ν of M (nuisance) parameters, the profile
likelihood of θ is obtained by maximization over all
parameters in the complementary set of (nuisance) para-
meters ν for fixed θ [44],
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LðθÞ ¼ max
ν

Lðθ; νÞ; ð1Þ

where Lðθ; νÞ represents the full likelihood function. Since
the above is a MLE in the reduced parameter space θ, the
profile likelihood is invariant under reparametrizations of
the reduced parameter space θ [44]. The reparametrization
invariance of the profile likelihood will be particularly
useful when comparing the different EFT parametrizations
in Sec. IVA, which is more challenging with Bayesian
methods since these can depend on the particular para-
metrization of the model and prior choices. In addition, the
profile likelihood is inherently prior independent, thus
automatically avoids prior volume effects.
Frequentist methods like the profile likelihood method

are commonly used in particle physics but rarely used
for cosmological inference. They recently gained more
interest in the context of models beyond ΛCDM, which
often contain many model parameters that are not well-
constrained by the data [45–52], and in the context of
efficient marginalization [53].
To obtain parameter constraints in θ, we employ the

Neyman construction, valid in the limit of a Gaussian
likelihood of the data (also called the “graphical construc-
tion”) [54]; from the profile likelihood LðθÞ, α confidence
regions are given by the solution to Δχ2ðθÞ < F−1ðα; NÞ,
where F−1 is the inverse of the χ2 cumulative distribution
function with N degrees of freedom. For example, in the
one-dimensional case θ ¼ θ, the 68% (95%) confid-
ence intervals correspond to the values of θ for which
Δχ2ðθÞ < 0.99ð3.84Þ. These confidence levels are exact
when the likelihood is Gaussian, or, in the asymptotic limit
of a large dataset [55]. In this limit, the quantity Δχ2ðθÞ≡
−2 logðLðθÞ=LmaxÞ follows a χ2 distribution withN degrees
of freedom [44] and the graphical method corresponds to the
exact Neyman construction. Since for the BOSS and eBOSS
data sets Gaussian likelihoods are employed, the graphical
construction is exact, whereas parts of the Planck likelihood
are non-Gaussian [56] and we acknowledge that the
graphical confidence intervals may be approximate. If the
profile likelihood has a substantial overlap across a physical
boundary of the parameter, an alternative Neyman con-
struction needs to be used, also known as the Feldman-
Cousins prescription [57]. However, since the parameters
studied in this work are well away from their physical
boundaries, the Neyman construction is sufficient.
Computing the profile likelihood amounts to optimiza-

tions in the reduced parameter space ν. Since evaluating the
likelihood function Lðθ; νÞ involves running the Einstein-
Boltzmann solver, numerical gradients are noisy and
inefficient [58]. For the optimization, we therefore use
simulated annealing [59], a gradient-free stochastic opti-
mization algorithm (see [60] for efficient computation of
profile likelihoods using an emulator and see [61] for
earlier approaches). The simulated annealing algorithm is
based on chains with iteratively decreasing temperatures

and step sizes, where the temperature T > 0 modulates the
likelihood function as Lðθ; νÞ → Lðθ; νÞ1=T . Large temper-
atures smoothen the likelihood landscape, whereas small
temperatures enhance peak structures. Thus, the chains are
able to escape local optima while eventually being localized
in a likelihood peak at low temperatures. Simulated
annealing performs well against the noisy cosmological
likelihood landscapes with many local optima [62], but
may depend moderately on the particular temperature
schedule employed. In practice, we inform the simulated
annealing process with proposal covariance matrices and
best-fits obtained from the corresponding MCMC analyses.
Since the minimizations for each point in the profile are
started from the global best-fit obtained from the MCMC,
poor convergence would likely lead to an underestimation
of the width of the confidence interval, which would not
have a strong impact on the conclusions in this paper as we
find very large confidence intervals with the profile like-
lihood. We ensure convergence and combat local optima by
running each optimization several times. Due to the limited
accuracy of the global best-fits caused by the finite
sampling of the profile, we present the best-fit points in
this paper as the optimum of the parabola fitted to the point
of highest likelihood and its two neighboring points. Our
implementation of the simulated annealing algorithm1

interfaces the MontePython [63,64] inference code with
the Einstein-Boltzmann solver CLASS [65],2 which models
the CMB coefficients and linear matter power spectra, and
with PyBird [19],3 which models the full-shape of the
galaxy power spectra from the EFTofLSS. It is identical to
the implementation used in Refs. [51,52].
For all MCMCs performed in this study, we use the

Metropolis-Hastings algorithm from MontePython, and
we assume our MCMC chains to be converged with the
Gelman-Rubin criterion R − 1 < 0.05.
In the following, we quote frequentist confidence inter-

vals as the MLE� 1σ obtained via the graphical Neyman
method and we quote Bayesian credible intervals as the
posterior mean �1σ obtained from the MCMC posterior.
We will employ the following metric as a measure of the
discrepancy between two approximately Gaussian poste-
riors or likelihoods,

σ-distance≡ jθi − θjjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2θ;i þ σ2θ;j

q ; ð2Þ

where θi is the ith point estimate of the parameter θ and σθ;i
the corresponding standard deviation. The point estimates
and standard deviations may be derived either from a
posterior or from a profile likelihood. In the case that the
two intervals are derived from the same model and the same

1Publicly available at https://github.com/AarhusCosmology/
montepython_public/tree/2211.01935.

2Publicly available at http://class-code.net.
3Publicly available at https://github.com/pierrexyz/pybird.

BAYESIAN AND FREQUENTIST INVESTIGATION OF PRIOR … PHYS. REV. D 108, 123514 (2023)

123514-3

https://github.com/AarhusCosmology/montepython_public/tree/2211.01935
https://github.com/AarhusCosmology/montepython_public/tree/2211.01935
https://github.com/AarhusCosmology/montepython_public/tree/2211.01935
https://github.com/AarhusCosmology/montepython_public/tree/2211.01935
http://class-code.net
http://class-code.net
https://github.com/pierrexyz/pybird
https://github.com/pierrexyz/pybird


statistical method (Bayesian or frequentist), but different
datasets, the σ distance coincides with the Gaussian tension
metric employed, for example, in Ref. [66]. When the point
estimates are from different statistical paradigms, we
instead normalize only by the Bayesian uncertainty,

σ-distance≡ jθBayes − θfreqj
σθ;Bayes

; ð3Þ

which can be interpreted as the significance of the bias
between mean and MLE in units of the Bayesian error bars
induced by the prior effects.

B. Datasets and analysis choices

In this paper we perform various MCMC and profile
likelihood analyses using different datasets:

(i) BOSS DR12 LRG: In our main analysis, we consider
the BOSS luminous red galaxies data (LRG) [67]
(see Ref. [68] for a description of the catalogs), with
covariances built from the patchy mocks described
in Ref. [69]. The BOSS data are divided into four
sky cuts, corresponding to two galactic skies,
denoted NGC and SGC, cut into to two redshift
bins; LOWZ, which corresponds to the redshift
range 0.2 < z < 0.43ðzeff ¼ 0.32Þ, and CMASS,
which corresponds to the redshift range 0.43 < z <
0.7ðzeff ¼ 0.57Þ. For LOWZ we analyze the galaxy
power spectrum up to kmax ¼ 0.20h Mpc−1, while
for CMASS we analyze it up to kmax ¼
0.23h Mpc−1. In this study, we use the EFT like-
lihood of the full shape of the BOSS LRG power
spectrum prereconstructed multipoles, including the
monopole and the quadrupole, measured and de-
scribed in Ref. [21] and referred to as “BOSS”.
We also consider “BOSSþ BAO”, which addition-
ally includes the cross-correlation of the pre-
reconstructed measurements with postreconstruction
BAO compressed parameters obtained in Ref. [19]
on the postreconstructed power spectrum measure-
ments of Ref. [70].

(ii) eBOSS DR16 QSO: We also consider the quasars
(QSO) data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS) [71] (see Ref. [72]
for a description of the catalogs), with covariances
built from the EZmocks described in Ref. [73]. The
eBOSS data are divided into two sky cuts, corre-
sponding to two galactic skies, denoted NGC
and SGC, in the redshift range 0.8 < z <
2.2ðzeff ¼ 1.52Þ. We analyse the eBOSS QSO gal-
axy power spectrum up to kmax ¼ 0.24h Mpc−1.
In this study, we use the EFT likelihood of the
full shape of the eBOSS QSO power spectrum
prereconstructed multipoles from Ref. [24] and
the measurements of Ref. [74], including the
monopole and the quadrupole, which is referred
to as “eBOSS”.

(iii) BBN likelihood: As in Ref. [25], unless specified
otherwise, we impose a Gaussian likelihood on
ωb ∼N ð0.02268; 0.00038Þ, where N ðx̄; σxÞ de-
notes a Gaussian centered on x̄ with standard
deviation σx, coming from big bang nucleosynthesis
(BBN) experiments [75]. This likelihood is based on
the theoretical prediction of [76], the experimental
helium fraction of [77] and the experimental deu-
terium fraction of [78].

(iv) Planck: Finally, we compare the BOSS and eBOSS
results with the low-l CMB TT, EE, and the high-l
TT, TE, EE data, as well as the gravitational-lensing
potential reconstruction from Planck 2018 [1],
referred to as “Planck”.

For the BOSS and eBOSS analyses, we vary five
cosmological parameters:

fωcdm;ωb; h; lnð1010AsÞ; nsg; ð4Þ
corresponding to the physical cold dark matter and baryon
energy density, the reduced Hubble constant, the log-
amplitude of the primordial fluctuations and the scalar
spectral index, respectively.4 For the MCMC, we assume
large flat priors, and for the profile likelihood, we scan a
parameter range that covers at least the 95% confidence
interval. For the LSS data, unless specified otherwise, we
always include the BBN likelihood mentioned above. To
facilitate comparison with previous studies, we present our
cosmological results on fσ8; h;Ωm; ns; ln ð1010AsÞg, corre-
sponding respectively to the clustering amplitude, the
reduced Hubble constant, the fractional matter abundance
as well as the scalar spectral index and amplitude of
primordial fluctuations from (4). Finally, for all analyses
performed we use the Planck convention for the neutrinos,
namely we take two massless and one massive species with
mν ¼ 0.06 eV [1].

III. THE EFFECTIVE FIELD THEORY OF
LARGE-SCALE STRUCTURE FORMALISM

To model the full shape of the BOSS and eBOSS power
spectra, we use the EFTofLSS theoretical prediction at one-
loop order. In the literature, several prescriptions have been
proposed for the EFT parameters. In line with
Refs. [25,79], we consider the two most commonly used
parametrizations, namely the “West coast” (WC) para-
metrization, the one used in the PyBird [19] likelihood, and
the “East coast” (EC) parametrization, the one used in the
CLASS-PT [23,80] likelihood.5 In this section, we
describe these two EFT parametrizations and the associated
priors.

4For runs that include Planck data, we also vary τreio, the
reionization optical depth, within a large flat prior.

5Let us note that there exists another EFT likelihood imple-
mented in the public code VELOCILEPTORS [20,39,40], with
different prior choices on the EFT parameters.
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A. Power spectrum at one-loop order

In this study, we use the monopoles P0ðz; kÞ and
quadrupoles P2ðz; kÞ of the BOSS LRG and eBOSS
QSO power spectra given by

Plðz; kÞ ¼
2lþ 1

2

Z
1

−1
dμLlðμÞPgðz; k; μÞ; ð5Þ

where Ll corresponds to the Legendre polynomial of order
l, and μ ¼ ẑ · k̂ is the angle between the line-of-sight z and
the wave vector of the Fourier mode k. Pgðz; k; μÞ
corresponds to the EFTofLSS power spectrum of biased
tracers in redshift space at one-loop order,6 which reads,
within the WC parametrization [93]:

Pgðk; μÞ ¼ Z1ðμÞ2P11ðkÞ þ 2Z1ðμÞP11ðkÞ
�
cct

k2

k2M
þ cr;1μ2

k2

k2R
þ cr;2μ4

k2

k2R

�

þ 2

Z
d3q
ð2πÞ3 Z2ðq;k − q; μÞ2P11ðjk − qjÞP11ðqÞ þ 6Z1ðμÞP11ðkÞ

Z
d3q
ð2πÞ3 Z3ðq;−q;k; μÞP11ðqÞ

þ 1

n̄g

�
cϵ;0 þ cmono

ϵ
k2

k2M
þ 3cquadϵ

�
μ2 −

1

3

�
k2

k2M

�
; ð6Þ

where f is the growth factor, and P11ðkÞ is the linear matter
power spectrum (calculated with the CLASS code). In the
following, we give a description of the different terms of
Eq. (6):

(i) The first term corresponds to the linear galaxy power
spectrum in redshift space, also known as the Kaiser
formula [95]. This term depends on b1ðzÞ, which is
the linear galaxy bias parameter [see Eq. (7)].

(ii) The second term proportional to k2Z1ðμÞP11ðkÞ
corresponds to the contribution of the one loop-
order counterterms. cct is a linear combination of
the dark matter sound speed [11,12] and a higher-
derivative bias [14], while cr;1 and cr;2 represent the
redshift-space counterterms [15]. Let us note that in
this analysis, we do not consider cr;2 (which belongs
to a μ4 term), since we do not include the hexadeca-
pole. Without the latter, this term is degenerate
with cr;1.

(iii) The second line corresponds to the one-loop per-
turbation contribution, which depends on four
galaxy bias parameters appearing in Eqs. (7)–(9):
bi, with i ¼ ½1; 4�.

(iv) Finally, the last line, inversely proportional to the
mean galaxy number density n̄g, corresponds to the
stochastic contribution, which depends on three
stochastic terms: cϵ;0, cmono

ϵ and cquadϵ . The first term
describes a constant shot noise, while the other two
terms correspond to the scale-dependant stochastic
contributions of the monopole and the quadrupole.

In the contributions of the one loop-order counterterms
and the stochastic terms there are two scales that govern the
EFT expansions: k−1M , corresponding to the spatial exten-
sion of the observed objects [14], and k−1R , corresponding to
the “dispersion” scale [15]. While the former controls the
spatial derivative expansion, the latter is the scale that
renormalizes the velocity products appearing in the red-
shift-space expansion.

In Eq. (6), Z1, Z2, and Z3, corresponding to the redshift-
space galaxy density kernels of order n, are given by [93]

Z1ðq1Þ ¼ K1ðq1Þ þ fμ21G1ðq1Þ ¼ b1 þ fμ21; ð7Þ

Z2ðq1;q2; μÞ ¼ K2ðq1;q2Þ þ fμ212G2ðq1;q2Þ

þ 1

2
fμq

�
μ2
q2

G1ðq2ÞZ1ðq1Þ þ perm

�
; ð8Þ

Z3ðq1;q2;q3; μÞ
¼ K3ðq1;q2;q3Þ þ fμ2123G3ðq1;q2;q3Þ

þ 1

3
fμq

�
μ3
q3

G1ðq3ÞZ2ðq1;q2; μ123Þ

þ μ23
q23

G2ðq2;q3ÞZ1ðq1Þ þ cyc

�
; ð9Þ

where

K1 ¼ b1; ð10Þ

K2ðq1;q2Þ ¼ b1
q1 · q2ðq21 þ q22Þ

2q21q
2
2

þ b2

�
F2ðq1;q2Þ

−
q1 · q2ðq21 þ q22Þ

2q21q
2
2

�
þ b4; ð11Þ

6The first formulation of the EFTofLSS was carried out in
Eulerian space in Refs. [11,12] and in Lagrangian space in [81].
Once this theoretical framework was established, many efforts
were made to improve this theory and make it predictive, such as
the understanding of renormalization [82,83], the IR-resummation
of the long displacement fields [13,15,84–87], and the compu-
tation of the two-loop matter power spectrum [88,89]. Then, this
theory was developed in the framework of biased tracers (such as
galaxies and quasars) in Refs. [14,90–94].
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K3ðq;−q;kÞ ¼
b1

504k3q3

�
−38k5qþ 48k3q3 − 18kq5 þ 9ðk2 − q2Þ3 log

�
k − q
kþ q

��

þ b3
756k3q5

�
2kqðk2 þ q2Þð3k4 − 14k2q2 þ 3q4Þ þ 3ðk2 − q2Þ4 log

�
k − q
kþ q

��

þ b1
36k3q3

�
6k5qþ 16k3q3 − 6kq5 þ 3ðk2 − q2Þ3 log

�
k − q
kþ q

��
; ð12Þ

with μ ¼ q · ẑ=q, q ¼ q1 þ � � � þ qn, and μi1…in ¼
qi1…in · ẑ=qi1…in , qi1…im ¼qi1 þ�� �þqim . In Eqs. (7)–(9),
Gi represents the velocity kernels of the standard perturba-
tion theory, and Ki represents the galaxy density kernels,
defined as in Eqs. (10)–(12) [14,91,92], where F2 is the
symmetrized second-order density kernel from the standard
perturbation theory [10].
We note that Refs. [24,25] found the goodness of the

ΛCDM fit to BOSS and eBOSS to be good, with p-values
ranging from ≈5–15% depending on the particular dataset
and configuration used.

B. Different parametrizations

1. WC parametrization

In the previous section, we expressed the power spec-
trum in the framework of the WC parametrization using 10
EFT terms: four bias parameters (bi, with i ¼ ½1; 4�), three
counterterms (cct, cr;1 and cr;2), and three stochastic terms

(cϵ;0, cmono
ϵ and cquadϵ ). In this study, we set to zero [16] the

parameters cr;2 (degenerated with cr;1, as we do not include
the hexadecapole), implying that we end up with nine EFT
parameters for each sky cut of the BOSS LRG and eBOSS
QSO data. In the PyBird likelihood, instead of using b2 and
b4, we use linear combinations of these parameters: c2 ¼
ðb2 þ b4Þ=

ffiffiffi
2

p
and c4 ¼ ðb2 − b4Þ=

ffiffiffi
2

p
. Given that b2 and

b4 are almost completely anticorrelated (at ∼99% accord-
ing to Ref. [16]), the standard procedure is to set c4 ¼ 0. In
addition, cmono

ϵ is also set to 0 in the PyBird baseline
analysis since the functions that are multiplied by this
parameter were found to be small compared to the signal-
to-noise ratio associated with the BOSS volume [16,96]. In
this study, we include c4 and cmono

ϵ as free parameters in our
analysis when comparing the WC parametrization with the
EC parametrization in Sec. IVA, which ensures math-
ematical equivalence between the EC and WC parametri-
zations. On the other hand, for our cosmological results
(where we only use the WC parametrization) we adopt the
standard PyBird convention and set c4 ¼ cmono

ϵ ¼ 0 to
facilitate easier comparison with previous works. In
Sec. IVA, we find that fixing or freeing c4 and cmono

ϵ

changes the frequentist confidence intervals for σ8, indicat-
ing that the effect of these two EFT parameters is not
negligible.

Note that we treat these nuisance parameters as inde-
pendent across each of the four sky cuts as done in, e.g.,
Refs. [16,35], giving a total of 28 EFT nuisance parameters
in our standard BOSS analysis (and 14 for the eBOSS
analysis) when fixing c4 ¼ cmono

ϵ ¼ 0.
Within theWCparametrization, we set kM ¼ 0.7hMpc−1,

kR ¼ 0.35h Mpc−1 and n̄g ¼ 4 × 10−4 ðMpc=hÞ3 for the
BOSS LRG data [97], and kM ¼ 0.7h Mpc−1, kR ¼
0.25h Mpc−1 and n̄g ¼ 2 × 10−5 ðMpc=hÞ3 for the
eBOSS QSO data [24] in Eq. (6).

2. EC parametrization

We now turn to the EC parametrization which is used by
the CLASS-PT likelihood [80]. In the following, we list the
differences between the two parametrizations, and com-
ment on how to switch from one to the other:

(i) Bias parameters: the EC parametrization uses the
fb̃1; b̃2; bG2

; bΓ3
g basis [90], which is related to

the previous basis fb1;b2;b3;b4g in the following
way [98]:

b1 ¼ b̃1;

b2 ¼ b̃1 þ
7

2
bG2

;

b3 ¼ b̃1 þ 15bG2
þ 6bΓ3

;

b4 ¼
1

2
b̃2 −

7

2
bG2

: ð13Þ

These two bases are equivalent and describe the one-
loop contribution.

(ii) Counterterms: in the EC parametrization, the defi-
nition of the counterterms fc0; c2; c4g changes
slightly with respect to the WC parametrization
fcct; cr;1; cr;2g: kM and kR are now absorbed in
the counterterm coefficients, such that c0 ∝ cct=k2M,
c2 ∝ cr;1=k2R and c4 ∝ cr;2=k2R. Note that in the EC
parametrization, these counterterms are not unitless.
In this analysis, we fix c4 ¼ 0 as we do not include
the hexadecapole.

(iii) Stochastic terms: we use the same definition for
the stochastic parameters as for the WC parametri-
zation. Further, the EC parametrization uses kM ¼
0.45h Mpc−1 and n̄ ≃ 3 × 10−4 ðMpc=hÞ3.
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Note that the EC baseline parametrization includes a
next-to-next leading order parameter, c̃, in front of a term in
∼k4P11ðkÞ. In order to be consistent with the WC para-
metrization, we do not include this term in this analysis,
which implies that we end up with nine EFT parameters
that are equivalent to the WC ones.
In this paper, in line with Ref. [25], the results of the EC

parametrization are obtained with PyBird, which supports
both the EC and WC parametrizations. This facilitates
exploration of the differences in the inferred cosmological
parameters introduced by the priors and parametrizations of
the EFT parameters without the need to take into account
differences in data and codes, namely the different imple-
mentations in CLASS-PT and PyBird (we invite the
interested reader to refer to Ref. [25] for such a
comparison).

C. Priors

In the left half of Table I, we summarize the MCMC
standard priors used for the nine parameters in the PyBird
code. In general, given the perturbative nature of the theory,
the one-loop contribution should be smaller than the tree-
level contribution. The latter is given by the Kaiser formula,
which depends on the linear bias b1, implying that the other
EFT parameters should be in ∼Oðb1Þ. In the standard WC
analysis, i.e., c4 ¼ cmono

ϵ ¼ 0, the parameters b1 and c2
vary within flat priors, while the other EFT parameters, i.e.,
those which enter linearly into Eq. (6), are analytically
marginalized with Gaussian priors following the procedure
of Appendix C of Ref. [19].
In the right half of Table I, we summarize the MCMC

standard priors used for the nine parameters in the CLASS-
PT likelihood. The main difference to the WC priors is that
the EC priors are mainly based on simulations [99]. In the
standard EC analysis, b̃1 varies within a flat prior, and b̃2
and bG2

vary within Gaussian priors, while the other EFT
parameters are analytically marginalized within Gaussian
priors.7

For the profile likelihood analysis, in theory, we do not
need to include priors. However, for practical reasons
related to the implementation of the EFT likelihood, we
mimic the case without priors by multiplying the bounds of
the flat priors and the standard deviation of the Gaussian
priors in Table I by 100. In Appendix Awe check that this
leads to an effectively flat prior. Lastly, we refrain from
applying the analytical marginalization from Appendix C
of Ref. [16], commonly used in the standard analysis.
Instead, we use the analytical approximation (without
marginalization) from the same reference to estimate, at
each point in the optimizations, the best-fitting values of the
EFT parameters that have Gaussian priors in the standard

configuration, having checked explicitly that this approxi-
mation works to good precision even with flat priors.

IV. CONSISTENCY OF EFTOFLSS FROM
PROFILE LIKELIHOOD ANALYSES

In this section, we compare the two EFTofLSS para-
metrizations introduced in Sec. III B, contrast them to the
standard MCMC results, explore the impact of the
Bayesian priors, and illustrate explicitly the effect of more
constraining data. We take the example of the amplitude of
matter clustering,8 σ8, which was found to be particularly
affected by prior effects [25,34].

A. EC vs WC parametrizations and
comparison to MCMC

In Fig. 1, we compare the one-dimensional marginalized
MCMC posteriors Pðσ8Þ to the profile likelihoods Lðσ8Þ,
which are normalized by their individual MLEs. We use
BOSS full-shape data combined with reconstructed BAO

TABLE I. Standard priors on the EFT parameters in the WC
and EC parametrizations used for MCMC analyses in this paper.
In the WC parametrization, b1 and c2 vary within flat priors,
whereas in the EC parametrization, b̃1 varies within a flat prior,
b̃2 and bG2

vary within Gaussian priors, while Gaussian priors are
imposed on the other parameters before analytically marginal-
izing them. In the profile likelihood analyses, we mimic the case
without priors by multiplying all priors by a factor 100. The two
parameters with ð�Þ are set to 0 for our cosmological results, but
we include them for the comparison with the EC parametrization
in Sec. IVA to ensure perfect equivalence between the two
parametrizations. N ðx̄; σxÞ corresponds to a Gaussian prior on
the parameter xwith a mean value of x̄ and a standard deviation of
σx. We emphasize that we treat these parameters as an indepen-
dent set in each sky cut.

WC Priors EC Priors

Parameter
type Parameter

MCMC
prior Parameter

MCMC
prior

Bias b1 flat [0, 4] b̃1 flat [0, 4]
c2 flat ½−4; 4� b̃2 N ð0; 1Þ

c4ð�Þ flat ½−4; 4� bG2
N ð0; 1Þ

b3 N ð0; 2Þ bΓ3
N ð23

42
ðb1 − 1Þ; 1Þ

Counterterms cct N ð0; 2Þ c0=½Mpc=h�2 N ð0; 30Þ
cr;1 N ð0; 2Þ c2=½Mpc=h�2 N ð30; 30Þ

Stochastic cϵ;0 N ð0; 2Þ cϵ;0 N ð0; 2Þ
cmono
ϵ ð�Þ N ð0; 2Þ cmono

ϵ N ð0; 2Þ
cquadϵ N ð0; 2Þ cquadϵ N ð0; 2Þ

7Note that alternative renormalization approaches can help to
inform well-motivated priors from theory, see e.g. [100].

8Note that the definition of σ8, which is in units of Mpc=h,
depends also on the background cosmology and, therefore,
alternative measures of the amplitude of matter fluctuations have
been proposed [101–104].
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data based on the WC (blue) and EC (orange) parametri-
zations, respectively. We find that the Bayesian MCMC
posteriors differ from the frequentist profile likelihoods in
both WC and EC parametrizations, respectively, indicating
that priors and/or marginalization have an impact on the
constraints on σ8 in the Bayesian analysis, as was already
pointed out in Ref. [25].
In the WC parametrization, the standard configuration

includes setting c4 ¼ cmono
ϵ ¼ 0. Mathematically, the WC

parametrization is only equivalent to the EC parametriza-
tion if c4 and cmono

ϵ are taken as free parameters (see
Sec. III B). However, even if c4 and cmono

ϵ are free to vary,
the MCMC posteriors in the two parametrizations (dashed
lines), using the recommended standard priors in Table I,
do not yield the same credible interval:

σ8 ¼ 0.748þ0.043
−0.048 ðMCMC;WCÞ;

σ8 ¼ 0.700� 0.044 ðMCMC;ECÞ: ð14Þ

Reference [25] showed that this difference, which corre-
sponds to a σ-distance of 0.7σ [as defined in Eq. (2)], can be
attributed to the different prior configurations in the WC
and EC parametrizations (and not to differences in the
implementation of the codes).
The profile likelihoods, on the other hand, do not depend

on priors, since they are constructed solely from the MLE,
and are reparametrization invariant. Therefore, two profile
likelihoods from the same dataset will agree if the under-
lying models are equivalent, i.e., if the range of their
possible predictions coincide. We explicitly confirm that if
c4 and cmono

ϵ are free to vary, the profile likelihood in the
WC parametrization (blue dotted) agrees with the profile

likelihood in the EC parametrization (orange solid) up to
numerical accuracy:

σ8 ¼ 0.850� 0.119 ðprofile;WCÞ;
σ8 ¼ 0.850� 0.117 ðprofile;ECÞ: ð15Þ

Note that in Fig. 1, we show the individually normalized
profiles, but we checked that the absolute values of the
likelihood at each point are also approximately equal with
maximum differences of Δχ2 < 0.2, which can be attri-
buted to uncertainties in the optimization. This consistency
check at the example of σ8 confirms the mathematical
equivalence of the WC and EC parametrizations.
Since the recommended standard configuration in the

WC parametrization includes setting c4 ¼ cmono
ϵ ¼ 0, we

use this as the baseline setting for both Bayesian and
frequentist analyses in the remainder of the paper to
facilitate comparison with previous work. The profile
likelihood in the baseline configuration (blue solid line
in Fig. 1, c4 ¼ cmono

ϵ ¼ 0) yields,

σ8 ¼ 0.7699� 0.0851 ðprofile;WC-baseÞ; ð16Þ

which differs from the profile likelihood with free c4, cmono
ϵ

in the WC parametrization (blue dotted) by 0.6σ. Fixing c4
and cmono

ϵ also leads to a reduction of the width of the
frequentist confidence interval by 30%. This indicates that
c4 and cmono

ϵ have an impact on the inference for σ8, which
cannot be neglected for the profile likelihood analysis.
Explicitly checking the best-fit values of these two EFT
parameters close to the global MLE, i.e., the minimum of
the profile likelihood, reveals that these parameters take on
nonzero values as large as c4 ≈ 57 and cmono

ϵ ≈ 38 (depend-
ing on the particular sky cut), pointing to an important role
played by these two parameters and motivating closer
inspection of the impact of analysis choices regarding the
EFT parameters, which we present in the next section.

B. Role of EFT “priors”
in the frequentist setting

It is instructive to look at the values attained by the EFT
parameters in the frequentist framework, which requires
varying all parameters in very large flat ranges. Let us recall
that the EFT parameters in the WC parametrization should
be of order unity in order to conserve the perturbative
nature of the EFTofLSS [97]. Yet, we find that they take on
extreme values at most points in the profile. For example,
Fig. 7 in Appendix A shows the values of the EFT
parameters at each point in the σ8 profile with the baseline
configuration (WC, c4 ¼ cmono

ϵ ¼ 0), which finds values
like b3 ≈ 26 and cct ≈ 23. Similarly large values appear in
the σ8 profile using the EC configuration, where we find as
large values as b2 ≈ 53 and bG3

≈ 38. This indicates that the
profile likelihood includes parts of the EFT parameter

FIG. 1. Marginalized MCMC posteriors (dashed) and profile
likelihoods (solid) of σ8 within the WC (blue) and EC para-
metrizations (orange), for BOSSþ BAO data. The two statistical
approaches and two parametrizations yield different intervals for
σ8. If c4 and cmono

ϵ are allowed to vary in the WC parametrization,
the MCMC posteriors do not agree (dashed lines), while the WC-
profile likelihood (blue dotted) agrees with the EC-profile like-
lihood (orange solid), confirming that the two mathematically
equivalent parametrizations lead to the same likelihood. In the
remainder of the paper, we adopt the WC-standard convention
(c4 ¼ cmono

ϵ ¼ 0, blue solid).
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space in the analysis in which the EFT prediction is no
longer valid. In the Bayesian analysis this issue is addressed
by imposing narrow Gaussian priors on the EFT parameters
(see Table I). However, as we will now show, imposing a
specific (subjective) prior has a direct impact on the
inferred uncertainty in σ8.
Indeed, the intervals from the profile likelihoods in Fig. 1

are broader than the intervals from the MCMC posteriors
by factors of 2.6 to 2.7 (for c4, cmono

ϵ free). To explore
whether this significant loss in constraining power can be
explained by the information content of the priors in the
Bayesian analysis, we construct a profile likelihood subject
to the same “priors” as the Bayesian analysis; if the nonflat
Bayesian priors were well-founded, they could in principle
be promoted to likelihoods, be interpreted as genuine data,
and thus used in the profile likelihood construction.
In Fig. 2, we show the impact of including Gaussian

likelihoods on the EFT parameters, which correspond to the
standard priors in theWC (top, black solid line, with free c4,
cmono
ϵ ) and EC parametrization (bottom, red solid line), as
quoted in Table I. Including the Gaussian data likelihoods
gives the following frequentist confidence intervals:

σ8 ¼ 0.817� 0.049 ðprofile;WC “priors”Þ;
σ8 ¼ 0.783� 0.060 ðprofile;EC “priors”Þ: ð17Þ

We observe a strong increase in constraining power, reduc-
ing thewidth of the frequentist intervals almost to the level of
the Bayesian intervals, indicating that the priors on the EFT
parameters are informative. We also observe a slight shift in
the global MLE toward the mean of the posterior as a result
of including the Gaussian likelihoods on the EFT param-
eters. However, the shift thus introduced is not enough to
reconcile the frequentist and Bayesian results; we observe a
σ distance of about 1σ for both the WC and EC para-
metrizations. This is an indication that there is not only a
prior weight effect, which is a direct result of the multipli-
cation of the prior, but also a prior volume effect, which is a
result of the marginalization (see Sec. II) of some of the
model parameters. This is in agreement with Ref. [38],
which finds similar results for fσ8 using a profile likelihood
analysis based on VELOCILEPTORS [20,39,40] (see e.g. their
Fig. 3).Moreover, Ref. [42] find that the posteriors of several
EFT parameters, e.g. c4, cmono

ϵ , b3, cct among others, are
dominated by the prior information (see their Fig. 8),
reinforcing our conclusions that the priors on the EFT
parameters are informative. In Appendix A, we go one step
further and illustrate the impact of changing the prior width
on the profile likelihood of σ8.
We conclude this section with the observation that both

statistical approaches come with disadvantages in the
context of BOSSþ BAO data. While the results of the
Bayesian analysis depend on informative (subjective)
priors and are influenced by volume effects, the frequentist
analysis takes into account parts of the EFT parameter

space in which the theory is no longer valid, which reflects
a significant loss of constraining power. As a way forward,
we explore the impact of using more constraining data than
the BOSSþ BAO data in the next section.

C. Effect of more constraining data

In the asymptotic limit of infinite data, the likelihood will
dominate the Bayesian prior, and prior effects will vanish

FIG. 2. Same as Fig. 1 but including profile likelihoods with
Gaussian data likelihoods on the EFT parameters, which corre-
spond to the standard WC (top, black line) and EC priors (bottom,
red line). The Gaussian likelihoods lead to a reduction of the
width of the profiles almost to the level of the MCMC posterior
and to small shifts of the MLE. However, the posterior and profile
do still not overlap, which can be explained by prior volume
effects in the Bayesian inference.

FIG. 3. Profile likelihoods (solid) and marginalized MCMC
posteriors (dashed) of σ8 in the WC parametrization under
BOSSþ BAO data (blue) and the same data but with a data
covariance divided by 16 (red). This illustrates how more
constraining power reduces the difference between the Bayesian
and frequentist approaches.
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accordingly [44]. Consequently, Bayesian and frequentist
constraints will converge to the same answer as the model is
better constrained by data.
To illustrate this point, we rescaled the BOSS covariance

matrix by a factor 16, simulating a prospective situation
with less uncertainties or, equivalently, a larger data
volume, roughly corresponding to that of future galaxy
surveys such as DESI [105] or Euclid [106]. In Fig. 3, we
compare the constraints on σ8 from the rescaled data
covariance to those obtained from the unscaled data
covariance using both MCMC and profile likelihoods,
normalized to their MLE. Note that from now on, we
show only results in the WC parametrization, using the
default configuration c4 ¼ cmono

ϵ ¼ 0. The constraints on
σ8 as well as the σ distances, as defined in Eq. (3), are given
in Table II.
With the reduced data covariance, the profile and

posterior are narrower and roughly centered around the
same value of σ8. When reducing the data covariance, the
posterior mean value obtained from the MCMC moves
closer to the MLE (i.e., the maximum of the profile
likelihood), while the MLE is unchanged since the case
with reduced data covariance is based on the same power-
spectra data. Table II shows that the consistency improves
from 0.49σ to 0.33σ when we reduce the data covariance.
This improved consistency between the best-fit and the

posterior mean of the MCMC shows that the prior influence

decreases as the data volume increases, as already pointed
out in Ref. [25]. Thus, discrepancies between Bayesian and
frequentist methods can be seen as due to a lack of data,
which will improve as more data is obtained in the future.
Furthermore, one may hope that more data will aid in
constraining the EFT parameters helping to avoid extreme
values at which the EFT is no longer valid, though this is
not guaranteed. Hence, we can look to future galaxy
surveys to improve the situation for EFTofLSS analyses
using either statistical method.

V. PROFILE LIKELIHOOD RESULTS ON
COSMOLOGICAL PARAMETERS

In this section, we present profile likelihood results from
the EFTofLSS applied to BOSS, eBOSS and Planck data
for five selected ΛCDM parameters, σ8, h, Ωm, ns, and As,

TABLE II. Constraints on σ8 from the marginalized MCMC
posteriors and profile likelihoods of Fig. 3. The last row gives the
σ distances between the MCMC=profile constraints.

BOSSþ BAO BOSS=16þBAO

MCMC (mean �1σ) 0.748� 0.045 0.765� 0.015

Profile (bf. �1σ) 0.770� 0.085 0.770� 0.018

σ distance 0.49σ 0.33σ

FIG. 4. MCMC posteriors for five selected ΛCDM parameters using four different datasets, described in Sec. II B.
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and compare to the credible intervals from the Bayesian
MCMC.While lacking more constraining data, comparison
of frequentist and Bayesian methods can help to gain a more
nuanced view of the data. For both frequentist and Bayesian
setups we use the standard WC parametrization (setting
c4 ¼ cmono

ϵ ¼ 0) of the PyBird likelihood and for theMCMC
the default prior configuration from Ref. [16] as above.

A. Bayesian results

Firstly, Fig. 4 shows the one-dimensional marginalized
posterior distributions and the 68% and 95% two-
dimensional marginalized posteriors obtained from our
MCMC analyses for the BOSS, BOSSþ BAO, eBOSS,
and Planck data (see Sec. II B for details). The general
picture, which corroborates previous results using the WC
parametrization of the EFTofLSS [16,25], is that the
parameter constraints from BOSS and eBOSS show overall
agreement with Planck data up to 1.6σ. All σ distances, as
defined in Eq. (2), are summarized in Table IV. We confirm
that BOSSþ BAO data prefers slightly lower values of σ8
than Planck data at a significance of 1.4σ. Note that this
difference is larger in the EC parametrization correspond-
ing to a σ distance of 2.5σ (see Sec. IVA). Moreover, we
find that BOSSþ BAO data prefers slightly larger values
of h than Planck at a significance of 1.6σ and eBOSS prefer
slightly larger values of ns and As than Planck at a

significance of 1.4σ to 1.5σ, while having a weaker
constraining power compared to BOSS data. The inclusion
of the reconstructed BAO data does not alter the constraints
from BOSS significantly, the most significant being a 0.4σ
shift on h.9

B. Frequentist results

Figure 5 shows the profile likelihood results for the
cosmological parameters σ8, h, Ωm, ns, and As. For each of
the parameters, the top panels show the profile likelihoods
in terms of the Δχ2, such that according to the Neyman
construction for a Gaussian likelihood the intersections
with Δχ2 ¼ 1ð3.84Þ, shown as the dashed (dotted) hori-
zontal line, gives the 68% (95%) confidence interval. The
bottom panels show such constructed confidence intervals,
along with the corresponding credible intervals obtained
from the MCMC analyses. Note that the confidence
intervals for Planck have been constructed from fitting
the Δχ2 to a parabola, which is the fit shown in the figure.
This is appropriate since the ΛCDM profiles are Gaussian
under Planck data [58]. For a visual comparison, individual

TABLE IV. σ distances, as defined in Eq. (2), for five selected parameters between different datasets.

σ8 h Ωm ns ln 1010As

BOSSþ BAO vs Planck
PL 0.49σ 1.33σ 0.48σ 0.78σ 0.70σ

MCMC 1.40σ 1.63σ 0.15σ 1.08σ 1.23σ

eBOSS vs Planck
PL 1.82σ 0.39σ 0.56σ 1.34σ 1.76σ

MCMC 0.92σ 0.23σ 0.83σ 1.44σ 1.54σ

BOSSþ BAO vs eBOSS
PL 1.77σ 1.18σ 0.74σ 1.53σ 1.72σ

MCMC 1.48σ 0.91σ 0.72σ 1.80σ 1.87σ

TABLE III. 68% C.L. constraints obtained in this paper. Profile likelihood (PL) constraints represent the best-fit and confidence
interval from the Neyman construction described in Sec. II A; the quantity in � is the average of the absolute difference between the
lower and upper bounds and the best-fit (noting that the profiles are largely Gaussian). The MCMC constraints represent the mean of the
marginalized one-dimensional posterior and its associated 68% credible interval.

σ8 h Ωm ns ln 1010As

BOSS
PL 0.8025� 0.0925 0.6816� 0.0209 0.3197� 0.0291 0.9499� 0.1349 3.0304� 0.3167

MCMC 0.7443� 0.0433 0.6889� 0.0136 0.3137� 0.0174 0.9050� 0.0576 2.8610� 0.1543

BOSSþ BAO rec.
PL 0.7699� 0.0851 0.7013� 0.0183 0.3293� 0.0281 0.8795� 0.1078 2.8222� 0.2918

MCMC 0.7476� 0.0450 0.6957� 0.0123 0.3126� 0.0170 0.8997� 0.0602 2.8455� 0.1612

eBOSS
PL 1.0267� 0.1179 0.6645� 0.0233 0.2872� 0.0490 1.1454� 0.1326 3.5852� 0.3065

MCMC 0.8903� 0.0856 0.6668� 0.0291 0.2804� 0.0416 1.0880� 0.0853 3.3940� 0.2266

Planck
PL 0.8122� 0.0063 0.6742� 0.0054 0.3151� 0.0074 0.9663� 0.0044 3.0453� 0.0139

MCMC 0.8112� 0.0058 0.6737� 0.0054 0.3153� 0.0074 0.9651� 0.0042 3.0446� 0.0142

9Compared to previous analyses, especially Ref. [24], we do
not set ns to the Planck value, which explains why our LSS
constraints are somewhat weaker and why we have a stronger
inconsistency between eBOSS and BOSS.
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profiles and posteriors for each parameter and data combi-
nation can be found in Fig. 8 of Appendix B. Our
constraints are summarized in Table III, and the global
best-fitting parameters in the BOSSþ BAO and eBOSS
datasets are given in Appendix C. In Table IV, we indicate
the σ-distances between several combinations of experi-
ments for either the MCMC or the profiles, while in
Table V, we display the σ distances between posterior
mean and MLE for each dataset. In the following, we will
discuss the profile results and compare them to the MCMC
results for each dataset individually.

C. BOSS and the “σ8 discrepancy”

Our profile likelihood confidence intervals for the
BOSSþ BAO data are in good agreement with the con-
fidence intervals from Planck data for all five cosmological
parameters at less than 1.4σ and we find no indication for a
tension. Removing the reconstructed BAO data leads only
to sub-σ shifts, the largest being in h, which is 0.7σ larger
when including the reconstructed BAO data (as is the case
for the MCMC analysis). When comparing to the credible
intervals from the MCMC, the most striking feature is that
the confidence intervals from the profile are much wider,

FIG. 5. Profile likelihoods for five selected ΛCDM parameters using the three main datasets described in Sec. II B. For each of the
parameters, the top subplots show the profile likelihoods in terms of the quantityΔχ2ðθÞ ¼ −2 logðLðθÞ=LmaxÞ, where Lmax is the MLE.
The bottom subplots show the 68% and 95% confidence intervals derived from the profiles (solid) as well as the 68% and 95% credible
intervals obtained from the Bayesian analysis (dashed) of Fig. 4. The profile constraints differ from the MCMC constraints for
BOSSþ BAO and eBOSS data, while the Planck constraints are roughly unchanged. We find no indication for a tension between any of
the considered datasets.
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e.g., the 68% profile confidence intervals are wider by a
factor of 1.4 to 1.9 than the MCMC credible intervals. As
already discussed in Sec. IV B, this cannot fully be
attributed to prior volume effects, and is consequently an
indication that the priors on the EFT parameters in the
Bayesian approach are informative and lead to tighter
constraints on the cosmological parameters. The point
estimates of profile and MCMC differ only slightly; we
find σ distances between posterior mean and MLE, as
defined in Eq. (3), up to 1σ, namely ∼0.5σ on h and σ8, and
∼1σ on Ωm (see Table V). As discussed in Sec. IV B, note
that in our BOSS and BOSSþ BAO results, we observe
that the EFT parameters take on extreme values, which
reflects in considerably larger uncertainties and questions
the validity of the EFTofLSS in our profile likelihood
analysis.
Our results corroborate previous findings [24,25,42]

that there is no indication for a “σ8 discrepancy” between
BOSS and Planck data. While in the Bayesian analysis the
σ distance between σ8 posteriors of BOSSþ BAO data
based on the WC (EC) parametrization and Planck is
1.4σ (2.5σ), this is reduced to 0.49σ (0.33σ) for the profile.
This reduction of the σ distance is mainly due to the
increase of the errorbar by a factor of 1.9 (2.7) along with a
shift of the MLE compared to the posterior mean to slightly
larger values of σ8. These results suggest treating the
somewhat curious 2.5σ discrepancy in σ8 obtained in the
MCMC analysis using the EC parametrization cautiously
since it depends on the EC convention of the EFT
parameter priors and on prior-volume effects inherent to
the Bayesian framework.

D. eBOSS

The profile likelihood confidence intervals from eBOSS
data show mild discrepancies with Planck and BOSSþ
BAO data for some parameters, e.g., σ8 is 1.82σ (1.77σ)
higher than for Planck (BOSSþ BAO) and ln 1010As is
1.82σ (1.72σ) higher than for Planck (BOSSþ BAO),
which is similar to the MCMC analyses (see Table IV).
Otherwise, the parameter constraints of eBOSS are within
around ≲1.5σ of the constraints from Planck and
BOSSþ BAO. When comparing to the MCMC con-
straints, we find that the width of the 68% confidence
intervals of the profile is a factor 1.2 to 1.6 wider than the
credible intervals of the MCMC. The best-fit obtained from

the profile is within 1σ of the posterior mean obtained from
the MCMC except for the parameter σ8, where the bestfit is
at a 1.59σ higher value than the posterior mean. However,
as with BOSS data, we also find extreme values of the EFT
parameters under eBOSS data.

E. Planck

For comparison, we also constructed profile likelihoods
for Planck data. We find very good agreement between the
constraints from profile likelihoods and MCMC for Planck
data. The width of the confidence and credible intervals
agree within less than 8% and the shifts between best-fit
and posterior mean are less than 0.3σ. This corroborates the
results in Ref. [58], which used Planck 2013 intermediate
results and also found very good agreement between both
methods. The good agreement between the profile like-
lihood and MCMC are expected due to the high con-
straining power of Planck data, which dominates over
any prior information. We note that for all cosmological
parameters, the Planck constraints are in-between the
BOSS and eBOSS ones, indicating no tension between
the CMB and the galaxy clustering data.

VI. CONCLUSIONS

Motivated by previous Bayesian studies that found a prior
dependence of the inferred cosmological parameters from
BOSS full-shape data using the EFTofLSS [25,34,41,42], in
this work, we present frequentist profile likelihood con-
straints to view thismatter from a different statistical point of
view. In particular, two of the commonly used parametriza-
tions of the EFTofLSS, the WC [19] and EC parametriza-
tions [80], give different constraints on the cosmological
parameters of up to ∼1σ in a Bayesian analysis [25].
Using the profile likelihood, we find that the WC and

EC parametrizations yield the same confidence interval for
σ8, confirming that the two parametrizations are mathe-
matically equivalent, i.e., they describe the same space of
model predictions for the galaxy power spectrum multi-
poles (see Fig. 1 in Sec. IVA).10 However, we find that the
profile likelihood gives constraints on σ8 that are factors of
> 2 wider than the constraints based on the MCMC
posterior. Moreover, we observed that several of the
EFT parameters take on extreme values during the profile
likelihood analysis, indicating that the frequentist analysis
takes into account parts of the EFT parameter space
beyond the intended use of the theory, in which the
perturbative nature might be broken. This issue is
addressed in the Bayesian case by imposing narrow
Gaussian priors on the EFT parameters. If these priors

TABLE V. Distance between posterior mean and best-fit in units
of the standard deviation, σ, of the posterior, as defined in Eq. (3).

σ8 h Ωm ns ln 1010As

BOSSþ BAO 0.50σ 0.46σ 0.98σ 0.34σ 0.14σ

eBOSS 1.59σ 0.08σ 0.16σ 0.67σ 0.84σ

Planck 0.16σ 0.08σ 0.03σ 0.29σ 0.05σ

10This equivalence requires the free variation of two EFT
parameters in the WC parametrization (c4 and cmono

ϵ , see Sec. III),
which are typically fixed to zero in the standard WC convention.
Instead, we find a strong correlation between these parameters
and σ8, motivating further study.
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were well-founded, e.g., motivated from theory, simula-
tions, or other observations, the priors could in principle be
promoted to data likelihoods in the frequentist analysis.
Although the priors on the EFT parameters are not
rigorously motivated, we explore the effect of including
Gaussian data likelihoods in the frequentist analysis,
which correspond to the priors in the Bayesian analysis.
We find that the inclusion of the Gaussian likelihoods on
the EFT parameters reduces the width of the constraints
almost to the level of the ones inferred from the MCMC
posterior and keeps the EFT parameters in the intended
range (see Fig. 2 in Sec. IV B). However, it also leads to a
shift of the confidence interval of σ8. This demonstrates
that the priors on the EFT parameters in the Bayesian
analysis are informative and influence the inferred cos-
mological parameters.
As a way forward, we explore the impact that data from

future surveys like DESI [3] will have by considering
BOSSþ BAO data with a data covariance matrix rescaled
by 16 (see Fig. 3 in Sec. IV C). We find that the constraints
from Bayesian and frequentist approaches converge to the
same interval for σ8 as the likelihood dominates over the
prior information, suggesting that the issues discussed
above will subside with more data.
Finally, we construct frequentist confidence intervals for

five selected ΛCDM parameters, σ8, h, Ωm, ns, ln 1010As,
and compare the constraints from different datasets, includ-
ing BOSS, eBOSS and Planck (see Sec. V). With the
profile likelihood, we find that the constraints from BOSS
and Planck for all five parameters are within 1.4σ, finding
no indication of a tension. In particular, while the MCMC
posterior prefers intervals for σ8, which are 1.4σ (2.5σ)
lower than the Planck value for the WC (EC) EFT para-
metrization, the intervals from the profile likelihood are
only 0.5σ (0.3σ) lower than the Planck constraint. The
reduction of the σ distances can be mainly attributed to
the wide confidence intervals from the profile likelihood,
but in the case of σ8, also to shifts of the MLE closer to the
Planck value than the posterior mean. In line with previous
studies [24,25], we find that the parameter σ8 is most
subject to prior effects. This indicates that the slight “σ8
discrepancy” seen in the Bayesian results using the EC
parametrization is due to the particular choice of priors. On
the other hand, although our main profile likelihood
analysis makes use of the WC baseline parametrization
of the EFTofLSS without priors, we do not expect major
changes in our conclusions regarding the state of the σ8
tension from resorting to the use of “priors” or a different
parametrization.
Our results clearly show the advantages and disadvan-

tages of frequentist and Bayesian parameter inference.
Since the frequentist inference does not include priors that
confine the EFT parameters to the regime intended by the
theory, we observe that the data prefers several EFT
parameters to take on extreme values, possibly breaking

the perturbativeness of the theory. The lack of prior further
leads to significantly wider confidence intervals. This loss
of constraining power reflects the purely data driven
frequentist approach, which is completely agnostic about
which model parameters are deemed more likely a priori.
On the other hand, the priors in the Bayesian inference are
informative and have an impact on the inferred cosmo-
logical parameters. This is important since it is not
straightforward to define well motivated priors on the
EFT parameters, which is reflected in the fact that the
WC and EC parametrizations use different standard con-
figurations for the EFT priors.
Looking towards the future, which will bring more

constraining datasets, we can expect these points of
discussion to subside as the data will dominate over any
subjective preference introduced by the analysis setup.
While waiting for better data, our results indicate that the
use of frequentist along with Bayesian methods are
valuable in order to obtain a fully nuanced view of the data.
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APPENDIX A: IMPACT OF PRIORS
ON EFT PARAMETERS

The naturalness of the EFTofLSS framework predicts the
EFT nuisance parameters to be of order unity, and too large
values of these parameters would break the perturbative-
ness of the theory [97]. Thus, the standard WC para-
metrization described in Sec. III B assigns Gaussian priors
on a subset of the nuisance parameters in order to prohibit
the nonperturbative regime from influencing the inference.
In principle, such priors could be informed by N-body

simulations and thereby promoted to likelihoods and
interpreted as additional data in the frequentist approach.
However, since this is not the case for the above priors, it is
statistically not justified to include them in a profile
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likelihood analysis. In the main text, we have illustrated the
impact induced by including the priors as likelihoods in the
analysis. Here, we repeat this analysis varying the width of
the priors.
Flat priors can be modelled as Gaussian priors in the

limit that the standard deviations, or widths, of the Gaussian
priors tend to infinity. Thus, by gradually increasing the
width of the standard Gaussian priors, one uncovers the
effects of the priors. Figure 6 shows σ8 profiles with
BOSSþ BAO data with the Gaussian priors widths
increased by the factor specified in the legend. The red

line corresponds to the standard prior configuration of the
PyBird likelihood (with c4 ¼ cmono

ϵ ¼ 0). We observe that
the profiles converge to the same shape at large factors,
indicating that the Gaussian priors are flat, for all practical
purposes, when their widths are increased by factors above
∼40. Accordingly, for convenience purposes in the PyBird
code, we model the flat priors on the EFT parameters which
have Gaussian priors in the standard configuration by their
usual Gaussian priors but with widths multiplied by 100.
The 68% confidence intervals obtained from the 1x and

100x widths in the figure are

σ8 ¼ 0.802� 0.045 ðwith priorÞ
σ8 ¼ 0.771� 0.075 ðno priorÞ;

amounting to a 0.35σ shift. A similar shift in σ8 was found
in Ref. [25] from an MCMC analysis when increasing the
Gaussian priors widths by a factor of 2. We conclude that
the likelihoods imposed on the EFT parameters may
influence the constraints when using BOSS data (note,
however, that the influence will increase for less con-
straining datasets and vice versa).
The disadvantage of not imposing these likelihoods is

that one loses control over whether the EFT parameters
become too large for the effective field theory description to
be appropriate. Thus, the only correct frequentist approach
is to let them vary freely and then check explicitly by
inspection that they remain of order unity at each point in
the profile likelihood. Figure 7 shows the values of the EFT
nuisance parameters found by optimization at each point in
the σ8 profile with BOSSþ BAO data, both with (red) and
without (black) the explicit likelihoods on the EFT param-
eters. For comparison, the shaded blue region indicates the
1σ region of the Gaussian prior of the parameters, which
have a prior in the standard analysis. We observe that in the

FIG. 6. Profile likelihood of σ8 under BOSSþ BAO data using
Gaussian data likelihoods on the EFT parameters, which corre-
spond to the standard WC priors multiplied by different factors
indicated by the legend. There is a clear shift in σ8 as the prior is
widened. In particular, the profiles with widths multiplied by
factors of 40, 100, and 400 coincide, indicating that the Gaussian
priors reach the limiting case of a flat prior with these large
widths. Thus, in our analysis, we model the flat priors on all EFT
parameters as the usual priors, but with the widths of the Gaussian
priors multiplied by 100.

FIG. 7. Values of the EFT parameters found from optimization at each point in the σ8 profile with BOSSþ BAO data, with (red) and
without (black) the standard WC priors of the PyBird likelihood, described in Sec. III B. The horizontal blue bands illustrate the 1σ
regions of the Gaussian priors. For the parameters without such a band, a flat prior is used ([0, 4] for b1 and ½−4; 4� for c2). The labels
CM and LW denote the CMASS and LOWZ galaxy samples, respectively.
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case without Gaussian likelihoods mimicking priors, the
EFT parameters are not of order unity as desired, which can
break the perturbative nature of the theory. This result
illustrates the conundrum of the priors: either one adopts
subjective priors (in a Bayesian framework), which are
informative and influence the inferred cosmological param-
eters, or one works without priors (in a frequentist
framework), which leads to extreme values of the nuisance
parameters.

APPENDIX B: FULL PROFILE
AND MCMC RESULTS

Figure 8 shows the profile likelihoods (black) and one-
dimensional marginalized posterior distributions (red) for
the BOSSþ BAO, BOSS (without BAO postreconstruc-
tion measurements) and eBOSS datasets, derived in this
paper. The profile likelihoods are normalized to their MLE.
The bottom panels show the 68% and 95% confidence
intervals and credible intervals.

APPENDIX C: BEST-FIT PARAMETERS

For the sake of reproducibility, Table VI shows the
values of the cosmological parameters at the global best-fits

found in this work. We note that the best-fits here are
simply taken as the point in the profile likelihood with the
maximum likelihood; due to the finite sampling of the
profile, the best-fit values of these parameters may there-
fore be slightly inaccurate.

FIG. 8. Profile likelihoods (black) and one-dimensional marginalized posteriors (red) of the parameters σ8, h, Ωm, ns and lnð1010AsÞ
for the datasets BOSSþ BAO, BOSS (without BAO postreconstruction) and eBOSS. The bottom panels show the 68% and
95% confidence intervals and credible intervals, respectively.

TABLE VI. Values of cosmological parameters at the global
best-fit of the ΛCDM model under the BOSSþ BAO, BOSS,
eBOSS and Planck datasets, as specified in Sec. II B. We stress
that, excepting the χ2min, the best-fit values here are only
approximate due to the finite sampling of the profile likelihoods;
a more fair comparison of the constraints is in Table III.

BOSSþ BAO BOSS eBOSS Planck

102ωb 2.2686 2.2682 2.2674 2.2399
ωcdm 0.1391 0.1259 0.1034 0.1198
h 0.7022 0.6838 0.6646 0.6750
ns 0.8728 0.9270 1.1468 0.9663
ln 1010As 2.7925 2.9558 3.5889 3.0442

Ωm 0.3293 0.3191 0.2869 0.3121
σ8 0.7699 0.8025 1.0267 0.8100

χ2min 138.54 128.33 47.98 1387.07
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