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It is well known that, during inflation, the conformal invariance of the electromagnetic action has to be
broken in order to produce magnetic fields of strengths observed today. Often, to further enhance the
strengths of the magnetic fields, parity is also assumed to be violated when the fields are being generated.
In this work, we examine the evolution of the quantum state of the Fourier modes of the nonconformally
coupled and parity-violating electromagnetic field during inflation. We utilize tools such as the Wigner
ellipse, squeezing parameters and quantum discord to understand the evolution of the field. We show that
the violation of parity leads to an enhancement of the squeezing amplitude and the quantum discord (or,
equivalently, in this context, the entanglement entropy) associated with a pair of opposite wave vectors for
one of the two states of polarization (and a suppression for the other state of polarization), when compared
to the case wherein parity is conserved. We highlight the similarities between the evolution of the Fourier
modes of the electromagnetic field when parity is violated during inflation and the behavior of the modes of
a charged, quantum, scalar field in the presence of a constant electric field in a de Sitter universe. We briefly
discuss the implications of the results we obtain.
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I. INTRODUCTION

Magnetic fields are observed over a wide range of scales
in the Universe (for reviews on magnetic fields, see
Refs. [1–10]). They are observed in planets, stars, galaxies,
clusters of galaxies and even in the intergalactic medium
(for recent discussions of the various observational con-
straints, see, for example, Refs. [10,11]). The magnetic
fields observed in planets, stars and galaxies can be
generated through astrophysical mechanisms such as bat-
teries (in this context, see, for instance, Refs. [3,4]).
However, one may need to invoke a cosmological mecha-
nism to explain the magnetic fields observed in the
intergalactic medium [12–18].
As is well known, the inflationary paradigm provides a

simple and elegant mechanism for the origin of perturba-
tions in the early Universe (see, for example, the reviews
[19–28]). The scalar and tensor perturbations arise due to
quantum fluctuationswhen the Fouriermodes are in the sub-
Hubble domain during the early stages of inflation, and they
are expected to turn classical as the modes emerge from the

Hubble radius and evolve onto super-Hubble scales (for
discussions in this regard, see, for instance, Refs. [29–38]).
The magnetic fields can also be generated in a similar
manner. However, since the standard electromagnetic action
is conformally invariant, the strengths of the electromagnetic
fields produced in such a casewill be rapidly diluted (as a−2,
with a being the scale factor) during inflation. Therefore, the
conformal invariance of the electromagnetic action has to be
broken in order to generate magnetic fields of adequate
strengths today (see, for example, Refs. [39–47]). This can
be efficiently achieved by coupling the electromagnetic field
to one or more of the scalar fields that drive inflation
[41,43,48–52]. Interestingly, it has been found that the
addition of a parity-violating term to the action can signifi-
cantly enhance the strengths of the generated electromag-
netic fields [51–61].
One of the open problems in cosmology today is to

understand the quantum-to-classical transition of the per-
turbations generated during inflation. The main challenge
in this regard is to identify observable signatures that can
unequivocally point to the quantum origin of the perturba-
tions. The evolution of the quantum state associated with
the Fourier modes of the scalar and tensor perturbations
during inflation has been studied extensively in the liter-
ature (for an intrinsically incomplete list of efforts on this
topic, see Refs. [29–38,62–65]; for related discussions in
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alternative scenarios such as bounces, see Refs. [66–68]). At
the linear order in perturbation theory, these Fourier modes
are described by time-dependent, quadratic Hamiltonians
and, in such situations, the unitary evolution operator can be
described in terms of what are known as the squeezing and
rotation operators [69,70]. The evolution of the quantum
state of such systems is often tracked using the Wigner
function, which is a quasiprobability distribution in phase
space (in this regard, see, for example, Refs. [71,72]). The so-
calledWigner ellipse is a contour in phase space correspond-
ing to a given value of the Wigner function. Usually, the
perturbations are assumed to evolve from the ground state, in
which case, the Wigner ellipse is initially a circle. As the
nomenclature suggests, the squeezing and rotation operators
typically squeeze the Wigner circle into an ellipse and rotate
it around its center, as the system evolves [73,74].
At the linear order in perturbation theory, the Fourier

modes associated with the scalar or tensor perturbations
corresponding to the different wave numbers evolve inde-
pendently. However, interestingly, one finds that, for a
given wave number, say, k, the Hamiltonian describing the
scalar or the tensor perturbations contains a term that
describes an interaction between Fourier modes with the
opposite wave vectors k and −k. As a result, the quantum
state associated with these wave vectors proves to be
entangled [38,75]. Over the last decade, it has been realized
that the notion of quantum discord can be utilized as a tool
to describe the evolution of the perturbations in such
situations [38,75,76]. Discord is a quintessentially quantum
property, i.e. it can be shown to be zero for a classical
system. Moreover, it is more ubiquitous than entanglement,
and discordant systems contain entangled systems as a
subset [77]. In other words, a system possessing entangle-
ment will also have a nonzero quantum discord, but the
converse is not true. Since it reflects the quantumness of a
system, quantum discord has been made use of in cosmol-
ogy to probe the quantum origin of the cosmological
perturbations. The large quantum discord at the end of
inflation has been used to argue that cosmological pertur-
bations are indeed placed in a very quantum state [38].
While the evolution of the quantum state associated with

the primordial scalar and tensor perturbations have been
studied in considerable detail, we notice that there has only
been limited efforts to understand the behavior in the case
of magnetic fields (in this context, see, for instance,
Refs. [78,79]). Though there are some similarities between
the evolution of scalar or tensor perturbations and magnetic
fields, there can be crucial differences as well. In this work,
we examine the evolution of the quantum state of the
Fourier modes of the nonconformally coupled and parity-
violating electromagnetic field during inflation. Using tools
such as the Wigner ellipse, squeezing parameters and
quantum discord, we in particular investigate the effects
that arise due to the violation of parity. Apart from the
standard case of slow-roll inflation, we examine the

behavior of these measures when there arise departures
from slow-roll inflation. Specifically, we show that the
violation of parity amplifies the extent of squeezing and
quantum discord associated with one of the two states of
polarization.
This paper is organized as follows. In the following

section, we arrive at the action governing the Fourier modes
of the electromagnetic field that is coupled nonconformally
to the scalar field driving inflation. We also consider the
effects of an additional term in the action that induces the
violation of parity. InSec. III,we carry out the quantizationof
the electromagnetic modes in the Schrödinger picture. We
also discuss the evolution of the quantum state during
inflation. In Sec. IV, we introduce the different measures,
such as the Wigner ellipse, squeezing parameters and
entanglement entropy (or quantum discord), that allow us
to describe the evolution of the quantum state of the
electromagnetic field. In Sec. V, we discuss the behavior
of thesemeasures of thequantumstate in specific inflationary
models. In addition to discussing the results in models that
permit slow-roll inflation, we discuss the behavior in single-
and two-field models that lead to departures from slow roll.
Finally, we conclude in Sec. VI with a summary of the main
results obtained. In an appendix, we discuss the similarity
between the behavior of the modes of a parity-violating
electromagnetic field and a charged scalar field in the
presence of an electric field in a de Sitter background. We
also discuss a few related points in three other appendices.
Before we proceed further, let us clarify a few points

regarding the conventions and notations that we work with.
We work with natural units such that ℏ ¼ c ¼ 1, and set the
reduced Planck mass to beMPl ¼ ð8πGÞ−1=2. We adopt the
signature of the metric to be ð−;þ;þ;þÞ. Note that latin
indices represent the spatial coordinates, except for k which
will be reserved for denoting the wave number. We assume
the background to be the spatially flat, Friedmann-
Lemaître-Robertson-Walker (FLRW) universe described
by the following line element:

ds2 ¼ −dt2 þ a2ðtÞdx2 ¼ a2ðηÞð−dη2 þ dx2Þ; ð1Þ

where t and η denote cosmic time and conformal time
coordinates, while a represents the scale factor. Also, an
overdot and an overprime denote differentiation with
respect to the cosmic and conformal time coordinates,
respectively. Moreover,N represents the number of e-folds.
Last, H ¼ ȧ=a represents the Hubble parameter.

II. NONCONFORMALLY COUPLED
ELECTROMAGNETIC FIELDS

In this section, we describe the actions of our interest and
express them in terms of the Fourier modes of the electro-
magnetic vector potential. Later, we utilize the reduced
action to arrive at the corresponding Hamiltonian while
discussing the quantization of the electromagnetic modes in
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the Schrödinger picture. As we mentioned, we are interested
in examining a situation wherein the electromagnetic field is
coupled nonconformally to the scalar field, say,ϕ, that drives
inflation. It proves to be instructive to first discuss nonhelical
electromagnetic fields, before we go on to consider the
helical case.

A. Nonhelical electromagnetic fields

The action describing the nonhelical electromagnetic
field has the form

S½Aμ� ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p
J2ðϕÞFμνFμν; ð2Þ

where JðϕÞ denotes the nonconformal coupling function
and the field tensor Fμν is expressed in terms of the vector
potential Aμ as Fμν ¼ ð∂μAν − ∂νAμÞ. In a spatially flat,
FLRW universe, if we work in the Coulomb gauge wherein
Aη ¼ 0 and ∂iAi ¼ 0, then the above action reduces to

S½Ai� ¼
1

4π

Z
dη

Z
d3xJ2ðηÞ

�
1

2
A0
iA

i0 −
1

4
FijFij

�
; ð3Þ

with the spatial indices raised or lowered with the aid of δij

or δij.
Let k denote the comoving wave vector and let k̂ be the

corresponding unit vector. For each vector k, we can define
the right-handed orthonormal basis vectors (ε̂k1; ε̂

k
2; k̂) which

satisfy the relations

ε̂k1 · ε̂
k
1 ¼ ε̂k2 · ε̂

k
2 ¼ 1; ε̂k1 · ε̂

k
2 ¼ 0; ð4aÞ

ε̂k1 × ε̂k2 ¼ k̂; k̂ · ε̂k1 ¼ k̂ · ε̂k2 ¼ 0; ð4bÞ

ε̂−k1 ¼ −ε̂k1; ε̂−k2 ¼ ε̂k2: ð4cÞ

Let us denote the components of the polarization vector
as εkλi, where λ ¼ f1; 2g represents the two states of
polarization of the electromagnetic field. It can be shown
that the components εkλi satisfy the condition

X2
λ¼1

εkλiε
k
λj ¼ δij −

kikj
k2

¼ δij − k̂ik̂j; ð5Þ

where k̂i denotes the ith component of unit vector k̂. In
terms of the components εkλi, we can Fourier decompose the
vector potential Aiðη; xÞ in the following manner:

Aiðη; xÞ ¼
ffiffiffiffiffiffi
4π

p Z
d3k

ð2πÞ3=2
X2
λ¼1

εkλiĀ
λ
kðηÞeik·x: ð6Þ

Since Aiðη; xÞ and εkλi are real, we obtain that

εkλiĀ
λ
kðηÞ ¼ ε−kλi Ā

λ�
−kðηÞ ð7Þ

and, upon using the properties in Eqs. (4a)–(4c), this
condition for reality leads to

Ā1
−k ¼ −Ā1�

k ; Ā2
−k ¼ Ā2�

k : ð8Þ

In terms of the Fourier modes Āλ
k, we can express the action

(3) as follows:

S½Āk� ¼
Z

dη
Z

d3k
X2
λ¼1

J2ðηÞ
�
1

2
jĀλ

k
0j2 − k2

2
jĀλ

kj2
�
: ð9Þ

On varying this action, we obtain the equation of motion
governing the modes Āλ

k to be [43,80]

Āλ
k
00 þ 2

J0

J
Āλ
k
0 þ k2Āλ

k ¼ 0: ð10Þ

B. Helical electromagnetic fields

Let us now turn to the case of helical electromagnetic
fields. In general, the action describing helical electromag-
netic fields has the form [51–61]

S½Aμ� ¼ −
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
J2ðϕÞFμνFμν

−
γ

2
I2ðϕÞFμνF̃μν

�
; ð11Þ

where IðϕÞ represents another coupling function, while γ is
a constant. The dual field tensor F̃μν is defined as
F̃μν ¼ ϵμναβFαβ, with ϵμναβ ¼ ð1= ffiffiffiffiffiffi−gp ÞAμναβ. The quantity
ϵμναβ is the totally antisymmetric Levi-Civita tensor and
Aμναβ is the corresponding tensor density with the con-
vention that A0123 ¼ 1 [9]. In a spatially flat, FLRW
universe, when working in the Coulomb gauge, the
above action describing the helical electromagnetic field
simplifies to

S½Ai� ¼
1

4π

Z
dη

Z
d3x

�
J2ðηÞ

�
1

2
A0
iA

i0 −
1

4
FijFij

�

þ γI2ðηÞϵijlA0
ið∂jAlÞ

�
; ð12Þ

where, as before, the spatial indices are raised or lowered
using δij or δij, and ϵijl represents the totally antisymmetric
Levi-Civita tensor in three-dimensional Euclidean space.
The Fourier modes of the helical field will be coupled in

the basis ðε̂k1; ε̂k2; k̂Þ that we had considered in the case of a
nonhelical electromagnetic field. To decouple the modes,
one can combine the two transverse directions ε̂k1 and ε̂k2 to
form the so-called helicity basis [51–61]. In such a case, we
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can define an orthonormal basis of vectors ðε̂kþ; ε̂k−; k̂Þ,
where the vectors ε̂k� are defined as

ε̂k� ¼ 1ffiffiffi
2

p ðε̂k1 � iε̂k2Þ: ð13Þ

Using Eqs. (4a)–(4c), one can show that these vectors
satisfy the following properties:

ε̂kþ · ε̂k�þ ¼ 1; ε̂k− · ε̂k�− ¼ 1; ε̂kþ · ε̂k�− ¼ 0; ð14aÞ

ε̂k�� ¼ ε̂k∓; ε̂−k� ¼ −ε̂k∓; ik̂ × ε̂k� ¼ �ε̂k�: ð14bÞ

Let εkσi denote the components of the polarization vector,
with σ ¼ �1 corresponding to the two helical polarizations
in the transverse directions of the wave vectors. It can be
established that

X
σ¼�

εkσiε
k�
σj ¼ δij −

kikj
k2

¼ δij − k̂ik̂j: ð15Þ

In terms of the components εkσi of the polarization vector,
we can decompose the electromagnetic vector potential in
terms of the Fourier mode functions Āσ

k as follows:

Aiðη; xÞ ¼
ffiffiffiffiffiffi
4π

p Z
d3k

ð2πÞ3=2
X
σ¼�

εkσiĀ
σ
kðηÞeik·x: ð16Þ

Note that Āσ
k can be written in terms of Āλ

k as

Āσ
k ¼

1ffiffiffi
2

p ðĀ1
k − iσĀ2

kÞ ð17Þ

so that the reality condition (8) becomes

Āσ
−k ¼ −Āσ�

k : ð18Þ

In terms of the Fourier modes Āσ
k, the action (12) can be

expressed as

S½Āσ
k� ¼

Z
dη

Z
d3k

X
σ¼�

J2ðηÞ
�
1

2
jĀσ

k
0j2

þ σγkI2

2J2
ðĀσ

k
0Āσ�

k þ Āσ
k
0�Āσ

kÞ −
k2

2
jĀσ

kj2
�
: ð19Þ

On varying this action, we obtain the equation of motion
governing the Fourier modes Āσ

k to be [51–61]

Āσ00
k þ 2

J0

J
Āσ0
k þ ω̄2Āσ

k ¼ 0; ð20Þ

where the quantity ω̄2 is given by

ω̄2 ¼ k2 þ 2σγkII0

J2
: ð21Þ

We should point out that, in contrast to the nonhelical case,
the two states of polarization in the helical case (corre-
sponding to σ ¼ �1) satisfy different equations and hence
evolve differently.

III. QUANTIZATION IN THE
SCHRÖDINGER PICTURE

In this section, we discuss the quantization of the Fourier
modes of the electromagnetic field in the Schrödinger
picture.

A. Identifying the independent degrees of freedom

To proceed in a manner similar to the analysis of
the scalar or tensor perturbations described in terms of
the associated Mukhanov-Sasaki variable, we define the
quantity

Aσ
k ¼ iJĀσ

k: ð22Þ

We should clarify that the i factor has been introduced so
that the reality condition (18) becomes

Aσ
−k ¼ Aσ

k
�; ð23Þ

mirroring the relation for the Fourier components of the
Mukhanov-Sasaki variable in the case of the scalar pertur-
bations [38]. In terms of the quantities Aσ

k, the action (19)
can be expressed as

S½Aσ
k� ¼

Z
dη

Z
d3k

X
σ¼�

�
1

2
jAσ

k
0j2

−
κ

2
ðAσ

k
0Aσ�

k þAσ
k
0�Aσ

kÞ −
μ2

2
jAσ

kj2
�
; ð24Þ

where the quantities μ2 and κ are given by

μ2 ¼ k2 −
�
J0

J

�
2

þ 2σγkI2J0

J3
; ð25aÞ

κ ¼ J0

J
−
σγkI2

J2
: ð25bÞ

The above action has the same structure as the action
describing the Fourier components of the Mukhanov-
Sasaki variable associated with the scalar perturbations
(in this context, see, for instance, Ref. [38]). But, note that,
in the case of the electromagnetic field, the two values of σ
lead to twice as many degrees of freedom for every k. In the
nonhelical case (i.e. when γ ¼ 0), the above action, in fact,
reduces exactly to the form of the action describing the
scalar perturbations (with the nonconformal coupling
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function J replaced by the scalar pump field z). However, in
the helical case, there arises an important difference with
the quantities μ2 and κ turning out to be dependent on the
combination ðσγkÞ.
With the action describing the Fourier modes of the

electromagnetic field at hand, we can construct the
Hamiltonian associated with each of these modes. Using
the Hamiltonian, we can carry out the quantization of the
modes in the Schrödinger picture. However, note that the
reality condition (23) implies that not all the Fourier modes
Aσ

k are independent. In order to focus on only the
independent degrees of freedom, we divide the Fourier
space into two parts (such that k and −k occur in different
halves) and express the modes in one half in terms of the
modes in the other half using the relation (23) (for a similar
discussion in the case of scalar and tensor perturbations,
see, for instance, Refs. [36,38,76,81–83]). The division of
the three-dimensional Euclidean space R3 into two can be
carried out by any plane passing through the origin.
Therefore, the resultant integral will be over one-half of
the Fourier space (which we shall denote as R3=2) so that
we have

S½Aσ
k� ¼

Z
dη

Z
R3=2

d3k
X
σ¼�

½jAσ
k
0j2

− κðAσ
kA

σ
k
0� þAσ

k
�Aσ

k
0Þ − μ2jAσ

kj2�: ð26Þ

Later, we focus on scenarios wherein I ¼ J, with J0=J
vanishing at early times. In such situations, due to the term
involving ðσγkÞ in κ, the above action does not reduce to
that of a free harmonic oscillator during the initial stages of
inflation.1 We remedy the issue by adding the following
total time derivative term to the above action:

−
d
dη

�
σγkI2

J2
jAσ

kj2
�
: ð27Þ

In such a case, the resulting action turns out to be

S½Aσ
k� ¼

Z
dη

Z
R3=2

d3k
X
σ¼�

�
jAσ

k
0j2

−
J0

J
ðAσ

kA
σ
k
0� þAσ

k
�Aσ

k
0Þ − μ̄2jAσ

kj2
�
; ð28Þ

where the quantity μ̄2 is defined as

μ̄2 ¼ ω̄2 −
�
J0

J

�
2

ð29Þ

with ω̄2 given by Eq. (21). In Appendix A, we discuss
further the reasons for adding the total time derivative and
working with the modified action.
But, since Aσ

k is not a real variable, it will not lead to a
Hermitian operator on quantization. Hence, we perform the
quantization in terms of the real and imaginary parts of the
variable. Let Aσ

kR=
ffiffiffi
2

p
and Aσ

kI=
ffiffiffi
2

p
denote the real and

imaginary parts of Aσ
k so that we have

Aσ
k ¼

1ffiffiffi
2

p ðAσ
kR þ iAσ

kIÞ: ð30Þ

In such a case, we find that the action (28) splits into two
equivalent terms describing the real and imaginary parts,
which implies that they evolve independently. These
quantities are governed by the following Lagrangian
density in Fourier space:

L ¼ 1

2
A02 −

J0

J
A0A −

μ̄2

2
A2; ð31Þ

where A stands for either Aσ
kR or Aσ

kI.

B. Schrödinger equation and the Gaussian ansatz

Let us now quantize the system in the Schrödinger
picture. Given the Lagrangian (31), the canonical conjugate
momentum P is given by

P ¼ A0 −
J0

J
A: ð32Þ

The corresponding Hamiltonian density in Fourier space,
can be immediately obtained to be2

H ¼ P2

2
þ J0

J
PAþ 1

2
ω̄2A2; ð33Þ

where ω̄2 is given by Eq. (21). To ensure that, on
quantization, the operator corresponding to this
Hamiltonian is Hermitian, as is often done, we symmetrize
the classical quantity ðPAÞ and consider the corresponding
operator to be ðP̂ ÂþÂ P̂Þ=2. In such a case, if ΨðA; ηÞ is
the wave function describing the system, then, on repre-
senting the momentum operator P̂ as −i∂=ð∂AÞ, the above
Hamiltonian leads to the following Schrödinger equation
governing the wave function:

i
∂Ψ
∂η

¼ −
1

2

∂
2Ψ
∂A2

−
i
2

J0

J

�
Ψþ 2A

∂Ψ
∂A

�
þ 1

2
ω̄2A2Ψ: ð34Þ

1Though, we should hasten to clarify that the equation of
motion governing Aσ

k indeed reduces to that of a free harmonic
oscillator at such times.

2Aswith theLagrangian densityL in Fourier space, we hereafter
refer to H simply as the Hamiltonian. Also, the Hamiltonian H
should not be confused with the conformal Hubble parameter,
which is often denoted in the same manner. We do not make use of
the conformal Hubble parameter in this paper.
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We assume that, at very early times, the Fourier modes are
in the ground state, often referred to as the Bunch-Davies
vacuum. To take into account such an initial condition, we
assume that the wave function is described by the Gaussian
ansatz (see, for instance, Refs. [36,84–87])

ΨðA; ηÞ ¼ N ðηÞ exp ½−ΩðηÞA2=2�; ð35Þ

where N and Ω are, in general, complex quantities. The
normalization of the wave function ΨðA; ηÞ, viz.

Z
∞

−∞
dAjΨðA; ηÞj2 ¼ 1; ð36Þ

immediately leads to the following relation between the
functions N ðηÞ and ΩðηÞ:

jN j ¼
�
ΩR

π

�
1=4

; ð37Þ

where ΩR ¼ ðΩþΩ�Þ=2 denotes the real part of the
functionΩ. This implies thatN can be determined (modulo
an unimportant overall phase factor) if we can obtain Ω.
Upon substituting the ansatz (35) for the wave function

ΨðA; ηÞ in the Schrödinger equation (34), we find that the
quantity Ω satisfies the differential equation

Ω0 ¼ −iΩ2 − 2
J0

J
Ωþ iω̄2: ð38Þ

In order to solve such a differential equation, let us write

Ω ¼ −i
g�

f�
; ð39Þ

where

g ¼ f0 −
J0

J
f: ð40Þ

On substituting the above expression for Ω in Eq. (38), we
arrive at the following equation governing f�:

f�00 þ ω2f� ¼ 0; ð41Þ

where the quantity ω2 is given by

ω2 ¼ μ2 − κ0 ¼ ω̄2 −
J00

J
¼ k2 −

J00

J
þ 2σγkII0

J2
: ð42Þ

The above differential equation for f� is identical in form to
the equation of motion that governs A [which can be
arrived at by substituting the relation (22) between Aσ

k and
Āσ
k in Eq. (20)]. In other words, if we know the classical

solution for A (or, equivalently, f), then we can construct
the wave function ΨðA; ηÞ completely.

IV. MEASURES THAT REFLECT THE
EVOLUTION OF THE QUANTUM STATE

In this section, we discuss the ideas of the Wigner
ellipse, squeezing parameters and entanglement entropy
(or, equivalently, quantum discord), measures that help us
understand the evolution of the wave function describing
the system.

A. Wigner ellipse

Given a wave function ΨðA; ηÞ, the Wigner function
WðA;P; ηÞ is defined as [71,72]

WðA;P;ηÞ¼ 1

π

Z
∞

−∞
dyΨðA−y;ηÞΨ�ðAþy;ηÞe2iPy: ð43Þ

For the Gaussian form ofΨðA; ηÞ in Eq. (35), we can easily
obtain the Wigner function to be

WðA;P; ηÞ ¼ 1

π
exp

�
−ΩRA2 −

1

ΩR
ðP þΩIAÞ2

�
; ð44Þ

where ΩI is the imaginary part of Ω, i.e. ΩI ¼
ðΩ −Ω�Þ=ð2iÞ. To visualize the evolution of the Wigner
function in the phase space A-P, we can choose to plot the
behavior of the contour described by the condition

ΩRA2 þ 1

ΩR
ðP þΩIAÞ2 ¼ 1; ð45Þ

which is often referred to as the Wigner ellipse [72–74].
At very early times, if we demand that the wave function

ΨðA; ηÞ corresponds to the Bunch-Davies vacuum, then the
function f is expected to behave as

f ≃
1ffiffiffiffiffi
2k

p e−ikη: ð46Þ

For a power-law form of J (say, when J ∝ η−n, where n is a
real number), we have, at early times (i.e. as η → −∞)

g ¼ f0 −
J0

J
f ≃ −i

ffiffiffi
k
2

r
e−ikη: ð47Þ

It is useful to note that, for such an initial condition, the
Wronskian associated with the functions f and g is given by

W ¼ fg� − gf� ¼ i: ð48Þ

The above expressions for f and g lead to ΩR ¼ k and
ΩI ¼ 0. If we introduce the following canonical variables
which have the same dimension:

Ā ¼
ffiffiffi
k

p
A; P̄ ¼ Pffiffiffi

k
p ; ð49Þ
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then the condition (45) reduces to

Ā2 þ P̄2 ¼ 1: ð50Þ

In other words, at early times, the Wigner ellipse is a circle
with its center located at the origin, as in the case of the
scalar perturbations.

B. Squeezing parameters

The squeezing parameters can be related to the compo-
nents of the so-called covariance matrix associated with the
wave function. In terms of the conjugate variablesA andP,

the covariance matrix is defined as (see, for example,
Refs. [36,85])

V ¼
�

khÂ2i hÂ P̂þP̂ Âi=2
hÂ P̂þP̂ Âi=2 hP̂2i=k

�
; ð51Þ

where the expectation values are to be evaluated in the state
described by the wave function ΨðA; ηÞ [cf. Eq. (35)]. The
covariance matrix can be expressed in terms of the
squeezing amplitude r and the squeezing angle φ as follows
[70,76,81,85]:

V ¼ 1

2

�
coshð2rÞ þ sinhð2rÞ cosð2φÞ sinhð2rÞ sinð2φÞ

sinhð2rÞ sinð2φÞ coshð2rÞ − sinhð2rÞ cosð2φÞ

�
: ð52Þ

The shape and orientation of the Wigner ellipse has
a one-to-one correspondence with the covariance matrix
(in this regard, see Refs. [70,76,85]; in particular, see
Appendix A of Ref. [88]). Using the wave function (35)
and the expressions for N and Ω in Eqs. (37) and (39), it
can be shown that

hÂ2i ¼ jfj2 ¼ 1

2k
½coshð2rÞ þ sinhð2rÞ cosð2φÞ�; ð53aÞ

hP̂2i ¼ jgj2 ¼ k
2
½coshð2rÞ − sinhð2rÞ cosð2φÞ�; ð53bÞ

1

2
hÂP̂þP̂ Âi¼ 1

2
ðfg� þf�gÞ¼ 1

2
sinhð2rÞsinð2φÞ; ð53cÞ

which can be inverted to arrive at

coshð2rÞ ¼ kjfj2 þ jgj2
k

; ð54aÞ

cosð2φÞ ¼ 1

sinhð2rÞ
�
kjfj2 − jgj2

k

�
; ð54bÞ

sinð2φÞ ¼ 1

sinhð2rÞ ðfg
� þ f�gÞ: ð54cÞ

In other words, if we know the solutions to the classical
Fourier modes of the electromagnetic field, we can arrive at
the squeezing amplitude r and squeezing angle φ that
describe the evolution of the wave function of the quantum
system. We should point out that, since, at early times,
f and g are given by Eqs. (46) and (47), we have
coshð2rÞ ¼ 1, or, equivalently, r ¼ 0. This essentially
indicates that the electromagnetic mode is in its ground
state at early times. Note that, in the same limit, the
squeezing angle φ is undetermined.

C. Entanglement entropy and quantum discord

We now derive the entanglement entropy and quantum
discord that arises when we make a particular partition of
our system of the nonconformally coupled electromagnetic
field into two subsystems. It can be shown that, when the
complete system is in a pure state, quantum discord
coincides with the entanglement entropy (for a discussion
in this regard, see, for instance, Refs. [77,89]). Since our
system consists only of the electromagnetic field, with the
coupling to the inflaton being parametrized by time-
dependent coefficients, the quantum state of the system
is in a pure state. Therefore, from now on, we discuss the
entanglement entropy of the system and it is to be under-
stood that it is the same as the quantum discord.
In Secs. III B, IVA and IV B, we carried out the analysis

in terms of the real or imaginary parts of the variable Aσ
k

defined in Eq. (30). All these variables are decoupled and
hence we could work with a fiducial variable representing
all of them. In terms of these variables, if we start with an
initially unentangled state, there will be no generation of
quantum correlations between the different degrees of
freedom and, hence, no generation of quantum discord.
However, we can evaluate the entanglement entropy or
quantum discord between the k and −k sectors, similar to
what has been carried out earlier for the scalar perturbations
[38,75]. In this section, working in the Schrödinger picture,
we explicitly derive the entanglement entropy of the system
that has been partitioned in the same manner, i.e. into two
sectors of k and −k.

1. Challenges with the modified action

Recall that we had originally obtained the action (24) to
describe the Fourier modesAσ

k of the electromagnetic field.
In order for the action to reduce to that of a free, simple
harmonic oscillator during the early stages of inflation, we
had added the total time derivative (27) to eventually arrive
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at the action (28). In this section, we point out that there
arises a challenge in working with the action (or, equiv-
alently, the associated conjugate momentum) to calculate
the entanglement entropy between the electromagnetic
modes with wave vectors k and −k.
Let us begin by first rewriting the action (28) using the

relation (23) between Aσ
−k and Aσ

k as follows:

S½Aσ
k;A

σ
−k� ¼

Z
dη

Z
R3=2

d3k
X
σ¼�

�
Aσ

k
0Aσ0

−k

−
J0

J
ðAσ

k
0Aσ

−k þAσ0
−kA

σ
kÞ− μ̄2Aσ

kA
σ
−k

�
: ð55Þ

The Lagrangian density in Fourier space associated with
this action is clearly given by

L ¼ Aσ
k
0Aσ

−k
0 −

J0

J
ðAσ

k
0Aσ

−k þAσ0
−kA

σ
kÞ − μ̄2Aσ

kA
σ
−k: ð56Þ

Therefore, the conjugate momenta, say, Pσ
k and Pσ

−k,
associated with the variables Aσ

k and Aσ
−k are given by

Pσ
k ¼

∂L
∂Aσ0

−k
¼ Aσ

k
0 −

J0

J
Aσ

k; ð57aÞ

Pσ
−k ¼

∂L
∂Aσ

k
0 ¼ Aσ0

−k −
J0

J
Aσ

−k: ð57bÞ

These conjugate momenta satisfy the relation

Pσ
−k ¼ Pσ

k
�; ð58Þ

which is akin to the relation (23) betweenAσ
k andA

σ
−k. The

Hamiltonian of the system containing the two subsystems k
and −k can be obtained to be (for a similar discussion in the
case of scalar perturbations, see, for instance, Ref. [38])

H ¼ Pσ
kP

σ
−k þ

J0

J
ðAσ

kP
σ
−k þAσ

−kP
σ
kÞ þ ω̄2Aσ

kA
σ
−k; ð59Þ

where the quantity ω̄2 is given by Eq. (21).
The conjugate variables ðAσ

k;P
σ
kÞ and ðAσ

−k;P
σ
−kÞ that

appear in the above Hamiltonian are not real. Hence, they
will not turn out to be Hermitian when they are elevated to
be operators on quantization. Motivated by the approach
that has been adopted in the case of the scalar perturbations
(in this context, see Refs. [38,82]), we can define the new
quantities ðxσk; pσ

kÞ in terms of ðAσ
k;P

σ
kÞ and ðAσ

−k;P
σ
−kÞ as

follows:

xσk ¼
1

2
ðAσ

k þAσ
−kÞ þ

i
2ω̄

ðPσ
k − Pσ

−kÞ; ð60aÞ

pσ
k ¼

1

2
ðPσ

k þ Pσ
−kÞ −

iω̄
2
ðAσ

k −Aσ
−kÞ; ð60bÞ

and quantize the system in terms of these new variables.
Note that, in the nonhelical case wherein γ ¼ 0, the
quantity ω̄2 [cf. Eq. (21)] reduces to k2, and hence the
new variables are similar to those encountered in the scalar
case (with the nonconformal coupling function J replaced
by the pump field z). However, we find that, in the helical
case, i.e. when γ is nonzero, the quantity ω̄2 may not remain
positive definite over some domains in time, and hence the
quantity ω̄ may turn out to be imaginary. This implies that
the quantities ðxσk; pσ

kÞ will not remain real, and hence
cannot be utilized for carrying out the quantization of the
system.3 Therefore, in what follows, we turn to the original
action (24) for quantization and the evaluation of the
entanglement entropy between the electromagnetic modes
with wave vectors k and −k.

2. Working with the original action

Note that the original action (26) can be expressed as

S½Aσ
k;A

σ
−k� ¼

Z
dη

Z
R3=2

d3k
X
σ¼�

½Aσ
k
0Aσ0

−k

− κðAσ
k
0Aσ

−k þAσ0
−kA

σ
kÞ − μ2Aσ

kA
σ
−k� ð61Þ

so that the associated Lagrangian density in Fourier space is
given by

L ¼ Aσ
k
0Aσ0

−k − κðAσ
k
0Aσ

−k þAσ0
−kA

σ
kÞ − μ2Aσ

kA
σ
−k: ð62Þ

The conjugate momenta associated with the variables Aσ
k

and Aσ
−k can be easily obtained to be

Pσ
k ¼

∂L
∂Aσ0

−k
¼ Aσ

k
0 − κAσ

k; ð63aÞ

Pσ
−k ¼

∂L
∂Aσ

k
0 ¼ Aσ0

−k − κAσ
−k; ð63bÞ

which correspond to the conjugate momentum in Eq. (A2).
In such a case, we find that the Hamiltonian of the system
can be expressed as

H ¼ Pσ
kP

σ
−k þ κðAσ

kP
σ
−k þAσ

−kP
σ
kÞ þ ω̃2Aσ

kA
σ
−k; ð64Þ

where the quantity ω̃2 is given by

ω̃2 ¼ k2
�
1þ γ2I4

J4

�
: ð65Þ

3One simple way to overcome this difficulty would be to
replace ω̄ in Eqs. (60a)–(60b) by either k or jω̄j. But, the resulting
Hamiltonians turn out to be rather cumbersome to deal with.
It would be worthwhile to examine if one can construct other
canonical variables which remain real and can be utilized to
quantize the system.
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We should point out here that, in contrast to the quantity ω̄2

[cf. Eq (21)] which we had encountered in the Hamiltonian
(59) earlier, the quantity ω̃2 that appears in the above
Hamiltonian is clearly positive definite.
We can nowmake use of the transformations (60a)–(60b)

with ω̄ replaced by ω̃ to arrive at the new set of real variables
ðxσk; pσ

kÞ. In terms of these variables, the Hamiltonian (64) of
the system turns out to be

H ¼ 1

2
ðpσ

kp
σ
k þ pσ

−kp
σ
−kÞ þ κðxσkpσ

−k þ xσ−kp
σ
kÞ

þ ω̃2

2
ðxσkxσk þ xσ−kx

σ
−kÞ: ð66Þ

For convenience, we hereafter refer to xσk and x
σ
−k simply as

x1 and x2. The Schrödinger equation describing the system
can then be written as

i
∂Ψ
∂η

¼ −
1

2

�
∂
2Ψ
∂x21

þ ∂
2Ψ
∂x22

�
− iκ

�
x1

∂Ψ
∂x2

þ x2
∂Ψ
∂x1

�

þ ω̃2

2
ðx21 þ x22ÞΨ: ð67Þ

As we had done earlier [cf. Eq. (35)], we can consider the
following Gaussian ansatz for the wave function describing
the system:

Ψðx1; x2; ηÞ ¼ N ðηÞ exp
�
−
1

2
Ω1ðηÞðx21 þ x22Þ

−Ω2ðηÞx1x2
�
; ð68Þ

where, evidently,N is a new, suitable, normalization factor.
The normalization of the wave function leads to the con-
dition

jN j ¼
�
Ω2

1R −Ω2
2R

π2

�
1=4

; ð69Þ

where Ω1R ¼ ðΩ1 þΩ�
1Þ=2 and Ω2R ¼ ðΩ2 þ Ω�

2Þ=2 are
the real parts of the quantities Ω1 and Ω2.
On substituting the wave function (68) in the

Schrödinger equation (67), we find that the quantities Ω1

and Ω2 satisfy the following differential equations:

Ω0
1 ¼ −iðΩ2

1 þΩ2
2Þ − 2κΩ2 þ iω̃2; ð70aÞ

Ω0
2 ¼ −2iΩ1Ω2 − 2κΩ1: ð70bÞ

If we now define Ωþ ¼ Ω1 þ Ω2, upon combining the
above equations for Ω1 and Ω2, it is easy to show that the
quantity Ωþ satisfies the equation

Ω0þ ¼ −iΩ2þ − 2κΩþ þ iω̃2; ð71Þ

where, recall that, the quantity ω̃2 is given by Eq. (65).
Hereafter, we restrict ourselves to the situations wherein
I ¼ J, in which case ω̃2 ¼ k2ð1þ γ2Þ, i.e. it reduces to a
constant. In such situations, it is also straightforward to
establish that, if we define Ω− ¼ Ω1 −Ω2, then the above
equations for Ω1 and Ω2 imply that Ω− ¼ ω̃2=Ωþ. Note
that the above equation satisfied by Ωþ is the same as
Eq. (A5) that governs Ω. Therefore, if we use the definition
(39) for Ωþ, with g given by Eq. (A6), then f� satisfies the
equation of motion (41). In other words, as with the wave
function ΨðA; ηÞ [cf. Eq. (35)] that describes the unen-
tangled state associated with the wave number k, the wave
function Ψðx1; x2; ηÞ [cf. Eq. (68)] that carries information
about the interaction between the wave vectors k and −k
can also be completely expressed in terms of the classical
solutions to the Fourier modes of the electromagnetic field.
With Ωþ and Ω− at hand, we can obtain Ω1 and Ω2 using
the relations

Ω1 ¼
1

2
ðΩþ þ Ω−Þ ¼

1

2Ωþ
ðΩ2þ þ ω̃2Þ; ð72aÞ

Ω2 ¼
1

2
ðΩþ −Ω−Þ ¼

1

2Ωþ
ðΩ2þ − ω̃2Þ; ð72bÞ

which, in turn, allow us to construct the wave function
Ψðx1; x2; ηÞ.

3. Derivation of the entanglement entropy

Note that the complete wave function Ψðx1; x2; ηÞ of the
system of our interest describes a pure state and hence does
not possess any entanglement entropy. We trace one of the
two degrees of freedom to arrive at the reduced density
matrix and evaluate the corresponding entanglement
entropy.4 The reduced density matrix, obtained by tracing
out the degrees of freedom associated with the variable x1,
is defined as

ρredðx2; x02; ηÞ ¼
Z

∞

−∞
dx1Ψðx1; x2; ηÞΨ�ðx1; x02; ηÞ; ð73Þ

with the wave function Ψðx1; x2; ηÞ given by Eq. (68). The
Gaussian integral over x1 can be easily evaluated to arrive at
the reduced density matrix

ρredðx2; x02; ηÞ ¼ jN j2
ffiffiffiffiffiffiffiffi
π

Ω1R

r
exp

�
−
α

2
ðx22 þ x022 Þ

þ βx2x02

�
; ð74Þ

4As is well known, the entanglement entropy of a bipartite
system proves to be the same, independent of which of the two
parts of the system is traced over.

AMPLIFYING QUANTUM DISCORD DURING INFLATIONARY … PHYS. REV. D 108, 123512 (2023)

123512-9



where jN j is given by Eq. (69), while α and β are real
quantities which are given by the expressions

α ¼ Ω1 −
Ω2

2

2Ω1R
¼ 1

2Ω1R
½2Ω2

1R − ðΩ2
2R −Ω2

2IÞ�; ð75aÞ

β ¼ jΩ2j2
2Ω1R

; ð75bÞ

with Ω2I ¼ ðΩ2 −Ω�
2Þ=ð2iÞ denoting the imaginary part of

Ω2. It is also useful to note here that ðα2 − β2Þ ¼ ω̃2.
Our aim is to now calculate the entanglement entropy

associated with the above reduced density matrix. Since the
system of our interest behaves as a time-dependent oscil-
lator, the entanglement entropy of the system, say, S, can be
expressed as

S ¼ −
X∞
n¼0

pn lnpn; ð76Þ

where pn denotes the probability of finding the system in
the nth energy eigenstate of the oscillator. Since the
entanglement entropy is the same as the quantum discord
for a pure state, we hereafter refer to S above as the
quantum discord δ, as is often done in the context of
the scalar perturbations [38,82]. The eigenvalues pn of the
reduced density matrix ρredðx2; x02; ηÞ are determined by the
relation (for an early discussion, see Ref. [90]; for a recent
discussion in this context, see, for instance, Refs. [86,87])

Z
∞

−∞
dx02ρredðx2; x02; ηÞψnðx02; ηÞ ¼ pnψnðx2Þ: ð77Þ

The quantities ψnðxÞ are the energy eigenstates of the
harmonic oscillator with unit mass and frequency ω̃, and are
given by

ψnðxÞ ¼
1

2nn!

�
ω̃

π

�
1=4

Hnð
ffiffiffiffĩ
ω

p
xÞe−ω̃x2=2; ð78Þ

where the function HnðzÞ denotes the Hermite polynomial.
With the density matrix ρredðx2; x02; ηÞ and the wave
function ψnðxÞ at hand [as given by Eqs. (74) and (78)],
it is straightforward to carry out the integral (77) and
determine the probability pn to be [91]

pn ¼ ð1 − ξÞξn; ð79Þ

where ξ is given by

ξ ¼ β

ω̃þ α
: ð80Þ

With the help of the above expression for pn, we can carry
out the sum in the definition (76) of the entanglement

entropy (or quantum discord) to arrive at the following
result in terms of ξ (in this context, see, for example,
Refs. [86,87,90]):

δ ¼ − lnð1 − ξÞ − ξ

1 − ξ
ln ξ: ð81Þ

An equivalent expression that is more convenient for later
numerical evaluation in specific inflationary models is
given by (for further details, see Appendix B)

δ ¼
�
1þ y

2

�
ln

�
1þ 2

y

�
þ ln

�
y
2

�
; ð82Þ

where y is related to ξ as follows:

y ¼ 2ξ

1 − ξ
: ð83Þ

Upon using Eqs. (72a)–(72b), (75a)–(75b), (80) and (83),
we find that the quantity y can be expressed as

y ¼ ðω̃ −ΩþRÞ2 þ Ω2
þI

2ω̃ΩþR
; ð84Þ

where ΩþR ¼ ðΩþ þΩ�þÞ=2 and ΩþI ¼ ðΩþ −Ω�þÞ=ð2iÞ
denote the real and imaginary parts of Ωþ. If we further use
Eq. (39), we obtain that

y ¼ ð1 − 2ω̃jfj2Þ2 þ ðfg� þ gf�Þ2
4ω̃jfj2 ; ð85Þ

with ω̃2 given by Eq. (65) and g being defined as in
Eq. (A6). Note that the quantities in the above expression
for y depend on the nonconformal coupling function J
(recall that we have set I ¼ J) and the solution f. In other
words, we can evaluate the quantum discord δ if we know
the classical solutions to the Fourier modes of the electro-
magnetic vector potential. In the following section, we use
the expressions (82) and (85) to evaluate the quantum
discord in different models of inflation. We should mention
that, in Appendix C, we provide an alternative derivation of
the quantum discord, obtained from the covariance matrix
of the system. Moreover, we ought to clarify that, since we
are focusing on a single wave number of the electromag-
netic field, we do not encounter any divergences when we
calculate the entanglement entropy or quantum discord. As
is well known, the divergences are encountered only when
we sum (or, integrate) over all the wave numbers associated
with the field.
However, before we proceed to calculate the evolution of

the different measures describing the state of the electro-
magnetic field in specific inflationary scenarios, we ought
to make a few clarifying remarks. Earlier, when we focused
on a single wave number of the electromagnetic field
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(in Secs. III B, IVA and IV B), we worked with the
modified action (28), which corresponds to working with
the conjugate momenta (57) or (32). In contrast, when
calculating the quantum discord between the electromag-
netic modes with the wave vectors k and −k, we instead
worked with the original action (24), which leads to the
conjugate momenta (63) or (A2). We already described the
reason for doing so, viz. the fact that the transformations
(60) do not lead to real variables when ω̄2 [given by
Eq. (21)] proves to be negative. We should also caution
that, when ω̄2 turns negative, the derivation of the entan-
glement entropy we outlined above—which is based on the
wave function ψnðxÞ describing the normal oscillator
[cf. Eq. (78)]—may not apply.
There is yet another point that we need to make at this

stage of our discussion. In the nonhelical case, ω̄ reduces to
the wave number k and hence the above-mentioned
problems do not arise. Also, in such a situation, the actions
(55) and (61) [and, hence, the corresponding conjugate
momenta (57) and (63)] reduce to the same form and, in
fact, exactly resemble the action describing the scalar
perturbations, as we have already mentioned. Under this
condition, on using the expressions (53) from the previous
section, we find that the quantity y as defined in Eq. (85)
can be written in terms of the squeezing amplitude r as
follows:

y ¼ coshð2rÞ − 1: ð86Þ

On substituting this relation in Eq. (82), we can readily
obtain an expression for the quantum discord δ in terms of
the squeezing amplitude r in the nonhelical case. In fact, at
late times during inflation, since the squeezing amplitude r
proves to be large, we have y ∝ expð2rÞ so that the
quantum discord behaves as δ ∝ 2r [cf. Eqs. (86) and
(82)], as in the case of the scalar perturbations [38].
However, we should clarify here that, for the helical fields,
we do not have an explicit expression that relates the
quantum discord δ and the squeezing amplitude r.
Therefore, we work with Eqs. (82) and (85) to evaluate
the quantum discord for the parity-violating electromag-
netic fields. In the next section, when we discuss the
numerical results in specific inflationary models, we shall
see that, even in the helical case, the quantum discord has a
similar relation to the squeezing amplitude (i.e. δ ∝ 2r) at
late times.

V. BEHAVIOR IN DIFFERENT
INFLATIONARY SCENARIOS

With various tools to describe the evolution of the
quantum state of the electromagnetic modes at hand, let
us examine the evolution of the state in some specific
situations. In the following sections, we examine the
evolution of the quantum state in simple situations involv-
ing slow roll as well as in nontrivial scenarios permitting

some departures from slow roll. We assume that I ¼ J and
focus on the helical case. Evidently, the results for the
nonhelical case can be obtained by considering the limit
wherein γ vanishes.

A. In de Sitter inflation

Let us first discuss the often considered de Sitter case as
it permits analytical solutions. Evidently, we require a form
of JðηÞ in order to make progress. The nonconformal
coupling function that breaks the conformal invariance of
the standard electromagnetic action is typically assumed to
be of the following form [5,9,51,52,57]:

JðηÞ ¼
�
aðηÞ
aðηeÞ

�
n
; ð87Þ

where ηe is the conformal time at the end of inflation and
the parameter n is a real number. Note that the non-
conformal coupling function reduces to unity at the end of
inflation. As is well known, in the de Sitter case, the above
coupling function leads to a scale-invariant spectrum of the
magnetic field for n ¼ 2 and n ¼ −3. We restrict our
discussion to n ¼ 2 throughout this work in order to avoid
the issue of backreaction (in this context, see, for instance,
Refs. [50,51]).
Recall that, in deSitter inflation, the scale factor describing

the FLRWuniverse is given by aðηÞ ¼ −1=ðHIηÞ, whereHI
is the Hubble parameter which is a constant. In such a case,
J is given by

JðηÞ ¼
�
η

ηe

�
−n

ð88Þ

so that

J0

J
¼ −

n
η
;
J00

J
¼ nðnþ 1Þ

η2
ð89Þ

and, hence, the function fwhich describes thewave function
ΨðA; ηÞ [cf. Eqs. (35), (39) and (41)] satisfies the differential
equation

f00 þ
�
k2 −

2σγkn
η

−
nðnþ 1Þ

η2

�
f ¼ 0: ð90Þ

The solution to this differential equation which satisfies the
Bunch-Davies initial conditions at early times can bewritten
as follows (for recent discussions, see, for example,
Refs. [51,57]):

fðηÞ ¼ 1ffiffiffiffiffi
2k

p e−σπnγ=2Wiσnγ;νð2ikηÞ; ð91Þ

where ν ¼ nþ ð1=2Þ and Wλ;νðzÞ denotes the Whittaker
function [91]. We find that, as ð−kηÞ → ∞, the above
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function f and the quantity g ¼ f0 − ðJ0=JÞf reduce to the
asymptotic forms in Eqs. (46) and (47), as required. We
should mention that, for a range of values of the Hubble
parameter HI, the parameter γ and n ≃ 2, the resulting
spectrum of the magnetic field proves to be nearly scale
invariant and consistent with the current constraints from
observations [51,52].
We can now arrive at the squeezing amplitude r upon

using the solution (91) for the mode function f in the
expression (54a). It is useful to note that, in the domain
z ≪ 1, the Whittaker function Wλ;μðzÞ behaves as [92,93]

Wλ;μðzÞ ≃
Γð−2μÞ

Γð1
2
− λ − μÞ z

ð1=2Þþμ

þ Γð2μÞ
Γð1

2
− λþ μÞ z

ð1=2Þ−μ: ð92Þ

Also, the derivative of the Whittaker function can be
expressed as [92,93]

dWλ;μðzÞ
dz

¼
�
1

2
−
λ

z

�
Wλ;μðzÞ −

1

z
W1þλ;μðzÞ ð93Þ

and we can use the following recursion relation to further
simplify the expression:

Wλ;μðzÞ ¼
ffiffiffi
z

p
Wλ−1

2
;μ−1

2
ðzÞ þ

�
1

2
− λþ μ

�
Wλ−1;μðzÞ: ð94Þ

When n ¼ 2, it is easy to show that, at late times (i.e. as
η → 0)

kjfj2 ≃ 9ð1 − e−4πσγÞ
8πσγð1þ 5γ2 þ 4γ4Þ

�
1

−kη

�
4

; ð95aÞ

jgj2
k

≃
9ð1 − e−4πσγÞσγ

8πð1þ 5γ2 þ 4γ4Þ
�

1

−kη

�
4

: ð95bÞ

Upon using these expressions, we find that the squeezing
amplitude r can be written as

coshð2rÞ ≃ 9e−2πσγ sinhð2πσγÞ
4πσγð1þ 4γ2Þ

�
1

−kη

�
4

: ð96Þ

This result implies that, towards the end of inflation, the
squeezing amplitude r behaves as (since r is large)
expð2rÞ ∝ a4 or, equivalently, r ∝ 2N. Actually, in the
following sections, when we analyze the behavior of the
squeezing amplitude in specific inflationary models, we
shall see that such a behavior arises soon after the modes
leave the Hubble radius. The above result can be inverted to
express the squeezing amplitude r (for large r) as follows:

r ≃ ln

�
3

2

�
− 2 ln

�
k
ke

�
− πσγ

þ 1

2
ln

�
sinhð2πσγÞ
πσγð1þ 4γ2Þ

�
; ð97Þ

where ke represents the wave number that leaves the
Hubble radius at the end of inflation. It is useful to note
that, for small γ, we find that r behaves as

r ≃ ln

�
3

2

�
þ 1

2
ln 2 − 2 ln

�
k
ke

�
− πσγ; ð98Þ

which suggests that r is linear in γ in the limit. Also, we had
earlier pointed out that, for large r, the quantum discord δ
behaves linearly with r. Later, when we evaluate the
quantum discord δ numerically in the helical case, we
shall find that, for small γ, the quantum discord depends
linearly on the helicity parameter γ.
To understand the behavior of the squeezing angle, we

can make use of Eqs. (53a)–(53c) and write

hP̂2i
k2hÂ2i ¼

1 − tanhð2rÞ cosð2φÞ
1þ tanhð2rÞ cosð2φÞ ¼

jgj2
k2jfj2 : ð99Þ

At late times, when the squeezing amplitude r is large,
tanhð2rÞ tends to unity, and the above relation simplifies to
the following expression for the squeezing angle φ:

tanφ ¼ � jgj
kjfj : ð100Þ

Upon using the solution (91) in the de Sitter case, we find
that, at late times, the squeezing angle reduces to

tanφ ≃ −σγ: ð101Þ

This implies that, while the angle φ vanishes for the
nonhelical modes, it is nonzero in the helical case and is
of opposite signs for the two states of polarization.
Until now, we have focused on the n ¼ 2 case, which

leads to a scale-invariant spectrum for the magnetic field.
It is now interesting to examine if there can occur a
situation (say, for a specific value of the parameter n)
wherein the squeezing amplitude over large scales is
small. In other words, do there exist nontrivial coupling
functions which lead to a small squeezing amplitude r over
large scales so that the modes remain close to the initial
vacuum state at late times? To understand this point, it
proves to be helpful to express the squeezing amplitude in
terms of the power spectra of the electromagnetic fields.
Recall that the power spectra of the helical magnetic and
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electric fields, say, PBðkÞ and PEðkÞ, are defined as follows
[53–55,57]:

PBðkÞ ¼ PB
þðkÞ þ PB

−ðkÞ

¼ k5

4π2a4
½jAþ

k j2 þ jA−
k j2�; ð102aÞ

PEðkÞ¼PE
þðkÞþPE

−ðkÞ

¼ k3

4π2a4

�����Aþ
k
0−

J0

J
Aþ

k

����
2

þ
����A−

k
0−

J0

J
A−

k

����
2
�
: ð102bÞ

Of course, in the nonhelical case, the contributions from
the two polarizations to the power spectra become equal.
The above expressions for the power spectra and Eq. (54a)
suggest that we can express the squeezing amplitude r for a
given polarization σ as follows:

coshð2rÞ ¼ 4π2a4

k4
½Pσ

BðkÞ þ Pσ
EðkÞ�: ð103Þ

Let us first consider the nonhelical case. For n > 1=2,
we find that, at late times, we can express the squeezing
amplitude as

coshð2rÞ ∝ A1k−2n þ B1k2−2n; ð104Þ

whereas for n < −1=2, we have

coshð2rÞ ∝ A2k2nþ2 þ B2k2n; ð105Þ

where ðA1; B1; A2; B2Þ are constants [51,52]. Under either
of these conditions, one of the two terms in the above
expressions dominates at small k suggesting a large
squeezing amplitude. In the helical case, for either polari-
zation and for a nonzero n, we have

coshð2rÞ ∝ A3k1−j2nþ1j þ B3k−2jnj; ð106Þ

where ðA3; B3Þ are constants. Again, for any n ≠ 0, one of
the two terms dominates at small k leading to a significant
squeezing amplitude. The above discussion suggests that
any nontrivial coupling function J leaves the large-scale
electromagnetic modes in a highly squeezed state at
late times.

B. In slow-roll scenarios

Let us now turn to understand the behavior of the Wigner
ellipse, the squeezing amplitude r and quantum discord δ in
specific inflationary models. We first illustrate the behavior
in slow-roll inflation using the popular Starobinsky model.
The Starobinsky model is described by the potential

VðϕÞ ¼ V0

�
1 − exp

�
−

ffiffiffi
2

3

r
ϕ

MPl

��2
; ð107Þ

where V0 is a constant that is determined by the COBE
normalization of the scalar perturbations. For V0 ¼
1.43 × 10−10M4

Pl, it is known that, at the pivot scale of k� ¼
5 × 10−2 Mpc−1 (often assumed to leave the Hubble radius
about N� ¼ 50 e-folds before the end of inflation), the
Starobinsky model leads to the scalar spectral index of
nS ¼ 0.965 and the tensor-to-scalar ratio of r ≃ 4.3 × 10−3,
which fit the data from the anisotropies in the cosmic
microwave background (CMB) very well [94]. (The tensor-
to-scalar ratio r should not be confused with the squeezing
amplitude which is denoted in the same manner.) In the
slow-roll approximation, the evolution of the field can be
described in terms of the e-folds N by the expression

N − Ne ≃ −
3

4

�
exp

� ffiffiffi
2

3

r
ϕ

MPl

�
− exp

� ffiffiffi
2

3

r
ϕe

MPl

�

−
ffiffiffi
2

3

r �
ϕ

MPl
−

ϕe

MPl

��
; ð108Þ

where ϕe is the value of the field at the e-fold Ne when
inflation comes to an end.
As we mentioned, we require the nonconformal coupling

function to behave as JðϕÞ ∝ a2 in order to generate
magnetic fields with a nearly scale-invariant spectrum.
Since the evolution of the field ϕðNÞ differs from one model
of inflation to another, to achieve JðNÞ ¼ exp½2ðN − NeÞ�,
the form of JðϕÞ will depend on the model at hand
[43,51,52]. In the Starobinsky model, we can choose the
function JðϕÞ to be

JðϕÞ ¼ exp

�
−
3

2

�
exp

� ffiffiffi
2

3

r
ϕ

MPl

�
− exp

� ffiffiffi
2

3

r
ϕe

MPl

�

−
ffiffiffi
2

3

r �
ϕ

MPl
−

ϕe

MPl

��	
: ð109Þ

The equations governing the nonhelical and helical electro-
magnetic modes corresponding to such a coupling function
can be solved numerically to arrive at the power spectra of
the magnetic and electric fields (in this regard, see
Refs. [51,52]). We should point out that the above coupling
function JðϕÞ leads to minor deviations from the desired
behavior of J ∝ a2 and, as a result, the spectrum of the
magnetic field is nearly scale invariant rather than a strictly
scale-independent one [51].
With the numerical solutions to the electromagnetic

modes Aσ
k at hand, we can immediately evaluate the

Wigner ellipse, the squeezing amplitude r and the quantum
discord δ using the expressions (45), (54) and (82) [with y
determined by Eq. (85)]. In Fig. 1, we illustrate the
evolution of the Wigner ellipse for a typical large-scale
mode in the Starobinsky model for the nonhelical as well as
helical fields. In the figure, we also include the classical
trajectory in phase space associated with the real parts of
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the solution f and the corresponding conjugate momentum
g [cf. Eqs. (41) and (40)] that determine the wave function
ΨðA; ηÞ. In Fig. 2, we plot the evolution of the quantities r
and δ as a function of the e-folds N in the Starobinsky
model for electromagnetic modes with two different wave
numbers. In the figure, we also plot the “spectra” rðkÞ and
δðkÞ, i.e. the values of r and δ evaluated at the end of
inflation for a wide range of wave numbers. In Fig. 3, we
plot the dependence of the quantum discord δ on the
helicity parameter γ for modes with the two different wave
numbers. The following points are clear from these figures.
First, as expected, the Wigner ellipse starts as a circle and is
increasingly squeezed with time. Also, as suggested by
Eq. (100), we find that, at late times, the slope of the major
axis of the Wigner ellipse matches that of the classical
trajectory. Second, note that, on super-Hubble scales, the
squeezing amplitude and the quantum discord associated
with the σ ¼ −1 helical modes have higher values when
compared to the nonhelical modes and the σ ¼ þ1 helical
modes. In fact, as should be clear from the inset in Fig. 2,
their values begin to differ even as they evolve in the sub-
Hubble regime. Third, as expected from the results in the
case of de Sitter inflation discussed earlier, after the wave
numbers have crossed the Hubble radius, rðNÞ and δðNÞ
behave as 2N and 4N, respectively, in all the cases. Fourth,
in the linear-log plot, the spectra rðkÞ and δðkÞ of the
squeezing amplitude and quantum discord behave as
ðk=keÞ−2 and ðk=keÞ−4, as we discussed [cf. Eq. (97)].
Last, it is clear from Fig. 3 that the quantum discord δ

behaves linearly with the helicity parameter for small γ
[cf. Eq. (98)].

C. In scenarios involving departures from slow roll

Let us now turn to understand the behavior of the
squeezing amplitude r and quantum discord δ in situations
involving departures from slow roll. It is well known that
specific features in the inflationary scalar power spectrum
improve the fit to the CMB data, when compared to the
nearly scale-invariant power spectra that arise in slow-roll
scenarios (for a partial list of efforts in this regard, see
Refs. [95–107]). Moreover, recently, there has been a
considerable interest in the literature to study inflationary
models that generate enhanced power on small scales and
lead to the formation of a significant number of primordial
black holes (PBHs) (in this context, see, for instance,
Refs. [108–116]). If such features are to be generated, then
the inflationary potential should admit deviations from
slow roll. In fact, the stronger the feature in the scalar power
spectrum (as is, say, required to produce a considerable
number of PBHs), the sharper should be the departures
from slow-roll inflation. Interestingly, in a recent work, we
illustrated that such deviations from slow-roll inflation also
lead to strong features in the spectra of magnetic fields [51]
We have also shown that, while it is possible to restore scale
invariance of the spectrum of the magnetic field in some
situations, it is achieved at the cost of severe fine-tuning
[52]. In this section, we discuss the behavior of the
squeezing amplitude and quantum discord in single- and

FIG. 1. We plot the evolution of the Wigner ellipse (in red, blue, green and cyan) and the classical trajectory (in magenta) in the phase
space Ā-P̄ for the electromagnetic mode in the Starobinsky model with the wave number corresponding to the CMB pivot scale, i.e.
k� ¼ 0.05 Mpc−1. We plot these quantities for the nonhelical (in the middle) as well as the helical cases (on the left and right for σ ¼ −1
and σ ¼ þ1, respectively). The Wigner ellipses are plotted at the following times: when the initial conditions are imposed on the mode
in the sub-Hubble regime (in red, but hidden by the magenta curve), when k ¼

ffiffiffiffiffiffiffiffiffiffi
J00=J

p
(equivalent to the time of Hubble exit, in blue),

on super-Hubble scales (in green) and closer to the end of inflation (in cyan). We set the helicity parameter γ to be unity in plotting these
figures. Clearly, the Wigner ellipse starts as a circle at early times and it is increasingly squeezed as time passes by. In the nonhelical
case, the major axis of the ellipse eventually orients itself along the Ā axis. However, in the helical case, at late times, the major axis of
the ellipse orients itself along a straight line with a nonvanishing slope. As suggested by the condition (101), while the helical mode with
the polarization state σ ¼ −1 has a positive slope, the state with σ ¼ þ1 has a negative slope. Moreover, as the relation (100) suggests,
we find that, at late times, the slope of the major axis of the ellipse is the same as that of the classical trajectory.
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two-field models of inflation that permit strong departures
from slow roll.

1. Single-field models

We first consider two single-field models that lead to
sharp departures from slow-roll inflation and hence to
strong features in the scalar power spectra. The first model
we consider is described by the potential [97,98,106]

VðϕÞ ¼ m2

2
ϕ2 −

2m2

3ϕ0

ϕ3 þ m2

4ϕ2
0

ϕ4; ð110Þ

andwework with the following values of the two parameters
involved:m ¼ 7.17 × 10−8MPl and ϕ0 ¼ 1.9654MPl. Also,
we choose the initial values of the field and the first slow-roll
parameter to be ϕi ¼ 12.0MPl and ϵ1i1i ¼ 2 × 10−3. For
these values of parameters and initial conditions, inflation
lasts for about 110e-folds in themodel, which ismuch longer
than the duration typically considered. However, if we
assume that the pivot scale exits the Hubble radius about
91e-folds before the termination of inflation, we find that the
model leads to a suppression in the scalar power spectrum on
the largest scales and thereby to a moderate improvement in
the fit to the CMB data (in this context, see Ref. [106]).
The second model that we consider is described by the
potential [111]

VðϕÞ ¼ V0

�
tanh

�
ϕffiffiffi
6

p
MPl

�

þ A sin
�
1

fϕ
tanh

�
ϕffiffiffi
6

p
MPl

��	
2

: ð111Þ

FIG. 2. The evolution of the squeezing amplitude rðNÞ (in red and blue) and quantum discord δðNÞ (in green and cyan) are plotted (on
the left) for electromagnetic modes with two different wave numbers in the slow-roll scenario admitted by the Starobinsky model. We
plot the evolution for the CMB pivot scale of k� ¼ 0.05 Mpc−1 (in red and green) and the small-scale mode with the wave number
k ¼ 1010 Mpc−1 (in blue and cyan), which have been computed numerically. The vertical lines (in black, on the left) indicate the time
when k2 ¼ J00=J, i.e. roughly the time when the two modes leave the Hubble radius (at N ¼ 18.75 and N ¼ 44.72). The inset (on the
left, plotted on the log-linear scale) highlights the evolution of the squeezing amplitude associated with the pivot scale at early times. We
also plot (on the right) the “spectra” of the squeezing amplitude rðkÞ and the quantum discord δðkÞ, evaluated at the end of inflation, for a
wide range of wave numbers. Apart from the results for the nonhelical case (which have been plotted as solid curves), we plot the results
for the helical case (plotted as dotted and dashed lines, for σ ¼ þ1 and σ ¼ −1, respectively). We set γ ¼ 1 in arriving at these figures.
As we discuss in the text, the evolution of the squeezing amplitude and the quantum discord as well as their spectra behave in the manner
expected from the analytical results in de Sitter inflation discussed earlier.

FIG. 3. The quantum discord δ evaluated at the end of inflation
in the case of the Starobinsky model is plotted as a function of the
helicity parameter γ. We plot the relation for two wave numbers,
viz. the CMB pivot scale k� ¼ 0.05 Mpc−1 (in red) and k ¼
1010 Mpc−1 (in blue), for the two helical modes with σ ¼ þ1 (as
dotted lines) and σ ¼ −1 (as dashed lines). Note that, for small γ,
δ behaves linearly with γ.
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We choose to work with the following values of the
parameters: V0 ¼ 2 × 10−10M4

Pl, A ¼ 0.130383, and fϕ ¼
0.129576. We find that, if we set the initial value of the field
to be ϕi ¼ 6.1MPl, with ϵ1i1i ¼ 10−4, we obtain about 66e-
folds of inflation in the model. Moreover, we assume that
the pivot scale exits the Hubble radius about 56.2e-folds
prior to the termination of inflation. This model generates
enhanced power on small scales which results in the
production of a significant number of PBHs. Both these
models contain a point of inflection. It is located at ϕ0 ¼
1.9654MPl in the first model and at ϕ0 ¼ 1.05MPl in the
second [106,114]. The point of inflection leads to an epoch
of ultra slow-roll inflation which is responsible for the
sharp features in the power spectra (for a detailed dis-
cussion in this regard, see the recent review [116]).
Due to the strong departures from slow roll, in general, it

proves to be challenging to arrive at analytical solutions for
the background scalar field in these models. As we
discussed, to arrive at a nearly scale-invariant spectrum
for the magnetic field, we need to choose the nonconformal
coupling function to behave as J ∝ a2. Since there do not
exist analytical solutions for the scalar field in the models of
our interest, we are unable to construct an analytical form
for JðϕÞ that leads to the desired behavior, as we did in the
case of the Starobinsky model [cf. Eq. (109)]. Therefore,
we have to resort to a numerical approach to arrive at a
suitable nonconformal coupling function JðϕÞ (for dis-
cussions in this regard, see our recent efforts [51,52]).
However, because of the points of inflection, in these
potentials, the nonconformal coupling function JðϕÞ hardly
evolves as the field approaches the point of inflection and
the epoch of ultra slow roll sets in. Such a behavior

generates magnetic fields with spectra that have a strong
scale dependence. The resulting spectra of the magnetic
field are scale invariant over large scales (i.e. over wave
numbers that leave the Hubble radius prior to the onset of
the epoch of ultra slow roll) and behave as k4 on small
scales (i.e. over wave numbers that leave the radius after
ultra slow roll has set in). Moreover, it is found that the
scale-invariant amplitude of the magnetic field on large
scales is strongly suppressed, with the amplitude being
lower when the onset of ultra slow roll is earlier. In Fig. 4,
we plot the spectra of the squeezing amplitude rðkÞ and
quantum discord δðkÞ for the magnetic fields generated in
the two inflationary models described above. Note that, on
larger scales (corresponding to the scale-invariant domain
in the spectra of the magnetic field), the quantities rðkÞ and
δðkÞ behave as in the slow-roll case. However, over smaller
scales wherein the spectra of the magnetic field behave as
k4, we find that rðkÞ and δðkÞ are rather small suggesting
that the modes have not evolved significantly from the
Bunch-Davies vacuum.

2. In two-field models

We pointed out above that, in the case of single-field
models permitting an epoch of ultra slow roll, the non-
conformal coupling function JðϕÞ hardly evolves after
the onset of ultra slow roll. Such a behavior leads to
magnetic field spectra which have strongly suppressed
scale-invariant amplitudes on larger scales and k4 depend-
ence on smaller scales. We have recently shown that these
challenges can be circumvented in two field models of
inflation [52]. In models involving two fields, it is possible
to construct inflationary scenarios that generate sharp

FIG. 4. The “spectra” of the squeezing amplitude rðkÞ (in red and blue) and quantum discord δðkÞ (in green and cyan) that arise in the
single- and two-field inflationary models of our interest are plotted (on the left and right, respectively) for a wide range of wave numbers.
Note that, in the case of single-field models, rðkÞ and δðkÞ (plotted on the left) is rather small over wave numbers that leave the Hubble
radius after the onset of ultra slow roll. However, in the case of the two-field models, the quantities rðkÞ and δðkÞ behave virtually in the
same manner as they do in the slow-roll scenario. This behavior has been achieved with the aid of the additional field available in the
two-field models.
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features in the scalar power spectra (on either large or small
scales) and design suitable nonconformal coupling func-
tions that lead to nearly scale-invariant spectra of magnetic
fields with the desired amplitudes. We now discuss the
behavior of the squeezing amplitude r and the quantum
discord δ in such models.
We consider two models, one of which leads to a

suppression in the spectrum of curvature perturbations
on large scales and another which leads to an enhancement
in the scalar power on small scales. The two-field models
are described by the action [117,118]

S½ϕ; χ� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂

μϕ

−
fðϕÞ
2

∂μχ∂
μχ − Vðϕ; χÞ

�
; ð112Þ

where, evidently, while ϕ is a canonical scalar field, χ is a
noncanonical scalar field due to the presence of the function
fðϕÞ in the term describing its kinetic energy. We assume
that fðϕÞ ¼ expð2b̄ϕÞ, where b̄ is a constant. The first
model we consider is described by the potential [117]

Vðϕ; χÞ ¼ m2
ϕ

2
ϕ2 þ V0

χ2

χ20 þ χ2
: ð113Þ

We work with the following values of the parameters
involved: ðmϕ=MPl;V0=M4

Pl;χ0=MPl;b̄MPlÞ¼ð1.672×10−5;
2.6×10−10;

ffiffiffi
3

p
;1.0Þ. Also, we choose the initial values

of the fields to be ϕi ¼ 8.8MPl, χi ¼ 5.76MPl, and set
ϵ1i ¼ 2.47 × 10−2. For these values of the parameters, we
obtain about 78e-folds of inflation. The second potential
we investigate can be arrived at by interchanging the
individual potentials for the two fields we considered
above, and is given by [118]

Vðϕ; χÞ ¼ V0

ϕ2

ϕ2
0 þ ϕ2

þm2
χ

2
χ2: ð114Þ

We work with the following values of the parameters:
ðV0=M4

Pl; ϕ0=MPl; mχ=MPl; b̄MPlÞ ¼ ð7.1 × 10−10;
ffiffiffi
6

p
;

1.19164 × 10−6; 7.0Þ and assume that ϕi ¼ 7.0MPl, χi ¼
7.31MPl and ϵ1i1i ¼ 4.32 × 10−4. For these parameters and
initial conditions, we obtain about 84e-folds of inflation in
the model.
These models lead to two stages of slow-roll inflation,

with each stage being driven by one of the two fields. There
arises a sharp turn in the field space as the transition from
one stage to another occurs. The transition leads to a
tachyonic instability and the isocurvature perturbations
source the curvature perturbations associated with wave
numbers which leave the Hubble radius during the turn in
the field space [117,118]. The first of the above two models
leads to a suppression in scalar power on large scales [118],

while the second leads to an enhancement in power on
small scales [117]. In these models, we can construct
nonconformal coupling functions that depend on the field
driving slow-roll inflation in each of the two stages. The
two functions can then be combined together to arrive at a
complete nonconformal coupling function Jðϕ; χÞ that
largely leads to the desired behavior of J ∝ a2, barring
the period around the transition in the dependence of J on
one field to the other (for a detailed discussion in this
regard, see Ref. [52]). We should clarify that the non-
conformal coupling function has to be fine-tuned to a
certain extent to avoid substantial deviations from the J ∝
a2 behavior around the transition. The resulting noncon-
formal coupling function leads to a nearly scale-invariant
spectrum for the magnetic field which contains some
features around the range of wave numbers which leave
the Hubble radius close to the time of the transition. In
Fig. 4, we plot the spectra of the squeezing amplitude rðkÞ
and quantum discord δðkÞ that arise in the two-field models
that we introduced above. Clearly, the quantities rðkÞ and
δðkÞ contain some small wiggles around the domain (in
wave numbers) when the spectra of the magnetic field
contain features (for the spectra of the magnetic field that
arise in these cases, see Ref. [52]). Otherwise, the spectra of
the squeezing amplitude and quantum discord behave in the
same manner as in the slow-roll scenario (cf. Fig. 2).

VI. DISCUSSION

In this work, we examined the evolution of the quantum
state of the nonhelical as well as helical electromagnetic
fields generated during inflation. We tracked the evolution
of the state of the electromagnetic field using measures
such as the Wigner ellipse, squeezing amplitude and
quantum discord. We found that, in a manner similar to
the case of the scalar perturbations, the squeezing ampli-
tude and quantum discord associated with the nonhelical
electromagnetic modes evolve linearly with e-folds on
super-Hubble scales. Interestingly, in the case of the helical
electromagnetic field, the squeezing amplitude as well as
the quantum discord of one of the two states of polarization
(σ ¼ −1) is enhanced when compared to the nonhelical
case, whereas they are suppressed for the other (i.e. for the
polarization state with σ ¼ þ1). In fact, the enhancement
(or suppression) occurs as the helical modes leave the
Hubble radius and, on super-Hubble scales, the squeezing
amplitude (and quantum discord) behaves as a function of
e-folds just as in the nonhelical case. We found that, over
the range of the values of the helicity parameter γ that we
considered, the enhancement of the squeezing amplitude
and quantum discord is not very significant. We limited
ourselves to γ ≲ 2.5 to avoid the issue of backreaction due
to the helical modes on the background (in this context,
see Ref. [51]).
On a related note, we found that there is a similarity

between the effects on the electromagnetic field due to the
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violation of parity during inflation that we discussed and
the Schwinger effect associated with, say, a charged scalar
field that arises when a constant electric field is present in
the de Sitter spacetime (for relatively recent discussions on
the Schwinger effect in the de Sitter spacetime, see, for
instance, Refs. [119–122]). The electric field provides a
direction breaking the isotropy of the FLRW universe. As a
result, the modes of the charged field behave in a fashion
akin to the helical electromagnetic field with the modes
propagating along the direction of the electric field behav-
ing differently from the modes traveling in the opposite
direction. We have discussed these points in some detail in
Appendix D.
Let us conclude by highlighting a few different direc-

tions in which further investigations need to be carried out.
First, it will be worthwhile to examine carefully (including
backreaction) the effects due to helicity for larger values of
γ [123]. Second, due to a technical difficulty we faced in the
helical case (as described in Sec. IV C), we worked with
two different conjugate momenta [given by Eqs. (32) and
(A2)] while calculating the squeezing amplitude r and the
quantum discord δ. While we were able to evaluate the
squeezing amplitude r with the wave function starting in
the Bunch-Davies vacuum (as described in Sec. III B), we
evaluated the quantum discord δ with the wave function
beginning in a slightly squeezed initial state (arising due to
the choice of the conjugate momentum; in this context, see
the discussion in Appendix A). We need to overcome this
challenge and evaluate the quantum discord of the system
associated with the action (55). Third, the effects due to
parity violation we encountered can also occur in the case
of tensor perturbations described by modified theories such
as the Chern-Simons theory of gravitation (in this regard,
see, for example, Ref. [124]). Last, it has been pointed out
that the quantum-to-classical transition of the primordial
scalar perturbations can affect the extent of non-
Gaussianities generated in the early Universe [125]. It will
be interesting to consider the effects that arise due to the
decoherence of the scalar (or the tensor) perturbations and
the magnetic fields on the cross correlations between the
magnetic fields and the curvature (or the tensor) perturba-
tions [56,80,126–129]. We are presently investigating some
of these issues.
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APPENDIX A: ON THE CHOICE
OF CONJUGATE MOMENTUM

Recall that, initially, we had arrived at the action (28) to
describe the Fourier modes of the helical electromagnetic
field. If we focus on the electromagnetic mode associated
with a single wave number (as we do in Secs. III B, IVA
and IV B), the fiducial variable A—which stands for either
Aσ

kR or Aσ
kI [introduced in Eq. (30)]—is described by the

following Lagrangian density in Fourier space:

L ¼ 1

2
A02 − κA0A −

μ2

2
A2: ðA1Þ

In this appendix, we explain the reason for adding the total
time derivative (27) to the original action (26) to arrive at
the modified action (28) or, equivalently, the Lagrangian
(31) for the variable A.

1. Choices of momenta and initial conditions

Note that the conjugate momentum associated with the
original Lagrangian (A1) is given by

P ¼ A0 − κA: ðA2Þ

The corresponding Hamiltonian can be obtained to be

H ¼ P2

2
þ κPAþ ω̃2

2
A2; ðA3Þ

where the quantity ω̃2 is given Eq. (65). The Schrödinger
equation governing the wave function ΨðA; ηÞ correspond-
ing to the above Hamiltonian is given by

i
∂Ψ
∂η

¼ −
1

2

∂
2Ψ
∂A2

−
iκ
2

�
Ψþ 2A

∂Ψ
∂A

�
þ ω̃2

2
A2Ψ: ðA4Þ

Upon using the Gaussian ansatz (35) for the wave function
ΨðA; ηÞ in this Schrödinger equation, we obtain that

Ω0 ¼ −iΩ2 − 2κΩþ iω̃2: ðA5Þ

If we now use the definition (39) of Ω in the above
equation, but with g being given by

g ¼ f0 − κf; ðA6Þ

then we arrive at the same equation for f� that we obtained
earlier, viz. Eq. (41). This should not come as a surprise
since, classically, Lagrangians that differ by a total time
derivative lead to the same equation of motion. Moreover,
since the wave function is assumed to be of the same form,
we obtain the same Wigner function as we obtained before,
i.e. as in Eq. (44), but with P being the new conjugate
momentum defined in Eq. (A2). However, for I ¼ J and
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J ∝ η−n, we find that, at early times, while f behaves as in
Eq. (46), g behaves as

g ¼ f0 − κf ≃ −i
ffiffiffi
k
2

r
ð1þ iσγÞe−ikη: ðA7Þ

These f and g lead to the same Wronskian (48) that we
obtained earlier. Also, in such a case, we have ΩR ¼ k and
ΩI ¼ σγk, resulting in the following condition for the
Wigner ellipse:

Ā2 þ ðP þ σγĀÞ2 ¼ 1: ðA8Þ
Moreover, for the above initial conditions on f and g, from
Eqs. (54a)–(54c), we obtain that coshð2rÞ ¼ 1þ ðγ2=2Þ,
while cosð2φÞ ¼ �γ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ γ2

p
. These imply that, when γ is

nonzero (i.e. in the helical case), at early times, the Wigner
ellipse is not a circle. It starts as an ellipse with its major
axis oriented at the angle φ with respect to the Ā axis.
If we now instead add a different total time derivative to

the original Lagrangian (A1) as follows:

L ¼ 1

2
A02 − κA0A −

μ2

2
A2 þ d

dη

�
1

2
κA2

�
; ðA9Þ

then it simplifies to the form

L ¼ 1

2
A02 −

1

2
ω2A2 ðA10Þ

with ω2 being given by Eq. (42). The corresponding
conjugate momentum is given by

P ¼ A0 ðA11Þ

and the associated Hamiltonian can be immediately
obtained to be

H ¼ 1

2
P2 þ 1

2
ω2A2: ðA12Þ

The Schrödinger equation describing the wave function
ΨðA; ηÞ in such a case is given by

i
∂Ψ
∂η

¼ −
1

2

∂
2Ψ
∂A2

þ 1

2
ω2A2Ψ: ðA13Þ

The Gaussian ansatz (35) for the wave function leads to the
following equation for Ω:

Ω0 ¼ −iΩ2 þ iω2: ðA14Þ

Upon substituting the definition (39) of Ω in this differ-
ential equation,

g ¼ f0; ðA15Þ

we obtain Eq. (41) for f�, as one would have expected.
Note that, in such a situation, as with the Lagrangian (31),
at early times, f and g reduce to the forms in Eqs. (46) and
(47) implying that the initial Wigner ellipse is a circle.
Also, as in the original case, we have, at early times,
coshð2rÞ ¼ 1, while cosð2φÞ is undetermined.
In order to ensure that the system starts in the standard

Bunch-Davies vacuum at early times with no squeezing
involved, we have worked with the modified Lagrangian
(31) instead of the Lagrangian (A1). As we discussed
earlier, if we work in terms of the corresponding conjugate
momentum P [cf. Eq. (32)], we obtain a Wigner ellipse
which starts as a circle at early times, as desired
[cf. Eq. (50)]. But, such a behavior of the Wigner ellipse
and the squeezing parameters at early times is also
encountered when the system is described by the
Lagrangian (A10)], as we discussed above. Could we have
also worked with the Lagrangian (A10)? It seems that the
Lagrangian (31) is an appropriate choice. Let us illustrate
this point with a simple example.

2. A simple example

To illustrate our point, we focus on the nonhelical
electromagnetic field (i.e. when γ ¼ 0) and consider the
case wherein J ¼ ðη=ηeÞ−n. The trivial case, of course,
corresponds to the conformally coupled field wherein
n ¼ 0. In such a case, all the momenta P we have
encountered, i.e. those given by Eqs. (32), (A2) and
(A11), turn out to be the same and the quantities f and
g are exactly given by Eqs. (46) and (47) at all times.
Therefore, coshð2rÞ ¼ 1 forever, while cosð2φÞ remains
undetermined, and the Wigner ellipse remains a circle. This
is not surprising.
Now, consider the nontrivial, n ¼ −1 case. In such a

situation, J00=J ¼ 0, and hence the quantity f is given by
Eq. (46) at all times. Since γ ¼ 0, the momenta P defined
in Eqs. (32) and (A2) turn out to be the same. If we work
with the momentum defined in Eq. (A11), then the quantity
g is given by Eq. (47) at all times so that the Wigner ellipse
and the squeezing parameter behave as in the conformally
invariant case. This seems strange. But, if we work with the
conjugate momentum defined in Eq. (32) (as we do in
Secs. III B, IVA and IV B), then we have

g ¼ f0 −
J0

J
f ≃ −i

ffiffiffi
k
2

r �
1 −

i
kη

�
e−ikη: ðA16Þ

This implies that the Wigner ellipse starts as a circle at early
times, while coshð2rÞ ¼ 1. However, at late times, we have

coshð2rÞ ≃ 1

2

�
1þ k2e

k2

�
ðA17Þ

indicating a significant extent of squeezing for large
scales. This example confirms that our choice for the
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conjugate momentum P as given by Eq. (32) is an
appropriate one.

APPENDIX B: DETAILS ON THE DERIVATION
OF THE ENTANGLEMENT ENTROPY

In this appendix, we briefly outline a few essential details
regarding the derivation of the entanglement entropy
discussed in Sec. IV C 3.
Our starting point is the definition (76) of the entangle-

ment entropy S in terms of the eigenvalues pn of the
reduced density matrix ρredðx2; x02; ηÞ [cf. Eq. (74)]. With
the aid of standard integrals (in this regard, see, for
instance, Ref. [91]), it can be established that pn is given
by Eq. (79), with ξ being defined as in Eq. (80). Once we
have the pn at hand, it is straightforward to sum over n in
Eq. (76) to arrive at the expression (81) for the entangle-
ment entropy or, equivalently, quantum discord δ.
To arrive at a result that has a simpler formwhen eventually

expressed in terms of the squeezing amplitude r, we change to
a new variable y, which is related to ξ as follows:

ξ ¼ y
yþ 2

: ðB1Þ

In terms of the variable y, the quantum discord δ can be
expressed as

δ ¼ − ln

�
2

yþ 2

�
−
y
2
ln

�
y

yþ 2

�

¼ ln

�
1þ y

2

�
þ y
2
ln

�
yþ 2

y

�

¼ ln

�
yþ 2

2

�
þ
�
1þ y

2

�
ln

�
yþ 2

y

�
− ln

�
yþ 2

y

�

¼
�
1þ y

2

�
ln

�
1þ 2

y

�
þ ln

�
y
2

�
; ðB2Þ

which is the result (82) we quote in the text.

APPENDIX C: ANOTHER DERIVATION
OF QUANTUM DISCORD

A convenient method to calculate the quantum discord is
to write down the covariance matrix of the canonically
conjugate variables and arrive at the quantum discord using
the submatrices of the covariance matrix [75,88,130]. But,
one has to first choose an appropriate set of two pairs of
canonically conjugate variables, such that tracing over one
set will give us the correct quantum discord to match with
the results in the earlier literature (i.e. one has to identify
variables to represent the appropriate subsystem of the full
system) [38,75].
As we describe in Sec. III A, the action describing the

modes Aσ
k of the electromagnetic field is similar to the

action that governs the Mukhanov-Sasaki variable charac-
terizing the scalar perturbations. However, there are two
differences. The first difference is that, due to the two states
of polarization, the electromagnetic field contains twice as
many degrees of freedom as the scalar perturbations.
Second, in the helical case, due to the presence of the
term that leads to the violation of parity, the modes
corresponding to the two states of polarization evolve
differently. Nevertheless, the two helical states of polar-
izations (with σ ¼ �1) evolve independently, and the
method adopted in the case of the scalar perturbations
can be used to characterize the quantum discord associated
with either of the two states of the polarization of the
electromagnetic field.
The quantum discord that we would like to calculate is

when the system is divided into modes with wave vectors k
and−k, as in the case of the scalar perturbations [38,75]. As
we explain in the main text, the correct variables to use are
the conjugate variables ðxσk; pσ

kÞ as defined in Eq. (60), but
with ω̄ replaced by ω̃ [cf. Eq. (65)]. On using our
convention of referring to xσk and xσ−k as x1 and x2, the
covariance matrix of the two pairs of canonically conjugate
variables ðx̂1; p̂1; x̂2; p̂2Þ has the form

V ¼

2
666664

hx̂21i 1
2
hx̂1p̂1 þ p̂1x̂1i hx̂1x̂2i hx̂1p̂2i

1
2
hx̂1p̂1 þ p̂1x̂1i hp̂2

1i hx̂2p̂1i hp̂1p̂2i
hx̂1x̂2i hx̂2p̂1i hx̂22i 1

2
hx̂2p̂2 þ p̂2x̂2i

hx̂1p̂2i hp̂1p̂2i 1
2
hx̂2p̂2 þ p̂2x̂2i hp̂2

2i

3
777775
: ðC1Þ

To calculate the quantum discord, first we define a scaled
covariance matrix as

σ ¼ 2V: ðC2Þ

We next divide this ð4 × 4Þ matrix in terms of ð2 × 2Þ sub-
blocks as follows:

σ ¼
�
α γ

γT β

�
; ðC3Þ

where α, β and γ are ð2 × 2Þ matrices. Defining

B ¼ det :β; ðC4Þ
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the entanglement entropy for the ðx2; p2Þ subsystem, say,
S2ðσ12Þ, can then be directly calculated to be (in this
context, see Ref. [131])

S2ðσ12Þ ¼ Fð
ffiffiffiffi
B

p
Þ; ðC5Þ

with the function FðxÞ being given by

FðxÞ¼
�
xþ1

2

�
ln

�
xþ1

2

�
−
�
x−1

2

�
ln

�
x−1

2

�
: ðC6Þ

Using the wave function (68) and the relations
(72a)–(72b), the elements of the matrix β can be evaluated
to be

hx̂22i ¼
Ω1R

2ðΩ2
1R −Ω2

2RÞ
¼ jΩþj2 þ ω̃2

4ω̃2ΩþR
; ðC7aÞ

hp̂2
2i ¼ ω̃2hx̂22i;

1

2
hx̂2p̂2 þ p̂2x̂2i ¼ 0; ðC7bÞ

where ΩþR ¼ ðΩþ þ Ω�þÞ=2 represents the real part of Ωþ.
Therefore, the determinant of β becomes

B ¼ 4hx̂22ihp̂2
2i − hx̂2p̂2 þ p̂2x̂2i2

¼ ðjΩþj2 þ ω̃2Þ2
4ω̃2Ω2

þR
: ðC8Þ

To connect with the results in the main text, we can use the
expression (84) for y to obtain that

ffiffiffiffi
B

p
¼ yþ 1: ðC9Þ

On substituting this expression for B in Eq. (C5), we can
arrive at the result (82) for the quantum discord we obtained
earlier.

APPENDIX D: CHARGED SCALAR FIELD
UNDER THE INFLUENCE OF AN ELECTRIC

FIELD IN A DE SITTER UNIVERSE

In this appendix, we discuss the Schwinger effect in de
Sitter spacetime by considering the evolution of a charged
scalar field in the presence of a constant electric field (for
earlier discussions in this regard, see, for instance,
Refs. [119–122]). We should mention that the correspond-
ing results in flat spacetime can be arrived at by considering
the limit wherein the constant Hubble parameter in de Sitter
vanishes.

1. Equation of motion in an FLRW universe

Consider a complex scalar field, say, ψ , evolving in a
curved spacetime. In the presence of an electromagnetic
field described by the vector potential Aμ, the action
governing the complex scalar field is given by

S½ψ � ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ½ðDμψÞ�ðDμψÞ þm2ψψ��; ðD1Þ

where Dμ ¼ ð∂μ − ieAμÞ and e denotes the electric charge.
On varying the above action, we obtain the equation of
motion governing the scalar field to be

1ffiffiffiffiffiffi−gp Dμð
ffiffiffiffiffiffi
−g

p
gμνDνÞψ −m2ψ ¼ 0: ðD2Þ

The strength E of the electric field can be expressed in
terms of the field tensor Fμν as

FμνFμν ¼ −2E2: ðD3Þ

If we choose to work with the vector potential

Aμ ¼ ½0; 0; 0;−AðηÞ�; ðD4Þ

then, in the FLRW universe, the electric field is oriented
along the z direction and its strength is given by

E ¼ A0

a2
: ðD5Þ

If we define the new variable

uðη; xÞ ¼ aðηÞψðη; xÞ; ðD6Þ

then, for the FLRW line element (1) and the vector potential
(D4), the action (D1) takes the form

S½u� ¼
Z

dη
Z

d3x

�
ju0j2 − j∂⊥uj2 − jDzuj2

−
a0

a
ðuu0� þ u�u0Þ −

�
m2a2 −

�
a0

a

�
2
�
juj2

	
; ðD7Þ

where ∂⊥ ¼ ð∂x; ∂yÞ and Dz ¼ ∂z þ ieAðηÞ. The sym-
metries of the FLRW metric and the fact that the vector
potential Aμ depends only on the conformal time coordinate
allow us to decompose the quantity uðη; xÞ as follows:

uðη; xÞ ¼
Z

d3k

ð2πÞ3=2 qkðηÞe
ik·x: ðD8Þ

We should point out that, since u is a complex field, we do
not have a condition connecting the Fourier modes qk and
q−k akin to Eq. (23). The action in Fourier space that
governs the modes qk can be obtained to be

S½qk� ¼
Z

dη
Z

d3k

�
jq0kj2 −

a0

a
ðqkq0k� þ q0kq

�
kÞ

− μ2qjqkj2
	
; ðD9Þ
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where the quantity μ2q is given by

μ2qðηÞ ¼ k2⊥ þ ðkz þ eAÞ2 þm2a2 −
�
a0

a

�
2

ðD10Þ

with k⊥ ¼ ðkx; kyÞ and k⊥ ¼ jk⊥j. Thus, each mode with
wave vector k evolves independently according to identical
(though k-dependent) actions.
Let us now express qk as

qk ¼
1ffiffiffi
2

p ðqkR þ iqkIÞ; ðD11Þ

where qkR and qkI are the real and imaginary parts of qk.
The actions for qkR and qkI decouple and are identical in
form. Therefore, the dynamics of the system can be
analyzed using the following Lagrangian density in
Fourier space:

L ¼ 1

2
q02 −

a0

a
qq0 −

1

2
μ2qq2; ðD12Þ

where q stands for either qkR or qkI. The momentum
conjugate to the variable q is given by

pq ¼ q0 −
a0

a
q: ðD13Þ

The Lagrangian (D12) leads to the following equation of
motion for the Fourier mode q:

q00 þ ω2
qq ¼ 0; ðD14Þ

where the quantity ω2
q is given by

ω2
qðηÞ ¼ k2⊥ þ ðkz þ eAÞ2 þm2a2 −

a00

a
: ðD15Þ

2. Solutions in de Sitter and the behavior
of the squeezing amplitude

Let us now discuss the solutions to the modes of the
scalar field in the presence of a constant electric field in de
Sitter spacetime and the behavior of the corresponding
squeezing amplitude [119,121]. In Sec. VA, we assume
that the scale factor in de Sitter inflation is given by
aðηÞ ¼ −1=ðHIηÞ, where HI is a constant. Instead, here we
assume that the de Sitter spacetime is described by the scale
factor

aðηÞ ¼ 1

1 −HIη
; ðD16Þ

where −∞ < η < H−1
I . We have chosen such a form since

we can obtain the Minkowski spacetime as the limit
HI → 0. Since the strength of the electric field is given

by E ¼ A0=a2 [see Eq. (D5)], if we require E to be constant,
then for the above choice of the scale factor, the vector
potential AðηÞ is given by

AðηÞ ¼ E0

HI
½aðηÞ − 1�; ðD17Þ

where E0 is a constant and we have chosen the constant of
integration to be −E0=HI. Such a choice allows us to have a
well behaved HI → 0 limit of AðηÞ, which reduces to the
usual choice of vector potential considered to examine the
Schwinger effect in Minkowski spacetime.
Evidently, we can quantize the system described by the

Lagrangian (D12) in the same manner as we quantize the
electromagnetic vector potential A in the Schrödinger
picture in Sec. III B. For the above choices of the scale
factor and the vector potential, we find that the function f
that determines the wave function describing the system
[given by Eqs. (35) and (39), and g defined as in Eq. (40),
with the nonconformal coupling function J replaced by the
scale factor a] satisfies the differential equation

d2f
dτ2

þ
�
k̄2 −

2ζk̄z
τ

þ ζ2 þ m̄2 − 2

τ2

�
f ¼ 0; ðD18Þ

where k̄z ¼ kz − ðeE0=HIÞ, k̄2 ¼ k2⊥ þ k̄2z , ζ ¼ eE0=H2
I ,

m̄ ¼ m=HI and τ ¼ η − ð1=HIÞ. We should point out here
the similarity between the above differential equation and
the equation (90) governing the evolution of the helical
electromagnetic fields in de Sitter spacetime. Note that, for
small m̄ and ζ, their structures are very similar. Also, for a
range of wave numbers, changing the sign of kz (or the
direction of the electric field E) is equivalent to considering
the helical electromagnetic mode of opposite polarization.
Recall that, if the wave function describing the mode is to

start from the ground state corresponding to the Bunch-
Davies vacuum, then, as ð−kηÞ → ∞, we require that the
function f behaves as f ∝ expð−ik̄ηÞ. It is straightforward
to show that the modes with such initial conditions are
given by

fðτÞ ¼ 1ffiffiffiffiffi
2k̄

p e−πζk̄z=ð2k̄Þe−ik̄=HIWiζk̄z=k̄;νð2ik̄τÞ; ðD19Þ

where Wλ;νðzÞ denotes the Whittaker function and ν2 ¼
ð9=4Þ − m̄2 − ζ2 [91]. Note that, when ζ ¼ 0 and m ¼ 0,
the above solution reduces to

fðηÞ ¼ 1ffiffiffiffiffi
2k

p e−ik=HIW0;3=2ð2ikτÞ: ðD20Þ

Since [91]

W0;3=2ðzÞ ¼
ffiffiffi
z
π

r
K3=2

�
z
2

�
; ðD21Þ
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where K3=2ðzÞ is the modified Bessel function given by

K3=2ðzÞ ¼
ffiffiffiffiffi
π

2z

r �
1þ 1

z

�
e−z; ðD22Þ

we find that the above function fðηÞ can be expressed as

fðηÞ ¼ 1ffiffiffiffiffi
2k

p
�
1 −

i
kη − ðk=HIÞ

�
e−ikη; ðD23Þ

which is the well-known solution describing a massless
scalar field in de Sitter spacetime.
The squeezing amplitude associated with the modes of

the charged scalar field can be determined using the relation
(54), with f given by Eq. (D19) and g defined as in
Eq. (40), with J replaced by a. In Fig. 5, we plot the
evolution of the squeezing amplitude r (for a specific wave
number) as a function of e-folds for two different sets of
values of the parameters ζ, with m̄ set to zero. We also plot
the case wherein ζ vanishes. It should be evident that the
behavior of the squeezing amplitude for opposite signs of ζ
is similar to the behavior of the two states of opposite
polarization of the helical electromagnetic mode. In fact,
because of the presence of the additional parameters (such
as m), the evolution of the complex scalar field is consid-
erably richer, but we have chosen to work with values so

that the evolution closely resembles the behavior of the
modes of the nonhelical and helical electromagnetic fields.
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