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We revisit how super-Hubble cosmological fluctuations induce, at any time in the cosmic history, a
nonvanishing spatial curvature of the local background metric. The random nature of these fluctuations
promotes the curvature density parameter to a stochastic quantity for which we derive novel non-
perturbative expressions for its mean, variance, higher moments, and full probability distribution. For scale-
invariant Gaussian perturbations, such as those favored by cosmological observations, we find that the most
probable value for the curvature density parameter ΩK today is −10−9 and that its mean is þ10−9, both
being overwhelmed by a standard deviation of the order of 10−5. We then discuss how these numbers would
be affected by the presence of large super-Hubble non-Gaussianities or if inflation lasted for a very long
time. In particular, we find that substantial values ofΩK are obtained if inflation lasts for more than a billion
e-folds.
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I. INTRODUCTION

Cosmic structures in the Universe are understood to be
seeded by some preexisting super-Hubble cosmological
fluctuations. Their gravitational collapse starts when their
size becomes smaller than the Hubble radius, an inevitable
outcome in any decelerating Friedmann-Lemaître space-
time. Observational evidence of this mechanism is present
in the cosmic microwave background (CMB) data by the
correlation patterns associated with the polarization and
temperature angular power spectra [1,2], as well as in the
statistics of the large-scale structures observed at lower
redshifts [3,4].
Cosmic inflation, an early era of accelerated cosmic

expansion, is the prime candidate to explain the origin of
the super-Hubble fluctuations. They are of quantum origin,
stretched to length scales much larger than the Hubble
radius during inflation [5–16]. At the same time, inflation
smooths out any preexisting inhomogeneity, and one of the
historical motivations for cosmic inflation is that the spatial
curvature of spacetime, ΩK, should be exponentially small
at the end of inflation (at most e−60). This prediction is
compatible with the current bound jΩK0

j < 3 × 10−3 today,

coming from the Planck CMB data and baryon acoustic
oscillation measurements.
Intuitively, the existence, today, of Hubble-sized curva-

ture fluctuations suggests that these could be confused
with a small nonvanishing spatial curvature of the local
background metric. In particular, these modes are expected
to induce a limitation on our ability to measure very
small values of the curvature density parameter [17–21].
More than being a nuisance, we will show that super-
Hubble (hence, “conserved”) fluctuations do create spatial
curvature.
In order to deal with fluctuations over a background

metric when both are intertwined, we can start from the
inhomogeneous metric proposed in Refs. [22–25]:

ds2 ¼ −dτ2 þ a2ðτÞe2ζðτ;xÞδijdxidxj: ð1Þ

This metric is not fully general, as inhomogeneities are all
contained in one scalar function ζ. However, as discussed
in Refs. [22–25], this is the most generic metric in the
absence of vector- and tensor-type inhomogeneities and
in the gauge where fixed time slices have uniform energy
density and fixed spatial worldlines are comoving with
matter. At super-Hubble scales, this reduces to the syn-
chronous gauge supplemented by some additional con-
ditions that fix it uniquely. The quantity ζðτ; xÞ can be
shown to be “conserved” at large distances. As such, it
provides a nonlinear generalization of the constant-energy-
density curvature perturbation [26,27].
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Historically, this metric has been intensively discussed in
the attempts to explain the acceleration of the Universe by
the backreaction of super-Hubble inhomogeneities [28,29].
But, as realized soon after [30–32], the effects of super-
Hubble fluctuations onto the background evolution are to
modify the spatial curvature. Let us notice that, on top of
the background evolution, other observable signatures are
possible [33–35]. To our knowledge, the only works having
addressed how super-Hubble modes affect the spatial
curvature are Refs. [32,36,37], based, however, on pertur-
bative gradient expansions or linear perturbation theory
only. When the nonperturbative terms of our derivation can
be neglected, we recover some of their results.
The paper is organized as follows. In Sec. II, we derive

an exact expression for the curvature density parameter ΩK
in terms of the nonlinear curvature perturbation ζ. This
promotes ΩK to a stochastic quantity, and in Sec. III we
calculate its moments as well as its probability density
function, assuming Gaussian statistics for ζ. Finally, we
conclude by discussing how the statistics of the curvature
density parameter is modified in the presence of non-
Gaussian super-Hubble fluctuations or if inflation lasted for
a very long time.

II. CURVATURE DENSITY PARAMETER

When spatial curvature is included, the Friedmann-
Lemaître-Robertson-Walker (FLRW) line element reads

ds2 ¼ −dτ2 þ a2ðτÞ δijdxidxj

ð1þ K
4
δmnxmxnÞ2

; ð2Þ

where K is a constant, and its Ricci scalar is given by

R ¼ 6
ȧ2

a2
þ 6

ä
a
þ 6

a2
K: ð3Þ

The metric (1) can be viewed as an inhomogeneous
generalization of a flat, i.e., K ¼ 0, FLRW spacetime
having a space-dependent scale factor

bðτ; xÞ≡ aðτÞeζðτ;xÞ; ð4Þ

from which one can derive the Ricci scalar

R ¼ 6
ḃ2

b2
þ 6

b̈
b
þ 2

ð∇bÞ2
b4

− 4
Δb
b3

: ð5Þ

We now split ζðτ; xÞ ¼ ξðxÞ þ ζsðτ; xÞ into a conserved
part ξ (super-Hubble) and time-dependent fluctuations ζs
(sub-Hubble). Expanding in the (presumably small) short-
length part, one has

bðτ; xÞ ¼ aðτÞeξðxÞ½1þ ζsðτ; xÞ þ � � ��; ð6Þ

and upon defining

ãðτ; xÞ ¼ aðτÞeξðxÞ ð7Þ

one is led to

R ¼ 6
˙̃a2

ã2
þ 6

̈ã
ã
þ 6

ã2

�
−
2

3
Δξ −

1

3
ð∇ξÞ2

�
þ � � � : ð8Þ

The omitted terms in this expression are the ones appearing
in the linear theory of cosmological perturbations, in the
synchronous gauge, completed by all possible nonlinear
corrections involving powers of ζsðτ; xÞ and products
with ãðτ; xÞ [38]. The mixed terms involving both
ãðτ; xÞ and powers of ζsðτ; xÞ were precisely the ones
discussed in the early works on backreaction and are non-
observable [30–32]. As can be checked in Eq. (8), the terms
we have kept are invariant by a constant shift of ξðxÞ, up to
a redefinition of aðτÞ.
Since ξðxÞ varies on super-Hubble length scales only, so

does ãðτ; xÞ; hence, any observer will identify ãðτ; xÞ as the
FLRW scale factor of their local Hubble patch. Let us
notice that, in the gauge we work in, the Hubble radius is
the same for all observers, since [24,39,40]

H̃ ≡ ˙̃a
ã
¼ ȧ

a
¼ H; ð9Þ

which does not depend on x. An important remark is that
Eqs. (3) and (8) coincide upon identifying

K ¼ −
2

3
Δξ −

1

3
ð∇ξÞ2; ð10Þ

which is indeed constant, since ξ is conserved, and whose
measurable curvature density parameter reads

ΩK ¼ −
K

ã2H̃2
¼ −

Ke−2ξ

a2H2
: ð11Þ

Let us stress that Eq. (10) is exact in the sense that all the
terms omitted involve ζsðτ; xÞ; hence, they are time
dependent and cannot be absorbed in K. Equation (10)
makes also explicit that only gradients of super-Hubble
inhomogeneities have a nontrivial effect.

III. STATISTICS

Current cosmological measurements [41] imply that ζ
has Gaussian statistics and can, thus, be treated as a random
Gaussian field, with vanishing mean and higher-point
correlation functions entirely determined by the power
spectrum

hζðkÞζðk0Þi ¼ ð2πÞ3δðkþ k0ÞPζðkÞ: ð12Þ

This is also in agreement with the most favored inflationary
scenarios, where the mean values are identified with
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vacuum expectation values of quantum operators in the
Bunch-Davis vacuum. Later on, we will also use the
spherical power spectrum PζðkÞ defined by

PζðkÞ ¼
k3

2π2
PζðkÞ ≃ P�; ð13Þ

where the last approximation holds for a scale-invariant
power spectrum.
From Eqs. (10) and (11), ΩK can, therefore, also be seen

as a stochastic quantity, though its nonlinear dependence on
ξ, and, thus, on ζ, implies that it does not feature Gaussian
statistics. In particular, its expectation value does not
necessarily vanish.
Let us make the decomposition ζðτ; xÞ ¼ ξðxÞ þ ζsðτ; xÞ

explicit in Fourier space:

ζðτ; xÞ ¼ 1

ð2πÞ3
Z

d3kΘðkσ − kÞζðkÞeik·x

þ 1

ð2πÞ3
Z

d3kΘðk − kσÞζðτ; kÞeik·x; ð14Þ

where we have introduced a wave number kσ below which
all Fourier modes ζðτ; k < kσÞ ¼ ζðkÞ can be approximated
as time independent. Based on the theory of cosmological
perturbations, and its generalizations [26,27], this wave
number is at most of the order of the conformal Hubble
parameter at the observer’s time, say, τ0; namely,
kσ ≲ ãðτ0ÞH̃ðτ0Þ. Let us remark the presence of ãðτ0; xÞ,
instead of aðτ0Þ, in this expression. A priori, this would
induce an extra dependence on x in Eq. (14), where one
should write kσðxÞ. In order to circumvent this issue, we
can, for now, simply choose the cutoff kσ to be sufficiently
small such that it encompasses all possible spatial modu-
lations of ãðτ0; xÞ. In other words, we define

kσ ≡ σa0H0; ð15Þ

where, in principle, σ < eminxðξÞ. As such, we can identify
the conserved quantity with

ξðxÞ ¼ 1

ð2πÞ3
Z

d3kΘðkσ − kÞζðkÞeik·x: ð16Þ

Let us remark that σ also quantifies the possible ambiguities
in separating the background, made of the time-indepen-
dent ξðxÞ, from the modes which contribute to the pertur-
bations, the time-dependent ζsðτ; xÞ.

A. Mean value

The mean value of the curvature density parameter reads

hΩKi ¼ −
hKe−2ξi
a2H2

; ð17Þ

where ξ is given by Eq. (16). The curvature scalar K, given
in Eq. (10), can be split into two terms K ¼ K1 þ K2 with

K1 ≡ −
2

3
Δξ; K2 ≡ −

1

3
ð∇ξÞ2: ð18Þ

Therefore, one needs the Laplacian and the squared
gradient of ξ. They read, respectively,

Δξ ¼ −
Z

d3k
ð2πÞ3 Θðkσ − kÞk2ζðkÞeik·x ð19Þ

and

ð∇ξÞ2 ¼ −
Z

d3pd3q
ð2πÞ6 Θðkσ − pÞΘðkσ − qÞ

× p · qζðpÞζðqÞeiðpþqÞ·x; ð20Þ

from which one can immediately calculate

hKi ¼ hK2i ¼ −
1

3

Z
d3k
ð2πÞ3Θðkσ − kÞk2PζðkÞ

¼ −
1

3

Z
kσ

0

dkkPζðkÞ ≃ −
1

6
k2σP�; ð21Þ

the rightmost equality holding only for a scale-invariant
power spectrum.
The term e−2ξ appearing in Eq. (17) can be expressed in

terms of ζðkÞ by using the series representation

e−2ξ ¼
Xþ∞

n¼0

ð−2Þn
n!

ξn; ð22Þ

with

ξn ¼
Z

d3k1…d3kn
ð2πÞ3n

�Yn
j¼1

Θðkσ − kjÞζðkjÞ
�
eix·

P
j
kj : ð23Þ

As can be seen in Eq. (17), the mean value of the curvature
density parameter requires the explicit determination of
an infinite number of terms, the nonvanishing ones being
of the form hK1ξ

2pþ1i and hK2ξ
2pi. From Eqs. (12), (18),

and (23), one can make extensive use of the Wick theorem
to reduce all the expectation values to a few two-point
functions with the following diagrammatic rules:

ð24Þ
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Let us notice that, due to the inner product structure of
Eq. (20), the K2 vertices have two “legs” that can connect
only to other K2 vertices. From Eq. (19), one has

hK2
1i ¼

4

9

Z
kσ

0

dkk3PζðkÞ ≃
1

9
k4σP�; ð25Þ

which allows us to express the second moment of the
curvature scalar as

hK2i ¼ hK2
1i þ

5

3
hKi2 ≃ 1

9
k4σP�

�
1þ 5

12
P�

�
: ð26Þ

In Eq. (24), we also need the variance of the conserved
quantity ξ. It can be determined from Eq. (16) and reads

hξ2i ¼
Z

kσ

kε

dk
PζðkÞ
k

≃ P� ln
�
kσ
kε

�
≃ P�Ninf ; ð27Þ

where we have introduced an expected infrared cutoff kε.
Indeed, in the context of cosmic inflation, the ratio between
the largest and shortest lengths being amplified is precisely
given by the total amount of stretching generated by the
accelerated expansion, the so-called total number of e-folds
Ninf . For the measured value of P� ¼ 2.1 × 10−9 [42], and
a not too long inflationary era Ninf ≪ 109, hξ2i is a small
quantity.
Denoting by W2p ¼ ð2pÞ!=ðp!2pÞ the number of Wick

contractions between p pairs, one obtains

ð28Þ

and

ð29Þ

The infinite series obtained by combiningEqs. (28), (29), and
(22) can be resummed, and one gets the exact expression

hΩKi ¼ −
5

a2H2
hKie2hξ2i: ð30Þ

Making use of Eqs. (21) and (27), for a scale-invariant power
spectrum, Eq. (30) simplifies to

hΩK0
i ≃ 5

6

k2σ
a20H

2
0

P�e2P�Ninf ≃
5

6
σ2P�; ð31Þ

which saturates for σ ¼ 1 at hΩK0
i ≃ 1.7 × 10−9, a barely

open universe were we to interpret this number within a
FLRW metric with trivial topology.

B. Variance

There is little hope to measure such a small value of
hΩKi, but, ΩK being a stochastic variable, its realizations
are also dictated by the higher moments, the second one
being given by

hΩ2
Ki ¼

hK2e−4ξi
a4H4

¼ hðK2
1 þ 2K1K2 þ K2

2Þe−4ξi
a4H4

: ð32Þ

Using again a series representation for the exponential,
Eq. (32) can be expanded in an infinite sum requiring the
calculation of the nonvanishing terms hK2

1ξ
2pþ2i,

hK1K2ξ
2pþ1i, and hK2

2ξ
2pi, with p ≥ 0. Using the dia-

grammatic rules of Eq. (24), one gets

ð33Þ

together with

ð34Þ

and

ð35Þ

Summing all the terms coming from the expansion of
Eq. (32) gives the exact expression

hΩ2
Ki ¼

1

a4H4
ðhK2i þ 80hKi2Þe8hξ2i: ð36Þ
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For a scale-invariant power spectrum, using Eqs. (21), (27),
and (26), one obtains

hΩ2
K0
i ≃ 1

9

k4σ
a40H

4
0

P�

�
1þ 245

12
P�

�
e8P�Ninf ≃

1

9
σ4P�: ð37Þ

Using Eq. (31) for σ ¼ 1, the standard deviation of ΩK0
is

given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΩ2

K0
i − hΩK0

i2
q

≃
σ2

3

ffiffiffiffiffiffi
P�

p
≃ 1.5 × 10−5: ð38Þ

In summary, Eqs. (30) and (36) show that, in a Universe
filled with cosmological fluctuations stretched over super-
Hubble scales, the curvature density parameter is not
vanishingly small but is promoted to a stochastic variable.
At any time in the cosmic history, we therefore expect an
observer to measure a realization of ΩK dominated by its
standard deviation, i.e., at about 1.5 × 10−5. However,
Eq. (10) makes explicit that K is a nonlinear functional
of ξ. As such, even if ξ is of Gaussian statistics, the
probability distribution of ΩK is, a priori, non-Gaussian.
The rarity of extreme values of ΩK could, therefore, be
affected by the higher moments, and we now turn to their
calculation.

C. Higher moments

All the higher moments hΩn
Kiwith n > 2 can be explicitly

calculated with the samemethod as the one employed for the
mean value and the variance. Expanding the exponential in
series and using the binomial expansion of ðK1 þ K2Þn
shows that one has to determine the mean value of combi-
nations of the form hKp

1K
q
2ξ

mi ¼ hKq
2ihKp

1 ξ
mi. Those can all

be expressed in terms of powers of hξ2i, hKi, and hK2i by
using the diagrammatic rules of Eq. (24).
The only new subtlety consists in evaluating the terms in

hKq
2i that need to be decomposed into “self-cycles.” For

instance, the third moment requires one to evaluate

ð39Þ

and one obtains

hΩ3
Ki ¼ −

hKi
a6H6

�
39hK2i þ 19430

9
hKi2

�
e18hξ2i: ð40Þ

Similarly, the fourth moment is given by

hΩ4
Ki ¼

1

a8H8

�
3hK2i2 þ 1728hK2ihKi2

þ 736682

9
hKi4

�
e32hξ2i; ð41Þ

and so on and so forth. These expressions are not
particularly illuminating, but the leading-order terms of
all the moments are diagrammatically tractable, and one
can show that, for a scale-invariant power spectrum, the
standardized moments μ̃n (the moments divided by the nth
power of the standard deviation) verify

μ̃n¼2p ≃Wneð2n
2−4nÞhξ2i;

μ̃n¼2pþ1 ≃ nWn−1ð1þ 4nÞ
ffiffiffiffiffiffi
P�

p
2

eð2n2−4nÞhξ2i: ð42Þ

All odd standardized moments are suppressed by the factorffiffiffiffiffiffi
P�

p
with respect to the even ones. Moreover, provided

the exponential terms in Eq. (42) are close to unity, i.e.,
for n2hξ2i ≪ 1, the even moments exactly match the ones
associated with a Gaussian probability distribution. As
such, hΩn

Ki shows significant deviations compared to the
Gaussian expectations only for large values of n2 ≳ 1=hξ2i.
To better assess the effect of these higher moments, we next
turn our attention to the functional form of the ΩK’s
probability distribution.

D. Probability distribution

The probability density function of ΩK can be deter-
mined by noticing that Eqs. (10) and (11) imply that ΩK
can be seen as a nonlinear functional over five stochastic
Gaussian variables, Ξ≡ ðξ;Δξ;∇ξÞ. As such, defining
Ω̄K ≡ ða2H2=k2σÞΩK and marginalizing over the five-
dimensional space associated with Ξ, one has

PðΩ̄KÞ ¼
Z

d5Ξ
ð2πÞ5=2 δ

�
Ω̄K þ K

k2σ
e−2ξ

�
e−

1
2
ΞTΣ−1Ξffiffiffiffiffiffiffiffiffiffi
detΣ

p ; ð43Þ

where the five-dimensional covariance matrix Σ is com-
pletely determined by the diagrammatic rules of Eq. (24).
All but one integral appearing in Eq. (43) can be analyti-
cally reduced, and, after some algebra, one obtains

PðΩ̄KÞ ¼
k2σ
4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27

ffiffiffi
2

p
Σω

hξ2ijhKij3

s Z þ∞

−∞
dxe

− x2

2hξ2iþ2x

× e−
1
2
ω̄2ðΩ̄K;xÞH−3

2

�
3Σωffiffiffi
8

p jhKij −
ω̄ðΩ̄K; xÞffiffiffi

2
p

�
; ð44Þ

where we have defined
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Σ2
ω ≡ hK2

1i − 4
hKi2
hξ2i ;

ω̄ðΩ̄K; xÞ≡ e2x
Ω̄K

ðΣω=k2σÞ
þ 2jhKij
hξ2iΣω

x: ð45Þ

In Eq. (44), HνðxÞ stands for the generalized Hermite
polynomial of fractional order, defined from the parabolic
cylinder functions [43] asHνðxÞ≡ 2ν=2ex

2=2Dνð
ffiffiffi
2

p
xÞ. This

distribution shows that, for hξ2i ≃ P�Ninf ≪ 1, one can use
the approximation

e
− x2

2hξ2iþ2x ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πhξ2i

q
e2hξ2iδðx − 2hξ2iÞ ð46Þ

to simplify the integral over x in Eq. (44). Remarking that,
in this limit, the argument of the Hermite function is
dominated by the first term, which is a constant scaling as
1=

ffiffiffiffiffiffi
P�

p
, PðΩ̄KÞ is, therefore, close to a Gaussian distribu-

tion over the quantity ω̄ðΩ̄K; 2hξ2iÞ. In other words, for
hξ2i ≪ 1, the distribution of Ω̄K is almost Gaussian, with a
width given by Σω=k2σ ≃

ffiffiffiffiffiffi
P�

p
=3 and a peak located at a

very small negative value:

Ω̄Kjmax ≃
4

k2σ
hKie−4hξ2i ≃ −

2

3
P�: ð47Þ

For the curvature parameter today, one would get the most
probable value at ΩK0

jmax ≃ −1.4 × 10−9, a barely closed
universe were we to interpret this number within a FLRW
metric with trivial topology. Let us notice the different sign
than the mean value of Eq. (31); the distribution is indeed

slightly skewed by the Hermite function. This can be seen
in Fig. 1, where we have plotted PðΩ̄KÞ for an unrealis-
tically large value of P� ¼ 10−3. These distortions are also
apparent in the odd moments of Eq. (42) which are, as
already noted, all proportional to

ffiffiffiffiffiffi
P�

p
.

When hξ2i ≃ P�Ninf increases, Eq. (46) is no longer
accurate, and all the terms of Eq. (44) are relevant. The
distribution now acquires heavy tails, kicking in at increas-
ingly smaller values of jΩ̄Kj and erasing the Gaussian
profile in the neighborhood of Ω̄Kjmax. In Fig. 2, we have
plotted PðΩ̄KÞ, in logarithmic scales, for P� ¼ 2.1 × 10−9

and for a large number of e-folds Ninf ¼ 108. These heavy
tails imply that large values of jΩK0

j are (much) more likely
than what a Gaussian profile would imply. Their existence
is also manifest in the moments of Eq. (42) through the
exponential coefficients involving hξ2i. Such an effect is
reminiscent of the nonlinear mapping of vacuum quantum
fluctuations encountered in the context of stochastic
inflation [44,45].
Finally, let us mention that numerical computations of

hΩKi and hΩ2
Ki based on using the distribution of Eq. (44)

do match the values we can get from Eqs. (30) and (36).

IV. DISCUSSION

If inflation lasts for a long period, then substantial values
of ΩK0

might be produced. Indeed, letting σ2 ≃ e−hξ2i to
implement the condition stated below Eq. (15), Eq. (37)
becomes hΩ2

K0
i1=2 ≃ ffiffiffiffiffiffi

P�
p

e3P�Ninf=3. For this value not to
exceed the current observational bound jΩK0

j < 3 × 10−3,

FIG. 1. Probability distribution function for Ω̄K ¼
ðaH=kσÞ2ΩK (red curve) for unrealistically large values of P� ¼
10−3 (and Ninf ¼ 100), compared to a Gaussian of the same mean
and variance (black curve). Notice that the most probable value of
Ω̄K is slightly negative, whereas the mean value remains slightly
positive.

FIG. 2. Probability distribution function for Ω̄K ¼
ðaH=kσÞ2ΩK (red curve) for the currently favored value of P� ¼
2.1 × 10−9 and for a large number of e-folds Ninf ¼ 108. The
variance hξ2i is no longer a small quantity, and the distribution
acquires heavy tails. Even though the width at half maximum is
Oð ffiffiffiffiffiffi

P�
p Þ, substantial values of jΩ̄Kj are not rare anymore. For

comparison, the black curve shows a Gaussian of the same mean
and variance.
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with P� ¼ 2.1 × 10−9 this leads to Ninf < 7 × 108. On the
one hand, this suggests that scenarios leading to phases of
inflation lasting for more than a billion e-folds might be
disfavored by current cosmological data. On the other hand,
future cosmological surveys, such as the ones using the
neutral hydrogen line at 21 cm, may possibly detect a
nonvanishing curvature if inflation actually lasted slightly
less than a billion e-folds [46]. Notice that the aforemen-
tioned bound becomes more stringent if one accounts for
the slightly red observed spectral index.
Let us note, however, that when the above bound on Ninf

is saturated, hξ2i ≃ 1.5. A priori, our nonlinear formulas do
not require hξ2i to be small; hence, they can still be used in
that case. In particular, although one can see that all the
moments are becoming exponentially large with hξ2i,
Eq. (44) shows that PðΩ̄KÞ remains well defined.
Nonetheless, the fact that the scale kσ must be set in a
way that accommodates potentially large values of ζ
suggests that our formalism may not be best suited in that
case, and the upper bound we have obtained on Ninf must
be taken with care. Moreover, for large hξ2i, possible
backreaction effects on super-Hubble scales could also
induce deviations from Gaussianity.
If inflation lasts even longer,ΩK gets even larger, and our

formalism needs to be extended in at least two ways. First,
when jΩKj becomes of the order of unity, or more, the
metric associated with Eq. (1) is not acceptable anymore.
For instance, a large negative curvature density parameter
would imply a compact manifold, and this demands
another coordinate system than the one in Eq. (1).

Second, when jΩKj becomes sizable, it opens up a channel
of backreaction of the curvature perturbation onto the
background dynamics, which, in turn, alters the inflationary
amplification of the curvature perturbations themselves
[47,48]. This mechanism might be tractable in an extended
stochastic-inflation formalism [49–53], which we plan to
develop in a future work.
Finally, let us insist that our derivation of the statistics of

ΩK is not rooted in any perturbative expansion of metric
coefficients. The assumptions made are that ζ is of
Gaussian statistics and conserved on super-Hubble scales.
As such, our results would be modified if curvature
perturbations are non-Gaussian at nonobservably large
scales. This is, strictly speaking, not excluded, although
it would require very specific early-Universe models for
which curvature perturbations are Gaussian at observable
scales today (in order to satisfy the tight constraints on non-
Gaussianities [41]) and non-Gaussian at larger scales.
Another hypothesis that could be broken is that ξ is
conserved by adiabaticity. The presence of entropic modes
today could invalidate this assumption, but, as for non-
Gaussianities, their presence during inflation is also dis-
favored by current data.
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