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The low-frequency gravitons correspond to typical wavelengths that left the Hubble radius during the
early inflationary stages of expansion and reentered after matter radiation equality. Consequently the
temperature and the polarization anisotropies of the cosmic microwave background constrain the tensor-to-
scalar ratio in the aHz region but, since the audio band and the MHz domain are sensitive to the
postinflationary expansion rate, the low-frequency determinations of the tensor-to-scalar ratio can be
combined with the high-frequency constraints. In this framework we examine the possibility that the low-
frequency gravitons remain invisible in the aHz region but are still potentially detectable at much higher
frequencies. Because the number of e-folds associated with the exit of the cosmic microwave background
wavelengths depends both on the slow-roll parameters and on the total expansion rate after inflation, this
approach leads to a set of lower bounds on the tensor-to-scalar ratio.
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I. INTRODUCTION

The tensor modes of the geometry affect all the angular
power spectra of the cosmic microwave background
(CMB) anisotropies but the distinctive feature of relic
gravitons in the aHz region1 should appear from the
analysis of the polarization anisotropies that have been
originally discovered in the first releases of the WMAP
collaboration [1–3] and later confirmed by other ground
based experiments as well as by the relatively recent
observations of the Planck satellite [4]. However the
low-frequency gravitons not only affect the E-mode but also
theB-mode polarizationwhich is instead absent in the case of
curvature inhomogeneities; in spite of some claims sub-
sequently withdrawn [5], so far there is no evidence for the
presence of a B-mode polarization caused by the low-
frequency gravitons. There are, of course, sources of
B-mode polarization that have been successfully detected
in the CMB like the one associated with the gravitational
lensing of the primary anisotropies [6]. These B-mode
signals are however not related with the ones generated by
the relic gravitons in the aHz region. The current analyses
suggest that the temperature and the polarization anisotropies

of the CMBare caused by the curvature inhomogeneities that
are Gaussian and (at least predominantly) adiabatic; these
are, in a nutshell, the distinctive features of the so-called
adiabatic paradigm whose formulation can be traced back to
the pioneering analyses of Peebles and Yu [7]. In this
framework various bounds on the aHz gravitons have been
deduced both by the WMAP team [1–3] and by the
subsequent experiments (see e.g. [8–10]).
In practice the bounds on the aHz gravitons take the form

of limits on the so-called tensor-to-scalar ratio rT since, in the
adiabatic paradigm,2 the production of relic gravitons is
associated with decreasing frequency spectra whose ampli-
tudes and slopes are simultaneously fixed at a conventional
pivot wave number kp by the relation rT ¼ AT=AR, where
AT andAR denote, respectively, the amplitudes of the tensor
and of the scalar power spectra. The lowest range of
comoving frequencies corresponds therefore to ν ¼ OðνpÞ
where νp ¼ kp=ð2πÞ ¼ 3.092 aHz and kp ¼ 0.002 Mpc−1.
All the CMB experiments setting limits on rT are therefore
constraining the aHz domain and these bounds will get
progressively more stringent in the future.While theWMAP
collaboration could set upper limits rT < Oð0.1Þ, the
most recent determinations suggest rT < Oð0.06Þ or even
rT < Oð0.03Þ [8–10]. In the concordance scenario (often
dubbed ΛCDM paradigm where Λ denotes the dark energy*massimo.giovannini@cern.ch

1We shall be using the prefixes of the International System of
Units so that, for instance, 1 aHz ¼ 10−18 Hz, 1 fHz ¼ 10−15 Hz
and so on.
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2Entropic (or nonadiabatic) modes are strictly absent in the
minimal version of the concordance paradigm. Depending on
the scenario the entropic modes can be up to five [11–14]. In the
presence of nonadiabatic modes a tensor-to-scalar ratio must be
introduced for each of the modes and for their correlations. We
shall stick to the adiabatic paradigm also because its nonadiabatic
extensions are strongly constrained [8–10].
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component and CDM stands for the cold dark matter
contribution) the spectral slope nT and the slow-roll param-
eter ϵ are expressible in terms of rT according to the so-called
consistency relations stipulating that nT ≃ −2ϵ ≃ −rT=8.
The stochastic backgrounds of relic gravitons are however
not peculiar of the ΛCDM case and have been actually
suggested well before the formulation of any of the current
scenarios aiming at a specific account of the early stages of
the evolution of our Universe [15–17].
As alreadymentioned above, the frequenciesOðfewÞ aHz

correspond to wavelengths that left the Hubble radius well
before the onset of the radiation-dominated phase and
reentered after matter-radiation equality [18,19]. However,
even assuming the presence of an early inflationary stage, the
high-frequency range of the spectrum chiefly depends on the
postinflationary evolution which is observationally unacces-
sible [20–22]. Nonetheless, the maximal comoving fre-
quency of the relic graviton spectrum can be generally
expressed as

νmax ¼ νmaxðrT;ARÞ=Dðδi; ξiÞ; ð1:1Þ

where νmax depends on rT and on the amplitude of curvature
inhomogeneities AR; in Eq. (1.1) Dðδi; ξiÞ accounts for the
postinflationary evolution and its specific form is not
essential for the purposes of this introduction (see, however,
the discussion of Appendix A). Since there could be various
distinct epochs, the subscripts appearing in the expansion
rates (i.e. δi) and in their relative durations (i.e. ξi) count the
successive expanding phases. Assuming that all the δi go to 1
we have that, within the present notations, νmax → νmax ¼
Oð270ÞðrT=0.06Þ1=4 MHz and Eq. (1.1) eventually repro-
duces themaximal frequency of the spectrum obtained when
the inflationary stage of expansion is suddenly replaced by a
radiation-dominated phase. In this case the spectral energy
density in critical units [denoted hereunder3 byh20Ωgwðν; τ0Þ]
is quasiflat as a function of the comoving frequency. If the
postinflationary expansion rate is different from radiation,
then h20Ωgwðν; τ0Þ is generally not flat and whenever the
expansion rate is faster than radiation the spectral energy
density in critical units decreases. Conversely when the
expansion rate is slower than radiation h20Ωgwðν; τ0Þ
increases as a function ν. As we shall see the postinflationary
evolution also affect the maximal frequency of the spectrum
illustrated in Eq. (1.1): νmax is either larger or smaller than
Oð270Þ MHz depending on the expansion rate (see, in this
respect, Appendix A and the discussion therein).

Also the total number of inflationary e-folds depends on
the postinflationary evolution and if we focus on the
number of e-folds associated with the crossing of the
CMB scales k ¼ OðkpÞ we have that4

Nk ¼ Oð60Þ þ 1

4
ln

�
rT
0.06

�
þ lnDðδi; ξiÞ; ð1:2Þ

where the consistency relations have been assumed. Since
Nk enters directly the predictions of the spectral index and
of the tensor-to-scalar ratio we can conclude that the
postinflationary evolution ultimately affects all the infla-
tionary observables including the spectral index of curva-
ture inhomogeneities.
In short the main purpose of this analysis is to answer the

following question: by how much can we reduce rT without
suppressing the signal in the audio and in the MHz band?
From a phenomenological viewpoint the interplay between
the aHz region and the high-frequency range rests on various
observations that are progressively limiting the degree of
arbitrariness of the high-frequency shape of h20Ωgwðν; τ0Þ.
Starting in 2004 the wideband detectors obtained a series of
limits on the spectral energy density of the relic gravitons
[23–26] for a typical pivot frequency smaller than 300 Hz.
While different spectral slopes lead to slightly modified
bounds we should have that h20Ωgwðν; τ0Þ < Oð10−9Þ for
comoving frequencies falling in the audio band (i.e. between
few Hz and 10 kHz). Moreover the pulsar timing arrays
(PTAs) recently reported an evidence potentially attributed to
the relic gravitons: the four collaborations currently inves-
tigating the nHz band (between few nHz and 0.1 μHz) report
compatible determinations of h20Ωgwðν; τ0Þ [27–30] imply-
ing 10−9.09 ≤ h20Ωgwðν; τ0Þ ≤ 10−8.07. There are finally indi-
rect bounds on the high-frequency branch of the spectrum
coming from big bang nucleosynthesis: since the additional
relativistic species increase the expansion rate at the nucleo-
synthesis time it is possible to set a bound on the possible
presence of relic gravitons and this constraint is customarily
phrased in terms of a specific integral of h20Ωgwðν; τ0Þ
[31–33] between 10−2 nHz and νmax whose precise value
depends, as already stressed in Eq. (1.1), on the details of the
postinflationary evolution.
Equations (1.1) and (1.2) suggest that the low-frequency

limits on rT are closely related with the high-frequency
determinations throughDðδi; ξiÞ. Some time ago [34] it has
been pointed out that the low-frequency and high-fre-
quency determinations of the relic graviton backgrounds
could be eventually combined in a synergic perspective in
order to improve the determinations of the cosmological

3The spectral energy density in critical units (specifically
defined later on) is denoted by Ωgwðν; τ0Þ. It is however custom-
ary to deal directly with h20Ωgwðν; τ0Þ since the latter quantity
does not depend on the indetermination of the present Hubble
rate. We also note that the present value of the scale factor is
normalized as a0 ¼ 1 and this means that at τ0 the comoving and
the physical frequencies coincide.

4In the present paper ln x denotes the natural logarithm of a
generic variable x; log x denotes instead the common logarithm of
the same quantity. As a consequence of Eq. (1.2), as we shall see,
it follows that Nk > Oð60Þ when the postinflationary evolution is
slower than radiation while Nk < Oð60Þ is the postinflationary
evolution is faster than radiation.
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parameters. In the concordance paradigm the low-
frequency signal is often maximized by assuming the
largest rT compatible with the current data. In this analysis
we instead focus on the possibility that rTðkpÞ ≪ 0.06 and
this choice implies that the low-frequency gravitons might
be eventually invisible in the aHz region without jeopard-
izing the possibility of a larger signal in the audio band or
even in the GHz domain.
The layout of this paper is the following. In Sec. II we

introduced the timeline of the comoving horizon and the
connections between rTðk; τÞ and Ωgwðk; τÞ in the different
frequency domains relevant for the present analysis. In
view of its relevance, the case of single-field scenarios
satisfying the consistency relations is also discussed at the
end of Sec. II. In Sec. III the most constraining physical
situations are addressed in preparation for the bounds of
Sec. IV where a number of more specific examples is also
presented. Section V contains the concluding remarks and,
to avoid digressions, some useful results have been
collected in Appendices A and B.

II. THE TIMELINE OF THE COMOVING
HORIZON AND rT

A. The timeline of the comoving horizon

The expressions of the maximal frequency and of the
number of e-folds given in Eqs. (1.1) and (1.2) follow from

the general form of the comoving horizon when the
inflationary stage is supplemented by a postinflationary
evolution that does not necessarily coincide with the
radiation-dominated plasma. In Fig. 1 we illustrate the
comoving horizon as a function of the scale factor
(common logarithms are assumed on both axes). The thick
(diagonal) line at the left of the cartoon corresponds to the
inflationary evolution and the filled squares define the exit
of a given (comoving) wavelength while the disks in the
right portion of the plot denote reentry of the selected scale.
According to Fig. 1 the wavelengths smaller than λr reenter
before radiation dominance while the wavelengths λ > λr
(illustrated by a shaded stripe) reenter between the onset of
radiation dominance and the epoch of matter-radiation
equality.
For λ < λr the wavelength OðλminÞ corresponds to

comoving frequencies OðνmaxÞ, i.e. the maximal frequency
of the spectrum already mentioned in Eq. (1.1). The scales
λr < λ < λeq were still larger than the comoving horizon
prior to matter-radiation equality and exited about Nk
e-folds before the end of inflation; the corresponding wave
numbers range therefore between 0.05 and 0.002 Mpc−1

and the corresponding number of e-folds is given in
Eq. (1.2). By considering the timeline of Fig. 1 we can
obtain the specific form of Nk which is in fact derived in
Appendix A [see, in particular, Eq. (A10)]:

n−2

−1
log H  /a

log a

�1 ���
�

1

�2

�3�3

�2

� ���r

�
�

a1 2a a3

���

� ��� eq

a a a = ar aeq

min

1−n nn−2

�n−2

�n−1 

n

n−1

FIG. 1. The common logarithm of the comoving horizon is illustrated as a function of the common logarithm of the scale factor. The
left region of the cartoon corresponds to the inflationary evolution while the postinflationary stage occurs for a > a1. Between a1 and an
there are n − 1 successive sages of expansion characterized by the rates δi; we consistently use the convention that an coincides with ar
(i.e. the beginning of the conventional radiation-dominated evolution). It is also understood throughout the discussion that the
postinflationary stage is bounded by the curvature scale of big bang nucleosynthesis so that Hr ≥ 10−44MP. The presence of a
nonstandard evolution between a1 and an potentially modifies the number of e-folds as well as the spectral energy density of the
produced gravitons. The shaded stripe corresponds to the bunch of wavelengths exiting the horizon during inflation and reentering
between radiation dominance and matter-radiation equality.
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Nk ¼ 59.4þ 1

4
ln

�
ϵk

0.001

�
− ln

�
k

0.002 Mpc−1

�

þ 1

2

Xn−1
i

�
δi − 1

δi þ 1

�
ln ξi −

1

2
ln

�
H1

Hk

�
: ð2:1Þ

Some of the numerical factors discussed in Appendix A
have been purposely neglected in Eq. (2.1) and ϵk is the
value of the slow-roll parameter when the scale Oðk−1Þ
crosses the comoving horizon. In Eq. (2.1) the various ξi
measure the duration of each postinflationary stage of
expansion and since the expansion rate is always decreas-
ing we conclude that5

ξi ¼
Hiþ1

Hi
< 1;

Yn−1
i¼1

ξi ¼ ξ1ξ2…ξn−2ξn−1 ¼ ξr ¼ Hr=H1 < 1: ð2:2Þ

The fourth term at the right-hand side of Eq. (2.1) is the
natural logarithm of D−1ðδi; ξiÞ already introduced in
Eq. (A4) and here rewritten for immediate convenience:

Dðδi; ξiÞ ¼
Yn−1
i¼1

ξ
− ðδi−1Þ

2ðδiþ1Þ
i : ð2:3Þ

Concerning Eqs. (2.1)–(2.3) we remark that a reduction of
ϵk also implies a reduction of Nk, but this effect is overall
secondary in view of the scales of the problem: for a
reduction of 4 orders of magnitude of ϵk we have that Nk
gets reduced of 1 order of magnitude, which is practically
immaterial for the present purposes. In case the consistency
relations are enforced, a reduction of ϵk also implies a
suppression of rT .
If the postinflationary plasma is only dominated by

radiation then in Eq. (2.3) all the δi go to 1 and the fourth
term in Eq. (2.1) disappears. Conversely when some of the
δi are smaller than 1 then the expansion rate gets slower
than radiation and Nk increases. For δi > 1 we may have
also the opposite effect suggesting an overall reduction of
Nk. However, as discussed in Sec. III, when δi > 1 the
spectral energy density is generally decreasing and a large
spectral energy density at high and intermediate frequen-
cies is not expected. In both situations, as stressed in
Appendix B, the Hubble rate at the exit of the given scale
[Hk in Eq. (2.1)] coincides in practice with H1 (i.e. the
expansion rate at the end of inflation) so that the last term in
Eq. (2.1) does not contribute to Nk.

The timeline of Fig. 1 also determines the expression of
the maximal frequency νmax [see Eq. (1.1)] where νmax now
corresponds to the maximal frequency in the case where all
the δi → 1. The value of νmax can then be estimated in the
case of a postinflationary evolution dominated by radiation
and it is given by

νmax ¼ 195.38Cðgs; gρÞ
�

AR

2.41 × 10−9

�
1=4

×

�
ϵk

0.001

�
1=4

�
h20ΩR0

4.15 × 10−5

�
1=4

MHz: ð2:4Þ

Equation (2.4) does not assume a specific relation between
ϵk and rT ; however, if the consistency relations are
enforced, then we can always trade ϵk for rT and the value
of νmax becomes6

νmax ¼ 271.93Cðgs; gρÞ
�

AR

2.41 × 10−9

�
1=4

�
rT
0.06

�
1=4

×
�

h20ΩR0

4.15 × 10−5

�
1=4

MHz: ð2:5Þ

B. The spectral energy density
and the tensor-to-scalar ratio

For typical wavelengths larger than the Hubble radius
(see Fig. 1) the tensor to scalar ratio is practically constant
while the spectral energy density is suppressed. In the
opposite limit the two quantities are both time dependent.
Moreover, while the actual definition of rT is largely
unambiguous (except for the conventional choice of the
pivot scale) the different prescriptions of the energy density
do not generally agree for typical wavelengths larger than
the Hubble radius. However, as recently pointed out [35], a
consistent definition of the energy momentum pseudoten-
sor follows from the variation of the second-order action
with respect to the background metric. This approach,
originally suggested in [36], must be combined with an
appropriate averaging scheme [35] (see also [37,38]). In the
case of the relic gravitons the averaging of the different
combinations of the field operators follows from the
quantum mechanical expectation values [34,35,39] so that
the spectral energy density in critical units is eventually
given by

Ωgwðk; τÞ ¼
1

24H2a2
½QTðk; τÞ þ k2PTðk; τÞ�; ð2:6Þ

5Note that ξn−1 ¼ Hn=Hn−1; but Hn ¼ Hr since, by construc-
tion, the value of an coincides with ar, i.e. the scale factor at
radiation dominance.

6As also discussed in Appendix A, the impact of Cðgs; gρÞ is
minor; for typical values of the late-time parameters (i.e. gρ;r ¼
gs;r ¼ 106.75 and gρ;eq ¼ gs;eq ¼ 3.94) we have that Cðgs; gρÞ ¼
0.7596 and the determination of νmax of Eq. (2.5) moves from
νmax ¼ 271.93 to 206.53 MHz.
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and it depends both on the wave number and on the
conformal time coordinate τ; aðτÞ denotes the scale factor
of a conformally flat background geometry and H is the
standard Hubble rate which is also related to its conformal
time counterpart asH ¼ aH. We recall, in this respect, that
H ¼ a0=a where the prime denotes a derivation with
respect to τ. The two tensor power spectra appearing in
Eq. (2.6) are

PTðk; τÞ ¼
4l2

P

π2
k3jFkðτÞj2; QTðk; τÞ ¼

4l2
P

π2
k3jGkðτÞj2:

ð2:7Þ

In Eq. (2.7) the mode functions FkðτÞ and GkðτÞ obey

Gk ¼ F0
k; G0

k ¼ −2HGk − k2Fk; ð2:8Þ

The amplitude of the tensor power spectra is related to the
one of the curvature inhomogeneities via the tensor-to-
scalar ratio which is, in general, scale dependent and time
dependent:

rTðk; τÞ ¼ PTðk; τÞ=PRðk; τÞ; PRðk; τÞ ¼
k3

2π2
jFkðτÞj2:

ð2:9Þ

From Eqs. (2.7) and (2.9) we therefore have that rTðk; τÞ
can also be written as

rTðk; τÞ ¼ 8l2
PjFkðτÞj2=jFkðτÞj2: ð2:10Þ

In Eqs. (2.9) and (2.10) the mode functions Fk and Gk are
associated with the curvature inhomogeneities and their
evolution is formally similar to the one of Eq. (2.8)

Gk ¼ F0
k; G0

k ¼ −2FGk − k2Fk; ð2:11Þ

where now F ¼ z0=z. The explicit form of zðτÞ depends on
the matter content when the corresponding wavelengths
crossed the comoving horizon. In the case of single-field
models z ¼ zφ ¼ aφ0=H while for an irrotational relativ-
istic fluid the term k2Fk in Eq. (2.11) gets modified as
c2stk2Fk; furthermore z ¼ zt ¼ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρt þ pt

p
=ðHcstÞ [40]

where pt and ρt are, respectively, the total pressure and
the total energy density of the relativistic fluid.

1. Wavelengths larger than the Hubble radius

Since the initial conditions of the Einstein-Boltzmann
hierarchy (required for the calculations of the temperature
and polarization anisotropies) are customarily set well
before matter-radiation equality, Eqs. (2.9) and (2.10) must

be computed when the relevant wavelengths are larger than
the Hubble radius7 i.e. for τex ≤ τ < τre and k ≪ aH.
In this regime Eqs. (2.8) and (2.11) are independently
solved and the result is

FkðτÞ¼
e−ikτex

aex
ffiffiffiffiffi
2k

p Qkðτex;τÞ; FkðτÞ¼
e−ikτex

zex
ffiffiffiffiffi
2k

p Qkðτex;τÞ;

ð2:12Þ

where the subscripts imply that the various quantities are
evaluated when τ → τex (i.e. when the relevant wavelengths
cross the comoving horizon fro a < a1 in Fig. 1). The
functions Qkðτex; τÞ and Qkðτex; τÞ are defined as

Qkðτex; τÞ ¼ 1 − ðikþHexÞa2ex
Z

τ

τex

τ0

a2ðτ0Þ ;

Qkðτex; τÞ ¼ 1 − ðikþ F exÞz2ex
Z

τ

τex

τ0

z2ðτ0Þ : ð2:13Þ

The results of Eqs. (2.12) and (2.13) follow by imposing the
appropriate (quantum mechanical) initial conditions for
τ < τex and by then solving Eqs. (2.8) and (2.11) across τex.
If we then insert Eqs. (2.12) and (2.13) into Eq. (2.10), then
we obtain the explicit form of rTðk; τÞ valid for k < aH and
τex ≤ τ < τre

rTðk; τÞ ¼ 8l2
P

�
zex
aex

�
2 jQkðτex; τÞj2
jQkðτex; τÞj2

: ð2:14Þ

In the case of single field inflationary models and for the
timeline of the comoving horizon illustrated in Fig. 1 we
obtain8

rTðk; τÞ ¼ 8l2
P

�
φ̇2

H2

�
ex
≃ 16ϵk; ϵk ¼ −

�
Ḣ
H2

�
ex
;

ð2:15Þ

sinceQkðτex; τÞ ≃Qkðτex; τÞ → 1 for the timeline of Fig. 1.
The result of Eq. (2.15) follows if the initial conditions of
the scalar and tensor mode functions are set when the
background is already inflating; this means, in practice, that
the total number of e-folds is larger than Nk [see also

7Indeed, before matter-radiation equality, rTðk; τÞ is used to set
the initial conditions of the Einstein-Boltzmann hierarchy in
CMB applications when the relevant wavelengths are still larger
than the comoving horizon.

8In Eq. (2.15) the crossing condition τex ≃ 1=k has been used.
We also recall that, in the case of single-field case, from the
Friedmann equations 2Ḣ ¼ −l2

Pφ̇
2; to get Eq. (2.15) we must

also use the identity ðφ0=HÞ ¼ ðφ̇=HÞ.
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Eq. (2.1)]. In case the total number of e-folds is close to Nk
the field operators corresponding to the scalar and tensor
modes are not necessarily in the vacuum [41,42] and the
protoinflationary transition can break the consistency
relations. The tensor-to-scalar ratio of Eq. (2.15) will then
include a dependence upon the sound speed of the preinfla-
tionary phonons; instead of rTðk;τÞ≃16ϵk we will have
rTðk; τÞ ≃ 16ϵkcst.
According to Eq. (2.15) the tensor-to-scalar ratio is

approximately constant for wavelengths larger than the
Hubble radius; in the same limit the spectral energy density
of Eq. (2.6) is instead suppressed and from Eq. (2.12) we
can show that

Ωgwðk;τÞ¼
k4

12π2H2M2
Pa

2a2ex

�
jQkðτex;τÞj2þ

jQ0
kðτex;τÞj2
k2

�
;

ð2:16Þ

where MP ¼ MP=
ffiffiffiffiffiffi
8π

p
. Since the integral appearing in

Qkðτex; τÞ can be evaluated by parts

Z
τ

τex

dτ0

a2ðτ0Þ ¼
1

3 − ϵ

�
1

a3H
−

1

a3exHex

�
;

ϵ ¼
Z

τ

τex

dτ0
ϵðτ0Þ
a2ðτ0Þ

.Z
τ

τex

dτ0

a2ðτ0Þ ; ð2:17Þ

inserting Eq. (2.17) into Eq. (2.16) (and bearing in mind that
Hexaex ≃ k) the spectral energy density in critical units
becomes

Ωgwðk; τÞ ¼
2jkτj2
3π

�
Hex

MP

�
2

Mkðτ; ϵÞ;

Mkðτ; ϵÞ ¼ 1þ 2

�
aex
a

�
2

þ 2

ð3 − ϵÞ2
��

aex
a

�
2

kτ − 1

�
2

−
2

ð3 − ϵÞ
��

aex
a

�
2

kτ − 1

�
; ð2:18Þ

implying, as expected, thatΩgwðk; τÞ is suppressed in the two
concurrent limits τex ≤ τ < τre and kτ ≪ 1.We finally stress
that Eq. (2.17) holds for ϵ ≠ 3 since for ϵ → 3 there is a
logarithmic enhancement that is irrelevant in this case but that
must be taken into account when thewavelengths are shorter
than theHubble radius. Only ifa2ðτÞ ≃ 1=H the contribution
of the integrand of Eq. (2.17) is relevant; it corresponds to an
extended stiff phase and, in this case, the spectral energy
density and the other observables inherit a logarithmic
correction.

2. Wavelengths shorter than the Hubble radius

When the wavelengths are shorter than the Hubble
radius FkðτÞ and GkðτÞ exhibits standing oscillations for
τ ≥ τre

FkðτÞ¼
e−ikτex

a
ffiffiffiffiffi
2k

p Qkðτex;τreÞ
�
are
aex

�

×

�
Hre

k
sinðkΔτÞþ cosðkΔτÞ

�
; Δτ¼ðτ− τreÞ;

ð2:19Þ

where Qkðτex; τreÞ has been already defined in Eq. (2.13)
and it is now evaluated for τ → τre. Equation (2.19) holds
when all the corresponding wavelengths are shorter than
the Hubble radius (i.e. for kτ ≫ 1) and in the same
approximation GkðτÞ becomes

GkðτÞ ¼
e−ikτex

a

ffiffiffi
k
2

r
Qkðτex; τreÞ

�
are
aex

�

×

�
Hre

k
cos ðkΔτÞ − sinðkΔτÞ

�
: ð2:20Þ

Equations (2.19) and (2.20) assume an expanding back-
ground (i.e. are ≫ aex), but they are otherwise general
since the rates at τex and τre have not been specified.
After inserting Eqs. (2.19) and (2.20) into Eq. (2.6) we
obtain

Ωgwðk; τÞ ¼
2k4

3πa4H2M2
P
jQðτex; τreÞj2

�
are
aex

�
2
�
1þH2

re

k2

�

×

�
1þO

�
H
k

��
: ð2:21Þ

Equations (2.19)–(2.21) hold up to corrections
OðH=kÞ that are small for wavelengths shorter than the
Hubble radius. As long as the relevant wavelengths
appearing in Fig. 1 do their first crossing during the
inflationary stage where kτex ¼ Oð1Þ. It can happen
however that kτre ≪ 1 if the second crossing takes place
when ϵðaÞ → Oð2Þ, i.e. close to a radiation-dominated
stage of expansion. To understand this relevant limit we
recall that Eq. (2.8) can also be written in a decoupled
form:

f00k þ
�
k2 −

a00

a

�
fk ¼ 0; gk ¼ f0k −Hfk; ð2:22Þ

where fkðτÞ ¼ aðτÞFkðτÞ and gkðτÞ ¼ aðτÞGkðτÞ. In the
language of Eq. (2.22) the solutions given in Eqs. (2.12),
(2.19) and (2.20) hold, respectively, for k2 ≪ ja00=aj and
for k2 ≫ ja00=aj. The turning points where the analytical
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behavior of the solution changes are defined by k2 ≃
ja00=aj that can also be rewritten as

k2 ¼ a2H2½2 − ϵðaÞ�; ð2:23Þ

where, as before, ϵðaÞ ¼ −Ḣ=H2 is the slow-roll param-
eter.9 When ϵ ≠ 2 both turning points are regular and this
means that the two solutions of Eq. (2.23) are in fact
kτex ¼ Oð1Þ and kτre ¼ Oð1Þ. For instance when a given
wavelength crosses the Hubble radius during inflation we
have that ϵ ≪ 1 and k ≃ aexHex that also means, by
definition, kτex ≃ 1. Similarly if the given wavelength
reenters in a decelerated stage of expansion different from
radiation we also have that k ≃ areHre. However, if the
reentry occurs in the radiation stage (or close to it) we
have that ϵre → 2 and the condition (2.23) implies that
kτre ≪ 1. In Eq. (2.21) the two situations are distinct
since H2

re=k2 ¼ Oð1Þ when ϵre ≠ 2 while H2
re=k2 ≫ 1 for

ϵre → 2. We shall get back to this point in Sec. III where
Eq. (2.21) will be used to deduce the analytic form of the
spectral slopes in the different frequency domains. For
short wavelengths the mode function for the curvature
inhomogeneities is given by

FkðτÞ ¼
e−ikτex

z
ffiffiffiffiffi
2k

p Qkðτex; τreÞ
�
zre
zex

�

×
�
F re

k
sin ½kΔτ� þ cos½kΔτ�

�
; ð2:24Þ

and if we now insert Eqs. (2.19) and (2.24) into Eq. (2.10)
we obtain the wanted form of rTðk; τÞ valid for τ ≥ τre in
the short-wavelength limit (i.e. for kτ > 1):

rTðk; τÞ ¼ 8l2
P

�
zðτÞ
aðτÞ

�
2
�
are
aex

�
2
�
zex
zre

�
2

G2ðkΔτÞ;

GðkΔτÞ ¼ F re sin ðkΔτÞ þ k cosðkΔτÞ
Hre sin ðkΔτÞ þ k cosðkΔτÞ : ð2:25Þ

In the limit ϵre → 2 we also have Hre=k ≃ F re=k ≫ 1
and, in this case, GðkΔτÞ → 1. Conversely, when ϵre ≠ 2
we have instead that Hre=k ≃ F re=k ¼ Oð1Þ; also in this
situation GðkΔτÞ ¼ Oð1Þ. We can therefore deduce from
Eq. (2.25) that

rTðk; τÞ ¼ 16ϵk
ϵðτÞ
ϵre

; τ ≥ τre; kτ > 1: ð2:26Þ

It seems that, in practice, ϵðτÞ is piecewise constant after
inflation and it is of the order of ϵre so that rTðk; τÞ →
16ϵk even for short wavelengths. The constancy of ϵðτÞ is
more or less obvious when the background expands as
simple power law but if the reentry of the wavelength
takes place when the inflaton potential is still dominant
(and oscillating) ϵðτÞ is still approximately constant. For
this purpose we can first write ϵðτÞ in terms of the inflaton
potential VðφÞ, i.e.

ϵðτÞ ¼ −Ḣ=H2 ¼ 3φ̇2=ðφ̇2 þ 2VÞ: ð2:27Þ

As suggested long ago the coherent oscillations of the
inflaton imply the approximate constancy of the corre-
sponding energy density10 [43]; for immediate conven-
ience the inflaton potential around its minimum can be
parametrized as

VðφÞ ¼ V0ðφ=MPÞ2q;→ φ̇ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2Vmax

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2q

p
; ð2:28Þ

where x ¼ φ=φmax. If the numerator and the denominator
of Eq. (2.27) are averaged over one period of oscillations
(say between φ ¼ 0 and φ ¼ φmax) ϵðτÞ becomes

ϵðτÞ ¼ 3
R
1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2q

p
dxR

1
0 dx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2q

p ¼ 3q
qþ 1

: ð2:29Þ

Thus, from Eqs. (2.26) and (2.29), ϵðτÞ=ϵre → 1 when the
reentry occurs during a phase driven by the coherent
inflaton oscillations. With the same technique the average
expansion rate during a phase of coherent oscillations
follows from Eq. (2.29); in particular

H0 ¼ 1 − 2q
qþ 1

H2 ⇒ aðτÞ ¼ ðτ=τ1Þδ;

where δ ¼ ðqþ 1Þ=ð2q − 1Þ: ð2:30Þ

This result implies that if the wavelengths exit during a
stage dominated by the coherent oscillations of the
inflaton we can expect that the slope of the spectral
energy density can be determined according to Eq. (2.30).
The evolution of the comoving horizon in Fig. 1 assumes
a sequence of different expanding stages characterized by
the constancy of the expansion rate. A fully equivalent
strategy is to consider the continuous variation of δ
implying

1

δðτÞ ¼ −1 −
1

2

∂ ln ρt
∂ ln a

¼ −1þ ϵðτÞ; ð2:31Þ

9While during inflation ϵ ≪ 1, in the postinflationary phase
the background decelerates (but still expands) and ϵðaÞ ¼ Oð1Þ.

10Indeed we have, in general, that ρ̇φ þ 3Hφ̇2 ¼ 0 where ρφ ¼
φ̇2=2þ V is the energy density of the inflaton. However since
ρ̇φ ≃ 0 and 3Hφ̇2 ≪ ρ̇φ we can also write that φ̇2 ¼ 2ðVmax − VÞ
where Vmax ¼ VðφmaxÞ.
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where ρtðaÞ denotes the total energy density governing
the postinflationary evolution prior to radiation. In the
case of inflaton-dominated oscillations ρtðaÞ ¼ ρφ and

δðaÞ ¼ 1=½ϵðaÞ − 1� ¼ ðqþ 1Þ=ð2q − 1Þ: ð2:32Þ
By going back to Fig. 1 we therefore have that when the
given wavelength crosses the Hubble radius prior to
radiation dominance the value of δ is scale dependent
δk ¼ δðτreÞ ¼ δð1=kÞ. This relation follows by recalling
that during the postinflationary stage illustrated in the
cartoon of Fig. 1 δðaÞ ≠ 1, which also implies ϵðaÞ ≠ 2
in Eq. (2.23).

C. Consistency relations and some examples

In single-field scenarios the spectral index nsðkÞ, the
tensor-to-scalar ratio rTðkÞ and the tensor spectral index
nlowT ðkÞ obey the consistency relations11

nsðkÞ¼ 1−6ϵkþ2ηk; rTðkÞ¼ 16ϵk; nlowT ðkÞ¼−2ϵk;

ð2:33Þ

where ϵk ¼ ϵð1=kÞ and ηk ¼ ηð1=kÞ denote the slow-roll
parameters evaluated when the bunch of wavelengths
corresponding to the CMB scales exited the comoving
horizon approximately Nk e-folds prior to the end of
inflation. In more general terms it is well known that the
slow-roll parameters are all time dependent (or field
dependent) and they are defined, within the notations
employed here, as

ϵ ¼ −
Ḣ
H2

¼ M2
P

2

�
V;φ

V

�
2

; η ¼ φ̈

Hφ̇
¼ ϵ − η;

η ¼ M2
P

�
V;φφ

V

�
: ð2:34Þ

According to the current limits, the tensor-to-scalar ratio
and the scalar spectral index are determined as [8–10]

rTðk; τexÞ < rT; nsðk; τexÞ ¼ ns; ð2:35Þ

where rT ranges between Oð0.06Þ and Oð0.03Þ while
0.96448 < ns < 0.96532 with a central value correspond-
ing to 0.9649. Once more, by definition, in Eq. (2.35)
rTðk; τexÞ ¼ rTðk; 1=kÞ ¼ rTðkÞ and similarly nsðk; τexÞ ¼
nsðk; 1=kÞ ¼ nsðkÞ. For the monomial potentials ϵk and ηk
are of the same order and these scenarios are practically

excluded by current data. We shall rather consider poten-
tials with typical form given by

VðΦÞ ¼ M4vðΦÞ; Φ ¼ φ=MP; ð2:36Þ

whereM denotes the energy scale of the potential. Inflation
occurs for Φ ≫ 1 (and in this limit we therefore have
vðΦÞ → 1) while it ends for Φ ≪ 1. Using the parametri-
zation of Eq. (2.36) the expressions of Eq. (2.34) get even
simpler; for instance ϵðΦÞ ¼ ð1=2Þðv;Φ=vÞ2 and so on and
so forth (see also the Sec. B 2 and the discussions therein).
We can then write vðΦÞ as the ratio of two functions scaling
(approximately but not exactly) with the same power for
Φ ≫ 1. An example along this direction is

vðΦÞ ¼ βpΦ2q

½1þ β2Φ
4q
p �p2

; 4q > p; β > 0: ð2:37Þ

In Eq. (2.37) β, p and q are the parameters of the potential
and, for technical reasons, we consider the case 4q > p. A
q-dependent oscillating stage takes place for Φ ≪ 1 where
the potential can be written as vðΦÞ ¼ βpΦ2q. By following
the same strategy different concrete examples can be
concocted like, for instance,

vðΦÞ ¼ ðeγΦ − 1Þ2q
ðe4γq

p Φ þ 1Þp2
; 4q > p; β > 0: ð2:38Þ

While the examples along the lines of Eqs. (2.37) and
(2.38) can be multiplied, for the present purposes, different
functional forms of the potential do not radically modify
the scaling of the slow-roll parameters and of the tensor-to-
scalar ratio. To investigate this point it is interesting to
compute rTðkÞ and nsðkÞ directly in terms of Nk and of the
other parameters of the potential. For this purpose
Eq. (2.33) must be evaluated when the wavelengths
compatible with the pivot scale cross the Hubble radius
during inflation (see Fig. 1). Thanks to the results of
Appendix B [see in particular Eqs. (B16) and (B17)] nsðkÞ
becomes

nsðkÞ ¼ nsðNkÞ ¼ 1 −
12q2β−2=ð1þ2q=pÞ

½4qðpþ 2qÞNk=p�ðpþ4qÞ=ðpþ2qÞ

−
pþ 4q

ðpþ 2qÞNk
: ð2:39Þ

By always referring to Eqs. (B16) and (B17) the expres-
sions of rTðkÞ and nlowT ðkÞ are given by

11In Eq. (2.33) nlowT ðkÞ denotes the low-frequency spectral
index associated with the wavelengths reentering during the
radiation stage. To avoid confusions we anticipate that in Sec. III
one (or more) high-frequency spectral indices will also be
introduced. The high-frequency spectral indices involve the
wavelengths that reentered the effective horizon prior to radiation
dominance, i.e. for a < ar in Fig. 1.
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rTðkÞ≡ rTðNkÞ ¼
32q2β−2=ð1þ2q=pÞ

½4qðpþ 2qÞNk=p�ðpþ4qÞ=ðpþ2qÞ ;

nlowT ðkÞ≡ nlowT ðNkÞ ¼ −
4q2β−2=ð1þ2q=pÞ

½4qðpþ 2qÞNk=p�ðpþ4qÞ=ðpþ2qÞ :

ð2:40Þ
The results of Eqs. (2.39) and (2.40) are illustrated in
Figs. 2–4 for different values of q, p and β. In Fig. 2 the
overlap between the two regions defines the portion of the
parameter space where the scalar spectral index is phenom-
enologically viable and the limit on rTðkÞ is safely enforced.
By comparing the left and the right plots in Fig. 2 we see that
the overlap shrinks as soon as the bounds on rT become
progressively more demanding. In the left plot of Fig. 2 the
region bounded by a straight line and a curve follows by
requiring that nsðkÞ falls within the 1σ observational limits
set by the Planck collaboration complemented by the lensing
observations, i.e. ns ¼ 0.9649� 0.0042. The addition of the
baryon acoustic oscillations would imply a slightly different
figure (i.e. ns ¼ 0.9665� 0.0038) which is however not
essential for the illustrative purposes of this discussion. The
second region bounded by a straight line in the left plot of
Fig. 2 corresponds to the requirement rT < 0.03. In the right
plot the limit on rT (i.e. rT < 3 × 10−5) defines the approxi-
mate triangular shape in the upper corner while the other
shaded region coincides with the one of the left plot.
In Fig. 2 we fixed p → 1 and Nk ¼ 60 and this is

consistent with the determinations of Nk discussed in
Appendix A in the absence of any postinflationary stage
of expansion deviating from the dominance of radiation.
We shall get back to this choice at the end of Sec. IV and

question its validity in the case of a long stage of post-
inflationary expansion slower than radiation. As the value
of p increases this progressive reduction of the overlap
already pointed out in Fig. 2 is further exacerbated and
this conclusion follows from Fig. 3 where p → 3. If we
compare the right plots of Figs. 2 and 3 we see that
the distance between the two nonoverlapping regions
increases. Similarly if we compare the left plots of
Figs. 2 and 3 we have that the overlap between the allowed
regions is comparatively smaller for p ¼ 3 than for p ¼ 1.
A final interesting observation is illustrated in Fig. 4 where
we imposed rT < 3 × 10−5 for two different values of p.
By looking at Fig. 3 the allowed regions looked completely
absent; it happens, however, that for comparatively larger
values of q the constraints on rT and the requirements on ns
are concurrently satisfied.12

The same analysis leading to Figs. 2–4 can be repeated in
the case of similar potentials like the one of Eq. (2.38).
Using again the procedure outlined in Appendix B we can
then deduce, for instance, that

nsðkÞ ≃ 1 −
3

γ2N2
k

−
2

Nk
; rTðkÞ ≃

8

γ2N2
k

;

nlowT ðkÞ ≃ −
1

γ2Nk
: ð2:41Þ

FIG. 2. If Nk is fixed, then Eqs. (2.39) and (2.40) together with the constraints of Eq. (2.35) define the allowed region of the parameter
space which is illustrated here in the plane ðlog β; qÞ. In the plot at the left we consider the overlap between the regions defined by
0.96448 < ns < 0.96532 and by rT < 3 × 10−2. In the plot at the right the limit on rTðkÞ is reduced from rT < 3 × 10−2 to
rT < 3 × 10−5. As the limit on rTðkÞ becomes more stringent the overlap shrinks and it is localized in the region of large q.

12As already mentioned the results obtained so far, especially
for the large q values, are only partially accurate. Indeed as we
saw in Eq. (2.30) at the end of inflation the oscillatory regime for
q ≫ 1 implies that 0 < δ < 1. In this case the total number of
e-folds may be larger than 60 and this correction may have a
relevant impact as we shall see in Sec. IV.
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Equation (2.41) holds forΦk > 1 and Nk ≫ 1; in this limit,
Eq. (2.41) reproduces in fact the result obtainable in the
case of the potential

vðΦÞ ¼ ð1 − e−βΦÞ2q; β > 0; q > 0; ð2:42Þ

where the analog of Eq. (2.41) is obtained by simply
replacing γ → β (see, in this respect, the recent analysis of
Ref. [44]). The main difference between the example of
Eq. (2.33) and the examples of Eqs. (2.38) and (2.42) is the
q dependence: while in the case of Eqs. (2.38) and (2.42)

FIG. 4. In both plots of this figure we imposed rT < 3 × 10−5 for two different values of p. The left plot of this figure coincides with
the left plot of Fig. 3 but the range of q is larger. From both plots we see that the region where the constraints are simultaneously satisfied
moves towards large q values. We can then recall from Eq. (2.30) that for q ≫ 1 the inflaton oscillations effectively lead to a phase
expanding at a rate that is slower than radiation (i.e. δ < 1).

FIG. 3. The same logic of Fig. 2 can be illustrated for a larger value of the parameter p. In this case a reduction of 3 orders of
magnitude of rT (from 3 × 10−2 to 3 × 10−5) implies that the overlap between the two regions completely disappears. This means that
none of the parameters appearing in the right plot would be phenomenologically acceptable in case future limits would imply
rT < 3 × 10−5; this happens since in the central region of the plot the scalar spectral index is correctly reproduced but the tensor to scalar
ratio is always larger than 3 × 10−5 and the two regions never overlap.
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the spectral indices and the tensor-to-scalar ratio do not
depend on q, Eqs. (2.39) and (2.40) show the opposite.
The plateaulike potentials seem to imply a certain degree
of fine-tuning that has been pointed out also at the level of
the initial conditions of the inflaton. It is true that for
generic initial conditions of φ at the beginning of inflation
both the kinetic energy and the spatial gradients should be
of the same order and both larger than the potential
VðφÞ ¼ OðM4Þ. Since the kinetic energy of the inflaton
redshifts faster than the spatial gradients, it can happen
that inflation is prevented by the dominance of the spatial
inhomogeneities, unless some amount of fine-tuning is
invoked [45,46].
If nsðkÞ and rTðkÞ approximately follow from Eq. (2.41),

then the tensor-to-scalar ratio cannot be excessively
reduced by keeping the agreement of the scalar spectral
index with the observational data. It is true that in the case
of a long postinflationary stage Nk may be larger than
Oð60Þ but besides this possibility (separately analyzed in
Sec. IV after the derivation of the lower bounds on rT), a
further reduction of rTðkÞ may occur either when the
consistency relations are broken or for a different class
of inflaton potentials. The consistency relations can be
broken because of the protoinflationary dynamics [41,42]
and they can also be modified because of the running
associated with the scalar spectral index [47]; in both cases
we could have that rT < 10−4. In the context of hilltop
potentials rT can be reduced [48] and it has even be argued
that, in this framework, it is possible to construct models
with parametrically small rT [49]. These examples are
constructed in terms of certain classes of fast-roll potentials
where η [see Eq. (2.34)] is actually constant [50–52]. All
these situations have a counterpart in the present framework
but their impact will not be explicitly discussed here.
Before closing this section it is appropriate to remark that

we consider here the situation where the potential reduction
of the tensor to scalar ratio at the CMB scale follows,
generally speaking, from a sequence of stages expanding
either faster or slower than radiation as described in Fig. 1.
In the past a single stage of prolonged reheating has been
suggested to increase the values of rT [53–55]. In this
respect, from Eq. (2.1) [see also Eqs. (A7) and (A8)] an
enhancement of rT may occur when a long reheating phase
follows the inflationary stage provided, after inflation, the
background expands faster than radiation. In this instance
Nk may become much smaller thanOð60Þ so that the tensor
to scalar ratio could increase and even reach the typical
values rT ¼ Oð0.2Þ initially motivated by the explanation
of the BICEP2 data on the B-mode polarization [5]. A
concurrent perspective was, at that time, the violation of the
consistency relations caused, for instance, by the quantum
initial conditions in the case of a relatively short infla-
tionary stage [56]. Both viewpoints are unrelated with the
one conveyed here for a twofold reasons. The BICEP2
measurements of Ref. [5] were in fact affected by serious

foreground contaminations and are now superseded since
the present bounds on rT are much smaller, i.e. as already
mentioned rT ≤ 0.06 or even rT < 0.03 [8–10]. The second
point is directly related to the main question of this paper
which is, in short, the following: how small should rT be in
order to preserve a high-frequency signal even in the
absence of a low-frequency detection? Although the
authors do not present detailed analyses of the high-
frequency spectrum, the results of the forthcoming sections
imply that for the scenarios of Refs. [53–55] h20Ωgwðν; τ0Þ
in the audio and MHz bands is even smaller than in the
standard case. Indeed for a long postinflationary phase
expanding faster than radiation the high-frequency spec-
trum sharply decreases without any intermediate maxi-
mum. On the contrary in the present analysis we seriously
consider the possibility that the relic gravitons are invisible
in the aHz region but potentially detectable in the audio and
GHz bands: this perspective is just orthogonal to the one of
Refs. [53–55].
For the above reasons the monomial potentials discussed

inRefs. [53–55] differ from the ones of Eqs. (2.37) and (2.38)
that are characterized by a flat plateau in the inflationary
limit. In the present framework these potentials are just
illustrative examples since what matters for the subsequent
discussions is not the detailed shape of the potential but the
general profile of the expansion rate; nonetheless Eqs. (2.37)
and (2.38) describe the situationwhere vðΦÞ is nearly flat for
Φ ≫ 1 while they go as a power near the origin. Potentials
with different analytical forms (but with similar properties)
have been studied in Ref. [57] (see also [58]); in this
framework gravitational waves can be used to break some
inflationary degeneracies. The spectral energy density com-
puted in Refs. [57,58] follows however from the general
analyses of Refs. [20,21,34,59] where the idea was to
normalise the low-frequency spectrum at the highest value
of rT compatiblewith the observations.13 In this paper, on the
contrary, we shall allow rT to be smaller (or even much
smaller) than the current phenomenological bounds. Last but
not least Ref. [60] draws a number of conclusions on the
interplay between low-frequency determinations and high-
frequency measurements in the audio band. Although these
claims are overall reasonable, Ref. [60] assumes a single
spectral slope between the aHz and the audio band. This is
just the conventional perspective where all the δi → 1 in
Fig. 1. The viewpoint of this paper is instead that, above the
curvature scale of the nucleosynthesis, the expansion rate can
only be tested via the relic graviton backgrounds and the
measurements of the spectral energy density in the audio and
MHz bands can be ultimately viewed as direct probes of the
early expansion history. Furthermore, as it will be clear from
the two subsequent sections, any deviation from radiation

13Note, incidentally, that various sources of suppression at
intermediate frequencies (like the free streaming of the neutrinos)
have not been included in Ref. [58].
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dominance involves a further spectral slope so that it would
be incorrect to modify the postinflationary evolution without
taking into account that also the slopes of the spectral energy
density are correspondingly modified. For these reasons the
arguments of Ref. [60] seem only marginally relevant in the
present framework.

III. THE SPIKES OF THE SPECTRAL DENSITY

Instead of scanning the range of rTðkÞ and of the
postinflationary expansion rates of Fig. 1 it seems more
plausible to identify preliminarily all the physical situations
where the spectral energy density exceeds the predictions
of the concordance scenario for frequencies larger than
Oð10−2Þ nHz. From the phenomenological constraints we
can argue that the most stringent limits are obtained when
h20Ωgwðν; τ0Þ develops a maximum either in the high-
frequency region (i.e. approximately between few MHz
and the GHz) or in the audio band. A further spike in the
nHz range could only develop if h20Ωgwðν; τ0Þ sharply
increases between Oð10−2Þ nHz and few nHz; this fre-
quency range is however too narrow for an appreciable
growth of the spectral energy density.14

A. Spikes in the ultra-high-frequency region

The presence of a broad spike in the high-frequency
domain implies that the profile of the comoving horizon of
Fig. 1 consists of a unique postinflationary stage extending
between H1 and Hr: only in this case we could have a
single frequency domain where the spectral energy density
always increases up to the GHz range. In this class of
scenarios (illustrated in Fig. 5) h20Ωgwðν; τ0Þ comprises two
separated frequency regions: a quasiflat plateau (typically
arising for ν < νr) and a high-frequency hump approx-
imately corresponding to ν ¼ OðνmaxÞ. From the consid-
erations developed in Eqs. (A15)–(A18) νmax and νr can be
estimated as follows:

νmax ¼ ξ
δ−1

2ðδþ1Þνmax; νr¼
ffiffiffi
ξ

p
νmax; ξ¼Hr=H1: ð3:1Þ

Besides νmax and νr there is also a more conventional third
frequency region for ν < νeq. In this domain, the corre-
sponding wavelengths exited the comoving horizon during
the early stages of inflation and reentered after matter-
radiation equality; this bunch of wavelengths is slightly
larger than the shaded stripe illustrated in Fig. 1. The
equality frequency νeq is given by

νeq¼
keq
2π

¼1.597×10−17
�
h20ΩM0

0.1411

��
h20ΩR0

4.15×10−5

�
−1=2

Hz;

ð3:2Þ
where keq ¼ 0.0732h20ΩM0 Mpc−1 and, as usual, ΩM0 is
the present fraction in dusty matter.
The slopes of h20Ωgwðν; τ0Þ in the different frequency

regions follow from Eq. (2.21). For the wavelengths that
exited the Hubble radius during inflation and reentered in
the radiation stage we have that the structure of the turning
point is singular [i.e. ϵðτreÞ → 2]; this means that, thanks to
Eq. (2.23),

k ≃ aexHex ≃ −
1

ð1 − ϵkÞτex
; kτre ≪ 1: ð3:3Þ

Because of Eq. (3.3) the term Hre=k ≫ 1 dominates in
Eq. (2.21) and Ωgwðν; τÞ ∝ ðν=νrÞnlowT for ν < νr. If the
wavelengths reenter instead before radiation was dominant
[and when the background approximately expands as
aðτÞ ≃ ðτ=τ1Þδ with δ ≠ 1] for νr < ν < νmax we have that

Ωgwðν; τÞ ∝ ðν=νrÞn
high
T , where nhighT is the high-frequency

spectral index. The explicit expressions of nlowT and nhighT are
given by

nlowT ¼ −2ϵk; nhighT ¼ 2 − 4ϵk
1 − ϵk

− 2δ: ð3:4Þ

If the consistency relations are enforced the nhighT can also
be expressed as

nhighT ðrT; δkÞ ¼
32 − 4rT
16 − rT

− 2δ ¼ 2ð1 − δÞ þOðrTÞ;

rT ¼ rTðkÞ: ð3:5Þ
The high-frequency spectral index of Eq. (3.5) depends
both on rT and δ; however, as long as rT ≪ Oð10−2Þ the
corrections induced by the finite value of rT can be safely
neglected. For the sake of conciseness we shall be using the
stenographic notation rTðkÞ ¼ rT where it is understood
that k ¼ OðkpÞ and the corresponding scales are the CMB
wavelengths. The spectral energy density induced by a
modified postinflationary history bears the mark of the
evolution of the comoving horizon of Fig. 1 [61]. In
particular, when the post-inflationary expansion rate is
slower than radiation δ < 1 the high-frequency spectral
index is positive and h20Ωgwðν; τ0Þ is comparatively larger
than in the case δ > 1where the background expands faster
than radiation.15 The case δ < 1 has been analyzed long ago

14For the sake of conciseness the nHz region is not be
explicitly treated in this section but the corresponding constraints
are anyway analyzed at the end of Sec. IV.

15When δ > 1 the high-frequency spectral index ofEq. (3.5) gets
negative: in this case there are, in practice, no further constraints
besides the low-frequency limits that translate into the upper bound
on rT . This means that at high frequencies h20Ωgwðν; τ0Þ always
decreases as a function of ν and the maximal frequency of the
spectrum is much smaller than Oð100Þ MHz.
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[20] (see also [21,22]) and a particular realization is
provided by a stage dominated by the kinetic term of
the inflaton-quintessence field [62] (see also [63,64]). The
enhancement of the spectral energy density occurring when
the background expand slower than radiation arises in a
number of apparently different contexts (see e.g. [65–67])
that reproduce however the same basic dynamical situation
of Refs. [20–22] where the inflationary phase is followed
by a stiff stage of expansion. If the postinflationary
evolution is dominated by the inflaton oscillations, then
the averaged evolution of the comoving horizon may mimic
the timeline of a stiff epoch [43,59]. Recalling the results of
Eqs. (2.29)–(2.31) we have that the averaged expansion of
the background is slower than radiation provided q > 2
assuming the shape of the potential is the one of Eq. (2.29).
It is relevant to mention, in this respect, that the techniques
of Ref. [59] can be used to compute the high-frequency
slope before and after the averaging suggested in Ref. [43].
It turns out that, in both situations, the high-frequency
spectral slope is exactly the same.
In Fig. 5 the three curves illustrate the spectral energy

density in critical units for different sets of parameters that
have been chosen, in short, as follows: (i) for the full curve
(labeled by rT ¼ 0.03) the high-frequency spectral index is
nhighT ¼ 0.62 and the related ξ is ξ ¼ 10−28; (ii) the dashed
curve corresponds to rT ¼ 3 × 10−4 while nhighT and ξ are,
respectively, 0.8 and 10−30; (iii) for the dot-dashed spectrum
we have rT ¼ 3 × 10−6, nhighT ¼ 0.9 and always ξ ¼ 10−30.

Except for the full line of Fig. 5, the remaining two spectra
correspond to much lower values of rT . However, as we can
see, in spite of a reduction of rT the signal in the ultra-high-
frequency region remains quite large and it must be con-
strained by the big bang nucleosynthesis bound [31–33] as
well as by the direct limits of wideband interferometers (see
in particular [25,26,39] for a review).
A reduction of rT does not necessarily entail a suppres-

sion of the signal in the in MHz and GHz bands. On the
contrary, if we look at the dot-dashed curve in Fig. 5
(corresponding to rT ¼ 3 × 10−6) the maximal value of
h20Ωgwðνmax; τ0Þ in this case is larger than for rT ¼ 0.03
(full curve in Fig. 5). As we shall see more specifically in
Sec. IV the dashed and the dot-dashed curves in Fig. 5 are
actually excluded by the nucleosynthesis bound and this
shows, once more, that the limits on the high-frequency
spike translate indirectly into a constraint on rT . It actually
happens that larger values of rT are less constrained than
the lower ones and, from a purely qualitative viewpoint, the
examples of Fig. 5 may even suggest that, when the values
of rT are too small, the amplitude of the high-frequency
spike is even more restricted.
As the values of the tensor-to-scalar ratio get progres-

sively reduced the accurate determination of the low-
frequency plateau of Fig. 5 becomes more essential and
they are not only determined by rT but also by the neutrino
free streaming that suppresses h20Ωgwðν; τ0Þ for ν < νbbn
[68–72] where νbbn is the frequency corresponding to the
big bang nucleosynthesis:

νbbn ¼ 2.3 × 10−2
�

gρ
10.75

�
1=4

�
Tbbn

MeV

�

×

�
h20ΩR0

4.15 × 10−5

�
1=4

nHz: ð3:6Þ

The spectra of Fig. 5 correspond to the fiducial parameters
the last Planck data release and the simplest possibility has
been considered namely the case of three massless neu-
trinos where Rν ¼ ρν=ðργ þ ρνÞ ¼ 0.405, as indicated on
top of each plots [8–10]. In Eq. (3.6) gρ is the effective
number of relativistic species associated with the energy
density.16

To make sure that radiation sets in before big bang
nucleosynthesis the condition ξ ≥ 10−38 should be imposed
[see also the discussion prior to Eq. (A5)]; but we can
already see from Fig. 5 that the combined effect of a
reduction of rT and of an increase of nhighT for a sufficiently
small value of ξ [e.g. ξ ¼ Oð10−30Þ] may be incompatible

FIG. 5. For three different choices of the tensor to scalar ratio
h20Ωgwðν; τ0Þ is illustrated as a function of the comoving fre-
quency; common logarithms are employed on both axes. The
high-frequency spectral indices have been chosen with the
purpose of demonstrating that lower values of rT do not
necessarily imply a smaller signal at high frequencies. On the
contrary, even though in all the examples we assumed that the
consistency relations are enforced, the late-time parameters
correspond to the fiducial values of the concordance paradigm.
At low frequencies all the most relevant sources of suppression
have been taken into account and, in particular, the free streaming
of neutrinos.

16Other sources of suppression (taken into account in Fig. 5
and in the remaining plots) include the late-time dominance of
dark energy and the evolution of relativistic species (see e.g. [39]
for a review).
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with the limits on the relativistic species at the nucleosyn-
thesis time requiring

h20

Z
νmax

νbbn

Ωgwðν;τ0Þd lnν<5.61×10−6
�

h20Ωγ0

2.47×10−5

�
ΔNν;

ð3:7Þ

whereΩγ0 is the (present) critical fraction of CMB photons.
Equation (3.7) sets an indirect constraint on the extrarela-
tivistic species possibly present at the time of nucleosyn-
thesis. Since Eq. (3.7) is also relevant in the context of
neutrino physics for historic reasons the limit is expressed
in terms of ΔNν (i.e. the contribution of supplementary
neutrino species). The actual bounds on ΔNν range from
ΔNν ≤ 0.2 to ΔNν ≤ 1 so that the integrated spectral
density in Eq. (3.7) must range, at most, between 10−6

and 10−5. For the present purposes it is also useful to
mention that the numerical results of Fig. 5 can be para-
metrized as

h20Ωgwðν; τ0Þ ¼ N ρrT

�
ν

νp

�
nlowT

T 2
lowðν=νeqÞT 2

highðν=νr; δÞ;

ð3:8Þ

where N ρ ¼ 4.165 × 10−15 for h20ΩR0 ¼ 4.15 × 10−5 and
νp ¼ kp=ð2πÞ ¼ 3.092 aHz. In Eq. (3.8) T 2

lowðν=νeqÞ and
T 2

highðν=νr; δÞ denote, respectively, the low-frequency
transfer function and its high-frequency counterpart.
Both transfer functions are directly computed in terms of
the spectral energy density [34] (see also [59]), not for the
spectral amplitude.17 The expression of T lowðν=νeqÞ is

T lowðν=νeqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

�
νeq
ν

�
þ b2

�
νeq
ν

�
2

s
;

ceq ¼ 0.5238; beq ¼ 0.3537: ð3:9Þ

Unlike T lowðν=νeqÞ, the high-frequency transfer function
T highðν=νr; δÞ depends on the value of δ so that it does not
have a general form. However, as long as ν > νr, the high-

energy transfer function can be approximated as T 2
high →

ðν=νrÞn
high
T so that the full spectral energy density at high

frequency becomes, in this case,

h20Ωgwðν; τ0Þ ¼ N ρrT

�
ν

νp

�
nlowT

T 2
lowðνr=νeqÞ

�
ν

νr

�
nhighT

;

νr ≤ ν ≤ νmax: ð3:10Þ

Equation (3.10) rests on the observation that
T lowðνr=νeqÞ → 1 for ν ≥ νr; in the same limit it is also
true that nlowT ¼ −rT=8 ≪ 1 and, in this situation, the
prefactor is practically frequency independent so that we
can write

h20Ωgwðν; τ0Þ ¼ N ρðrT; νÞ
�
ν

νr

�
nhighT

; ν > νr; ð3:11Þ

where N ρðrT; νÞ is now defined as

N ρðrT; νÞ ¼ N ρrT

�
ν

νp

�
nlowT

T 2
lowðνr=νeqÞ;

nlowT ¼ −rT=8 ≪ 1: ð3:12Þ

As before we can remark that, as long as rT < Oð10−2Þ,
∂ lnN ρ=∂ ln ν ≪ 1 with a residual (mild) frequency
dependence coming from neutrino free streaming. For
simplified analytic estimates this dependence can be how-
ever ignored, at least in the first approximation. For
instance, along this perspective we can estimate N ρ

between Oð10−16Þ and Oð10−17Þ.

B. The spectral energy density at the maximum

The spectral energy density can be estimated for ν ¼
OðνmaxÞ by observing that the maximal frequency of the
corresponds to the production of a single graviton pair (see
[75] and discussion therein). If we introduce the mean
number of produced graviton pairs per in each mode of the
field [denoted hereunder by nðν; τ0Þ], then the spectral
energy density in critical units becomes

lim
ν→νmax

Ωgwðν; τ0Þ →
128π2

3

ν4max

H2
0M

2
P
nðνmax; τ0Þ: ð3:13Þ

By definition for ν → νmax we have that nðνmax; τ0Þ ¼
Oð1Þ. Recalling Eq. (3.1) and the expressions derived in the
appendix A [see e.g. Eqs. (A11) and (A12) and discussion
thereafter], Eq. (3.13) becomes

Ωgwðνmax; τ0Þ ¼
8

3π
ΩR0

�
H1

MP

�
4=ðδþ1Þ�Hr

MP

�
2ðδ−1Þ=ðδþ1Þ

:

ð3:14Þ

Equation (3.14) holds in the case of a single postinfla-
tionary phase but it can be generalized to include all the
relevant physical cases corresponding to the timeline of
Fig. 1. The result of Eq. (3.14) slightly overestimates the

17In general the transfer function for the spectral energy
density does not coincide with the transfer function computed
for the spectral amplitude [59]; it is obtained by integrating
numerically the mode functions across the radiation-matter
transition for each k mode and by computing Ωgwðν; τÞ for
different frequencies. The advantage of the transfer function for
the energy density is that while Ωgwðν; τÞ is a mildly oscillating
function of kτ, the spectral amplitude exhibits larger oscillations
that need to be averaged, as originally suggested in [73,74].
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actual amplitude of the spectral energy density since it does
not take into account the late-time sources of suppression
related, for instance, with the neutrino free streaming. By
now recalling the considerations of Appendix B [and, in
particular, Eq. (B6)] we can trade H1 for Hk and use that
ðHk=MPÞ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πϵkAR

p
. If we now impose the consistency

relations we see that the maximum of the spectral energy
density also depends on rT .

C. Spikes in the audio band

As discussed in the previous subsections, when a
single postinflationary stage precedes the radiation epoch
h20Ωgwðν; τ0Þ consists of three separate branches. However
the spectral energy density may include multiple frequency
domains [61] and, in this situation, a maximummay develop
in the audio band. Besides the standard aHz region (i.e.
νp < ν < νeq) and part of the intermediate branch (for
νeq < ν < νr), the slopes in the two supplementary ranges
(i.e. νr < ν < ν2 and ν2 < ν < νmax) depend on thevalues of
the expansion rates in that region (i.e. δ1 and δ2). The
different typical frequencies of this case are discussed in
Appendix A [see, in particular, Eqs. (A15) and (A16)] and
here the focus will be on the aspects that are directly relevant
for the derivation of a bound on rT .
Three different examples have been illustrated in Fig. 6

and the selected values of rT reproduce the ones appearing
in Fig. 5. With a unified notation the spectral slopes
(denoted in Fig. 6 by nhigh1 and nhigh2 ) are

nhighi ¼ 32 − 4rT
16 − rT

− 2δi; rT ≪ 1; i ¼ 1; 2: ð3:15Þ

The spectral energy density of Fig. 6 follows from the
general evolution of the comoving horizon of Fig. 1 for
n ¼ 3 [see also Eqs. (A15) and (A16)] and this means that
the postinflationary evolution (prior to radiation domi-
nance) consists of two successive stages where the back-
ground first expands faster than radiation (i.e. δ1 > 1) and
then slows down (i.e. δ2 < 1). According to the general
arguments of Ref. [20] we have from Eq. (3.15) that the
spectral energy density decreases for ν > ν2 (i.e. n

high
1 < 0)

while it increases at lower frequencies (i.e. nhigh2 > 0 for
ν < ν2). If rT ≪ 0.03 [8–10], then we have, in practice, that
Eq. (3.15) reduces to

nhighi ¼ 2ð1 − δðiÞk Þ þOðrTÞ; i ¼ 1; 2: ð3:16Þ

The result of Eq. (3.16) follows directly from the expres-
sion of Ωgwðν; τ0Þ given in Eq. (2.21) with the caveat that
the comoving wavelengths reentering between a1 and a2 in
Fig. 1 (and controlling the frequencies ν > ν2) obey kτre ¼
Oð1Þ and not kτre ≪ 1 as in the case of the wavelengths
doing their second crossing during the radiation stage of
expansion. In this case the spectral slopes are given by
Eq. (3.16) and, in particular, nhigh1 ¼ 2ð1 − δ1Þ < 0 for the
wavelengths reentering before a2. Conversely for the
wavelengths reentering between a2 and ar we have
nhigh2 ¼ 2ð1 − δ2Þ > 0. If the timeline is reversed (and
δ1 < 1 while δ2 > 2), then, instead of a spike,
h20Ωgwðν; τ0Þ exhibits a trough but this timeline would be
comparatively less constrained than the one of Fig. 6.
All in all the two high-frequency branches of the spectral

energy density can be parametrized as

h20Ωðν;τ0Þ¼N ρðrT;νÞ
�
ν

νr

�
nhigh
2

; νr < ν< ν2; ð3:17Þ

h20Ωðν; τ0Þ ¼ N ρðrT; νÞ
�
ν2
νr

�
nhigh
2

�
ν

ν2

�
−jnhigh

1
j
;

ν2 < ν < νmax; ð3:18Þ

wherewe are implicitly assuming that nhigh1 <0 and nhigh2 > 0

and N ρðrT; νÞ has been already defined in Eq. (3.12). The
spectral energy density given of Eqs. (3.17) and (3.18)
exhibits a maximum for ν ¼ Oðν2Þ but when δ1 → 1 the
maximum is replaced by a plateau sinceh20Ωgwðν; τ0Þ flattens
out (i.e. nhigh1 → 0 for ν > ν2) [61]. We then illustrated
the situations that are phenomenologically more con-
straining; on this basis it is now possible to derive the lower
bounds on rT .

FIG. 6. The spectral energy density is illustrated with the same
notations of Fig. 5. The values of rT selected in this plot
purposely match the ones of Fig. 5 but, in the present situation,
the spike of h20Ωgwðν; τ0Þ falls in the audio band. The various
parameters have been selected by requiring that ν2 (i.e. the
frequency of the spike) is such that ν2 ¼ OðνaudioÞ. This is one of
the most constraining cases since the direct bounds of wideband
detectors fall into the audio band [23–26] (see also the discussion
of Sec. IV). Note that the maximum corresponds to frequencies
ν ¼ Oðν2Þ and not to νmax. Typical frequencies ν ¼ OðνmaxÞ are
barely visible in rightmost region of the plot (see, in particular,
the final part of the dot-dashed curve).
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IV. LOWER BOUNDS ON rT

We established that even if rT controls the overall
normalization of the spectral energy density, the tensor-
to-scalar ratio also enters the typical frequencies of the
spectrum through νmax and ξ [see Eqs. (A11) and (A12) and
discussions thereafter]; for this reason the position and the
amplitudes of the spikes of h20Ωgwðν; τ0Þ are affected both
by the postinflationary evolution and by rT. If the back-
ground expands faster than radiation the maximal fre-
quency may well shift from the MHz region to the audio
band; conversely if the expansion rate is slower than
radiation νmax may easily reach the GHz region. To stress
this point we note that, if the consistency relations are
enforced, then Eq. (3.14) can be written as18

h20Ωgwðνmax;τ0Þ

¼ CðδÞh20ΩR0ðrTARÞ2=ðδþ1Þ
�
Hr

MP

�
2ðδ−1Þ=ðδþ1Þ

∝ r2=ðδþ1Þ
T :

ð4:1Þ

In the second relation of Eq. (4.1) all the factors have been
neglected except for the overall dependence on rT and, by
looking at this result, it could be argued that any suppres-
sion of rT also reduces the high-frequency spike of the
spectral energy density (see also Fig. 5 and discussions
therein). However a reduction of rT does not necessarily
entail a suppression of the maximum of the spectral energy
density since Hr, δ and rT come from different physical
considerations and are therefore independently assigned.
Let us first examine the case where, prior to radiation, the

postinflationary evolution consists of a single stage expand-
ing at a rate that is slower than radiation (i.e. δ < 1). This case
is illustrated in Fig. 5 and h20Ωgwðν; τ0Þ sharply increases
below νmax but Eq. (4.1) also suggests that a suppression of
few orders of magnitudes in rT may be compensated by an
increase of the overall normalization that contains ðHr=MPÞ.
More specifically, when Hr=MP ≪ 1 and δ < 1 the term
ðHr=MPÞ2ðδ−1Þ=ðδþ1Þ appearing in Eq. (4.1) overwhelms the

reduction provided by r2=ðδþ1Þ
T unless rT is really too small. If

νmax ¼ Oð270Þ MeV for a pivotal value of the tensor-to-
scalar ratio, then a reduction of rT by 4 orders of magnitude
only shifts νmax → Oð27Þ MHz. This is therefore a minor
effect if compared with the modifications of the postinfla-
tionary evolution. Finally rT also impacts the high-frequency
slopes of the spectral energy density but this effect is
negligible: we may consider, in this respect Eqs. (3.5) and
(3.15) where the corrections induced on the spectral slopes
are insignificant as long as rT < Oð10−2Þ.

Even though, taken singularly, the different effects are
easily estimated, the overall result of concurrent modifi-
cations of rT and of the other parameters is not obvious and
this is why we now present a numerical determination of
rmin
T , i.e. the minimal value of rT compatible with the
potential presence of a high-frequency spike. By definition
for rT > rmin

T the spectral energy density is larger than in
the concordance scenario for the same value of rT . This
means that in the audio band and in the high-frequency
domain the signal could be potentially detected by future
instruments. Conversely for rT ≤ rmin

T the relic gravitons
are invisible both in the aHz domain and also at higher
frequencies.
A first necessary requirement for the estimate of rmin

T is
that the frequency corresponding to radiation dominance
must always exceed νbbn already introduced in Eq. (3.6):

νr ¼
ffiffiffi
ξ

p
νmax > νbbn; ξ ¼ Hr=H1: ð4:2Þ

In the case of a single postinflationary phase ξ ¼ Hr=H1

whereas in the presence of multiple post-inflationary
phases ξ is given by the product of the individual ξi
[see, in this respect, Eqs. (A17) and (A18) and the
discussion thereafter]. For a maximum in the audio band
(see Fig. 6) we have ξ ¼ ξ1ξ2 where ξ1 ¼ H2=H1 and
ξ2 ¼ Hr=H2. Equation (4.2) applies both for of a single
maximum and in the case of multiple spikes but in the two
situations the overall expression of ξ is different. Using
together Eqs. (A12) and (4.2) we can also deduce the
following bound on Hr=MP:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hr=MP

p
≥

kbbn
ð2ΩR0Þ1=4

ðH0MPÞ−1=2Cðgs; gρÞ; ð4:3Þ

where, by definition, kbbn ¼ 2πνbbn. If the explicit values
of the various terms are inserted into Eq. (4.3) we may
obtain that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hr=MP

p
≥ 1.95×10−22=Cðgs;gρÞ for h20ΩR0 ¼

4.15 × 10−5. The interesting point to stress, in this respect,
is that while νmax and ξ individually depend upon rT , the
bound of Eq. (4.2) does not depend on the tensor-to-scalar
ratio. Indeed we have that while ξ scales as r−1=4T , νmax is
proportional to r1=4T .
A further general requirement determining rmin

T follows
from the current limits (summarized in Table I) on the
presence of relic graviton backgrounds in the audio band
[23–26]. The parametrization of the spectral energy density
adopted by Refs. [25,26] is in fact given by Ωgwðν; τ0Þ ¼
Ωσðν=νrefÞσ so that, for instance, Ω0 denotes the amplitude
of the spectral energy density at νref for a scale-invariant
slope. The three specific cases constrained in Refs. [25,26]
are given in Table I however it is possible to find an
interpolating formula valid for a handful of spectral indices
(see e.g. [75]). By following here this approach we can
broadly adopt the bounds of Table I and require

18The numerical factor CðδÞ ¼ ð1=6Þð16=πÞðδ−1Þ=ðδþ1Þ appear-
ing in Eq. (4.1) does not alter the scaling properties of Ωgwðν; τ0Þ
for different values of rT .
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10−12 ≤ h20ΩgwðνLVK;τ0Þ< 10−10; νLVK ¼Oð100ÞHz;
ð4:4Þ

where νLVK denotes the Ligo-Virgo-Kagra frequency which
can be estimated in terms of νref . The most sensitive region
for the detection of relic gravitons in the audio band is,
grossly speaking, below 0.1 kHz since, in this band, the
overlap reduction function has its first zero [39].
Equation (4.4) requires, in practice, that the bounds coming
from wideband interferometers are satisfied while, in the
same frequency range, h20Ωgwðν; τ0Þ is larger than 10−12.
We cannot foresee when the corresponding sensitivity will
be reached by wideband detectors but the requirement of
Eq. (4.4) follows from some of the optimistic claims
suggested by the observational collaborations19 [26]. By
following a similar attitude, we shall enforce the big bang
nucleosynthesis bound for all the ranges of the spectrum
(and, in particular, at high frequencies) but also assume
that that h20Ωgwðν; τ0Þ > Oð10−8Þ for typical frequencies
ν ¼ OðνmaxÞ. This means, on the one hand, that the bound
of Eq. (3.7) is enforced while, at the same time, it is not
excluded that the signal from the relic gravitons could be
interesting for a direct detection with microwave cavities
[75] in a range that encompasses the MHz and the GHz
regions. In this regime coupled microwave cavities with
superconducting walls [76–81], wave guides [82–86] or
even small interferometers [87–89] could be used for direct
detection even if the current sensitivities should not be
overestimated without reason (see, in this respect, [75]).

A. Spike in the ultra-high-frequency region

The interplay between the high-frequency determina-
tions of the spectral energy density and the low-frequency
limits on rT can be analytically deduced by considering the

MHz and the GHz bands where the frequencies ν ¼
OðνmaxÞ are approximately located. In this case the most
constraining class of bounds follows by requiring that ν →
νmax in Eq. (4.4) and by examining a (single) postinfla-
tionary phase parametrized by δ and ξ. Equation (3.7)
should then be satisfied together with the condition that
h20Ωgwðνmax; τ0Þ > 10−8; putting everything together we
therefore obtain the approximate condition

10−8 ≤ h20Ωgwðνmax; τ0Þ < 5.61 × 10−6ΔNνn
high
T : ð4:5Þ

In Eq. (4.5) the high-frequency spectral index appears if the
parametrize the high-frequency behavior with a single
slope nhighT ; this is actually the most constraining instance
even if the spikes may also arise at lower frequencies
where, however, the corresponding amplitude is necessarily
smaller since the frequency range for a potential growth of
h20Ωgwðν; τ0Þ is narrower. With these specifications we
actually have from Eq. (3.7) that20

h20

Z
νmax

νbbn

Ωgwðν;τ0Þd lnν

¼ h20Ωgwðνmax;τ0Þ
nhighT

�
1−

�
νbbn
νr

�
nhighT

�
< 5.61× 10−6ΔNν:

ð4:6Þ

In Fig. 7 we illustrate the allowed region of the parameter
space in the plane defined by δ and by y ¼ logHr=MP.
Since ξ ¼ Hr=H1 implicitly contains a dependence upon
rT , the various constraints are illustrated in the ðy; δÞ plane
where y denotes the common logarithm of ðHr=MPÞ. In the
left plot of Fig. 7 all the different constraints are super-
imposed while the overlapping region is directly illustrated
in the plot at the right.
The shaded area in the right plot of Fig. 7 corresponds

then to rT ¼ 3 × 10−2 which is of the order of one of the
most stringent constraints on rT available at the moment21

[8–10]. The logic is now to decrease progressively the value
of rT and, in doing so, the area of the overlap of Fig. 7 is
expected to shrink. If the allowed region originally present
in Fig. 7 completely disappears, the value of rT will be by
definition smaller than rmin

T . The gradual decrease is
illustrated in Fig. 8 where the values of rT are reduced
first to 3 × 10−4 (plot at the left) and then to 3 × 10−5

(upper part of the right plot). The lower region of the right
plot corresponds to rT ¼ 3 × 10−6. If the value of rT is

TABLE I. Recent limits on the relic gravitons obtained by
wideband interferometers.

σ Frequency range if νref [Hz] Bound

0 20–81.9 Ω0 < 6 × 10−8 Ref. [25]
2=3 20–95.2 Ω2=3 < 4.8 × 10−8 Ref. [25]
3 20–301 Ω3 < 7.9 × 10−9 Ref. [25]
0 20–76.6 Ω0 < 5.8 × 10−9 Ref. [26]
2=3 20–90.6 Ω2=3 < 3.4 × 10−9 Ref. [26]
3 20–291.6 Ω3 < 3.9 × 10−10 Ref. [26]

19The alternative would be that relic gravitons backgrounds
will not be accessible in the audio band; while this possibility
cannot be excluded, in what follows we shall entertain a less
pessimistic attitude which is motivated by the steady increase of
the sensitivity to relic gravitons in the last 20 years. We must
actually recall that in 2004 wideband detectors gave limits
implying h20Ωgwðν; τ0Þ < Oð1Þ [23] while today the same limits
improved by roughly 10 orders of magnitude [25,26].

20The upper limit of Eq. (4.5) follows from Eq. (4.6) in the case
nhighT > 0 and νr > νbbn [which is the same condition already
discussed in Eq. (4.2)].

21In Fig. 7 we also fixed gs;eq ¼ gρ;eq ¼ 3.94 and gs;r ¼ gρ;r ¼
106.75 implying that Cðgs; gρÞ ¼ 0.75. Different values of the
late-time parameters have a comparatively small effect on the
shape of the allowed region.
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FIG. 7. Since ξ contains a dependence on rT , it is preferable to plot (on the horizontal axis) the common logarithm of Hr=MP [i.e.
y ¼ log ðHr=MPÞ] which does not contain rT . We assumed here that rT → 0.03; in the plot at the left all the different limits [see
Eqs. (4.2), (4.4) and (4.5)] have been superimposed in the plane ðy; δÞ. In the plot at the right the intersection of the three regions
[defined, respectively, by Eqs. (4.2), (4.4) and (4.5)] is directly illustrated. The values of the late-time parameters considered in this and
in the following figure lead approximately to Cðgs; gρÞ ¼ 0.75; these terms are included even if they are not essential for the quantitative
assessment of the various bounds.

FIG. 8. The value of rT is gradually reduced while all the remaining late-time parameters are kept fixed. In the left plot the shaded
region corresponds to rT ¼ 3 × 10−4. In the right plot there are two different regions: in the upper spot rT ¼ 3 × 10−5 while in the lower
spot rT ¼ 3 × 10−6. If the value of rT is further reduced to 3 × 10−7, then the intersection of the different constraints illustrated in Fig. 7
completely disappears and this occurrence implies that rmin

T ¼ Oð10−6Þ. To characterize better the different regions the two plots have
different ranges of δ: this is while the upper region of the right plot seems superficially larger than the area of the left plot.

MASSIMO GIOVANNINI PHYS. REV. D 108, 123508 (2023)

123508-18



further reduced to rT ¼ 3 × 10−7, then the lower spot
completely disappears from the figure. We therefore con-
clude that the tensor-to-scalar ratio should exceed rmin

T ¼
Oð10−6Þ if the spectral energy density of the relic gravitons
exhibit a potential signal in high-frequency band.

B. Spike in the audio band

The analysis of the high-frequency region can be
repeated at lower frequencies and, in particular, in the
audio band. By looking at Eqs. (3.17) and (3.18) the most
constraining situation is the one where the frequency of the
signal falls exactly in the audio band [i.e. ν2 ¼ OðνaudioÞ].
If, prior to radiation dominance, the expansion rate is first
faster than radiation and then slows down, then the spectral
energy density exhibits a local maximum in ν2 and this is
the situation already illustrated in Fig. 6. The high-
frequency slopes of h20Ωgwðν; τ0Þ are positive for ν < ν2
(i.e. nhigh2 > 0) and negative in the complementary fre-
quency range (i.e. nhigh1 < 0 for ν > ν2). If the timeline of
the comoving horizon is inverted (and the background
expands first slower than radiation and then faster) in ν2
there will be a minimum with a spectral energy density
even smaller than in the case of the concordance scenario
where h20Ωgwðν; τ0Þ ¼ Oð10−17Þ. The constraints at higher
frequencies can be neglected since the signal is automati-
cally small for ν ¼ OðνmaxÞ and the bounds stemming from
the expansion rate at the nucleosynthesis time are auto-
matically satisfied. The results of the analysis are summa-
rized in Fig. 9 where the late-time parameters have been
selected as in Figs. 7 and 8. In the left plot of Fig. 9 we have
chosen rT ¼ 3 × 10−2 while in the right plot the two shaded

spots correspond, respectively, to rT ¼ 3 × 10−4 (upper
region) and to rT ¼ 10−8 (lower region). If rT is further
reduced below 10−8 the different requirements are not
concurrently satisfied and we must therefore conclude that,
in this case, rmin

T ¼ Oð10−7Þ.
There is the possibility, in principle, that the spike of the

spectral energy density might occur in nHz region. In this
instance the current measurements of the PTA could be
relevant to set a limit on rT . The PTA reported in fact a
tentative signal in the nHz band:

10−8.86b20 < h20ΩgwðνÞ < b2010
−9.88;

3 nHz < ν < 100 nHz; ð4:7Þ

where b0 depends on the different experiments. The Parkes
Pulsar Timing Array collaboration [28] suggests b0 ¼ 2.2;
the International Pulsar Timing Array gives b0 ¼ 2.8 [30]
while the European Pulsar Timing Array [29] would
measure b0 ¼ 2.95. These results are compatible with
the NANOgrav 12.5 yrs data [27] implying b0 ¼ 1.92.
From the average of the four measurements presented so far
we obtain b0 ¼ 2.467 which implies22

10−9.09
�

b0
2.467

�
2

≤ h20ΩgwðνÞ ≤ 10−8.07
�

b0
2.467

�
2

: ð4:8Þ

FIG. 9. We analyze the case of spike in the audio band. In the two plots the shaded regions correspond, respectively, to rT ¼ 3 × 10−2

(plot at the left) and to rT ¼ 3 × 10−4 (plot at the right). The lower region in the plot at the right is obtained for rT ¼ 10−8.

22If b0 → 1, then Eq. (4.7) would suggest that the energy
density in the nHz domain is comparatively smaller than the
Ligo-Virgo-Kagra constraint for a flat spectrum [26]; however,
according to current determinations, b0 > 1.
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The constraints of Eqs. (4.7) and (4.8) are only marginally
relevant in the present case. Indeed, recalling Eq. (4.2) we
have that, at most, νr ¼ Oð10−2Þ nHz. To be relevant for
Eq. (4.7) the spectral energy density should be sufficiently
large for ν ¼ Oð100Þ nHz. Taking into account that, at
most, h20Ωgwðνr; τ0Þ ≤ Oð10−17Þ it follows that a spike for
νspike ¼ Oð100Þ nHz can only be h20Ωgwðνspike; τ0Þ ≤
Oð10−13Þ since, at most, the slope of the spectral energy
density between νr and νspike can be linear.23 Before
concluding this discussion it is appropriate to stress that
the values of the various δi have been always assumed to be
larger than 1=2. The reason for this choice is that this is
what happens in all the relevant physical situations. In the
case of a stiff fluid we have that 1=2 ≤ δ < 1; smaller
values of δ correspond to sound speeds of the plasma larger
than the speed of light. In the case of the scalar potentials
discussed in Eq. (2.30) δ → 1=2 for q ≫ 1.

C. Constraints, specific potentials and compensations

The results obtained so far assume the enforcement of
the consistency relations and, in the opposite case, it is
always possible to reduce the spectral energy density in the
aHz region by keeping a comparatively larger signal in the
higher frequency range. The bounds obtained here suggest

rT > rmin
T ¼ Oð10−7Þ; ν ¼ OðνaudioÞ;

rT > rmin
T ¼ Oð10−6Þ; ν ¼ OðνmaxÞ: ð4:9Þ

The reference to the frequency range simply reminds that,
in the two cases, the most constraining situation correspond
to the presence of a spike around either νaudio or νmax. The
results of Eq. (4.9) are now illustrated by few examples
based on the different classes of potentials discussed in
Sec. II and in Appendix B. In this respect the first point to
bear in mind is that the number of e-folds depends both on
rT and on the post-inflationary evolution but the relative
impact of the two contributions is different. We recall that
Nk actually measures the number of e-folds since the
crossing of the CMB scale and if the postinflationary
evolution is slower than radiation Nk is larger than 60;
similarly if rT is smaller also Nk diminishes. Let us
examine, for the sake of concreteness, the expression of
Nk given in Eq. (A10), which we rewrite by enforcing the
consistency relations24

Nk ¼ Oð60Þ þ 1

4
ln

�
rT
0.03

�
þ 1

2

Xn−1
i¼1

�
δi − 1

δi þ 1

�
ln ξi: ð4:10Þ

For the reasons explained in Eqs. (B4) and (B6) we used
that Hk=H1 ¼ Oð1Þ since this way of writing Nk is more
suitable. As already stressed in different frameworks
[20,21,90] the existence of postinflationary phases with
sound speed stiffer than radiation entails an increase both
of Nk and of Nmax [see Eqs. (A7) and (A8) and discussion
therein]. Within the notations of Eq. (4.10) we have indeed
that when some of the δi < 1 (and the background expands
slower than radiation) Nk ≫ 60 depending on the various ξi
which are always, by definition, smaller (or even much
smaller) than 1. In the past various upper bounds on the
potential increase ofNk have been set; within these attempts
we can conceivably assume that Nk and Nmax may increase
by a factor25 Oð15Þ. When Nk is larger than in the standard
case the tensor to scalar ratio and the scalar spectral index
may be comparativelymore suppressed and their valuesmust
then be confronted again with Eqs. (2.33)–(2.35).
Indeed as we specifically discussed in the previous

examples [see e.g. (2.39) and (2.40)] the scale dependence
of rT and ns is mediated by Nk, i.e. rTðkÞ ¼ rTðNkÞ and
nsðkÞ ¼ nsðNkÞ. It becomes therefore a quantitative issue if
the amount of reduction of rTðNkÞ for Nk ≫ Oð60Þ is
compatible with nsðNkÞ and with the (upper) bounds on rT
of Eqs. (2.33)–(2.35). Based on the bounds of Eq. (4.9) and
on the results of the previous sections we then expect
rTðNkÞ > rmin

T ¼ Oð10−7Þ [or even Oð10−6Þ] provided the
signal of high-frequency gravitons is still sufficiently large.
In this respect the first test is reported in Figs. 10 and 11
where we examine the plateaulike potential of Eq. (2.37) in
the plane defined by y ¼ logHr=MP and by q. While for
Φ ≫ 1 the inflationary phase fixes nsðNkÞ and rTðNkÞ
according to Eqs. (2.39) and (2.40), for Φ < 1 there is an
oscillating stage whose length is here taken as a free
parameter. During this stage the expansion rate δ follows
from Eqs. (2.28) and (2.29). In Figs. 10 and 11 the shaded
areas correspond to the region where the scalar spectral
index and the rT obey the constraints of Eq. (2.35) and all
the other high-frequency limits. We also require that
10−8 < h20Ωgwðν; τ0Þ < 10−6 for ν ¼ OðνmaxÞ (with the
caveat that also νmax depends on δ).
In the left plot of Fig. 10 we fixed p while in the right

plot q is fixed. The same strategy has been adopted in
Fig. 11 for a different set of parameters. The various curves
appearing in Figs. 10 and 11 correspond to the common
logarithms of rTðNkÞ. We see, as expected, that these values
are all larger than rmin

T . It is relevant to stress that Figs. 10

23This means that a spike on the nHz band is always smaller
than the figures suggested by Eqs. (4.7) and (4.8). The nature of
the PTA observations is still under debate and it cannot be
excluded that the potential signal is not related with the relic
gravitons.

24If we compute Nk from Eq. (A10) and use the consistency
relations together with the explicit value of Cðgs; gρÞ, then we
would obtain 59.58 and this is why we wroteOð60Þ in Eq. (4.10);
as we shall see these differences are immaterial for this
discussion.

25This estimate follows from Eq. (4.10) by considering the
smallest value of δ compatible with standard sources (i.e.
δ → 1=2) and by taking the minimal value of ξ compatible with
the ΛCDM paradigm; we get in this case ΔNk ¼ ð1=6Þ ln ξmin ¼
Oð15Þ for ξmin ¼ Oð10−38Þ.
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and 11 have been obtained by assuming the dynamical
determination of Nk as suggested by Eq. (4.10). On the
contrary in the case of Figs. 3 and 4 Nk ¼ 60 as if the
postinflationary evolution was absent. Both illustrative
strategies have their own virtues but we think that the
former is more consistent than the latter especially in the

case where a long oscillating stage with q > 2 implies an
expansion rate that is slower than radiation.
So far we explored the regime of relatively large rT and

we now consider the opposite limit by requiring that the
high-frequency signal is (systematically) small while all the
other low-frequency constraints are satisfied. As already

FIG. 10. We evaluate the allowed values of nsðNkÞ and rTðNkÞ. As in the previous plots y denotes the common logarithm of Hr=MP
(i.e. y ¼ logHr=MP). In the plot at the left the value of p is fixed while in the plot at the right q is fixed. In the shaded regions nsðNkÞ and
rTðNkÞ fall within the constraints of Eq. (2.35) and simultaneously lead to a large signal for frequencies OðνmaxÞ. In both plots we can
verify that rTðNkÞ > rmin

T implying the validity of the general bound deduced in Eq. (4.9).

FIG. 11. The same notations of Fig. 10 have been followed for a different choice of the parameters. In both cases rTðNkÞ > rmin
T . We

see that, also in this case, the values of rT in the allowed region are larger than rmin
T .
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mentioned in Sec. II a potential candidate for rather small
rT is represented by the hilltop models in their different
versions [48–52]. Here we are considering a slightly
different perspective by focussing on the potentials of
Eqs. (2.37) and (2.38) where, however, Nk includes the
dependence of a postinflationary stage expanding slower
than radiation as suggested by Eq. (4.10).
This analysis is illustrated in Fig. 12 where the low-

frequency constraints of Eq. (2.35) are supplemented by the
requirement 10−25 < h20Ωgwðνmax; τ0Þ < 10−15. According
to the general arguments given above we should have that
rTðNkÞ ¼ Oð10−6Þ (or smaller). According to Fig. 12 this
is what happens. More precisely in the left plot of Fig. 12
we consider the potential of Eq. (2.37) but for a range of
parameters different from the ones discussed before. The
shaded area now defines the region of the parameter space
where the spectral energy density is smaller than 10−15 (but
larger than 10−25). This is approximately the standard
signal of the concordance paradigm. In the plot at the
right the notations are the same but the potential is the one
of Eq. (2.38).
There is finally an extreme situation where a drastic

decrease of rT is compensated by the contribution of the
postinflationary stage of expansion. Indeed, by looking at
Eq. (4.10) we might argue that the decrease in the number
of e-folds caused by a reduction of rT could compensated
by a corresponding increase of the term Dðδi; ξiÞ so that,
overall, Nk ¼ Oð60Þ. This cancellation implies that the
postinflationary stage must expand slower than radiation
and, in this case,

rT ≃D2ðδi; ξiÞ ¼
Yn−1
i¼1

ξ−2ðδi−1Þ=ðδiþ1Þ ≪ Oð0.03Þ: ð4:11Þ

For a single postinflationary stage we would have that rT ≃
ξ−2ðδ−1Þ=ðδþ1Þ with 0 < δ < 1. From Eqs. (3.8) and (3.11)
we therefore have that the high-frequency value of the
spectral energy density is approximately given by
h20Ωgwðνmax; τ0Þ ¼ Oð10−18Þ, slightly smaller than in the
case of the concordance scenario. This means that a very
small rT [e.g. much smaller than Oð10−6Þ] can be com-
pensated by a long postinflationary stage expanding slower
than radiation. In this case, however, the spectral energy
density is just shifted below the signal of the concordance
paradigm.

V. CONCLUDING REMARKS

The limits on the relic graviton backgrounds in different
domains of comoving frequencies have been combined
with the purpose of narrowing the range of variation of the
tensor-to-scalar ratio. In the concordance paradigm the
low-frequency tail of the aHz region is maximized by
considering the largest rT compatible with the available
observational data. In this investigation we explored the
opposite possibility suggesting that the low-frequency
gravitons could remain practically invisible in the aHz
region while their spectral energy density exceeds the
predictions of the concordance paradigm at higher frequen-
cies. As a result, depending on the frequency domain of the

FIG. 12. We illustrate the situation where the high-frequency signal is small while the low-frequency bounds of Eq. (2.35) are
concurrently satisfied. In the plot at the left we always consider the potential of Eq. (2.37) while at the right the potential is given by
Eq. (2.38). In both plots the shaded area corresponds to 10−25 < h20Ωgwðνmax; τ0Þ < 10−15 and the various labels denote the common
logarithm of rT . We see, as expected, that rT < Oðrmin

T Þ.
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spike the lower bound on the tensor-to-scalar ratio ranges
between Oð10−6Þ and Oð10−7Þ.
The obtained results do not depend on the shape of the

inflationary potential since the relic gravitons couple
predominantly to the space-time curvature and not to the
matter sources. We nonetheless enforced the consistency
relations and corroborated the obtained bound with the
detailed discussion of various classes of inflationary
potentials admitting a modified postinflationary evolution
and eventually leading to a high-frequency spike. In the
present framework the number of e-folds corresponding to
the exit of the CMB wavelengths can be larger than Oð60Þ
if the postinflationary expansion rate is slower than
radiation. If the consistency relations are instead violated
(for instance because of the properties on the initial state or
for some other reason), then rT can be further reduced
without affecting the high-frequency signal and the lower
bounds derived here do not apply. The general logic
remains however intact since the reduction of the tensor-
to-scalar ratio would not preclude spectral energy densities
exceeding the ones of the concordance scenario at high
frequencies.
Since the concurrent determinations stemming from the

audio band and from the aHz region involve the postinfla-
tionary evolution, in the present approach any potential
upper limit at high frequency simultaneously constrain the
expansion rate prior to radiation dominance and the tensor-
to-scalar ratio. This perspective implicitly encourages a
synergy between experiments scrutinizing different
branches of the graviton spectrum. The fruitful dialog
between the instruments sensitive to small and to inter-
mediate frequencies could be extended, in principle, also to
conceptually different kinds of detectors in the MHz
domain as repeatedly suggested in the past.
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APPENDIX A: THE NUMBER OF e-FOLDS AND
THE MAXIMAL FREQUENCY

1. Number of e-folds and crossing of the pivot scales

In what follows and in the bulk of the paper26 Nk ¼
ln ða1=akÞ denotes the number of e-folds corresponding to
the crossing of a given wavelength and a1 conventionally
sets the end of the inflationary stage of expansion. Since the
inflationary epoch may be followed by a sequence of

different phases all characterized by their own expansion
rates δi [i.e. aiðτÞ ∝ τδi in the conformal time parametriza-
tion] the values of Nk are implicitly determined from

k
akHk

¼ eNk

�
H1

Hk

�
k

a1H1

; ðA1Þ

and the general evolution of the comoving horizon is
illustrated in Fig. 1. When the given wavelength crosses
the Hubble radius in Fig. 1 (i.e. k ≃ akHk) Eq. (A1) fixes
the value of Nk not only in terms of H1 (the expansion rate
at the end of inflation) but also as a function of the
subsequent expansion history. We can appreciate this
statement by expressing the last term at the right-hand
side of Eq. (A1) as

k
a1H1

¼ k
a0H0

�
a0H0

aeqHeq

��
aeqHeq

arHr

��
arHr

a1H1

�
; ðA2Þ

where Hr is the expansion rate at the moment of radiation
dominance while Heq and H0 denote, respectively, the
expansion rates at equality and at the present time; we
remind that, in the notations of Fig. 1, Hn ¼ Hr and
an ¼ ar, as already discussed in the bulk of the paper. From
Eqs. (A1) and (A2) we can also deduce

k
akHk

¼
�

k
a0H0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H0=MP

p
ð2πΩR0ϵkARÞ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1=Hk

p
Cðgs; gρÞ

Dðδi; ξiÞeNk:

ðA3Þ

In Eq. (A3) Cðgs; gρÞ and Dðδi; ξiÞ depend, respectively, on
the radiative evolution after ar and on the postinflationary
history between the end of inflation and the moment of
radiation dominance:

Cðgs; gρÞ ¼ ðgs;eq=gs;rÞ1=3ðgρ;r=gρ;eqÞ1=4;

Dðδi; ξiÞ ¼
Yn−1
i¼1

ξ
− ðδi−1Þ

2ðδiþ1Þ
i : ðA4Þ

The first expression of Eq. (A4) follows by considering the
radiation-dominated evolution between ar and aeq; in this
case we exactly obtain that ðHr=HeqÞ1=2¼ðaeq=arÞCðgs;gρÞ
since in a stage of local thermal equilibrium, the entropy
density is conserved and the total energy density depends on
gρ (i.e. the number of relativistic degrees of freedom in the
plasma) while gs denotes the effective number of relativistic
degrees of freedom appearing in the entropy density. In the
standard situation where gs;r ¼ gρ;r ¼ 106.75 and gs;eq ¼
gρ;eq ¼ 3.94we have that Cðgs; gρÞ ¼ 0.75. The contribution
of Cðgs; gρÞ to Eq. (A3) is numerically not essential for the
determination of Nk and the term Dðδi; ξiÞ has a more
prominent effect. Indeed, as already mentioned, in Eq. (A4)
δi estimates the expansion rate in each of the postinflationary

26As already mentioned in the introduction ln x denotes the
natural logarithm of a generic variable x; log x denotes instead the
common logarithm of the same quantity.

INVISIBLE LOW-FREQUENCY GRAVITONS AND THE AUDIO … PHYS. REV. D 108, 123508 (2023)

123508-23



stages and ξi ¼ Hiþ1=Hi < 1 measures their relative dura-
tion. In the limit of a single postinflationary phase all
the δi collapse to a single δ and Dðδ; ξÞ ¼ ξ−ðδ−1Þ=½2ðδþ1Þ�,
where ξ ¼ Hr=H1 < 1.
The constraints from big bang nucleosynthesis suggest

an absolute lower limit on ξ (i.e. Hr ≥ 10−44MP) since
the plasma must be dominated by radiation as soon as the
formation of light nuclei starts and, for the same reason, the
product of all the ξi equals Hr=H1, i.e. by definition
ξ1ξ2…ξn−1ξn ¼ ξ ¼ Hr=H1. The actual value of ξ ¼
Hr=H1 ultimately depends on H1 whose explicit estimate
follows by remarking that27�

Hk

MP

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πϵkAR

p
;

�
Hk

H1

�
¼ Oð1Þ: ðA5Þ

Besides the number of e-folds associated with the crossing
of a given scale k there is also a second relevant notion,
namely the maximal number of e-folds presently accessible
to large-scale observations (Nmax in what follows). This
quantity is determined by fitting the (redshifted) infla-
tionary event horizon inside the current Hubble patch, i.e.
H−1

b ða0=aiÞ ≃H−1
0 where Hb denotes the expansion rate in

the initial stages of inflation:

eNmax ¼ ð2ΩR0Þ1=4
ffiffiffiffiffiffi
Hb

H0

s
Cðgs; gρÞ
Dðδi;ξiÞ

; Hb ¼OðH1Þ: ðA6Þ

In Eq. (A6) Hb can be estimated from H1 owing from the
small variation of the Hubble rate during inflation and the
same observation can be actually made in the case ofHk, as
we shall discuss in Appendix B. As in the case of Nk, in
Eq. (A6) we assumed that the postinflationary expansion
rate is partitioned in n subsequent epochs expanding at
different rates but the last stage always coincides with
radiation so that, by definition, Hn ¼ Hr. The values of Nk
and Nmax are related as

Nk ¼ Nmax − ln

�
k

a0H0

�
− ln

Hk

H1

: ðA7Þ

As we shall see more specifically in Appendix B Hk ¼
OðH1Þ for all the comoving wavelengths relevant in the
case of CMB physics so that, in practice, Nmax coincides
with Nk when k ¼ Oða0H0Þ. The explicit values of Nk and
Nmax enter the estimates the inflationary observables for a
specific choice of the potential; for instance the value of
Nmax is

Nmax ¼ 61.55 − ln

�
h0
0.7

�
þ 1

4
ln

�
ϵ

0.001

�
þ 1

4
ln

�
AR

2.41 × 10−9

�
þ ln Cðgs; gρÞ

þ 1

4
ln

�
h20ΩR0

4.15 × 10−5

�
þ 1

2

Xn−1
i

�
δi − 1

δi þ 1

�
ln ξi: ðA8Þ

Equation (A8) depends on the slow-roll parameter ϵ which we have taken to be constant and scale independent. However if
the consistency relations are enforced we can trade28 ϵ for rT since rT ≃ 16ϵ. Since the values of Nk and Nmax are related we
have from Eqs. (A2)–(A6) that

eNk ¼ ð2ΩR0Þ1=4
ffiffiffiffiffiffi
Hk

H1

s ffiffiffiffiffiffi
Hk

H0

s
Cðgs; gρÞ
Dðδi; ξiÞ

�
k

a0H0

�
−1
: ðA9Þ

We now recall (see also Appendix B) that Hk=MP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πϵkAR

p
; Eq. (A9) can then be written, after taking the natural

logarithm of both sides,

Nk ¼ 59.4þ 1

4
ln

�
ϵk

0.001

�
þ 1

4
ln

�
AR

2.41 × 10−9

�
þ ln Cðgs; gρÞ − ln

�
k

0.002 Mpc−1

�

þ 1

4
ln

�
h20ΩR0

4.15 × 10−5

�
þ 1

2

Xn−1
i¼1

�
δi − 1

δi þ 1

�
ln ξi −

1

2
ln

�
H1

Hk

�
: ðA10Þ

27The result of Eq. (A5) has been implicitly used in Eq. (A3) and it is further analyzed in the subsequent Appendix B.
28In this case, if rT ¼ Oð0.06Þ we would have that Nmax ¼ 61.88 always assuming the typical values of the other parameters; if the

explicit value of Cðgs; gρÞ is taken into account the value of Nmax is insignificantly reduced to Nmax ¼ 61.61.
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If we set δi ¼ 1 into Eqs. (A8)–(A10), then we obtain the
standard result implying that Nmax ¼ Oð60Þ; in this case
the whole postinflationary stage collapses to a single
radiation-dominated phase extending down to the Hr. If
δi < 1, then we have instead Nmax > 60 and this happens
since all the ξi are, by definition, all smaller than 1; for the
same reason Nmax < 60 when δi > 1. For a single phase
expanding slower than radiation Nmax can be as large as 75
and in all the intermediate situations (where there are
different phases expanding either faster or slower than
radiation) Nmax depends on the relative duration of the
various epochs and on their expansion rates. What is true
forNmax is also true forNk by virtue of Eq. (A7). In the case
of a specific potential admitting a postinflationary stage not
dominated by radiation the correct value of Nk employed to
evaluate the inflationary observables must then follow from
Eq. (A10).

2. The typical frequencies of the spectrum

As in the case of Nk and Nmax, all the typical frequencies
depend on rT and on the postinflationary expansion rate
(see also the cartoon of Fig. 1). Starting from νmax we have

νmax ¼
Yn−1
i¼1

ξ
δi−1
2ðδiþ1

Þ
i νmax ¼ D−1ðδi; ξiÞνmax: ðA11Þ

Note that when all the δi → 1 the value of νmax coincides
with νmax whose explicit value is

νmax ¼
MP

2π
ð2ΩR0Þ1=4

ffiffiffiffiffiffiffi
H0

MP

s ffiffiffiffiffiffiffi
H1

MP

s
Cðgs; gρÞ: ðA12Þ

Both νmax and νmax are computed from the smallest wave-
length that crosses the Hubble radius of 1 and immediately
reenters; this is why Eq. (A12) depends upon H1. From a
quantum mechanical viewpoint the maximal frequency
corresponds to the production of a single graviton pair. In
view of a direct estimate of νmax we recall again that H1 ¼
OðHkÞ [see Eq. (A5) and discussion therein]:

νmax ¼ 195.38Cðgs; gρÞ
�

AR

2.41 × 10−9

�
1=4

�
ϵk

0.001

�
1=4

×

�
h20ΩR0

4.15 × 10−5

�
1=4

MHz: ðA13Þ

In case the consistency relations are enforced, we can always
trade ϵk for rT so that for a typical value rT ¼ Oð0.06Þ the
value of νmax becomes29

νmax ¼ 271.88Cðgs; gρÞ
�

AR

2.41 × 10−9

�
1=4

�
rT
0.06

�
1=4

×

�
h20ΩR0

4.15 × 10−5

�
1=4

MHz: ðA14Þ

The frequency νmax be complemented by the other frequen-
cies of the spectrum and since νmax depends on rT , also all the
other frequencies are sensitive to the specific value of the
tensor-to-scalar ratio. Let us then suppose that, before
radiation dominance, the postinflationary epoch consists
of thee separate phases; this means that the final spectrum
is characterized by three typical frequencies: ν1 ¼ νmax, ν2
and ν3 ¼ νr. The expression of νmax follows from Eq. (A11)
in the case n ¼ 3

νmax ¼ ν1 ¼
Y2
i¼1

ξ
δi−1

2ðδiþ1Þ
i νmax: ðA15Þ

Similarly we can easily compute ν2 and νr:

ν2 ¼
ffiffiffiffiffi
ξ1

p
ξðδ2−1Þ=½2ðδ2þ1Þ�
2 νmax;

νr ¼ ν3 ¼
ffiffiffiffiffi
ξ1

p ffiffiffiffiffi
ξ2

p
νmax ¼

ffiffiffi
ξ

p
νmax; ðA16Þ

where, by definition, ξ ¼ ξ1ξ2. In the case of n intermediate
phases taking place prior to ar the generic intermediate
frequency νm can be expressed as

νm ¼
ffiffiffiffiffi
ξ1

p
…

ffiffiffiffiffiffiffiffiffi
ξm−1

p Yn−1
m¼1

ξ
δi−1
2ðδiþ1

Þ
i νmax; ðA17Þ

νr ¼ νn ¼
ffiffiffiffiffi
ξ1

p ffiffiffiffiffi
ξ2

p
…

ffiffiffiffiffiffiffiffiffi
ξn−2

p ffiffiffiffiffiffiffiffiffi
ξn−1

p
νmax: ðA18Þ

Recalling the remarks presented before Eq. (A5), since the
different phases must not last below Hr, the product of all
the ξi equals Hr=H1, i.e. by definition ξ1ξ2…ξn−1ξn ¼
ξ ¼ Hr=H1. Therefore, in case the consistency relations
are enforced, Eqs. (A15)–(A18) show that both the maximal
and the intermediate frequencies of the spectrum depend on
rT through ξ.

APPENDIX B: THE EXPANSION RATE AT
HORIZON CROSSING

The value of the expansion rate when the wavelengths
associated with the pivot wave number kp cross the
comoving Hubble radius determines both the number of
e-folds and the typical frequencies of the spectrum. In the
present investigation the wavelengths Oð2π=kpÞ are
referred to as the CMB wavelengths. Since at horizon
crossing ðHk=H1Þ ¼ Oð1Þ it is natural to set Hk ¼ OðH1Þ
in the expressions of Nk and Nmax [see Eqs. (A8)–(A10)
and discussion therein]. If Hk=H1 ¼ Oð1Þ, then it also
follows that V1=4

1 =Hk ≫ 1 where V1 denotes throughout

29As already mentioned in connection with Nk and Nmax, for
typical values of the relativistic degrees of freedom,
Cðgs; gρÞ ¼ Oð0.75Þ. More precisely for gs;eq ¼ gρ;eq ¼ 3.94
and gs;r ¼ gρ;r ¼ 106.75 we have, from Eq. (A13), that νmax ¼
148.41 MHz while νmax ¼ 206.53 MHz from Eq. (A14).
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this appendix the value of the inflaton potential at H1. If
the estimates are presented in terms of V1=4

1 =Hk, then the
values of Nk and Nmax are systematically larger than in the
case where Hk is measured in units of H1. In this appendix
we also take the opportunity of introducing the relevant
notations that are employed throughout the main discus-
sion; in particular, at the end of this appendix the scale
dependence of the slow-roll parameters is explicitly ana-
lyzed since the related results are relevant for various
examples discussed in the text.

1. The role of Hk and H1

It is well known that the power spectrum of curvature
inhomogeneities during inflation can be expressed in two
complementary ways:

PRðk; τÞ ¼
jkτj2
πϵðτÞ

H2ðτÞ
M2

P
≡ jkτj2

πϵ½φðτÞ�
H½φðτÞ�
M2

P
: ðB1Þ

The difference between the first and second equality of
Eq. (B1) is that the Hubble rate and the slow-roll parameter
ϵ are regarded either as functions of the conformal time
coordinate or rather as functionals of the inflaton field φ.
When the given wavelength crosses the Hubble radius [i.e.
kτ ¼ Oð1Þ] the previous expression can be written as

PRðk;1=kÞ¼
1

πϵk

H2
k

M2
P
; Hk ¼Hð1=kÞ; ϵk ¼ ϵð1=kÞ;

ðB2Þ

where Hk denotes expansion rate at horizon crossing. We
now consider the crossing of the scales relevant for CMB
physics and, for these scales, the power spectrum of
curvature inhomogeneities is customarily expressed as
PRðk; 1=kÞ ¼ ARðk=kpÞns−1 where kp is the (conven-
tional) pivot scale while ns is the (scalar) spectral index.
If k is comparable with kp, then we therefore have that

Hk

MP
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πϵkAR

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πrTAR

p
4

: ðB3Þ

The second expression of Eq. (B3) follows from the
consistency relations; we also note that, by definition, in
Eq. (B3) rT ¼ rTðkpÞ. If we assume that rT ≤ 0.03 and
AR ¼ Oð10−9Þ it is clear that Hk=MP ≪ 1. However it
turns out that Hk ¼ OðH1Þ and from the physical view-
point it is easy to see thatHk ¼ OðH1Þ since the expansion
rate decreases very little during inflation. We want however
to be more specific and eventually compare H1=Hk with
V1=4
1 =Hk. From akHk ¼ k we can actually obtain the

following chain of equalities:

Hk ¼
H1

1− ϵk

				 k
a1H1

				−
ϵk

1−ϵk ¼H1

				 k
a1H1

				−ϵk ½1þOðϵkÞ�: ðB4Þ

But for typical wave numbers k ¼ OðkpÞ it turns out that
k ≪ ja1H1j; more specifically we can estimate the value of
kp=ða1H1Þ and obtain

kp
a1H1

¼ 10−25.85

Dðδi; ξiÞ
�

kp
0.002 Mpc−1

��
rT
0.03

�
−1=4

×

�
AR

2.41 × 10−9

�
−1=4

�
h20ΩR0

4.15 × 10−5

�
−1=4

: ðB5Þ

For a postinflationary history dominated by radiation all the
δi go to 1 and kp ¼ Oð10−26Þa1H1 and when the expansion
rate is slower than radiation the ratio kp=ða1H1Þ is even
smaller. Therefore, if we insert Eq. (B5) into Eq. (B4), we
can conclude, as previously anticipated in Eq. (A5), that

Hk

MP
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πϵkAR

p
; Hk ≃H1: ðB6Þ

Even if, according to Eq. (B6), Hk and H1 are of the same
order, V1

1 and Hk are rather different. To appreciate this
statement we recall that, at the end of inflation, ϵ → 1

which means H2 ¼ −Ḣ; but this condition can also be
translated as V ¼ φ̇2 and this implies that H2

1M
2
P ¼ 4πV1.

We can therefore obtain an estimate of V1=4
1 and the result is

V1=4
1

Hk
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H1=Hk

p
ffiffiffiffiffiffi
2π

p ðϵkARÞ1=4
≫ 1: ðB7Þ

If we use Eq. (B7) and express Nk in terms of V1=4
1 =Hk

we get

Nk ¼ 64.902þ ln

�
Cðgs; gρÞ
0.7596

�
− ln

�
k

0.002 Mpc−1

�

þ 1

4
ln

�
h20ΩR0

4.15 × 10−5

�
þ 1

2

Xn−1
i

�
δi − 1

δi þ 1

�

× ln ξi − ln

�
V1=4
1

Hk

�
: ðB8Þ

If we compare Eqs. (A10) and (B8) we see that, because of
Eq. (B7), the value of Nk gets larger than in the case where
the number of e-folds is expressed as a function of Hk=H1;
since Hk=H1 ¼ Oð1Þ, Eq. (A10) is more suitable for an
explicit estimate of Nk.

2. Specific potentials and slow-roll algebra

When the consistency relations are enforced the tensor to
scalar ratio cannot be equally small for all the classes of
inflationary potentials and while the monomials are clearly
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excluded, the plateaulike and the hilltop potentials may
lead to rT that are comparatively smaller. Since different
classes of potentials have been mentioned in the main
discussion, their associated properties will now be swiftly
recalled. In the case of Eq. (2.37) the explicit expressions of
the slow-roll parameters follow from Eq. (2.34) so ϵðΦÞ
and ηðΦÞ are given by

ϵðΦÞ ¼ 2q2

Φ2ð1þ β2Φ
4q
p Þ2

;

ηðΦÞ ¼ 2q½2pq − p − β2ðpþ 4qÞΦ4q
p �

pΦ2ð1þ β2Φ
4q
p Þ2

: ðB9Þ

In this case, according to Eq. (B9), the tensor-to-scalar ratio
and the scalar spectral index are given by

rTðΦÞ ¼ 32q2

Φ2ð1þ β2Φ
4q
p Þ2

;

nsðΦÞ ¼ 1 −
4pqð1þ qÞ þ 4qðqþ 4pÞβ2Φ4q

p

pΦ2ð1þ β2Φ
4q
p Þ2

: ðB10Þ

To compare the physical features of the various potentials
when the pivot scales cross the comoving Hubble radius it
is practical to estimate directly ϵk and ηk as a function of the
number of e-folds Nk for k ¼ OðkpÞ. For this purpose, as a
a general observation, we should compute the total number
of e-folds elapsed since the crossing of the bunch of the
CMB wavelengths; since this procedure is consistently
followed for all the explicit potentials discussed here, it is
useful to discuss it more explicitly in the concrete case of
Eq. (2.37). The number of e-folds Nk is then given by

Nk ¼
Z

Φk

Φf

�
v

∂Φv

�
dΦ ¼

Z
Φk

Φf

Φ
2q

ð1þ β2Φ
4q
p ÞdΦ; ðB11Þ

where Φk denotes the value of the field when the scale k
crosses the comoving Hubble radius while Φf → 1 coin-
cides with the end of inflation. Even if, as we saw, different
approaches can be envisaged we are here taking the
standard practice and require that

ϵðΦfÞ → 1 ⇒ H2 ¼ −Ḣ ⇒ V ¼ φ̇2: ðB12Þ

For instance if we evaluate ϵðΦfÞ from Eq. (B9) and require
ϵðΦfÞ → 1 we obtain the condition

Φ2
fð1þ β2Φ4q=p

f Þ2 ¼ 2q2: ðB13Þ

We now have two complementary possibilities. If β2 < 1
(as we always assumed in the explicit evaluations) then
Φf ≃ 1=ð ffiffiffi

2
p

qÞ ¼ Oð1Þ. In the opposite case (i.e. β > 1)

we getΦf ≃ ð ffiffiffi
2

p
qβ2Þq=ð4pþqÞ which is again of order 1. All

in all from Eq. (B11) the number of e-folds is ultimately
given by

Nk ¼
Φ2

k − 1

4q
þ pβ2ðΦ2þ4q

p

k − 1Þ
4qðpþ 2qÞ ; ðB14Þ

where we simply assumed Φf → 1. Since the field value at
Φk is defined at the time of the crossing during inflation we
can take the limit Φk ≫ 1 in Eq. (B14) and eventually
determine the connection between Φk and Nk:

Nk ¼
pβ2

4qðpþ 2qÞΦ
2þ4q

p

k ⇒ Φk ¼
�
4qðpþ 2qÞNk

pβ2

� p
2ðpþ2qÞ

:

ðB15Þ

Thanks to Eqs. (B15), (B9) and (B10) can be directly
expressed in terms of Φk > 1

ϵk ¼
2q2

β4Φ8q=pþ2
k

; ηk ¼ −
2qðpþ 4qÞ
pβ2Φ8q=pþ2

k

: ðB16Þ

Finally using Eq. (B15) into Eq. (B16) we have

ϵk¼
2q2β−

2p
pþ2q

½4qðpþ2qÞNk=p�
pþ4q
pþ2q

; ηk¼−
pþ4q

2ðpþ2qÞNk
: ðB17Þ

The same strategy is used for the other potentials discussed
in Secs. II and IV.
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