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We calculate the scalar-induced gravitational wave energy density in the theory of ghost inflation,
assuming scale invariance and taking into account both the power spectrum- and trispectrum-induced
contributions. For the latter we consider the leading cubic and quartic couplings of the comoving curvature
perturbation in addition to two parity-violating quartic operators. In the parity-even case, we find the relative
importance of the trispectrum-induced signal to be suppressed by the requirement of perturbativity,
strengthening a no-go theorem recently put forth. The parity-odd signal, even though also bound to be small,
is nondegenerate with the Gaussian contribution and may in principle be comparable to the parity-even non-
Gaussian part, thus potentially serving as a probe of the ghost inflation scenario and of parity-violating
physics during inflation.
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I. INTRODUCTION

Cosmic inflation has the potential of providing a wealth
of information on physics at energy scales not achievable by
artificial particle colliders. One such effect is the violation of
parity invariance by high-energy interactions which, being a
symmetry, is of prime importance in the effort to constrain
fundamental theories with experimental data. In fact, hints
of parity-violating physics at play in the early universe have
already been discovered in the statistics of the large-scale
structure [1,2], and so it seems crucial to understand
whether this breaking of parity could have a primordial
origin in the context of inflation.
The most minimal theory for the physics of fluctuations

during inflation is described by a scalar mode, physically
encoding the clock that will dictate the end of inflation, and
two tensor modes corresponding to the perturbations of the
gravitational field [3,4]. The former is most conveniently
parametrized by the comoving curvature perturbation ζ.
Signatures of parity violation will in principle be manifest
in correlation functions of these fluctuations, and one
would expect the most important effects to arise in the
non-Gaussian part of the 4-point function of ζ and in the
2-point function of the graviton.1

The experimental measurement of these correlators is
nevertheless challenging in either case. At least on scales
probed by the cosmic microwave background (CMB), the
probability distribution of ζ is inferred to be extremely
Gaussian, making it unlikely to achieve a detection of parity
violation in the foreseeable future [5–7], while in the case of
primordial gravitational waves (GWs) even a Gaussian
signal is constrained to be minute [8,9]. However, both
hζ4i and hh2i (where h denotes, schematically for now, the
tensor fluctuation) are essentially unconstrained on scales
much smaller than those probed in the CMB, and especially
exciting is the possibility of observing a primordial GW
signal in forthcoming experiments [10–14].
Focusing therefore on the tensor 2-point function as a

particularly well-motivated probe of parity-breaking physics
during inflation [15–20], we can envisage two distinct
dynamical sources of parity violation, namely in the
gravitational sector or in the scalar sector.2 Parity-odd tensor
couplings have received considerable recent interest in
connection to this question [23–39]. Yet models of gravity
that modify general relativity, including in particular those
that feature parity violation, face several issues related to
their stability—in the case of higher-curvature theories—in
addition to stringent experimental tests, so that further
studies are necessary in order to assess their viability.
Here instead we focus on the possibility that the breaking
of parity arises exclusively from the scalar sector of the
model, with the gravitational interactions being the standard
ones of Einstein’s theory.
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1Due to homogeneity and isotropy, the scalar 2-point function

cannot break parity because it is a function of only the magnitude
of the momentum. For the same reason, the momenta in the scalar
3-point function must form a triangle, and a triangle is unchanged
by a parity transformation. Thus, the leading effect in the scalar
sector appears in the 4-point function.

2More possibilities are, of course, available in theories with
multiple fields. One such class of models that predicts a breaking
of parity invariance is axion inflation [21,22].
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Scalar fluctuations contribute to the tensor 2-point
function at second order in perturbation theory through
mixings of the form hij∂iζ∂jζ. The resulting signal, known
as scalar-induced GWs (SIGW), has been the subject of
intense scrutiny in the past years as several mechanisms to
enhance scalar perturbations on small scales have been
discovered [40–54]; see also [55] for a review and further
references.3 In general, the SIGW power spectrum receives
two contributions, schematically hh2i∼hζ4idþhζ4ic, where
hζ4id denotes the “disconnected” or Gaussian part of the
scalar 4-point correlator and hζ4ic denotes the “connected”
or non-Gaussian component, i.e., the scalar trispectrum.
See [59–63] for studies on the impact of non-Gaussianities
on SIGWs. While one typically expects the connected
contribution to be subleading relative to the disconnected
one (more on this below), the two have in general a different
scale dependence and are therefore in principle distinguish-
able. The trispectrum-induced component is, of course,
especially interesting as it encodes direct information about
the interactions of the curvature perturbation during infla-
tion and, more to the point of this paper, it is only this
component that can a priori produce a breaking of parity
invariance.
Trispectrum-induced GWs have been the subject of

some interesting recent studies [60,61,64], although these
works were restricted to local-type non-Gaussianities.
However, it was later shown in [62] that the requirement
of perturbativity necessarily bounds the relative impor-
tance of the local trispectrum-induced GW signal to be
small. More in detail, the ratio ΩGW;c=ΩGW;d of the
connected and disconnected SIGW contributions is of the

order of Pð1−loopÞ
ζ =PðtreeÞ

ζ , i.e., the ratio of the one-loop scalar
power spectrum to its tree-level result, which must be
parametrically smaller than one for the theory to be under
perturbative control. Moreover, this result was also shown to
apply to the regular trispectrum shapes that result from
derivative interactions in single-field slow-roll inflation as
well as models with reduced speed of sound. It should be
remarked, however, that the results of [62] were derived
under the assumption of scale invariance.
The no-go theorem of [62] may a priori still be evaded

by other trispectrum shapes. Here we investigate two
classes of trispectra that arise in the theory of ghost
inflation [65–67]. Our motivation to investigate this
scenario is threefold. First, we would like to assess the
robustness of the above no-go result by studying a model
of inflation which differs from the standard single-field
description, but with which it nevertheless shares some
similarities, namely derivative interactions and equilateral-
type non-Gaussianities. Second, ghost inflation has been

identified as a viable mechanism to enhance the scalar
power spectrum in a manner consistent with perturbative
unitarity [68], thus serving as a well-motivated arena to
investigate not only SIGWs but also primordial black hole
formation [69–71]. Third, the breaking of parity in the
scalar trispectrum turns out to be impossible in models
with linear dispersion relation and Bunch-Davies initial
conditions, assuming scale invariance [72,73].4

The last point is crucial since, as we already mentioned,
it is only a parity-odd trispectrum that can in principle lead
to a violation of parity in the SIGW power spectrum, again
assuming the gravitational sector is not modified. Ghost
inflation evades the no-go result of [73] precisely because
the dispersion relation is nonlinear, ω ∝ k2. Although ghost
inflation predicts scale-invariant correlation functions (see,
however, [75]), what we actually have in mind is a scenario
in which the dispersion relation of the adiabatic mode
changes from linear to nonlinear on small scales. In this
way, it is possible to have an enhancement of the scalar
power spectrum on small scales relative to the one con-
strained by CMB observations on large scales [68]. In this
setup, the physics of ghost inflation is therefore understood
to apply only on small enough scales.5

In this paper we calculate the SIGW power spectrum for
four different scalar trispectra in the theory of ghost inflation
and with the assumption of exact scale invariance. Two of
the trispectra are parity-even and correspond to the most
relevant self-interactions of the curvature perturbation,
namely a cubic operator and a quartic operator that
contribute to the connected 4-point function through sca-
lar-exchange and contact diagrams, respectively [77,78].6

The second set of trispectra is given by two parity-odd
quartic operators that correspond to the leading sources of
parity violation in the scalar sector [73,82]. Our results are
compared with the Gaussian contribution to the SIGW
spectrum upon taking into account the condition of pertur-
bative control. Let us summarize our main results:

(i) For the parity-even trispectra, we find a stringent
bound on the relative importance of the connected
SIGW spectrum allowed by perturbativity, thereby
confirming and generalizing the no-go theorem
of [62] to encompass scenarios with modified
dispersion relation. The bounds are comparable to
or even stronger than in slow-roll inflation or in
models with reduced speed of sound.

(ii) For the parity-odd trispectra, we find a very small
result, of Oð10−3Þ times what naive dimensional
analysis would predict. The degree of chirality is

3Although outside the scope of this paper, it is worth
mentioning that SIGWs have the notorious issue of gauge
dependence [56–58]. See also [55] for a summary and further
references.

4This statement holds for the tree-level trispectrum but is
generically evaded at one-loop order [74].

5Power spectrum-induced GWs in a model with modified
dispersion relation have been studied in [76].

6See also [79–81] for other studies of non-Gaussianities in
models with a nonlinear dispersion relation.
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bounded by a number parametrically smaller than
Oð10−1Þ from the condition of perturbativity. We
argue that, optimistically, this could be of the same
order as the parity-even trispectrum-induced contri-
butions.

In Sec. II we provide a brief review of the computational
aspects of SIGWs. We pay special attention to identify the
conditions under which the trispectrum-induced signal may
be nonvanishing. We explain that (i) only trispectra that are
even functions of the scalar product ðq1 · q2Þ provide a net
nonzero contribution to the total GW power spectrum (here
q1;2 are the internal momenta to be integrated over in the
Green function convolution); (ii) only trispectra that are
odd functions of ðk · q1 × q2Þðq1 · q2Þ can produce a parity-
violating GW signal, i.e., with different power spectra for
left- and right-handed GW polarizations. [These statements
assume that the trispectrum is a polynomial in the scalar
products ðq1 · q2Þ and ðk · q1 × q2Þ; however, analogous
criteria may also be inferred in more general cases.] An
interesting implication is that a trispectrum function that
depends on ðq1 · q2Þ only through an odd function of
ðk · q1 × q2Þðq1 · q2Þ will yield zero net power in GWs
and is therefore only detectable in experiments that can
measure individual chiral polarizations. Indeed, we also
explain that linearly polarized GWs are not sensitive to
parity violation in the scalar trispectrum. These observa-
tions are precisely relevant in the case of ghost inflation, as
we will see.
In Sec. III, after a short review of ghost inflation and the

4-point correlation functions that result from this scenario,
we present our calculation of the GW power spectrum-
induced by the scalar trispectra mentioned previously and
derive our main results. We conclude in Sec. IV with some
final comments. We collect in the Appendixes some addi-
tional information and results related to our conventions
and numerical calculations.

II. SCALAR-INDUCED GWs

This section presents a brief overview of the theory of
scalar-induced GWs, followed by a detailed analysis of the
master integral that defines the scalar trispectrum contribu-
tion for different GW polarizations. Based on the structure
of the master integral and the symmetries of the theory, we
identify necessary conditions for the trispectrum to yield a
nonvanishing signal both in the total power as well as in
individual polarization channels. In particular, we explain
how a parity-odd trispectrum leads to different SIGW
spectra for chiral polarizations.

A. Elements of SIGWs

We follow the conventions of [55] to which we refer the
reader for more details. We define the tensor perturbation
hijðx; ηÞ by

ds2 ¼ aðηÞ2½−dη2 þ ðδij þ hijðx; ηÞÞdxidxj�; ð2:1Þ

in terms of conformal time η. Expanding the tensor
perturbation in Fourier modes and polarizations, we have

hijðx; ηÞ ¼
X
λ¼þ;×

Z
d3k
ð2πÞ3 e

λ
ijðk̂ÞhλkðηÞeik·x; ð2:2Þ

where the index λ labels the GW polarization. For þ and ×
polarizations we define the tensors as

eþijðk̂Þ ¼
1ffiffiffi
2

p ½eiðk̂Þejðk̂Þ − ēiðk̂Þējðk̂Þ�; ð2:3Þ

e×ijðk̂Þ ¼
1ffiffiffi
2

p ½eiðk̂Þējðk̂Þ þ ēiðk̂Þejðk̂Þ�; ð2:4Þ

where eiðk̂Þ and ēiðk̂Þ are orthonormal vectors, orthogonal
to k̂ and to each other, that is, eiei ¼ ēiēi ¼ 1 and eiēi ¼ 0.
Some useful properties of these tensors are

kie
þ;×
ij ¼ 0; ð2:5Þ

eþije
þ
ij ¼ e×ije

×
ij ¼ 1: ð2:6Þ

The tensor power spectrum Pλ is defined by

hhλkðηÞhλ
0
k0 ðηÞi ¼ ð2πÞ3δðkþ k0Þδλλ0Pλðk; ηÞ: ð2:7Þ

The energy density per logarithmic wavelength of GWs is
given by [83–86]

ΩGWðk; ηÞ ¼
1

12

�
k
H

�
2 X
s¼þ;×

Pλðk; ηÞ; ð2:8Þ

where Pλ ¼ k3

2π2
Pλ is the dimensionless power spectrum,

the overline means an average over many oscillations of the
GWs, and H ¼ aH is the conformal Hubble parameter.
In Einstein gravity, the equation of motion (EOM) for the

tensor modes to second order in perturbation theory reads

hλ00k ðηÞ þ 2Hhλ0k ðηÞ þ k2hλkðηÞ ¼ 2Sλ
kðηÞ; ð2:9Þ

where the primes indicate derivatives with respect to
conformal time η and Sλ

k is the source of quadratic order
in ζ projected onto the λ polarization. In Newtonian gauge
it is given by [86–89]7

7See [90] for the general expression in an arbitrary gauge.
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Sk ¼
Z

d3q
ð2πÞ3 eijðk̂Þqiqj

�
2ΦqΦk−q þ

4

3ð1þ wÞ ðH
−1Φ0

q

þΦqÞðH−1Φ0
k−q þΦk−qÞ

�
; ð2:10Þ

where the Bardeen potential Φ is related to the comoving
curvature perturbation ζ on super-Hubble scales as Φ ¼
3þ3w
5þ3w ζ with w the equation-of-state parameter. We will
focus on the radiation-dominated era so that w ¼ 1=3
and Φ ¼ 2

3
ζ.

Solving the EOM with the Green function method and
neglecting a primordial contribution, the tensor power
spectrum is found to be [86–88,91]

Pλðη; kÞ ¼
4

k4

�
2

3

�
4
Z

d3q1
ð2πÞ3

d3q2
ð2πÞ3 Qλðk; q1ÞQλð−k; q2Þ

× I

�jk − q1j
k

;
q1
k
; kη

�
I

�jk − q2j
k

;
q2
k
; kη

�

× hζq1ζk−q1ζ−q2ζ−kþq2i0; ð2:11Þ

where

Qλðk; qÞ≡ eλijðk̂Þqiqj: ð2:12Þ

The function Iðu; v; x≡ kηÞ contains the postinflation
evolution information about the scalar source and may be
found, e.g., in [61,86], and h� � �i0 implies that ð2πÞ3δðP kaÞ
in the correlator has been removed. It represents the
primordial 4-point function of ζ generated during inflation.
In general, the 4-point correlation function can be

decomposed into connected and disconnected contributions,

hζk1ζk2ζk3ζk4i0 ¼ hζk1ζk2ζk3ζk4i0cþhζk1ζk2ζk3ζk4i0d; ð2:13Þ

where the disconnected part is by definition determined
only by the 2-point function, i.e. the primordial scalar power
spectrum. The connected part instead corresponds to an
intrinsic non-Gaussianity in the probability distribution of ζ.
Explicitly, we have

hζq1ζk−q1ζ−q2ζ−kþq2i0d ¼ ð2πÞ3½δðq1−q2ÞPζðq1ÞPζðjk−q1jÞ
þ δðq1þq2−kÞPζðq1ÞPζðq2Þ�;

ð2:14Þ

hζq1ζk−q1ζ−q2ζ−kþq2i0c ¼ Tζðq1; k − q1;−q2;−kþ q2Þ;
ð2:15Þ

where Tζðk1; k2; k3; k4Þ is the trispectrum function. It is
convenient to define a dimensionless trispectrum as

T ζðk1;k2;k3;k4Þ¼
ðk1k2k3k4Þ9=4

ð2πÞ6 Tζðk1;k2;k3;k4Þ: ð2:16Þ

After some manipulations in the expression (2.11) for the
tensor power spectrum we obtain [62]

Ph;d ¼
�
H
k

�
2
Z

∞

0

dv
Z

1þv

j1−vj
duKdðu; vÞPζðkuÞPζðkvÞ;

ð2:17Þ

¯Ph;c ¼
�
H
k

�
2
Z

∞

0

dv1

Z
1þv1

j1−v1j
du1

Z
∞

0

dv2

Z
1þv2

j1−v2j
du2

×
Z

2π

0

dψKcðu1; v1; u2; v2Þ

×
cosð2ψÞ

π
T ζðu1; v1; u2; v2;ψÞ; ð2:18Þ

which we refer to as the “master integrals” that determine
respectively the disconnected and connected contributions
to the dimensionless power spectrum of GWs. Note that a
sum over polarizations has been done, so that these
expressions give the total spectrum. The dimensionless
integration variables are given by

ui ≡ jk − qij
k

; vi ≡ qi
k
; ð2:19Þ

and we introduced the integration kernels

Kdðu; vÞ ¼
�
4v2 − ð1þ v2 − u2Þ2

4uv

�
2

× I2Aðu; vÞ½I2Bðu; vÞ þ I2Cðu; vÞ�; ð2:20Þ

Kcðu1;v1;u2;v2Þ¼
1

16ðu1v1u2v2Þ5=4
½4v21−ð1þv21−u21Þ2�

× ½4v22−ð1þv22−u22Þ2�IAðu1;v1Þ
×IAðu2;v2Þ½IBðu1;v1ÞIBðu2;v2Þ
þICðu1;v1ÞICðu2;v2Þ�; ð2:21Þ

with IA;B;C being

IAðu; vÞ ¼
3ðu2 þ v2 − 3Þ

4u3v3
; ð2:22Þ

IBðu;vÞ¼−4uvþðu2þv2−3Þ log
����3− ðuþvÞ2
3− ðu−vÞ2

����; ð2:23Þ

ICðu; vÞ ¼ πðu2 þ v2 − 3ÞΘðuþ v −
ffiffiffi
3

p
Þ: ð2:24Þ
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B. The polarizations of SIGWs

The above master integrals correspond to the total power
in GWs after summing over polarizations. However, in
principle an experiment might be able to detect individual
polarization signals. This is true in particular for chiral
polarizations that give the most direct way to quantify the
breaking of parity in GWs.
So let us rewind to Eq. (2.1) and now consider the

expansion of the tensor perturbation in chiral polarizations,

hijðx; ηÞ ¼
X
λ¼R;L

Z
d3k
ð2πÞ3 e

λ
ijðk̂ÞhλkðηÞeik·x; ð2:25Þ

where the right- and left-handed polarization tensors are
defined by

eRijðk̂Þ≡ 1ffiffiffi
2

p ½eþijðk̂Þ þ ie×ijðk̂Þ�; ð2:26Þ

eLijðk̂Þ≡ 1ffiffiffi
2

p ½eþijðk̂Þ − ie×ijðk̂Þ�: ð2:27Þ

Some useful properties of these tensors are

kie
R;L
ij ¼ 0; ð2:28Þ

eRije
R
ij ¼ eLije

L
ij ¼ 0; ð2:29Þ

eRijðk̂ÞeLijðk̂Þ ¼ 1; ð2:30Þ

eRijðk̂Þ ¼ eL�ij ðk̂Þ ¼ eLijð−k̂Þ; ð2:31Þ

eLijðk̂Þ ¼ eR�ij ðk̂Þ ¼ eRijð−k̂Þ: ð2:32Þ

The power spectrum for a given chiral mode is again
defined as in (2.7) with λ ¼ R, L, while the mode functions
hR;Lk satisfy the EOM (2.9) with the source function
projected onto the chiral basis. It follows that the power
spectrum for hR;Lk is also given by (2.11).
It will be useful for what follows to have explicit

expressions for the function Qλðk; qÞ introduced in (2.12).
To this end it is convenient to employ spherical coordinates
defined relative to k ¼ kẑ, so that the components of q are
given by q ¼ q½sin θ cosϕ; sin θ cosϕ; cos θ� in this frame.
We then obtain

Qλðk; qÞ ¼
1ffiffiffi
2

p q2sin2θ ×

�
cos 2ϕ λ ¼ þ
sin 2ϕ λ ¼ ×

;

Qλðk; qÞ ¼
1

2
q2sin2θ ×

�
e2iϕ λ ¼ R

e−2iϕ λ ¼ L
: ð2:33Þ

Qλðk; qÞ verifies the following symmetry properties:

Qλðk; qþ ckÞ ¼ Qλðk; qÞ; λ ¼ þ;×; R; L; ð2:34Þ

Qþ;×ðk; qÞ ¼ Qþ;×ð−k; qÞ ¼ Qþ;×ðk;−qÞ; ð2:35Þ

QR;Lðk; qÞ ¼ QL;Rð−k; qÞ ¼ Q�
L;Rðk; qÞ: ð2:36Þ

We see that the polar angle dependence is the same for
different polarizations, and this is the fact that GWs are
transverse. Therefore any asymmetry between polarizations
can only emerge from azimuthal integrals. We now turn our
attention to these.
The integral in (2.11) depends on the azimuthal angles

through the function Qλ as we just mentioned and also
through the scalar 4-point function hζ4i0. The tensor power
spectrum therefore has the form

Pλ ¼
Z

2π

0

dϕ1

Z
2π

0

dϕ2Q̃λðϕ1ÞQ̃�
λðϕ2ÞF ðϕ1−ϕ2Þ; ð2:37Þ

where

Q̃λðϕÞ ¼

8>>>>><
>>>>>:

cos 2ϕ λ ¼ þ
sin 2ϕ λ ¼ ×
1ffiffi
2

p e2iϕ λ ¼ R

1ffiffi
2

p e−2iϕ λ ¼ L

: ð2:38Þ

The fact that the function F must depend only on the
difference ϕ1 − ϕ2 is a consequence of the rotational
invariance of hζ4i0. In addition, because hζ4i0 must also,
of course, be periodic in ϕ1;2, it follows that F is a periodic
function with period 2π.
Let us consider first the integral over the disconnected

part of the scalar 4-point function. In this case the only
dependence of hζ4i0d on the azimuthal angles is through
δ3ðq1 − q2Þ and δ3ðq1 þ q2 − kÞ, which, in fact, contribute
equally due to the symmetries of the integral. Since
δ3ðq1 − q2Þ ∝ δðϕ1 − ϕ2Þ we have that F ¼ F̃δðϕ1 − ϕ2Þ
with F̃ independent of ϕ1;2. Therefore

Pλ ¼ F̃
Z

2π

0

dϕ1jQ̃λðϕ1Þj2 ¼ πF̃ ∀ λ∈ fþ;×; R; Lg:

ð2:39Þ

The total power spectrum, computed either in the linear
basis or in the chiral basis, is thus equal to Ph ¼ 2πF̃ .
Since each polarization channel contributes equally, we
conclude as expected that the disconnected SIGW power
spectrum cannot exhibit parity violation.
Next we consider the connected 4-point function.

Performing the change of variables

χ ¼ ϕ1 þ ϕ2; ψ ¼ ϕ1 − ϕ2 ð2:40Þ
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allows us to recast the azimuthal integrals as

Pþ;× ¼ π

Z
2π

0

dψ cos 2ψF ðψÞ; ð2:41Þ

PR ¼ π

Z
2π

0

dψe2iψF ðψÞ; PL ¼ π

Z
2π

0

dψe−2iψF ðψÞ;

ð2:42Þ

where we made use of the symmetry properties of the
function F .
We reach the conclusion that linearly polarized SIGWs

always contribute equally to the total tensor power spec-
trum. This is simply a consequence of rotational invariance
since þ and × waves are related by a rotation of π=4. The
total power-induced by the trispectrum is then given by

Ph ¼ 2π

Z
2π

0

dψ cos 2ψF ðψÞ: ð2:43Þ

Since F is periodic, it may be expanded in Fourier series,
F ¼ F 0 þ

P
n≥1 cn cos nψ þ sn sin nψ , so that the integral

in (2.43) is nonzero only if the Fourier coefficient c2 is
nonzero. In particular,F ðψÞ cannot be an odd function of ψ
for Ph to be nonzero.
To be more specific, now recall that F is built out of the

three momenta k, q1, and q2, and rotational invariance
dictates that it must be a function of the scalars

k; q1; q2; k · q1; k · q2; q1 · q2; k · q1 × q2: ð2:44Þ

The first five are independent of ψ ¼ ϕ1 − ϕ2, while

q1 · q2 ∝ cosψ ; k · q1 × q2 ∝ sinψ : ð2:45Þ

Thus, we may write, in the case of trispectrum-induced
GWs, F ðψÞ ¼ Gðcosψ ; sinψÞ,8 and so the above integral
may be recast as

Ph ¼ 2π

Z
π

0

dψ cos2ψ ½Gðcosψ ; sinψÞ þGðcosψ ;− sinψÞ�:

ð2:46Þ

Thus, we deduce the stronger statement that the trispectrum
cannot be an odd function of the scalar product ðk · q1 × q2Þ
as a necessary condition for Ph to be nonvanishing. Since a
strictly parity-odd trispectrum must be an odd function of
ðk · q1 × q2Þ, we conclude that any parity-odd component

will vanish in the calculation of the total power spectrum.
Moreover, because of the identity

Z
π

0

dψ cos 2ψGðcosψ ;− sinψÞ

¼
Z

π

0

dψ cos 2ψGð− cosψ ;− sinψÞ; ð2:47Þ

it also follows that, if the trispectrum is even in
ðk · q1 × q2Þ, then it cannot be odd in the scalar ðq1 · q2Þ.
In other words, a parity-even T ζ cannot be an odd function
of ðq1 · q2Þ as a necessary condition to have a nonzero total
GW power spectrum.9 If we assume that T ζ is a polynomial
in these two scalar quantities, and given that even powers of
ðk · q1 × q2Þ are redundant, we then infer that only mono-
mials containing even powers of ðq1 · q2Þ can in principle
yield a net nonzero contribution.
Unlike for linear polarizations, GWs in the chiral basis

do not give equal contributions to the total power. From the
above expressions for the azimuthal integrals we have

PR − PL ¼ 2πi
Z

2π

0

dψ sin 2ψF ðψÞ

¼ 2πi
Z

π

0

dψ sin 2ψ ½Gðcosψ ; sinψÞ

þ Gð− cosψ ;− sinψÞ�: ð2:48Þ

The first equality tells us that F cannot be an even function
of ψ for PR − PL to be nonzero. It therefore must be an odd
function of the scalar ðk · q1 × q2Þ, as already mentioned
(see footnote 8), and so G must be odd in its second
argument (assuming a strictly parity-odd trispectrum). But
the second equality shows that, if this is the case, then G
cannot be even in its first argument.
It follows that a parity-violating SIGW signal, as mea-

sured by the difference PR − PL, requires the trispectrum to
be an odd function of ðk · q1 × q2Þ and not an even function
of ðq1 · q2Þ. Once again, this is a necessary but not sufficient
condition. It seems difficult to sharpen this criterion without
further knowledge about the structure of the trispectrum, so
to proceed let us again make the additional assumption that
T ζ depends polynomially on ðq1 · q2Þ and ðk · q1 × q2Þ. In
this situation it is easy to see that the trispectrum must
contain at least one odd power of10

ðk · q1 × q2Þðq1 · q2Þ ∝ sin 2ψ ; ð2:49Þ

8Obviously the definition of G is ambiguous since we could
write sin2 ψ ¼ 1 − cos2 ψ . This is a consequence of the fact that
the invariant ðk · q1 × q2Þ2 is not independent of the other terms
in (2.44). We fix this ambiguity by assuming that higher powers
of ðk · q1 × q2Þ have been reduced in this way, i.e., so that one is
left either without such a term or with a single power.

9This condition is necessary but clearly not sufficient, as
illustrated by the trivial case when F is independent of ψ .

10Nonpolynomial functions of these scalars do not need to
satisfy this criterion. To give an artificial example, the function
Gðcosψ ; sinψÞ ¼ sinðcosψÞ sinðsinψÞ is odd in both of its
arguments and

R
2π
0 dψ sin 2ψG ≠ 0, yet it is not odd in the

product sinψ cosψ .
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where the coefficients of such terms may depend on any of
the other scalars in Eq. (2.44) which do not affect the
azimuthal dependence. We will see in the next section that
the parity-odd trispectra from ghost inflation are precisely
linear in the combination in Eq. (2.49) and hence satisfy the
criterion to have PR ≠ PL.

C. Perturbativity bounds on trispectrum-induced GWs

In this subsection we recall the argument of [62] that
shows that the ratio of connected to disconnected con-
tributions to the GW power spectrum is bounded by the
requirement of perturbativity. This is perfectly intuitive
since the connected component is precisely a measure of
the interactions of the underlying theory. The essence of
the argument is to make this statement more precise, by
noting that

Ph;c

Ph;d
∼
Pð1−loopÞ

ζ

PðtreeÞ
ζ

; ð2:50Þ

i.e., the ratio of the one-loop correction to the scalar power
spectrum relative to its tree-level result. We note that the “∼”
here means that we are performing a simple dimensional
analysis, and it need not be an accurate order-of-magnitude
estimate. We will return to this point at the end of the
section.
To check the above statement, we first observe that

Ph;c

Ph;d
∼
T ζ

P2
ζ

; ð2:51Þ

as follows from Eqs. (2.17) and (2.18), again ignoring all
numerical factors. Consider first a cubic interaction vertex
with Hamiltonian Hint. Both the scalar-exchange diagram
for the trispectrum and the one-loop diagram for the scalar
power spectrum contain two such vertices. In the first case
we schematically have

T ζ ∼
	�Z

Hintðη1Þ
�
ζ4
�Z

Hintðη2Þ
�


∼ P2
ζ

�Z
Hint

�
2

;

ð2:52Þ

while for the one-loop diagram

Pð1−loopÞ
ζ ∼

	�Z
Hintðη1Þ

�
ζ2
�Z

Hintðη2Þ
�


∼ Pζ

�Z
Hint

�
2

: ð2:53Þ

Therefore,

T ζ

P2
ζ

∼
Pð1−loopÞ

ζ

PðtreeÞ
ζ

∼
�Z

Hint

�
2

; ð2:54Þ

implying in particular the relation in (2.50). It is easy to see
that the same conclusion follows for a quartic interaction
vertex, in which case both the corresponding contact
diagram for the trispectrum and the loop diagram for the
power spectrum contain a single insertion of the interaction
Hamiltonian.
The condition of perturbative control dictates that a

one-loop correction, in this case of the scalar power
spectrum, must be parametrically smaller than its tree-
level value. Equation (2.50) would therefore seem to
bound any trispectrum-induced GW signal to be sublead-
ing. However, let us emphasize again that this relation is a
result of naive dimensional analysis, and there are a few
reasons why this estimate may be incorrect: (i) the
estimate in Eq. (2.51) involves a complicated integral,
and it is far from obvious whether the result must be of
order unity; (ii) the above argument ignored the ever-
present factor of ð4πÞ−2 that accompanies any loop
integral; and (iii) in the opposite direction, loop correc-
tions may also be enhanced if a large number of light
fields run in the loops.
In the situation of point (iii) the perturbativity bound

becomes stronger, as indeed it was explicitly proved to be
the case for local-type trispectra in Ref. [62]. On the other
hand, since reasons (i) and (ii) could a priori relax the
bound, it is critical to search for models in which a large
trispectrum-induced signal may in principle be obtained,
which is precisely one of our motivations to study the
scenario of ghost inflation.

III. INDUCED GWs FROM GHOST INFLATION

A. Ghost inflation

Ghost inflation is a scenario of the pre-big-bang universe
in which a de Sitter phase of expansion arises from the
condensation of a ghost-type scalar field φ. The vacuum
expectation value corresponds to a superfluid phase, i.e., a
time-dependent background given by

hφi ¼ M2t; ð3:1Þ

where M is an energy scale. The Lagrangian for φ is
Lorentz invariant and also invariant under the internal shift
φ ↦ φþ c. The background hφi spontaneously breaks
time translations and the shift symmetry, but it preserves a
linear combination of these two.
The Nambu-Goldstone boson πðt; xÞ, or “ghostone” in

this context, associated with the broken part of the sym-
metry group corresponds to the fluctuation of the scalar field
about its vacuum, i.e., φ ¼ M2tþ π, and inherits the shift
symmetry of the microscopic theory, π ↦ π þ c.
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Ghost inflation has two peculiar features that distinguish
it from more generic single-field models of inflation. The
first is that the shift symmetry of the ghostone is exact, at
least in its minimal formulation. The second is that the
speed of sound of the ghostone quanta vanishes; i.e., the
ghostone has no standard two-derivative gradient energy.
The leading gradients in the quadratic Lagrangian for π are
then given by a four-derivative operator,

Sπ2 ¼
Z

dηd3x
a4

2

�
π02

a2
−

α

M2

ð∂2πÞ2
a4

�
: ð3:2Þ

Here α is a constant parameter that we may take to be of
order unity without loss of generality. Let us also remark
that this is not the full quadratic action for the perturbations
as two simplifications have been made. The first is that
couplings to the metric fluctuation have been neglected at
this order, which may be shown to be a valid approximation
provided H ≲M ≪ MPl. The second simplification is that
certain ghostone terms have been dropped, which is valid
under the assumption H ≪ M; see [78] for details. Under
these assumptions, we see that the ghostone exhibits a
nonlinear dispersion relation given by

ω2 ¼ α

M2

k4

a4
: ð3:3Þ

Solving the linear EOM in Fourier space, and imposing
that in the asymptotic past the field is in its Minkowski
vacuum, one finds the mode function

πkðηÞ ¼H

ffiffiffi
π

8

r
ð−ηÞ3=2Hð1Þ

3=4ðqη2Þ; q≡
ffiffiffi
α

p
Hk2

2M
: ð3:4Þ

Here Hð1Þ
ν ðzÞ is the Hankel function of the first kind. Recall

that the comoving curvature perturbation ζ is related to the
ghostone π at linear order via [92]

ζ ¼ −
H
hφ̇i π ¼ −

H
M2

π: ð3:5Þ

The dimensionless power spectrum of ζ is defined by

PζðkÞ¼
k3

2π2
PζðkÞ; hζkζk0 i¼ ð2πÞ3δðkþk0ÞPζðkÞ; ð3:6Þ

and so we obtain the following expression for the primor-
dial scalar power spectrum in ghost inflation:

Pζ ¼
α−3=4

πΓ2ð1=4Þ
�
H
M

�
5=2

: ð3:7Þ

Once again, here we assume exact scale invariance so that
H, and hence Pζ, is supposed constant and independent
of k.

Let us next consider self-interactions of the ghostone π.
One first observes that the nonrelativistic dispersion rela-
tion in Eq. (3.3) implies an unusual power counting scheme
in order to determine the most relevant couplings. Taking
into account the shift symmetry, and assuming in addition a
Z2 symmetry φ ↦ −φ in the ultraviolet theory, it may be
shown that the leading operators in the effective field theory
for the ghostone are given by [66,78]

Sπ3 ¼ −
β

2M2

Z
dηd3xaπ0∂iπ∂iπ; ð3:8Þ

Sπ4 ¼ −
γ

8M4

Z
dηd3xð∂iπ∂iπÞ2: ð3:9Þ

Here β and γ are dimensionless coupling constants,
expected to be of order unity on the basis of naturalness.
Here, however, we will not make any assumptions regard-
ing their size.
The previous operators are even under a parity inversion,

πðη; xÞ ↦ πðη;−xÞ. In this paper we are interested instead
in exploring the effects of a parity-breaking scalar
Lagrangian, which leads us to consider the following
quartic interactions [73]:

SPO;1
π4

¼ γ1
8M10

Z
dηd3xa−6π0ϵijk∂ilπ∂lj∂2π∂k∂2π; ð3:10Þ

SPO;2
π4

¼ γ2
8M9

Z
dηd3xa−5ϵijk∂mnπ∂niπ∂mljπ∂lkπ; ð3:11Þ

where ∂ij��� ≡ ∂i∂j∂��� and γ1;2 are dimensionless coeffi-
cients. These terms contain an odd number of spatial
derivatives and hence manifestly break parity. The anti-
symmetric contraction of indices will lead, as we will see
explicitly, to cross products of the momenta in the 4-point
function, again making the breaking of parity manifest,
k ↦ −k in Fourier space. An additional consequence of the
violation of parity is that the 4-point function for these
couplings will turn out to be purely imaginary as is well
known. Finally, let us mention that the above list is, of
course, not exhaustive but may be shown to give the most
relevant parity-odd terms (in the sense of the derivative
expansion) [82].

B. Power spectrum-induced GWs

Since ghost inflation predicts a scale-invariant scalar
power spectrum, the calculation of the master integral for
the disconnected contribution to the GW spectrum reduces
to the same integral that one would find in any scale-
invariant scenario. As first computed in [86] we verify that
the result is
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Ph;d ¼ Id

�
H
k

�
2

P2
ζ ; Id ≈ 9.87; ð3:12Þ

where Id was obtained after a numerical calculation of the
master integral in Eq. (2.17). See Appendix C for details
regarding our numerical computations.

C. Parity-even trispectrum-induced GWs

In this subsection we calculate the GW power spectrum-
induced by the trispectra that derive from the parity-even
(PE) operators in Eqs. (3.8) and (3.9). We compare the
results with the above Gaussian contribution and estimate
bounds on the size of the ratio from the requirement of
perturbativity.

1. Scalar-exchange diagram

The cubic coupling in Eq. (3.8) contributes to the scalar
trispectrum through an exchange diagram with two inser-
tions of the interaction Hamiltonian. The result is [77,78]

T ζðk1; k2; k3; k4Þ ¼
1

29πΓ4ð1=4Þ
�
H
M

�
11 β2

α1=2
ðk1k2k3k4Þ3=4

× ½−2J1Aðk1; k2; k3; k4Þ
þ J1Bðk1; k2; k3; k4Þ þ ð23 permsÞ�;

ð3:13Þ

where

J1Aðk1;k2;k3;k4Þ ¼ Re

�Z
0

−∞
dηð−ηÞ9=2

Z
η

−∞
dη0ð−η0Þ9=2ððk1 · k2Þðk21 þ k22 þ 2k1 · k2ÞHð1Þ

3=4ðq1η02ÞHð1Þ
3=4ðq2η02ÞHð1Þ

−1=4ðq12η02Þ

− 2ðk21 þ k1 · k2Þk21Hð1Þ
3=4ðq2η02ÞHð1Þ

−1=4ðq1η02ÞHð1Þ
3=4ðq12η02ÞÞððk3 · k4Þðk23 þ k24 þ 2k3 · k4Þ

×Hð1Þ
3=4ðq3η2ÞHð1Þ

3=4ðq4η2ÞHð1Þ
−1=4ðq34η2Þ− 2ðk23 þ k3 · k4Þk24Hð1Þ

3=4ðq3η2ÞHð1Þ
−1=4ðq4η2ÞHð1Þ

3=4ðq34η2ÞÞ
�
;

ð3:14Þ

where qi ≡
ffiffi
α

p
Hk2i

2M and qij ≡
ffiffi
α

p
HðkiþkjÞ2
2M . The integral J1B

has exactly the same integrand with the difference that the
upper limit of the second integral is η0 ¼ 0, and notice that
in this case the integral is real; see Appendix B for details.
From the master integral for the connected SIGW

spectrum we derive

Ph;PE1 ¼ IPE1

�
H
k

�
2 β2

α8=5
P11=5

ζ ; IPE1 ≈ −2.4 × 10−3:

ð3:15Þ

This result is seemingly suppressed relative to the power
spectrum-induced result, Eq. (3.12), as it has a smaller
numerical coefficient and a larger power of Pζ. Recall that
we are entertaining the possibility of having a strong
enhancement of Pζ relative to its value on CMB scales,
yet we still expect Pζ ≪ 1 for the background not to be
spoiled by backreaction. Nevertheless, we see that Ph;PE1

depends also on the coupling constants α and β, and one
could a priori consider the situation where the particular
ratio in Eq. (3.15) is large, even if this would entail a fine-
tuning of the theory. However, based on the discussion of
Sec. II C, we anticipate that a large non-Gaussian contri-
bution must be in tension with the condition of perturbative
control.
To verify this we first divide this result by the

disconnected contribution,

Ph;PE1

Ph;d
¼ IPE1

Id

β2

α8=5
P1=5

ζ ¼ CPE1
β2

α7=4

�
H
M

�
1=2

;

CPE1 ≈ −1.2 × 10−4: ð3:16Þ

and we wish to compare this ratio to the relative one-loop
correction to the scalar power spectrum, as discussed in
Sec. II C.
In fact, in the case of the scalar-exchange term, we

can draw from the analysis of [93] a more precise estimate
of the perturbativity bound, namely the strong coupling
scale that follows from the requirement of perturbative
unitarity,11

Λ� ¼ 4π2Mα7=2β−4: ð3:17Þ

For the ghost inflation model to be a valid effective
description we demand that H ≪ Λ�, that is,

�
H
Λ�

�
1=2

¼ 1

2π

β2

α7=4

�
H
M

�
1=2

≪ 1; ð3:18Þ

so that

11To make contact with the result of [93], we have the
following dictionary relating their parameters to the ones of
the ghost inflation Lagrangian: ρ−2 ¼ α=M2, M2

2 ¼ M2=ð2βÞ.
Note that the field π in [93] is not canonically normalized as it is
in (3.2).
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Ph;PE1

Ph;d
≪ 2πCPE1 ¼ Oð10−3Þ: ð3:19Þ

This result confirms the no-go theorem of [62], in fact, with
a bound that is significantly stronger than the one obtained
in standard slow-roll inflation or in models with reduced
speed of sound.

2. Contact diagram

Another contribution to the scalar trispectrum is given by
a contact diagram with a single insertion of the quartic
interaction Hamiltonian due to the coupling in Eq. (3.9).12

The resulting trispectrum function is given by [77,78]

T ζðk1;k2;k3;k4Þ ¼
1

212π2Γ4ð1=4Þ
�
H
M

�
9 γ

α3=2
ðk1k2k3k4Þ3=4

× J2ðk1; k2; k3; k4Þ½ðk1 · k2Þðk3 · k4Þ
þ ð23permsÞ�; ð3:20Þ

where

J2ðk1; k2; k3; k4Þ ¼ Re

�
i
Z

0

−∞
dηη6Hð1Þ

3=4ðq1η2ÞHð1Þ
3=4ðq2η2Þ

×Hð1Þ
3=4ðq3η2ÞHð1Þ

3=4ðq4η2Þ
�
; ð3:21Þ

and qi ≡
ffiffi
α

p
Hk2i

2M .
Performing the numerical calculation of the master

integral we obtain

Ph;PE2 ¼ IPE2

�
H
k

�
2 γ

α8=5
P11=5

ζ ; IPE2 ≈ −2.0 × 10−2:

ð3:22Þ

The ratio of this outcome with the power spectrum-induced
result is then

jPh;PE2j
Ph;d

¼ jIPE2j
Id

γ

α8=5
P1=5

ζ ¼ CPE2
γ

α7=4

�
H
M

�
1=2

;

CPE2 ≈ 9.6 × 10−4: ð3:23Þ

We again wish to compare this with the bound on the one-
loop power spectrum dictated by perturbativity. In this case,
i.e., in the situation when the cubic operator in Eq. (3.8) has
been artificially turned off (see the comment in the foot-
note), the precise unitarity bound corresponding to the
quartic coupling has not been computed. Nevertheless, we
may still get an order-of-magnitude estimate simply from
the knowledge of the form of the interaction Hamiltonian, as
explained in Sec. II C. We assume the one-loop result is
suppressed by a factor of ð4πÞ−2 relative to what dimen-
sional analysis would predict, i.e.,

Pð1−loopÞ
ζ

PðtreeÞ
ζ

∼
1

ð4πÞ2
γ

α7=4

�
H
M

�
1=2

≪ 1: ð3:24Þ

It follows that

jPh;PE2j
Ph;d

≪ ð4πÞ2CPE2 ¼ Oð10−1Þ: ð3:25Þ

This result is similar to the bound obtained in standard
models of inflation with a reduced speed of sound [62] and
implies a strong suppression of the relative importance of
the trispectrum-induced GW signal.

D. Parity-odd trispectrum-induced GWs

1. First diagram

Next we consider the interaction Hamiltonian produced
by the first parity-odd (PO) term in Eq. (3.10). The
trispectrum reads [73]

T ζðk1;k2;k3;k4Þ ¼
ið2πÞ3
Γð3=4Þ2

�
H
M

�
3=2 γ1

α9=4
P3

ζ

�
ðk2 · k3 × k4Þðk2 · k3Þ

ðk1k2k3k4Þ11=4
k22

I1ðk1; k2;k3; k4Þþ ð23permsÞ
�
; ð3:26Þ

where

I1ðk1; k2; k3; k4Þ ¼
Z

∞

0

dλλ13Hð1Þ
−1=4ð2ik21λ2ÞHð1Þ

3=4ð2ik22λ2ÞHð1Þ
3=4ð2ik23λ2ÞHð1Þ

3=4ð2ik24λ2Þ: ð3:27Þ

The trispectrum involves the product ðk2 · k3 × k4Þðk2 · k3Þ, which upon replacing k1 ¼ q1, k2 ¼ k − q1, k3 ¼ −q2,
k4 ¼ −kþ q2 in the master integral yields a dependence on the azimuthal angle,

12Here and below we assume for simplicity that the cubic vertex of Eq. (3.8) is turned off when calculating the trispectrum. Otherwise,
this cubic Lagrangian also contributes to the quartic interaction Hamiltonian. The resulting expression is, however, the same, only with
the change γ → γ̃ ¼ γ þ β2 [77].
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k · ðq1×q2Þðq1 ·q2Þ¼−kq21q22 sin2θ1 sin2θ2 sin2ψ

−
1

4
kq21q

2
2 sin2θ1 sin2θ2 sinψ : ð3:28Þ

Recall from our discussion in Sec. II B that odd functions of
k · ðq1 × q2Þðq1 · q2Þ may in principle induce a parity
asymmetry between right- and left-handed polarizations,
while it is guaranteed to yield identically zero in the total
GW power.
The master integral for the difference of right- and left-

handed SIGW spectra is

Ph;R − Ph;L ¼ i

�
H
k

�
2
Z

∞

0

dv1

Z
1þv1

j1−v1j
du1

Z
∞

0

dv2

×
Z

1þv2

j1−v2j
du2

Z
2π

0

dψKcðu1; v1; u2; v2Þ

×
sinð2ψÞ

π
T ζðu1; v1; u2; v2;ψÞ: ð3:29Þ

Carrying out the numerical calculation we find

Ph;R − Ph;L ¼ IPO1
γ1
α9=5

�
H
k

�
2

P18=5
ζ ;

IPO1 ≈ −3.3 × 10−1: ð3:30Þ

See again Appendixes B and C for details on the numerics,
in particular, concerning how to recast the integrals in a
form amenable to numerical integration.
The degree of parity violation may be quantified by the

so-called chirality parameter [34,94,95]

Π≡ Ph;R − Ph;L

Ph;tot
: ð3:31Þ

Note that in this formula Ph;R and Ph;L should be under-
stood as the total chiral power spectra. Here we assume for
simplicity that the first parity-odd quartic coupling in
Eq. (3.10) is the only interaction, although by consistency
one still needs to include the disconnected contribution in
the calculation of the GW spectrum. The latter vanishes in
the difference Ph;R − Ph;L, since as discussed in Sec. II B
disconnected SIGWs preserve parity, whereas, on the other
hand, the trispectrum-induced corrections vanish upon
summing over polarizations. Thus, we obtain

Π ¼ −CPO1
γ1
α3

�
H
M

�
4

; CPO1 ≈ 8.8 × 10−5: ð3:32Þ

We estimate the perturbativity bound derived from this
quartic coupling as

Pð1−loopÞ
ζ

PðtreeÞ
ζ

∼
1

ð4πÞ2
γ1
α3

�
H
M

�
4

≪ 1; ð3:33Þ

so that

jΠj ≪ ð4πÞ2CPO1 ¼ Oð10−2Þ: ð3:34Þ

2. Second diagram

Proceeding with the second parity-odd Lagrangian in
Eq. (3.11), the dimensionless trispectrum in this case is
given by [73]

T ζðk1; k2; k3; k4Þ ¼
2iπ3

Γð3=4Þ2
�
H
M

�
1=2 γ3

α9=4
P3

ζðk1k2k3k4Þ3=4I2ðk1; k2; k3; k4Þ

× ½ðk2 · k3 × k4Þðk1 · k3Þðk1 · k2Þðk3 · k4Þ þ ð23 permsÞ�; ð3:35Þ

where

I2ðk1; k2; k3; k4Þ ¼ Im
�Z

∞

0

dλλ11Hð1Þ
3=4ð2ik21λ2ÞHð1Þ

3=4ð2ik22λ2ÞHð1Þ
3=4ð2ik23λ2ÞHð1Þ

3=4ð2ik24λ2Þ
�
: ð3:36Þ

Upon substitution in the master integral, the only nonzero
independent scalar from the products ki · kj × kk for
all channels is k · q1 × q2, again implying a vanishing
contribution to the total GW power. As for the products
ðk1 · k3Þðk1 · k2Þðk3 · k4Þ and permutations, it is easy to see
that for each channel this combination contains precisely
one factor of q1 · q2, indicating a nonzero difference

between the tensor power spectra in right- and left-handed
polarizations.
Explicitly we obtain

Ph;R − Ph;L ¼ IPO2
γ2

α21=10
P16=5

ζ

�
H
k

�
2

;

IPO2 ≈ −8.2 × 10−1; ð3:37Þ
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and a corresponding chirality parameter

Π ¼ −CPO2
γ2
α3

�
H
M

�
3

; CPO2 ≈ 9.5 × 10−4: ð3:38Þ

Performing a rough estimate of the one-loop scalar
power spectrum as done before we get the bound

jΠj ≪ ð4πÞ2CPO2 ¼ Oð10−1Þ: ð3:39Þ

This is an order of magnitude less restrictive than the bound
derived for the first parity-odd interaction. Nevertheless,
in either case one concludes that a parity-violating signal
in SIGWs is strongly restricted by the assumption of
perturbative control.

IV. CONCLUSIONS

In this work we presented a first study of SIGWs
produced by the non-Gaussian component of the scalar
4-point correlation function in a scenario that goes beyond
standard scenarios of inflation described by the effective
field theory with a reduced speed of sound as well as
models that predict dominant local-type non-Gaussianities.
The scenario of ghost inflation is further motivated by the
possibility of having large scalar fluctuations on the scales
of interest to next-generation GW detectors and, most
interestingly from a theoretical perspective, the fact that
the model may in principle include a parity-violating
component in the scalar 4-point function.
Scalar trispectrum-induced GWs are necessarily small

relative to the power spectrum-induced ones, as recently
formalized in the no-go theorem of [62]. Our findings
further strengthen this expectation by extending previous
analyses to encompass ghost inflation. Our results should
straightforwardly generalize to other models with modified
dispersion relation, although it would be worthwhile to
confirm this explicitly. We find that the ratio of connected to
disconnected contributions toPh is bounded by a number of
Oð10−1Þ for the contact parity-even diagram of Sec. III C
and for the second parity-odd diagram of Sec. III D, while
the other terms are even more suppressed. It should be
remarked that these bounds are rather optimistic since they
made use of a crude estimate of the one-loop correction to
the scalar power spectrum, whereas a more precise calcu-
lation of the unitarity bound, such as the one done for the
scalar-exchange diagram, might yield a stronger constraint.
Our work should be seen as a first analysis on the

possibility of having a violation of parity symmetry in
SIGWs from inflation. This is arguably a more conservative
expectation in comparison to exotic descriptions where
parity is broken at the level of the gravitational sector during
radiation domination, although it would be interesting to
compare the predictions of both scenarios in detail. This as
well as many other applications would necessarily require
one to go beyond the assumption of exact scale invariance.

On the one hand, a scale dependence in the scalar
correlation functions would break the degeneracy between
the connected and disconnected parts of the total SIGW
power spectrum. Although the parity-odd component is, on
the other hand, already nondegenerate when measured in the
individual chiral polarization channels, even assuming exact
scale invariance, a characteristic scale dependence would
potentially make its detectability far more likely. While our
bounds derived from perturbativity cannot immediately be
extrapolated to situations with strong scale dependence,
they may nevertheless still be expected to be qualitatively
correct as argued in [62].
It is intriguing that the chirality parameter for the second

parity-odd interaction, Eq. (3.38), may in principle be as
large as the relative contribution to GWs from the parity-
even contact term, Eq. (3.23), while maintaining perturba-
tive control. It should be emphasized, however, that this is
rather optimistic. Consider for simplicity a scenario where
only these two interactions are present. Wemay compare the
importance of the resulting SIGWs by considering the ratio

����Ph;R − Ph;L

Ph;PE2

���� ¼ Oð10−1Þ γ2
α5=4γ

�
H
M

�
5=2

: ð4:1Þ

This is suppressed both by a small numerical prefactor and
by a power ofH=M, which should be recalled must be small
for the effective description of ghost inflation to be valid.
For this ratio to be sizable one therefore needs the
combination γ2

α5=4γ
of coupling constants to be large. While

this is not forbidden by perturbativity, at least as inferred
from our rough estimates of the one-loop scalar power
spectrum, it would still require unnatural values of Wilson
coefficients and hence a fine-tuning of the theory. It would
be interesting to assess this point more rigorously and more
ambitiously to explore the possibility of having effective
theories of inflation with naturally large parity-violating
interactions.
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Denis Werth, Fengge Zhang, and Tao Zhu for helpful
comments on the manuscript. This work received support
from the NSFC Research Fund for International Scientists
(Grant No. 12250410250), the China Postdoctoral Science
Foundation under Grant No. 2022TQ0140 and the
National Natural Science Foundation of China under
Grant No. 12247161.

APPENDIX A: DIFFERENT CONVENTIONS

The use of different conventions in the SIGW literature
can make it difficult to compare results among different
works. In this appendix we summarize some important
formulas for the two common conventions used in the

GARCIA-SAENZ, LU, and SHUAI PHYS. REV. D 108, 123507 (2023)

123507-12



definition of hij. This leads to different numerical prefactors
in the expressions for Ph although the observables ρGW and
ΩGW are, of course, independent of conventions.

1. δgij = hij
First, we consider the second-order tensor perturbation

defined in the present paper in (2.1). This is the definition
adopted, for instance, in Refs. [55,62]. The energy density
is defined by

ρGW ¼ M2
Pl

4a2
hh0ijh0iji: ðA1Þ

The energy density spectrum in this convention is

ΩGWðkÞ ¼
1

3M2
PlH

2

dρGW
d log k

¼ 1

12

�
k
H

�
2X

λ

PλðkÞ: ðA2Þ

The resulting master integrals for the disconnected and
connected contributions are given in (2.17) and (2.18),
respectively.

2. δgij = 1
2 hij

This convention is adopted, for instance, in
Refs. [61,86–88]. The GW energy density and energy
density spectrum are defined by

ρGW ¼ M2
Pl

16a2
hh0ijh0iji; ΩGWðkÞ ¼

1

48

�
k
H

�
2X

λ

PλðkÞ:

ðA3Þ
The integral expressions for the disconnected and connected
contributions to the SIGWs are given by

Ph;d ¼ 4

�
H
k

�
2
Z

∞

0

dv
Z

1þv

j1−vj
duKdðu; vÞPζðkuÞPζðkvÞ;

ðA4Þ

Ph;c ¼ 4

�
H
k

�
2
Z

∞

0

dv1

Z
1þv1

j1−v1j
du1

Z
∞

0

dv2

Z
1þv2

j1−v2j
du2

Z
2π

0

dψKcðu1; v1; u2; v2Þ
cosð2ψÞ

π
T ζðu1; v1; u2; v2;ψÞ; ðA5Þ

which multiply by 4 those given in (2.17) and (2.18).

APPENDIX B: RECASTING THE INTEGRALS

1. Parity-even scalar-exchange term

The scalar-exchange contribution to the 4-point function is given in the in-in formalism as

hπk1ðη0Þπk2ðη0Þπk3ðηÞπk4ðη0Þi ¼ 2Re

�
−
Z

η0

−∞
dη2

Z
η2

−∞
dη1hHint;3ðη1ÞHint;3ðη2Þπk1ðη0Þπk2ðη0Þπk3ðη0Þπk4ðη0Þi

�

þ
Z

η0

−∞
ddη1

Z
η0

−∞
dη2hHint;3ðη1Þπk1ðη0Þπk2ðη0Þπk3ðη0Þπk4ðη0ÞHint;3ðη2Þi; ðB1Þ

where the cubic Hamiltonian is given by

Hint;3 ¼
βa
2M2

Z
d3x∂ηπð∂πÞ2 ¼ −

βa
2M2

Z
d3p1
ð2πÞ3

Z
d3p2
ð2πÞ3

Z
d3p3
ð2πÞ3 ð2πÞ

3δðΣ3
i¼1piÞðp2 · p3Þ∂ηπp1πp2πp3 : ðB2Þ

We calculate the two terms in (B1) separately. The first term is

hπk1ðη0Þπk2ðη0Þπk3ðηÞπk4ðη0Þi ¼ 2Re

�
−
Z

η0

−∞
dη2

Z
η2

−∞
dη1hHint;3ðη1ÞHint;3ðη2Þπk1ðη0Þπk2ðη0Þπk3ðη0Þπk4ðη0Þi

�
: ðB3Þ

We then get
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Tπ;1ðk1;k2;k3;k4Þ¼−
β2H8

M4

πΓ
�
3
4



4

211
ðq1q2q3q4Þ−3

4Re
Z

0

−∞
dη2

Z
η2

−∞
dη1ð−η1Þ92ð−η2Þ92

× ½ðk1 ·k2Þðk3 ·k4Þq12q34Hð1Þ
−1
4

ðq12η21ÞHð1Þ
3
4

ðq1η21ÞHð1Þ
3
4

ðq2η21ÞHð2Þ
−1
4

ðq34η22ÞHð1Þ
3
4

ðq3η22ÞHð1Þ
3
4

ðq4η22Þþ23perms

−ðk1 ·k2Þk4 ·k34q12q3Hð1Þ
−1
4

ðq12η21ÞHð1Þ
3
4

ðq1η21ÞHð1Þ
3
4

ðq2η21ÞHð1Þ
−1
4

ðq3η22ÞHð1Þ
3
4

ðq4η22ÞHð2Þ
3
4

ðq34η22Þþ47perms

−k2 ·k12k3 ·k4q1q34H
ð1Þ
−1
4

ðq1η21ÞHð1Þ
3
4

ðq2η21ÞHð1Þ
3
4

ðq12η21ÞHð2Þ
−1
4

ðq34η22ÞHð1Þ
3
4

ðq3η22ÞHð1Þ
3
4

ðq4η22Þþ47perms

þk1 ·k12k4 ·k34H
ð1Þ
−1
4

ðq1η21ÞHð1Þ
3
4

ðq2η21ÞHð1Þ
3
4

ðq12η21ÞHð1Þ
−1
4

ðq3η22ÞHð1Þ
3
4

ðq4η22ÞHð2Þ
3
4

ðq34η22Þþ95perms�; ðB4Þ

where we defined kij ≡ ki þ kj and qij ¼
ffiffi
α

p
H

2M ðki þ kjÞ2. Besides, we have taken η0 → 0, used (3.4), and

πkðηÞjη→0 ¼ −i
Γð3

4
Þffiffiffi

π
p

2
3
4

Hq−
3
4: ðB5Þ

Note that Hð1Þ
−1=4 comes from π0,

∂ηπkðηÞ ¼ −2qH
ffiffiffi
π

8

r
ð−ηÞ52Hð1Þ

−1=4ðqη2Þ: ðB6Þ

To proceed and perform the integral, we change variables to x1 ¼ ð− η1
η2
Þ2 and x2 ¼

ffiffi
α

p
H

2M k2η22, where k is a positive constant
with a dimension of momentum. After some algebra we arrive at

Tπ;1 ¼ −β2α−13
4H4

�
H
M

�
−5
2 πΓð34Þ4
26

ffiffiffi
2

p ðk̂1k̂2k̂3k̂4Þ−3=2k−9Re
�
i11=2

Z
∞

0

dx2

Z
∞

1

dx1x
7
4

1x
9
2

2ðk̂1 · k̂2k̂3 · k̂4k̂212k̂234

×Hð1Þ
−1
4

ðik̂212x1x2ÞHð1Þ
3
4

ðik̂21x1x2ÞHð1Þ
3
4

ðik̂22x1x2ÞHð2Þ
−1
4

ðik̂234x2ÞHð1Þ
3
4

ðik̂23x2ÞHð1Þ
3
4

ðik̂24x2Þ þ 23 perms − k̂1 · k̂2k̂4 · k̂34k̂
2
12k̂

2
3

×Hð1Þ
−1
4

ðik̂212x1x2ÞHð1Þ
3
4

ðik̂21x1x2ÞHð1Þ
3
4

ðik̂22x1x2ÞHð1Þ
−1
4

ðik̂23x2ÞHð1Þ
3
4

ðik̂24x2ÞHð2Þ
3
4

ðik̂234x2Þ þ 47 perms − k̂2 · k̂12k̂3 · k̂4k̂
2
1k̂

2
34

×Hð1Þ
−1
4

ðik̂21x1x2ÞHð1Þ
3
4

ðik̂22x1x2ÞHð1Þ
3
4

ðik̂212x1x2ÞHð2Þ
−1
4

ðik̂234x2ÞHð1Þ
3
4

ðik̂23x2ÞHð1Þ
3
4

ðik̂24x2Þ þ 47 perms − k̂2 · k̂12k̂4 · k̂34k̂
2
1k̂

2
3

×Hð1Þ
−1
4

ðik̂21x1x2ÞHð1Þ
3
4

ðik̂22x1x2ÞHð1Þ
3
4

ðik̂212x1x2ÞHð1Þ
−1
4

ðik̂23x2ÞHð1Þ
3
4

ðik̂24x2ÞHð2Þ
3
4

ðik̂234x2Þ þ 95 permsÞ
�
; ðB7Þ

where we denoted k̂i ≡ ki=k and Wick rotated x2 → ix2 as there is no pole in the first quadrant. Now we can use the
following relations to extract the real part:

Hð1Þ
ν ðizÞ ¼ 2

iπ
e−iνπ=2KνðzÞ; Hð2Þ

ν ðizÞ ¼ ie−i
νπ
2

sin νπ

�
ð1 − e2iνπÞIνðzÞ þ

2

π
sin νπKνðzÞ

�
: ðB8Þ

Taking into account ζ ¼ −Hπ=M2, we finally get
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Tζ;1 ¼ −β2α−13
4

�
H
M

�11
2
Γ
�
3
4



4

2π4
ðk̂1k̂2k̂3k̂4Þ−3=2k−9

Z
∞

0

dx2

Z
∞

1

dx1x
7
4

1x
9
2

2ð−k̂1 · k̂2k̂3 · k̂4k̂212k̂234
× K1

4
ðk̂212x1x2ÞK3

4
ðk̂21x1x2ÞK3

4
ðk̂22x1x2ÞI−1

4
ðk̂234x2ÞK3

4
ðk̂23x2ÞK3

4
ðk̂24x2Þ þ 23 perms − k̂1 · k̂2k̂4 · k̂34k̂

2
12k̂

2
3

× K1
4
ðk̂212x1x2ÞK3

4
ðk̂21x1x2ÞK3

4
ðk̂22x1x2ÞK1

4
ðk̂23x2ÞK3

4
ðk̂24x2ÞI3

4
ðk̂234x2Þ þ 47 permsþ k̂2 · k̂12k̂3 · k̂4k̂

2
1k̂

2
34

× K1
4
ðk̂21x1x2ÞK3

4
ðk̂22x1x2ÞK3

4
ðk̂212x1x2ÞI−1

4
ðk̂234x2ÞK3

4
ðk̂23x2ÞK3

4
ðk̂24x2Þ þ 47 permsþ k̂2 · k̂12k̂4 · k̂34k̂

2
1k̂

2
3

× K1
4
ðk̂21x1x2ÞK3

4
ðk̂22x1x2ÞK3

4
ðk̂212x1x2ÞK1

4
ðk̂23x2ÞK3

4
ðk̂24x2ÞI3

4
ðk̂234x2Þ þ 95 permsÞ: ðB9Þ

Now we turn to the second term in (B1). With similar procedures as above we find

Tπ;2 ¼ β2α−
13
4H4

�
H
M

�
−5
2
πΓ

�
3
4



4

27
ffiffiffi
2

p ðk̂1k̂2k̂3k̂4Þ−3=2k−9
�
k̂1 · k̂2k̂

2
12

Z
∞

0

dx1x
7
4

1H
ð1Þ
−1
4

ðk̂212x1ÞHð1Þ
3
4

ðk̂21x1ÞHð1Þ
3
4

ðk̂22x1Þ

× k̂3 · k̂4k̂
2
34

Z
∞

0

dx2x
7
4

2H
ð2Þ
−1
4

ðk̂234x2ÞHð2Þ
−1
4

ðk̂23x2ÞHð2Þ
3
4

ðk̂24x2Þ þ 23 perms

− k̂1 · k̂2k̂
2
12

Z
∞

0

dx1x
7
4

1H
ð1Þ
−1
4

ðk̂212x1ÞHð1Þ
3
4

ðk̂21x1ÞHð1Þ
3
4

ðk̂22x1Þ

× k̂4 · k̂34k̂
2
3

Z
∞

0

dx2ðx2Þ74Hð2Þ
−1
4

ðk̂23x2ÞHð2Þ
3
4

ðk̂24x2ÞHð2Þ
3
4

ðk̂234x2Þ þ 95 perms

þ k̂2 · k̂12k̂
2
1

Z
∞

0

dx1x
7
4

1H
ð1Þ
−1
4

ðk̂21x1ÞHð1Þ
3
4

ðk̂22x1ÞHð1Þ
3
4

ðk̂212x1Þ

× k̂4 · k̂34k̂
2
3

Z
∞

0

dx2ðx2Þ74Hð2Þ
−1
4

ðk̂23x2ÞHð2Þ
3
4

ðk̂24x2ÞHð2Þ
3
4

ðk̂234x2Þ þ 95 perms

�
: ðB10Þ

Now we performWick rotations, x1 → ix1 and x2 → −ix2. Note that we rotate x2 into the negative imaginary axis asHð2Þ
ν is

identically vanishing at the infinity of the fourth quadrant. We then obtain the following trispectrum for ζ:

Tζ;2 ¼ β2α−
13
4

�
H
M

�11
2
Γ
�
3
4



4

2
ffiffiffi
2

p
π5

ðk̂1k̂2k̂3k̂4Þ−
3
2k−9k̂1 · k̂2k̂

2
12

Z
∞

0

dx1x
7
4

1K1
4
ðk̂212x1ÞK3

4
ðk̂21x1ÞK3

4
ðk̂22x1Þ

× k̂3 · k̂4k̂
2
34

Z
∞

0

dx2x
7
4

2K1
4
ðk̂234x2ÞK3

4
ðk̂23x2ÞK3

4
ðk̂24x2Þ þ 23 perms − k̂1 · k̂2k̂

2
12

Z
∞

0

dx1x
7
4

1K1
4
ðk̂212x1ÞK3

4
ðk̂21x1ÞK3

4
ðk̂22x1Þ

× k̂3 · k̂34k̂
2
3

Z
∞

0

dx2x
7
4

2K1
4
ðk̂23x2ÞK3

4
ðk̂24x2ÞK3

4
ðk̂234x2Þ þ 95 permsþ k̂2 · k̂12k̂

2
1

Z
∞

0

dx1x
7
4

1K1
4
ðk̂21x1ÞK3

4
ðk̂22x1ÞK3

4
ðk̂212x1Þ

× k̂3 · k̂34k̂
2
3

Z
∞

0

dx2x
7
4

2K1
4
ðk̂23x2ÞK3

4
ðk̂24x2ÞK3

4
ðk̂234x2Þ þ 95 perms: ðB11Þ

2. Parity-even contact term

The contact term contribution to the 4-point function can be written as

hπk1πk2πk3πk4i ¼
γ

4M4
Re

�
i
Z

η0

−∞
dη

Z
d3xhð∂iπ∂iπÞ2πk1πk2πk3πk4i

�
: ðB12Þ

After some algebra we have
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Tπðk1; k2; k3; k4Þ ¼
γH8

M4

Γ
�
3
4



4

28
ðq1q2q3q4Þ−3

4½ðk1 · k2Þðk3 · k4Þ þ ðk1 · k3Þðk2 · k4Þ þ ðk1 · k4Þðk2 · k3Þ�

× Re

�
i
Z

0

−∞
dηð−ηÞ6Hð1Þ

3
4

ðq1η2ÞHð1Þ
3
4

ðq2η2ÞHð1Þ
3
4

ðq3η2ÞHð1Þ
3
4

ðq4η2Þ
�

¼ γα−
13
4H4

�
H
M

�
−5
2 Γð34Þ4
4

ffiffiffi
2

p ðk̂1k̂2k̂3k̂4Þ−3=2k−9½ðk̂1 · k̂2Þðk̂3 · k̂4Þ þ ðk̂1 · k̂3Þðk̂2 · k̂4Þ þ ðk̂1 · k̂4Þðk̂2 · k̂3Þ�

× Re

�
i
Z

∞

0

dzz5=2Hð1Þ
3
4

ðk̂21zÞHð1Þ
3
4

ðk̂22zÞHð1Þ
3
4

ðk̂23zÞHð1Þ
3
4

ðk̂24zÞ
�
; ðB13Þ

where we have changed variables as z ¼
ffiffi
α

p
H

2M k2η2. Now we perform a Wick rotation z → iz, and use (B8) to get the final
expression

Tζ ¼ −γα−13
4

�
H
M

�11
2 2Γð34Þ4

π4
ðk̂1k̂2k̂3k̂4Þ−3=2k−9½ðk̂1 · k̂2Þðk̂3 · k̂4Þ þ ðk̂1 · k̂3Þðk̂2 · k̂4Þ þ ðk̂1 · k̂4Þðk̂2 · k̂3Þ�

×
Z

∞

0

dzz
5
2K3

4
ðk̂21zÞK3

4
ðk̂22zÞK3

4
ðk̂23zÞk3

4
ðk̂24zÞ: ðB14Þ

Through Eq. (2.18), the tensor power spectrum is

Ph;c ¼ −γα−13
4

�
H
M

�11
2

�
H
k

�
2 Γ

�
3
4



4

25π11

Z
∞

0

dv1

Z
1þv1

j1−v1j
du1

Z
∞

0

dv2

Z
1þv2

j1−v2j
du2

Z
2π

0

dψKcðu1; v1; u2; v2Þ

× ½ðk̂1 · k̂2Þðk̂3 · k̂4Þ þ ðk̂1 · k̂3Þðk̂2 · k̂4Þ þ ðk̂1 · k̂4Þðk̂2 · k̂3Þ�

× cosð2ψÞðu1v1u2v2Þ34
Z

∞

0

dzz
5
2K3

4
ðu21zÞK3

4
ðv21zÞK3

4
ðu22zÞk3

4
ðv22zÞ; ðB15Þ

in which the constant k is identified as the external momentum, and k̂1;3 ¼ v1;2 k̂2;4 ¼ u1;2.

3. First parity-odd contact term

The 4-point function from the interaction (3.10) reads

hπk1πk2πk3πk4i ¼ 2iIm

�	
i
Z

η0

−∞
dηHPO;1πk1ðη0Þπk2ðη0Þπk3ðη0Þπk4ðη0Þ


�
; ðB16Þ

where the Hamiltonian is

HPO;1 ¼ −
γ1

8M10

Z
d3xa−6ðηÞ∂ηπðx; ηÞϵijk∂ilπðx; ηÞ∂lj∂2πðx; ηÞ∂k∂2πðx; ηÞ: ðB17Þ

Note that since HPO;1 → −HPO;1 under the change of signs of internal momenta pi → −pi, so we have (B16) instead of
(B12). This is a feature of parity-odd interactions.
With the same procedures as before, we get the trispectrum for ζ,

Tζðk1; k2; k3; k4Þ ¼ −iγ1α−
9
2

�
H
M

�
9 4Γð3

4
Þ4

π4
k
1
2

1k
−3
2

2 k
1
2

3k
1
2

4ðk2 · k3Þk2 · ðk3 × k4Þk−14

×
Z

∞

0

dzz6K1
4
ðk̂21zÞK3

4
ðk̂22zÞK3

4
ðk̂23zÞK3

4
ðk̂24zÞ þ 23 perms: ðB18Þ

And the difference between the power spectra of right-handed and left-handed polarizations is given by
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PR − PL ¼ γ1α
−9
2

�
H
M

�
9
�
H
k

�
2 4Γð3

4
Þ4

π5
1

ð2πÞ6
Z

∞

0

dv1

Z
1þv1

jv1−1j
du1

Z
∞

0

dv2

×
Z

1þv2

jv2−1j
du2

Z
2π

0

dψ
Z

∞

0

dzKcðu1; v1; u2; v2Þ sinð2ψÞðv1u1v2u2Þ11=4

× ½u−21 ðk̂2 · k̂3Þðk̂3 · k̂3 × k̂4Þz6K1
4
ðv21zÞK3

4
ðu21zÞK3

4
ðu22zÞK3

4
ðv22zÞ þ 23 perms�: ðB19Þ

4. Second parity-odd contact term

Now we consider the trispectrum from the second parity-
odd quartic interaction in (3.11),

hπk1πk2πk3πk4i ¼ 2iIm

�	
i
Z

η0

−∞
dηHPO;2πk1πk2πk3π 4


�
;

ðB20Þ

where the interaction Hamiltonian is given by

HPO;2 ¼ −
γ2
8M9

Z
d3xa−5ðηÞϵijk∂mnπðx; ηÞ∂niπðx; ηÞ

× ∂mljπ∂lkπ: ðB21Þ

With some algebra, change of variables, translating Hankel
functions into Bessel functions, and Wick rotation, we
arrive at

Tζ ¼ −iγ2α−
9
2

�
H
M

�
8 2Γ

�
3
4



4

π4
ðk̂1k̂2k̂3k̂4Þ−3

2k−9

× ððk̂1 · k̂2Þðk̂1 · k̂3Þðk̂3 · k̂4Þðk̂2 · k̂3 × k̂4Þ þ 23permsÞ

×
Z

∞

0

dzz5K3
4
ðk̂21zÞK3

4
ðk̂22zÞK3

4
ðk̂23zÞK3

4
ðk̂24zÞ ðB22Þ

and

PR − PL ¼ γ2α
−9
2

�
H
M

�
8
�
H
k

�
2 2Γ

�
3
4



4

π5
1

ð2πÞ6
Z

∞

0

dv1

Z
1þv1

jv1−1j
du1

Z
∞

0

dv2

Z
1þv2

jv2−1j
du2

Z
2π

0

dψ
Z

∞

0

dz

× ððk̂1 · k̂2Þðk̂1 · k̂3Þðk̂3 · k̂4Þðk̂2 · k̂3 × k̂4Þ þ 23 permsÞ
×Kcðu1; v1; u2; v2Þ sinð2ψÞðu1v1u2v2Þ34z5K3

4
ðu21zÞK3

4
ðv21zÞK3

4
ðu22zÞK3

4
ðv22zÞ; ðB23Þ

where k̂1;3 ¼ v1;2 k̂2;4 ¼ u1;2.

APPENDIX C: NOTES ON THE NUMERICS

We calculate integrals numerically with the Monte Carlo
code VEGAS+ [96,97]. Each integral is computed using 20
iterations of the algorithm and with 5 × 106 (for the scalar-
exchange diagram) or 106 (for the contact diagrams) points
in the integration domain for each iteration.
In addition to the need to recast the integrals in terms of

manifestly real functions and variables, as detailed in the
previous appendix, it is also useful to switch variables so as
to integrate over a rectangular domain. To this end we use

ui ¼
ti þ si þ 1

2
; vi ¼

ti − si þ 1

2
; ðC1Þ

which gives

Z
∞

0

dvi

Z
1þvi

j1−vij
duið� � �Þ ¼

1

2

Z
∞

0

dti

Z
1

−1
dsið� � �Þ: ðC2Þ

The following are our results, given in truncated form in
the main text, for the dimensionless master integrals for the
four trispectra considered in this work:

IPE1 ¼ −0.0024221ð43Þ;
IPE2 ¼ −0.0203791ð75Þ;
IPO1 ¼ −0.33466ð92Þ;
IPO2 ¼ −0.81655ð24Þ: ðC3Þ

For each outcome, the N digits in parentheses denote
the error in the last N digits of the result. Our numerical
estimates therefore have a relative precision of order
10−4 − 10−3.

SCALAR-INDUCED GRAVITATIONAL WAVES FROM GHOST … PHYS. REV. D 108, 123507 (2023)

123507-17



[1] O. H. E. Philcox, Probing parity violation with the four-
point correlation function of BOSS galaxies, Phys. Rev. D
106, 063501 (2022).

[2] J. Hou, Z. Slepian, and R. N. Cahn, Measurement of parity-
odd modes in the large-scale 4-point correlation function of
Sloan Digital Sky Survey Baryon Oscillation Spectroscopic
Survey twelfth data release CMASS and LOWZ galaxies,
Mon. Not. R. Astron. Soc. 522, 5701 (2023).

[3] C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan, and
L. Senatore, The effective field theory of inflation, J. High
Energy Phys. 03 (2008) 014.

[4] F. Piazza and F. Vernizzi, Effective field theory of cosmo-
logical perturbations, Classical Quantum Gravity 30, 214007
(2013).

[5] Planck Collaboration, Planck 2018 results. IX. Constraints
on primordial non-Gaussianity, Astron. Astrophys. 641, A9
(2020).

[6] Planck Collaboration, Planck 2015 results. XVII. Con-
straints on primordial non-Gaussianity, Astron. Astrophys.
594, A17 (2016).

[7] S. Renaux-Petel, Primordial non-Gaussianities after Planck
2015: An introductory review, C.R. Phys. 16, 969 (2015).

[8] Planck Collaboration, Planck 2018 results. VI. Cosmologi-
cal parameters, Astron. Astrophys. 641, A6 (2020).

[9] BICEP/Keck Collaboration, Improved constraints on pri-
mordial gravitational waves using Planck, WMAP, and
BICEP/Keck observations through the 2018 observing
season, Phys. Rev. Lett. 127, 151301 (2021).

[10] TianQin Collaboration, TianQin: A space-borne gravita-
tional wave detector, Classical Quantum Gravity 33, 035010
(2016).

[11] N. Bartolo et al., Science with the space-based interferom-
eter LISA. IV: Probing inflation with gravitational waves,
J. Cosmol. Astropart. Phys. 12 (2016) 026.

[12] W.-R. Hu and Y.-L. Wu, The Taiji program in space for
gravitational wave physics and the nature of gravity, Natl.
Sci. Rev. 4, 685 (2017).

[13] NANOGrav Collaboration, The NANOGrav 12.5 yr data
set: Search for an isotropic stochastic gravitational-wave
background, Astrophys. J. Lett. 905, L34 (2020).

[14] LISA Cosmology Working Group, Cosmology with the
laser interferometer space antenna, Living Rev. Relativity
26, 5 (2023).

[15] A. Lue, L.-M. Wang, and M. Kamionkowski, Cosmological
signature of new parity violating interactions, Phys. Rev.
Lett. 83, 1506 (1999).

[16] C. R. Contaldi, J. Magueijo, and L. Smolin, Anomalous
CMB polarization and gravitational chirality, Phys. Rev.
Lett. 101, 141101 (2008).

[17] J. M. Maldacena and G. L. Pimentel, On graviton non-
Gaussianities during inflation, J. High Energy Phys. 09
(2011) 045.

[18] N. Bartolo, G. Orlando, and M. Shiraishi, Measuring chiral
gravitational waves in Chern-Simons gravity with CMB
bispectra, J. Cosmol. Astropart. Phys. 01 (2019) 050.

[19] G. Orlando, M. Pieroni, and A. Ricciardone, Measuring
parity violation in the stochastic gravitational wave back-
ground with the LISA-Taiji network, J. Cosmol. Astropart.
Phys. 03 (2021) 069.

[20] G. Orlando, Probing parity-odd bispectra with anisotropies
of GWVmodes, J. Cosmol. Astropart. Phys. 12 (2022) 019.

[21] K. Freese, J. A. Frieman, and A. V. Olinto, Natural inflation
with pseudo—Nambu-Goldstone bosons, Phys. Rev. Lett.
65, 3233 (1990).

[22] P. Adshead and M. Wyman, Chromo-natural inflation:
Natural inflation on a steep potential with classical non-
Abelian gauge fields, Phys. Rev. Lett. 108, 261302 (2012).

[23] T. Takahashi and J. Soda, Chiral primordial gravitational
waves from a lifshitz point, Phys. Rev. Lett. 102, 231301
(2009).

[24] J. Soda, H. Kodama, and M. Nozawa, Parity violation in
graviton non-gaussianity, J. High Energy Phys. 08 (2011)
067.

[25] P. Creminelli, J. Gleyzes, J. Noreña, and F. Vernizzi,
Resilience of the standard predictions for primordial tensor
modes, Phys. Rev. Lett. 113, 231301 (2014).

[26] N. Bartolo and G. Orlando, Parity breaking signatures from
a Chern-Simons coupling during inflation: The case of non-
Gaussian gravitational waves, J. Cosmol. Astropart. Phys.
07 (2017) 034.

[27] J. Qiao, T. Zhu, W. Zhao, and A. Wang, Polarized primordial
gravitational waves in the ghost-free parity-violating gravity,
Phys. Rev. D 101, 043528 (2020).

[28] L. Bordin and G. Cabass, Graviton non-Gaussianities and
parity violation in the EFTof inflation, J. Cosmol. Astropart.
Phys. 07 (2020) 014.

[29] N. Bartolo, L. Caloni, G. Orlando, and A. Ricciardone,
Tensor non-Gaussianity in chiral scalar-tensor theories of
gravity, J. Cosmol. Astropart. Phys. 03 (2021) 073.

[30] G. Cabass, E. Pajer, D. Stefanyszyn, and J. Supeł, Boot-
strapping large graviton non-Gaussianities, J. High Energy
Phys. 05 (2022) 077.

[31] R.-G. Cai, C. Fu, and W.-W. Yu, Parity violation in
stochastic gravitational wave background from inflation
in Nieh-Yan modified teleparallel gravity, Phys. Rev. D
105, 103520 (2022).

[32] M. Li, Z. Li, and H. Rao, Ghost instability in the teleparallel
gravity model with parity violations, Phys. Lett. B 834,
137395 (2022).

[33] M. Li, Y. Tong, and D. Zhao, Possible consistent model of
parity violations in the symmetric teleparallel gravity, Phys.
Rev. D 105, 104002 (2022).

[34] F. Zhang, J.-X. Feng, and X. Gao, Circularly polarized
scalar induced gravitational waves from the Chern-Simons
modified gravity, J. Cosmol. Astropart. Phys. 10 (2022) 054.

[35] J.-X. Feng, F. Zhang, and X. Gao, Scalar induced gravita-
tional waves from Chern-Simons gravity during inflation
era, J. Cosmol. Astropart. Phys. 07 (2023) 047.

[36] C. Creque-Sarbinowski, S. Alexander, M. Kamionkowski,
and O. Philcox, Parity-violating trispectrum from Chern-
Simons gravity, J. Cosmol. Astropart. Phys. 11 (2023)
029.

[37] H. Rao and D. Zhao, Parity violating scalar-tensor model in
teleparallel gravity and its cosmological application, J. High
Energy Phys. 08 (2023) 070.

[38] T. Zhu, W. Zhao, J.-M. Yan, C. Gong, and A. Wang, Tests of
modified gravitational wave propagations with gravitational
waves, arXiv:2304.09025.

GARCIA-SAENZ, LU, and SHUAI PHYS. REV. D 108, 123507 (2023)

123507-18

https://doi.org/10.1103/PhysRevD.106.063501
https://doi.org/10.1103/PhysRevD.106.063501
https://doi.org/10.1093/mnras/stad1062
https://doi.org/10.1088/1126-6708/2008/03/014
https://doi.org/10.1088/1126-6708/2008/03/014
https://doi.org/10.1088/0264-9381/30/21/214007
https://doi.org/10.1088/0264-9381/30/21/214007
https://doi.org/10.1051/0004-6361/201935891
https://doi.org/10.1051/0004-6361/201935891
https://doi.org/10.1051/0004-6361/201525836
https://doi.org/10.1051/0004-6361/201525836
https://doi.org/10.1016/j.crhy.2015.08.003
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevLett.127.151301
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/1475-7516/2016/12/026
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.1093/nsr/nwx116
https://doi.org/10.3847/2041-8213/abd401
https://doi.org/10.1007/s41114-023-00045-2
https://doi.org/10.1007/s41114-023-00045-2
https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1103/PhysRevLett.83.1506
https://doi.org/10.1103/PhysRevLett.101.141101
https://doi.org/10.1103/PhysRevLett.101.141101
https://doi.org/10.1007/JHEP09(2011)045
https://doi.org/10.1007/JHEP09(2011)045
https://doi.org/10.1088/1475-7516/2019/01/050
https://doi.org/10.1088/1475-7516/2021/03/069
https://doi.org/10.1088/1475-7516/2021/03/069
https://doi.org/10.1088/1475-7516/2022/12/019
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1103/PhysRevLett.65.3233
https://doi.org/10.1103/PhysRevLett.108.261302
https://doi.org/10.1103/PhysRevLett.102.231301
https://doi.org/10.1103/PhysRevLett.102.231301
https://doi.org/10.1007/JHEP08(2011)067
https://doi.org/10.1007/JHEP08(2011)067
https://doi.org/10.1103/PhysRevLett.113.231301
https://doi.org/10.1088/1475-7516/2017/07/034
https://doi.org/10.1088/1475-7516/2017/07/034
https://doi.org/10.1103/PhysRevD.101.043528
https://doi.org/10.1088/1475-7516/2020/07/014
https://doi.org/10.1088/1475-7516/2020/07/014
https://doi.org/10.1088/1475-7516/2021/03/073
https://doi.org/10.1007/JHEP05(2022)077
https://doi.org/10.1007/JHEP05(2022)077
https://doi.org/10.1103/PhysRevD.105.103520
https://doi.org/10.1103/PhysRevD.105.103520
https://doi.org/10.1016/j.physletb.2022.137395
https://doi.org/10.1016/j.physletb.2022.137395
https://doi.org/10.1103/PhysRevD.105.104002
https://doi.org/10.1103/PhysRevD.105.104002
https://doi.org/10.1088/1475-7516/2022/10/054
https://doi.org/10.1088/1475-7516/2023/07/047
https://doi.org/10.1088/1475-7516/2023/11/029
https://doi.org/10.1088/1475-7516/2023/11/029
https://doi.org/10.1007/JHEP08(2023)070
https://doi.org/10.1007/JHEP08(2023)070
https://arXiv.org/abs/2304.09025


[39] D. Stefanyszyn, X. Tong, and Y. Zhu, Cosmological
correlators through the looking glass: Reality, parity, and
factorisation, arXiv:2309.07769.

[40] R. Saito, J. Yokoyama, and R. Nagata, Single-field inflation,
anomalous enhancement of superhorizon fluctuations,
and non-Gaussianity in primordial black hole formation,
J. Cosmol. Astropart. Phys. 06 (2008) 024.

[41] J. Garcia-Bellido and E. Ruiz Morales, Primordial black
holes from single field models of inflation, Phys. Dark
Universe 18, 47 (2017).

[42] S. Garcia-Saenz, S. Renaux-Petel, and J. Ronayne, Pri-
mordial fluctuations and non-Gaussianities in sidetracked
inflation, J. Cosmol. Astropart. Phys. 07 (2018) 057.

[43] Y.-F. Cai, X. Tong, D.-G. Wang, and S.-F. Yan, Primordial
black holes from sound speed resonance during inflation,
Phys. Rev. Lett. 121, 081306 (2018).

[44] S. Garcia-Saenz and S. Renaux-Petel, Flattened non-
Gaussianities from the effective field theory of inflation
with imaginary speed of sound, J. Cosmol. Astropart. Phys.
11 (2018) 005.

[45] Y.-F. Cai, C. Chen, X. Tong, D.-G. Wang, and S.-F. Yan,
When primordial black holes from sound speed resonance
meet a stochastic background of gravitational waves, Phys.
Rev. D 100, 043518 (2019).

[46] J. Lin, Q. Gao, Y. Gong, Y. Lu, C. Zhang, and F. Zhang,
Primordial black holes and secondary gravitational waves
from k and G inflation, Phys. Rev. D 101, 103515 (2020).

[47] J. Fumagalli, S. Renaux-Petel, J. W. Ronayne, and L. T.
Witkowski, Turning in the landscape: A new mechanism for
generating primordial black holes, Phys. Lett. B 841,
137921 (2023).

[48] Z. Yi, Q. Gao, Y. Gong, and Z.-h. Zhu, Primordial black
holes and scalar-induced secondary gravitational waves
from inflationary models with a noncanonical kinetic term,
Phys. Rev. D 103, 063534 (2021).

[49] J. Fumagalli, S. Renaux-Petel, and L. T. Witkowski, Oscil-
lations in the stochastic gravitational wave background from
sharp features and particle production during inflation,
J. Cosmol. Astropart. Phys. 08 (2021) 030.

[50] Q. Gao, Y. Gong, and Z. Yi, Primordial black holes and
secondary gravitational waves from natural inflation, Nucl.
Phys. B969, 115480 (2021).

[51] T.-J. Gao and X.-Y. Yang, Double peaks of gravitational
wave spectrum induced from inflection point inflation, Eur.
Phys. J. C 81, 494 (2021).

[52] J. Fumagalli, S. e. Renaux-Petel, and L. T. Witkowski,
Resonant features in the stochastic gravitational wave
background, J. Cosmol. Astropart. Phys. 08 (2021) 059.

[53] L. T. Witkowski, G. Domènech, J. Fumagalli, and
S. Renaux-Petel, Expansion history-dependent oscillations
in the scalar-induced gravitational wave background,
J. Cosmol. Astropart. Phys. 05 (2022) 028.

[54] J. Fumagalli, G. A. Palma, S. Renaux-Petel, S. Sypsas, L. T.
Witkowski, and C. Zenteno, Primordial gravitational waves
from excited states, J. High Energy Phys. 03 (2022) 196.

[55] G. Domènech, Scalar induced gravitational waves review,
Universe 7, 398 (2021).

[56] J.-C. Hwang, D. Jeong, and H. Noh, Gauge dependence of
gravitational waves generated from scalar perturbations,
Astrophys. J. 842, 46 (2017).

[57] V. De Luca, G. Franciolini, A. Kehagias, and A. Riotto, On
the gauge invariance of cosmological gravitational waves,
J. Cosmol. Astropart. Phys. 03 (2020) 014.

[58] K. Inomata and T. Terada, Gauge independence of induced
gravitational waves, Phys. Rev. D 101, 023523 (2020).

[59] R.-g. Cai, S. Pi, and M. Sasaki, Gravitational waves induced
by non-Gaussian scalar perturbations, Phys. Rev. Lett. 122,
201101 (2019).

[60] C. Unal, Imprints of primordial non-Gaussianity on gravi-
tational wave spectrum, Phys. Rev. D 99, 041301 (2019).

[61] P. Adshead, K. D. Lozanov, and Z. J. Weiner, Non-
Gaussianity and the induced gravitational wave background,
J. Cosmol. Astropart. Phys. 10 (2021) 080.

[62] S. Garcia-Saenz, L. Pinol, S. Renaux-Petel, and D. Werth,
No-go theorem for scalar-trispectrum-induced gravitational
waves, J. Cosmol. Astropart. Phys. 03 (2023) 057.

[63] J.-P. Li, S. Wang, Z.-C. Zhao, and K. Kohri, Primordial
non-Gaussianity f NL and anisotropies in scalar-induced
gravitational waves, J. Cosmol. Astropart. Phys. 10 (2023)
056.

[64] V. Atal and G. Domènech, Probing non-Gaussianities with
the high frequency tail of induced gravitational waves,
J. Cosmol. Astropart. Phys. 06 (2021) 001.

[65] N. Arkani-Hamed, H.-C. Cheng, M. A. Luty, and S.
Mukohyama, Ghost condensation and a consistent infrared
modification of gravity, J. High Energy Phys. 05 (2004)
074.

[66] N. Arkani-Hamed, P. Creminelli, S. Mukohyama, and M.
Zaldarriaga, Ghost inflation, J. Cosmol. Astropart. Phys. 04
(2004) 001.

[67] N. Arkani-Hamed, H.-C. Cheng,M. A. Luty, S.Mukohyama,
and T. Wiseman, Dynamics of gravity in a Higgs phase,
J. High Energy Phys. 01 (2007) 036.
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