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Recent observations from weak gravitational lensing (WL) surveys indicate a smoother Universe
compared to the predictions of the cosmic microwave background (CMB). This inconsistency is commonly
referred to as the σ8 tension or S8 tension, where σ8 represents the present root-mean-square matter

fluctuation averaged over a sphere of radius 8h−1 Mpc, and S8 ≡ σ8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. In this article, we

investigate a kind of general Dirac-Born-Infeld (DBI) Lagrangian referred to as the surface-type DBI
(sDBI) model. We find that up to the linear order, the constraints on the sDBI model with high-redshift
probe (CMB) and low-redshift probes (WL and galaxy clustering, GC) yield S8 ¼ 0.7448þ0.031

−0.21 and

0.7426þ0.054
−0.085 , respectively. Remarkably, these values not only demonstrate self-consistency but also align

with the values obtained from the majority of low-redshift probes. Furthermore, we present a discussion on
exploring the nonlinear effects of this model, which holds the potential to address additional challenges
associated with cold dark matter (CDM) on small scales.

DOI: 10.1103/PhysRevD.108.123506

I. INTRODUCTION

The ΛCDM model stands as the most widely accepted
cosmological model, serving as the standard framework for
big bang cosmology. While the ΛCDM model provides
a straightforward and successful description that aligns
with a wide range of observations, the advancement of
theoretical and observational studies has brought to light
certain inconsistencies. These disparities, whether arising
from conflicts between different observations or discrep-
ancies between theory and observations, have begun to
challenge the ΛCDM model, indicating the necessity for
new extended models or alternative physics [1]. Among
the various challenges faced by the ΛCDM model, the
issue of σ8 or S8 tension stands out as one of the most
prominent [2]. It shows that the low-redshift probes such as
weak gravitational lensing (WL) [3,4], galaxy clustering
(GC) [5,6] as well as their combined analyses [7,8],
indicate a smoother Universe than the prediction by cosmic
microwave background (CMB) [9]. Quantitatively, the

structure growth parameter S8 derived from low-redshift
probes consistently shows a 2 − 3σ lower value compared
to the value obtained from the CMB [1,3,8–16]. Recently,
a joint cosmological analysis of cosmic shear þ galaxy-
galaxy lensingþ GC yielded a constraint of ðΩm; S8Þ ¼
ð0.305þ0.010

−0.015 ; 0.766
þ0.020
−0.014Þ (see [8], hereafter referred as

K1K-3 × 2 pt), where S8 is low by 8.3� 2.6% compared
to ðΩm; S8Þ ¼ ð0.3166� 0.0084; 0.834� 0.016Þ given by
baseline of Planck2018 [9].
Some new models has been proposed to solve or relieve

S8 tension, such as an additional scaling parameter on
the CMB lensing amplitude [17,18], a dark energy and
dark matter interaction model [19–21], and modified
gravitation [22], most of which give a consistent result
with both CMB and low-redshift probes.
In this article, we propose a novel dark matter model that

provides an alternative framework to resolve the S8 tension.
Our model, referred to as the sDBI model, introduces an
area functional form as the dark matter Lagrangian,
representing a specific instance within the broader class
of general DBI models. Our investigation showcases the
efficacy of this model in alleviating the S8 tension by
attenuating the formation of structures at low redshifts
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while maintaining the accurate evolution of perturbations at
high redshifts.

II. THE SURFACE-TYPE DBI AS A DARKMATTER
MODEL

Here we consider the Lagrangian

L≡ R
2κ

þ ΛI þ ΛII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂μϕ∂

μϕ
q

þ Lm ð1Þ

and its corresponding action S ¼ R
d4x

ffiffiffiffiffiffi−gp
L, where

g≡ detðgμνÞ represents the determinant of the space-time
metric gμν with signature ½−1; 1; 1; 1�, R denotes the scalar
curvature of Levi-Civita connection, κ ≡ 8πG with gravi-
tational constant G, ΛI is the vacuum energy or equiv-
alently cosmological constant, Lm is the Lagrangian of
normal matter including radiation and baryon, and
ΛII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂μϕ∂

μϕ
p

with a constant ΛII and scalar field ϕ
is the Lagrangian that we introduce to represent dark
matter, which we refer to as the surface-type Dirac-
Born-Infeld (sDBI) model. Note that the term surface-type
comes from a mathematical standpoint. The termR
d4x

ffiffiffiffiffiffi−gp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂μϕ∂

μϕ
p

can be viewed as formal area
functional, which is usually used to describe the area of a
surface. Meanwhile, it is worth mentioning that the sDBI
possesses strong physical motivation, see [23–27].
For the Lagrangian given in Eq. (1), applying the

principle of least action gives the Einstein field equation:

Rμν −
1

2
Rgμν ¼ −κ

�
TðΛIÞ
μν þ TðΛIIÞ

μν þ TðmÞ
μν

�
; ð2Þ

where Rμν is the Ricci tensor, TðΛIÞ
μν ¼ −ΛIgμν and

TðΛIIÞ
μν ¼ ΛII

�
∂μϕ∂νϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂ρϕ∂

ρϕ
p − gμν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂ρϕ∂

ρϕ
q �

ð3Þ

represent the energy-stress tensor of dark energy and dark
matter in this model, respectively. Now our focus turns to
the sDBI field. According to Eq. (3), in the flat, homo-
geneous, and isotropic background of the Universe, sDBI
field can be treated as a perfect fluid characterized by the
equation of state (EoS, see Appendix A 1)

w ¼ −
Λ2
II

ρ2
; ð4Þ

where w≡ P=ρ, P and ρ denoting the pressure and mass
density of the sDBI field, respectively. The evolution of ρ
and w regard to scale factor a can be derived as (see
Appendix A 1)

ρðaÞ ¼ ΛIIa3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−6d þ a−6

q
≡ ρs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−6d þ a−6

q
ð5Þ

and

wðaÞ ¼ −
1

1þ �ad
a

�
6
; ð6Þ

respectively. Here, the scale factor a is normalized to unity
at the present time, and ad is a free parameter that we call as
decay parameter.
Moreover, considering a linear perturbation in the

homogeneous Universe, the sound speed of the sDBI field
can be given by (see Appendix A 2)

c2s ¼ c2a ¼ −w; ð7Þ

where cs ≡ δP=δρ and ca ≡ dP=dρ are the effective and
adiabatic sound speed, respectively. The EoS and sound
speed provide sufficient information to complete the scalar
linear evolution equations of Universe [28,29].

FIG. 1. (a) The suppression of sDBI on matter power spectrum

for different redshifts, where ΔPk ≡ PðsDBIÞ
k − PðΛCDMÞ

k with ad
set to 3.8. (b) The matter power spectrum at redshift z ¼ 0 for
different ads. When ad → ∞, the power spectrum asymptotically
approaches the ΛCDM model (black line). In both figures, the
fixed parameters are taken from the best fit of the sDBI model in
Table II.
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The dark matter with the above form EoS and sound
speed has such properties that during the early stages
(a ≪ ad), it behaves similarly to the pressure-less standard
cold dark matter, but at the late stages (a close to ad), it
exhibits a certain sound speed and pressure, which leads
to the smoothing out the structures that formed during
the early stages [30–33]. This may provide an explanation
for the smoother Universe at low-redshift. In Fig. 1(a), we
illustrate the difference between the linear matter spectra of
the sDBI and the ΛCDM model. It is evident that the sDBI
suppresses the power spectra in the late-stage Universe.
The value of the decay parameter will greatly influence this
process. Figure 1(b) shows the power spectra for different
ads at z ¼ 0. As ad tends toward infinity, the sDBI model
will degenerate to ΛCDM. Some similar late-time schemes
have also been proposed [13,34], offering viable solutions
to the S8 tension. The sDBI may serve as a theoretical
framework for these late-time schemes.
Note that in the nonlinear region, we strictly need to

consider Eq. (2) and the evolution equation for ϕ

�
1

2
∂μ log ð−gÞ þ ∂μ

�
∂
μϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ∂νϕ∂
νϕ

p ¼ 0; ð8Þ

which represents a general minimal surface equation.
However, in this work, we focus solely on the scalar linear
perturbation, as it dominates the evolution of dark matter,
especially on large scales and during the early stages of our
Universe.

III. CONSTRAINTS BY THE OBSERVATIONS

To demonstrate that the sDBI model can alleviate the S8
tension, we perform a series of constraints using different
observational datasets. We begin with the baseline of
Planck2018, which combines the TT, TE, EE, and low-
E angular power spectra of the CMB to constrain the
cosmological parameters [9]. This base line analysis is
advantageous as it avoids model-dependent nonlinear
effects that may introduce uncertainties [35,36]. For the
low-redshift probes, we employ the WL shear catalog
from KiDS1000 [3,37] and the GC data from SDSS-III
BOSS [38]. In these analyses, we treat the high-redshift
probe (CMB) and low-redshift probes (WL and GC)
separately, rather than combining them. If the two datasets
can give a consistent result, it will provide stronger evi-
dence in support of the model’s validity. In addition, we
simultaneously constrain the ΛCDM model as a control
group for comparison purposes.
Utilizing the EoS (4) and sound speed (7), we have

adapted the background and perturbation equations, as
implemented in the Boltzmann code CLASS-v3.2.0 [39,40],
to calculate the linear evolution of the Universe. And
a public Markov Chain Monte Carlo (MCMC) sampler

Monte Python-v3.2 [41–43] was used. We perform all the
MCMC samplings for our constraints using the Metropolis-
Hastings algorithm implemented in Monte Python-v3.2.
To constrain this model with the Planck2018 baseline,

we adopt a flat prior on certain nuisance parameters in the
Planck likelihood (Plik) [44], as well as on the cosmo-
logical parameters fωb;Ωs; h; As; ns; τreio; adg, where

Ωs ≡ ρs
ρcr

≡ 8πG
3H2

0

ρs ð9Þ

is the reduced dark matter density in our model. The names
and priors of the base cosmological parameters are pro-
vided in Table I. For comparison, we have also conducted a
parallel ΛCDM constraint. Note that in all the analyses, we
assume a flat universe with zero spatial curvature (ΩK ¼ 0).
Additionally, our neutrino model follows the same con-
figuration as Planck2018, consisting of two massless
species and one massive species with a mass of 0.06 eV.
The posterior distributions obtained with Planck2018

baseline are presented in Table II. The Markov chain
employed in the analysis satisfies the Gelman-Rubin
convergence criterion with R − 1 ≈ 10−3, indicating robust
convergence. Furthermore, our constraints on the ΛCDM
model are consistent with the results reported by the
Planck2018 collaboration [9], validating the accuracy of
this analysis.
The results reveal slight differences in common cosmo-

logical parameters between the sDBI and ΛCDM.
However, significant discrepancies have been observed
in the structure growth parameter S8.The sDBI model
yields values of ðΩm; S8Þ ¼ ð0.3199þ0.0095

−0.0095 ; 0.7448
þ0.031
−0.21 Þ,

which agree with the results from K1K-3 × 2 pt within 1σ
and clearly deviate from the result given by Planck2018.
Note there is a relatively larger credible interval for both

S8 or σ8. To further understand it, we fix the cosmological
parameters except ad to the best fit in Table II, then
calculate S8 and χ2ν for different ads. Here the reduced
chi-square χ2ν is defined as chi-squared divided by the
degrees of freedom

TABLE I. The symbols and prior of cosmological parameters,
where the infinity symbols �∞ mean that we do not limit the
upper/lower bound of the corresponding parameter.

Parameter Symbol Prior

Baryon density ωb [−∞, ∞]
Dark matter density Ωs [0, ∞]
Inverse of decay parameter a−1d (0;∞]
Reduced Hubble constant h [−∞, ∞]
Scalar fluctuation amplitude As [−∞, ∞]
Scalar spectral index ns [−∞, ∞]
Reionization optical depth τreio [0.004, ∞]
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χ2ν ≡ 1

N − n
χ2 ≡ 1

N − n

XN
i¼1

ðOi − CiÞ2
σ2i

ð10Þ

with Oi and σi the ith observed mean value and measure
error, respectively, Ci the corresponding prediction, N
the number of observed values, n the number of fitted
parameters.
The results are shown in Fig. 2, where Δχ2ν ≡ χ2ν − χ2ν;b

with χ2ν;b ≈ 1.038422 the chi-square for the best fit. Visibly,
the fitting is almost as good as the best fit if ad ≳ 6, where,
however, the S8 can still vary from about 6.5 to about 0.8.
In other words, the sDBI model can decrease the value of S8
without influence CMB power spectra. In addition, it is
worth noting that based on this mechanism, the sDBI model
does not aggravate the Hubble tension.
After constraining the models using Planck2018 CMB

power spectra, we proceed to perform a combined con-
straint by incorporating low-redshift probes, specifically
WL and GC. Once again, we carry out parallel constraints
for both the sDBI and ΛCDM models. Our approach to
the correlation function involves mitigating nonlinear

effects due to their unavailability in our model. For WL,
we employ the correlation function ξþðθÞ and implement
a truncation to the small-scale region (θ < 10) using the
KiDS cosmology analysis pipeline kcap [45,46]. The
truncation is achieved through the following steps: First,
we separately calculate the correlation function data vectors
with and without the nonlinear effect with kcap, and
label them by ξNLþ and ξLþ, respectively. Subsequently, we
calculate the relative distance between the output data
vectors, denoted as dc and defined by kξNLþ − ξLþk=kξNLþ k
with k · k≡ ffiffiffiffiffiffiffiffiffih·; ·ip

. If dc exceeds a threshold of 10−2, we
utilize kcap to remove some small-scale data points. This
process is iteratively repeated until dc falls below 10−2.
Note that we have excluded the correlation function ξ−
from our analysis as the nonlinear effects on ξ− are difficult
to mitigate.
For GC, our analysis specifically focuses on the mea-

surements of the baryon acoustic oscillations (BAO) while
excluding the consideration of redshift-space distortions.
Due to the strict elimination of the nonlinear effect, the
constraint on the five common base parameters becomes
weaker. Hence, for both the sDBI and ΛCDM models, we
fix these parameters according to their respective best-fit
values in Table II.
The ΛCDM model constraint yields ðΩm; S8Þ ¼

ð0.299þ0.011
−0.0105; 0.770

þ0.0371
−0.035 Þ, which is consistent with the

results obtained from K1K-3 × 2 pt. However, it is evident
that S8 remains lower compared to the Planck2018 base-
line. As depicted in Fig. 3(a), the tension between low-
redshift probes and the CMB persists.
In contrast, for the sDBI model, the tension in S8 is

absent. As illustrated in Fig. 3(b), the constraint provides
ðΩm; S8Þ ¼ ð0.306þ0.014

−0.014 ; 0.7426
þ0.054
−0.085Þ, which is consistent

within 1σ compared to our constraint using the Planck2018
baseline.

FIG. 2. The jΔχ2νj (red) and S8 (green) regard to the decay
parameter ad, where Δχ2ν ≡ χ2ν − χ2ν;b with χ2ν;b ≈ 1.038422 the
chi-square for the best fit. The drop near ad ¼ 6.5 is due to its
proximity to the best fit.

TABLE II. The best-fit values, mean values, 68% credible
intervals and χ2 for the sDBI and ΛCDM models from Plank
CMB power spectrum. The first 8 parameters consist of the base
parameters, which include 5 common parameters and 3 peculiar
parameters specific to each model (Ωs and ad for sDBI, and Ωcdm
for ΛCDM). The last 4 parameters are derived quantities, where
Ωvac is defined as ΩΛ and ΩΛI

in the ΛCDM and sDBI models,
respectively. Additionally, we use the notation Ωm ≡ 1 − Ωvac for
both models. This term represents the sum of the density
parameters of all components in the Universe, excluding the
contribution from dark energy.

sDBI ΛCDM

Parameters Best fit meanþσ
−σ Best fit meanþσ

−σ

Ωs 0.2687 0.2688þ0.0087
−0.0089

a−1d 0.1476 0.1190þ0.080
−0.078

Ωcdm 0.2686 0.2678þ0.0086
−0.0075

100ωb 2.233 2.233þ0.014
−0.015 2.224 2.233þ0.015

−0.015
h 0.6709 0.6706þ0.0068

−0.0067 0.6704 0.6713þ0.0060
−0.0066

109As 2.089 2.110þ0.037
−0.031 2.089 2.107þ0.033

−0.033
ns 0.9628 0.9619þ0.0046

−0.0044 0.9630 0.9628þ0.0042
−0.0040

τreio 0.05017 0.05524þ0.0078
−0.0069 0.05101 0.05472þ0.0079

−0.0072

Ωvac 0.6802 0.6800þ0.0095
−0.0095 0.6804 0.6811þ0.0080

−0.0095
S8 0.7751 0.7448þ0.031

−0.21 0.8364 0.8384þ0.017
−0.016

σ8 0.7508 0.7214þ0.019
−0.21 0.8105 0.8133þ0.0083

−0.0077
Ωm 0.3197 0.3199þ0.0095

−0.0095 0.3195 0.3188þ0.0095
−0.0080

χ2 2749.20 2749.38
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IV. CONCLUSION AND DISCUSSION

In this article, we propose a so-called surface-type
Dirac-Born-Infeld (sDBI) field as a dark matter candidate
to relieve the S8 tension. We have conducted a parallel
investigation of the background and linear perturbation
evolution for both the sDBI and standard ΛCDM models.
The MCMC analysis with the data from early Universe
(CMB) and late Universe (WL) reveals that the S8 tension
persists in the ΛCDM model even when considering only
linear perturbations. This suggests that modifying the
nonlinear model such as HALOFIT [35] or HMCode [36], is
unlikely to resolve the tension effectively. On the other
hand, the sDBI model, within the scope of the datasets we
have considered, successfully alleviates the S8 tension.
To obtain more accurate constraints on the parameter ad,

it is necessary to consider nonlinear effects, which can be
studied by N-body simulations. In the nonrelativistic
approximation, for the fluid described by Eq. (4), we
can introduce an effective potential (see Appendix A 3)

h≡ −
Z

∞

ρ

dPðρ0Þ
ρ0

¼ −
1

2

Λ2
II

ρ2
ð11Þ

to substitute the effect of pressure. Using an effective
potential to describe the sDBI has the advantage that it can
be easily incorporated into N-body simulation codes.
The potential described in Eq. (11) acts as a contrary

effect from gravity, and the gradient of the potential

increases in conjunction with the decrease in energy density
ρ over time. The increasing external force can partially
disrupt the structures that formed in the early universe,
potentially leading to the formation of galaxies with a lack
of dark matter [47,48]. Furthermore, the external force may
completely destroy certain dwarf galaxies [49]. We also
anticipate a reduction in redshift-space distortion over time,
as the relative motion between dark matter halos deceler-
ates. The S8ðzÞ test could serve as a robust assessment for
this model, as the external potential is expected to signifi-
cantly diminish the fluctuation amplitude of matter in the
later stages. Meanwhile, there is a double coincidence
problem inherent in ad and ΩII . In order to address this
issue, a more fundamental theory will be required in the
future to provide a resolution. Given the intricacy of these
topics, we defer their exploration to future work.
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APPENDIX: THE EVOLUTION AND FLUID
EQUIVALENCE OF sDBI FIELD

1. The background evolution

For the curvature-free, homogeneous, and isotropic
background of the Universe, the spacetime is described
by the flat Friedmann-Lematre-Robertson-Walker (FLRW)
metric

ds2 ¼ a2ðτÞð−dτ2 þ δijdxidxjÞ; ðA1Þ

where a is the scale factor, τ≡ R
dt=a with cosmic time t is

conformal time, ðx1; x2; x3Þ are the coordinates of space, δij
is Kronecker symbol. In such a Universe, the background
evolution of the sDBI field is also solely dependent on time.
Consequently, the energy-stress tensor (3) can be simplified
as follows:

T00 ¼ g00ΛII
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϕ02=a2
p ≡ g00ρ ðA2Þ

Tii ¼ −giiΛII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϕ02=a2

q
≡ giiP ðA3Þ

Tij ¼ T0i ¼ 0 ðA4Þ

where ρ and P are the energy density and pressure of
the sDBI field, respectively, i, j ¼ 1, 2, 3 with i ≠ j, gμν
is the metric tensor, 0 denotes a derivative with respect to
conformal time. Indeed, in this scenario, it follows that
Pρ ¼ −Λ2

II , so sDBI field is equivalent to an ideal fluid
with the EoS

w≡ P
ρ
¼ −

Λ2
II

ρ2
: ðA5Þ

By utilizing the Einstein field equation (2), one can derive
the conservation law

Tμ
ν;μ ¼ Gμ

ν;μ ¼ 0: ðA6Þ

For the background of the Universe, Eq. (A6) can be
simplified to

ρ0 þ 3Hðρþ PÞ ¼ 0 ðA7Þ

where H≡ a0=a is the conformal Hubble parameter. One
can change the independent variable in Eq. (A7) from time
t to scale factor a

dρ
d log a

þ 3ðρþ PÞ ¼ 0: ðA8Þ

Combining Eqs. (A5) and (A8) one gets the evolution of the
energy density regard to the scale factor

ρðaÞ ¼ ΛIIa3d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−6d þ a−6

q
≡ ρs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−6d þ a−6

q
ðA9Þ

and

wðaÞ ¼ −
1

1þ �ad
a

�
6
; ðA10Þ

where the integration constant ad is introduced, which we
refer to as the decay parameter.

2. The linear perturbation evolution

When considering linear perturbations on the back-
ground metric in Eq. (A1) and neglecting vector and tensor
perturbations while adopting the Newtonian gauge, one can
express the perturbed metric as

ds2 ¼ a2ðτÞ�−ð1þ 2ΨÞdτ2 þ ð1þ 2ΦÞδijdxidxj
�
; ðA11Þ

where Ψ and Φ are two spatial scalars referred to as
Newtonian and curvature potential, respectively. By sub-
stituting Eq. (A11) into the Einstein equation (2) and
considering only terms up to linear order, we can obtain
the scalar perturbation equations for the sDBI field

δ0 ¼ −3ðc2s − wÞHδ − ð1þ wÞðθ þ 3Φ0Þ

θ0 ¼ −ð1 − 3c2sÞHθ −∇2

�
c2s

1þ w
δþ Ψ

�
ðA12Þ

where δ≡ ðρ − ρ̄Þ=ρ̄ is the density contrast with the density
ρ and averaged density ρ̄, θ≡∇ · u is the velocity diver-
gence with u the velocity of the fluid elementary, c2s ≡
δP=δρ with the pressure perturbation δP and density
perturbation δρ is the effective sound speed.
In realistic calculations, the gravitational potentials Ψ

and Φ are determined by considering contributions from
all components of the Universe. These contributions can be
obtained through linearized Einstein equations. The con-
formal Hubble parameter H is obtained during the calcu-
lation of background evolution. Consequently, the effective
sound speed c2s becomes the only degree of freedom that
requires specification.
To obtain the effective sound speed c2s in the sDBI

model, one considers a perturbation δϕ on the background
sDBI field ϕ. The perturbed energy-stress caused by δϕ is
given by
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δTμ
ν ¼ ∂Tμ

ν

∂ϕ
δϕþ ∂Tμ

ν

∂ð∂αϕÞ
δð∂αϕÞ þ

∂Tμ
ν

∂gαβ
δgαβ; ðA13Þ

where Tμ
ν is given by Eqs. (A2)–(A4). The meticulous

but straightforward calculation gives the linear order
perturbation

δρ¼−δT0
0¼

ΛII

ð1−ϕ02=a2Þ3=2a2
�
1

2
ϕ02δg00þϕ0δϕ0

�
ðA14Þ

δP¼δTi
i¼

ΛII

ð1−ϕ02=a2Þ1=2a2
�
1

2
ϕ02δg00þϕ0δϕ0

�
; ðA15Þ

which gives

c2s ≡ δP
δρ

¼ 1 −
ϕ02

a2
¼ −w: ðA16Þ

Note that the adiabatic sound speed of the sDBI field is

c2a ≡ dP
dρ

¼ Λ2
II

ρ2
¼ −w: ðA17Þ

It is evident that c2s ¼ c2a, and this relationship is not
coincidental. The equation of state (EoS) given by Eq. (A5)
demonstrates that the sDBI field can be regarded as a
barotropic fluid, where the pressure P solely depends on
the mass density ρ. In the case of a barotropic fluid, the
effective sound speed is equal to the adiabatic sound speed.

3. The nonrelativistic fluid equivalence

Assuming that Newton’s laws still apply to the sDBI
fluid, the momentum equation can be expressed as

Du
Dt

¼ −
∇P
ρ

−∇Ψ; ðA18Þ

where u is the velocity of the fluid elementary, P and ρ are
the pressure and mass density of the fluid, respectively,Ψ is
the Newtonian gravitational potential, D=Dt≡ ∂=∂tþ u ·
∇ is the material derivative. Introducing an effective
potential h, one can rewrite Eq. (A18) as

Du
Dt

¼ −∇ðhþ ΨÞ; ðA19Þ

where h is defined by

h≡ −
Z

∞

ρ

dPðρ0Þ
ρ0

¼ −
1

2

Λ2
II

ρ2
: ðA20Þ

In the early stage of the Universe, ρ ≫ ΛII , thus jhj ≪ 1
and the evolution is dominated by Ψ. However, in the late
stage of the Universe, the role of the perturbation h
gradually becomes more significant. In regions with higher
matter density, the gravitational potential tends to have a
larger value. This behavior is contrary to gravity, where
regions with higher matter density typically exhibit a
smaller gravitational potential.
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