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In this work we revisit power law, 1
M2 Rβ, inflation to find the deviations from R2 inflation allowed by

current cosmic microwave background (CMB) and large-scale structure (LSS) observations. We compute
the power spectra for scalar and tensor perturbations numerically and perform Markov chain Monte Carlo
analysis to put constraints on parametersM and β from Planck-2018, BICEP3 and other LSS observations.
We consider general reheating scenario and also vary the number of e-foldings during inflation, Npivot,

along with the other parameters. We find β ¼ 1.966þ0.035
−0.042 , M ¼ ð3.31þ5

−2 Þ × 10−5 and Npivot ¼ 41þ10
−10 with

95% C.L. This indicates that the current observations allow deviation from Starobinsky inflation. The
scalar spectral index, ns, and tensor-to-scalar ratio, r, derived from these parameters, are consistent with the
Planck and BICEP3 observations.
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I. INTRODUCTION

The idea of inflation [1] was introduced to solve various
problems of the big bang theory. Later it was realized [2–4]
that it provides seeds for cosmic microwave background
(CMB) anisotropy and large-scale structure (LSS) of the
Universe. During inflation the potential energy of a scalar
field, named as inflaton, dominates the energy density of
the Universe, and causes quasiexponential expansion of the
universe for a very short period of time. The quantum
fluctuations in the inflaton field, which are coupled to
the metric fluctuations, generate primordial density per-
turbations. There are also quantum fluctuations in the
spacetime geometry during inflation responsible for the
primordial gravitational waves, also known as tensor
perturbations. Inflation predicts nearly scale invariant,
adiabatic and Gaussian perturbations that are in excellent
agreement with various CMB observations such as
COBE [5], WMAP [6], and Planck [7,8]. The choices
for inflaton potential are derived from various particle
physics models and string theory, which provide a large
class of inflaton potentials [9]; however, we lack a unique
model of inflation.
The first self-consistent model of inflation was proposed

by Starobinsky in 1980 [10], where inflation is achieved by
1
M2 R2 interaction, R being the Ricci scalar, in the Einstein-
Hilbert action without additional scalar field. Transforming
to the Einstein frame, the R2 Starobinsky model gives rise
to plateau potential of the inflaton field. The R2 Starobinsky
inflation is of great interest as it is one of the best-suited
models of inflation from recent Planck observations [8],
and it also incorporates a graceful exit to the radiation
dominated epoch via a period of reheating [11–13], where

the standard model particles are created through the
oscillatory decay of the inflaton, called a scalaron in the
case of R2 inflation.
In this work, we investigate the generalization of

Starobinsky inflation by considering a power law, 1
6M2

Rβ

M2β−2
Pl

,

correction to the Einstein-Hilbert action. Here β ≈ 2 and not
necessarily an integer, allowing a small deviation from
β ¼ 2. The Rβ Lagrangian was first considered in the
context of higher-order metric theories of gravity [14,15]
and was then applied to inflation [16,17] as a generalization
of R2 inflation (see also [9,18–20] for a detailed review).
It was shown in [21–23] that Rβ term, with β slightly
different from 2 can arise as a quantum correction to the
Starobinsky R2 term in the Einstein-Hilbert action. It was
also shown in [24] that the models of Higgs field as inflaton
with local Weyl symmetry are equivalent to generalized
Starobinsky inflation in Einstein frame. Power law terms
in the Einstein-Hilbert action in the Jordan frame can be
reconstructed from various scalar potentials in Einstein
frame [25]. It has also been shown in [26] that the power-
law Starobinsky inflation can be embedded into a general
class T-models [27]. Modifications to R2-term has also
been obtained in [28] by considering quasi-de Sitter
evolution in fðRÞ gravity. Rβ inflation became popular
in 2014 when BICEP2 reported large value of tensor-to-
scalar ratio [29] r ¼ 0.2þ0.07

−0.05 . It was shown [21,24,30] that
this model could generate large r compared to R2 inflation
for β slightly smaller than 2. However, it was found later
that the BICEP2 signal of B-mode polarization is not of
primordial origin, but due to an unknown amplitude of
foreground dust emission [31]. The Rβ Lagrangian was also
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used to construct a unified model of inflation and dark
energy in fðRÞ gravity [32]. It is shown in [33,34] that the
presence of the Chern-Simons term along with Rβ can
significantly reduce the tensor-to-scalar ratio as well as
predicting axions as dark matter candidates.
Another interesting aspect of Starobinsky inflation is that

a no-scale supergravity model of inflation with a modulus
field and the inflaton field with a minimal Wess-Zumino
superpotential gives the same F-term potential in the
Einstein frame as the Starobinsky model [35]. It was
shown in [36,37] that there are various possible scenarios
of no-scale supergravity that can reproduce the effective
potential of the Starobinsky model and other related
models. The Starobinsky model can also be derived
from the D-term potential in supergravity models of
inflation [38–41]. A no-scale supergravity model, with
inflaton potential equivalent to power law Starobinsky
potential in Einstein frame, was obtained in [42] by using
a ðΦþ Φ̄Þn term in the no-scale Kâhler potential with the
Wess-Zumino form of the superpotential.
It was also shown in [42] that a small deviation from

β ¼ 2 can give the tensor-to-scalar ratio r ∼Oð0.1Þ. The
analysis of [42] was limited to β ≤ 2 and they used slow-
roll approximation to obtain the observational constraint
on the model parameters. The consistency relations among
the scalar spectral index, the tensor-to-scalar ratio and the
running of scalar spectral index were derived in [43] and
the observational constraints on β were found for various
choices of ns, r, and Nk, again using the slow-roll
approximation. However, the parameter β (denoted by p
in [43]) was varied between 1.80 and 2.1 for the analysis.
The attractor solutions for the Rβ model in the Jordan and
the Einstein frame, for 1.9 ≤ β ≤ 2.01, were also studied
in [44], and it was shown, using slow-roll conditions, that
Rβ inflation is viable in both the frames. Observational
constraints on Rβ inflation are also obtained in [45]
numerically integrating the perturbation equations, how-
ever, the entire region of the parameter space is not
explored and only some selected values of β are used.
The variations from the Starobinsky potential in the
Einstein frame has also been studied in [46] based
on a potential derived from brane inflation, and it is found
that the data allows a deviation from the Starobinsky
model.
In our work we use MODECODE [47] to explore the

parameter space of Rβ model. In MODECODE the back-
ground and perturbation equations for inflation are solved
numerically without the usual slow-roll approximation, and
the power spectra for scalar and tensor perturbations are
computed. These power spectra are used in CAMB [48]
to compute the angular power spectra for CMB aniso-
tropy and polarization, which is then interfaced with
COSMOMC [49], which performs the Markov chain Monte
Carlo (MCMC) analysis for parameter estimation. With
MODCODE the parameters of inflationary potential can

be constrained directly from the CMB observations; the
standard inflationary parameters, like r, ns are treated as
derived parameters. We vary β between 1.9 to 2.07 along
with M and Npivot to find the best-fit parameters of the
model and to look for any deviation from Starobinsky
model, β ¼ 2.
The paper is organized as follows. In Sec. II we obtain

the potential for the power law Starobinsky model in
Einstein frame using conformal transformations. In Sec. III
we obtain the equation of motion for scalar field and
perturbation equations used in MODECODE. In Sec. IV we
compute the CMB power spectra using MODECODE and
CAMB and use COSMOMC to put constraints on the param-
eters of power law Starobinsky inflation. We summarize
our results and give our conclusions in Sec. V.

II. POWER LAW STAROBINSKY MODEL

The power law Starobinsky inflation is a special case of
fðRÞ gravity, where the action is given as [18,19]

SJ ¼
−M2

Pl

2

Z ffiffiffiffiffiffi
−g

p
fðRÞd4x: ð1Þ

For power law Starobinsky inflation the function fðRÞ has
the form [42]

fðRÞ ¼
�
Rþ 1

6M2

Rβ

M2β−2
Pl

�
; ð2Þ

where M2
Pl ¼ ð8πGÞ−1, g is the determinant of the metric

gμν, andM is a dimensionless real parameter. The subscript
J in Eq. (1) stands for Jordan frame, where the action is a
nonlinear function of the Ricci scalar. We can rewrite
Eq. (1) as

SJ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−M2

Pl

2
FRþ U

�
; ð3Þ

where

U ¼ ðFR − fÞM2
Pl

2
: ð4Þ

Here, F is the first derivative of fðRÞ with respect to R. The
action in the Einstein frame can be obtained with the
conformal transformation g̃μνðxÞ ¼ ΩðxÞgμνðxÞ, where Ω is
the conformal factor and a tilde represents quantities in the
Einstein frame.
The Ricci scalar R in the Jordan frame is related to the

Ricci scalar R̃ in the Einstein frame as

R ¼ Ω
�
R̃þ 3□̃ω −

3

2
g̃μν∂μω∂νω

�
; ð5Þ
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where ω≡ lnΩ, □̃ω≡ 1ffiffiffiffi
−g̃

p ∂μð
ffiffiffiffiffiffi
−g̃

p
g̃μν∂νωÞ and ∂μω ¼ ∂ω

∂x̃μ.

We chooseΩ ¼ F to obtain the action in the Einstein frame
and also introduce a new scalar field χ defined by

χ ≡
ffiffiffi
3

2

r
MPl lnF: ð6Þ

This gives Ω ¼ expð 2χffiffi
6

p
MPl

Þ. The action Eq. (1) gets trans-

formed to an Einstein-Hilbert form using Eq. (5) and
relation

ffiffiffiffiffiffi−gp ¼ Ω−2 ffiffiffiffiffiffi
−g̃

p
as

SE ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p �
−M2

Pl

2
R̃þ 1

2
g̃μν∂μχ∂νχ þ VðχÞ

�
; ð7Þ

where VðχÞ is the Einstein-frame potential given by

VðχÞ ¼
�
RFðRÞ − fðRÞ�M2

Pl

2FðRÞ2 : ð8Þ

The potential (8) for power law Starobinsky model (2) in
the Einstein frame becomes

VðχÞ ¼
�
β − 1

2

��
6M2

ββ

� 1
β−1

exp

�
2χffiffiffi
6

p
�
2 − β

β − 1

��

×

�
1 − exp

�
−2χffiffiffi
6

p
�� β

β−1
; ð9Þ

where we have taken MPl ¼ 1 and we will use this from
now on. We can also see that, for β ¼ 2, the potential (9)
reduces to Starobinsky R2 inflation. The potential (9) for
various choices of β around β ¼ 2 is depicted in Fig. 1. The
slow-roll inflation occurs in the regime where χ > 0. The
potential is flat for β ¼ 2 for large values of χ and it
asymptotically approaches a constant value. However, the
potential gets steeper for β < 2, which gives larger tensor-
to-scalar ratio as compared to β ¼ 2. In case of β > 2 the

potential first increases with χ and attains a maximum value

at χ ¼ MPl

ffiffi
3
2

q
ln½2ðβ−1Þβ−2 �≡ χm, then it decreases and goes to

zero for large χ. Thus, the inflation can occur for χ rolling
between 0 ≤ χ ≤ χm or χ > χm. We will consider χ < χm
for our analysis to study the deviation from R2 inflation.
We solve the background evolution equations and pertur-
bation equations using potential (9) numerically using
MODECODE. The necessary equations are discussed in the
proceeding section.

III. INFLATIONARY DYNAMICS

A. Background equations

We analyze the power law Starobinsky inflation in the
Einstein frame. During inflation the energy density of
the scalar field χ dominates the Universe, and hence the
expansion is governed by the Friedmann equations,

H2 ¼ 1

3M2
Pl

�
1

2
χ̇2 þ VðχÞ

�
; ð10Þ

Ḣ ¼ −
1

2M2
Pl

χ̇2: ð11Þ

The equation of motion for χ is the Klein-Gordon equation
in an expanding spacetime,

χ̈ þ 3Hχ̇ þ dVðχÞ
dχ

¼ 0: ð12Þ

Here, the dot stands for the differentiation with respect to
cosmic time. Since we choose the number of e-folding,
N ¼ ln a as the independent variable to solve mode equa-
tions numerically, the background equations for Hubble
parameter Eqs. (10) and (11) and the scalar field χ Eq. (12)
are expressed in terms of N as

H2 ¼
1

3M2
Pl
VðχÞ

1 − 1
6M2

Pl
χ02

; ð13Þ

H0 ¼ −
1

2M2
Pl

Hχ02; ð14Þ

and

χ00 þ
�
H0

H
þ 3

�
χ0 þ 1

H2

dVðχÞ
dχ

¼ 0; ð15Þ

where prime denotes the differentiation with respect to N.
These background equations are solved numerically by
setting the initial conditions such that the field velocity is at
its slow-roll value. This makes sure that the (small) initial
transient in the velocity is damped away. The solution is
then used as an input to perturbations equations.

FIG. 1. The potential (9) for various values of β. The value of M
is fixed at M ¼ 5 × 10−5, and the values of potential and scalar
field are in Mp ¼ 1 units.
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B. Perturbation equation

The density perturbations generated during inflation are
described by gauge-invariant comoving curvature pertur-
bationsR, which is related to Mukhanov-Sasaki variable u
as [50,51]

u ¼ −zR; ð16Þ

where z ¼ 1
H

dχ
dτ, τ denotes the conformal time. The quantity

z depends on the background evolution and can be
determined by solving Eqs. (14) and (15) The evolution
equation for Fourier mode uk in conformal time is given as

d2uk
dτ2

þ
�
k2 −

1

z
d2z
dτ2

�
uk ¼ 0: ð17Þ

The primordial power spectrum is defined in terms of the
two-point correlation function of comoving curvature
perturbation as

PR ¼ k3

2π2
hRkR�

k0 iδ3ðk − k0Þ; ð18Þ

which is related to Mukhanov-Sasaki variable uk (16) as

PRðkÞ ¼
k3

2π2

				 ukz
				
2

; ð19Þ

Similarly the mode equation for tensor perturbations
generated during inflation is given as

d2vk
dτ2

þ
�
k2 −

1

a
d2a
dτ2

�
vk ¼ 0; ð20Þ

and the primordial tensor power spectrum is given as

PtðkÞ ¼
4

π2
k3

M2
Pl

				 vka
				
2

: ð21Þ

To obtain the scalar and tensor power spectra, the mode
equations (17) and (20) are solved numerically. As we
choose e-foldings N ¼ ln a as independent variables to
solve these equations, the background quantity z ¼ χ0.
Hence Eqs. (17) and (20) can be written in terms of N as

u00k þ
�
H0

H
þ 1

�
u0k þ



k2

a2H2
−
�
2 − 4

H0

H
χ00

χ0
− 2

�
H0

H

�
2

− 5
H0

H
−

1

H2

d2V
dχ2

��
uk ¼ 0; ð22Þ

v00k þ
�
H0

H
þ 1

�
v0k þ

�
k2

a2H2
−
�
H0

H
þ 2

��
vk ¼ 0: ð23Þ

The numerical solutions of Eqs. (22) and (23) are obtained
along with the background equations (14), (15) using
Bunch-Davious initial conditions.
The scalar spectral index ns and the tensor spectral index

nt are determined from the power spectra obtained numeri-
cally using their definitions [52]

ns ¼ 1þ d lnPR

d ln k
; ð24Þ

nt ¼
d lnPt

d ln k
: ð25Þ

The tensor-to-scalar ratio r is defined by [52]

r ¼ Pt

PR
: ð26Þ

Planck CMB observations provide constrains on ns and r.
However, in our analysis they are derived parameters, and
the parameters of the inflaton potential (9), M and β, are
directly constrained from the CMB observations.

IV. OBSERVATIONAL CONSTRAINTS

To calculate the scalar and tensor power spectrum for
the quantum fluctuations generated during inflation, we
modify the publicly available MODECODE [47] for the
power law Starobinsky potential (9) in the Einstein frame.
We consider the general reheating scenario, where the
parameter Npivot that represents the number of e-foldings
from the end of inflation to the time when length scales
correspond the Fourier mode kpivot leave the Hubble radius
during inflation, is also varied along with other potential
parameters. MODECODE can be used within CAMB [48]. To
compute the primordial power spectra at arbitrary values of
k in CAMB, MODECODE uses cubic spline interpolation on a
grid of k values spaced evenly in ln k. CAMB computes the
angular power spectra for CMB anisotropy and polariza-
tion. These CMB power spectra are used in COSMOMC to
put constraints on the parameters of the inflaton potential
along with the other parameters of the cold dark matter
ðΛCDMÞ model from various CMB and large-scale struc-
ture observations. To constrain the parameters M and β
of inflaton potential (9) we use Planck-2018 data along
with BICEP3 [53], baryon acoustic oscillation (BAO) and
Pantheon data. The priors for the parameters of inflaton
potential and Npivot are given in Table I. The priors for the
parameter M are sampled logarithmically to cover a large
range. The parameter β is varied around 2 to consider
deviation from Starobinsky inflation. The other parameters
of the ΛCDM model are also varied along with these three
parameters with priors given in [54]. For each parameter the
MCMC convergence diagnostic tests is preformed over
the four chains using the Gelman and Rubin variance of
mean/mean of chain variance R − 1 statistics.
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The constraints obtained for parameters of potential (9),
the e-foldings Npivot and the deriver parameters, r and ns,
are shown in Table II.
It is evident from the Table that the best fit value of β is

β ¼ 1.966þ0.035−0.042; 95% C:L:; ð27Þ

which indicates that the Planck observations favor
deviation from Starobinsky model, β ¼ 2. which lies within
2σ of the best-fit value (27). The power law Starobinsky
model prefers the number of e-foldings,

Npivot ¼ 41þ10−10 ; 95% C:L:; ð28Þ

It can also be seen from the Table II that the best-fit
values of scalar spectral index ns and tensor-to-scalar
ratio r derived from the best-fit values of potential para-
meters, for the power law Starobinsky model, is well
within the Planck bounds. The marginalized probability
distributions for various inflationary parameters are shown
in Fig. 2.
The joint 68% C.L. and 95% C.L. constraints on the

potential parameters β and M, and Npivot are shown in
Figs. 3 and 4. β andM from Planck-2018 and BICEP3 [53]
data are presented in Fig. 3(a), which shows that the two
parameters are strongly correlated. The potential parameter
β is also strongly correlated with the number of e-foldings
Npivot, as can be seen from the joint constraints on β and
Npivot in Fig. 3(b). It is evident from the figure that more the
deviation from the Starobinsky model, the lesser e-foldings
are preferred by the Planck-2018 observations. Figure 4
indicates that Npivot is also strongly correlated with the
potential parameter M.
The joint constraints on r and ns are shown in Fig. 5.

Here these two parameters are derived parameters and the

constraints on these two parameters are derived from the
constraints on the potential parameters and Npivot, which
are used as an input parameters for MCMC analysis.

TABLE I. Priors on model parameters.

log10M −6.5 < log10M < −3.0
β 1.90 < β < 2.07
Npivot 25 < Npivot < 90

TABLE II. Planck-2018, BICEP3 and BAO constraints on
parameters of potential, r and ns.

Parameter 68% limits 95% limits 99% limits

log10M −4.48þ0.23
−0.26 −4.48þ0.40

−0.40 −4.48þ0.50
−0.45

β 1.966þ0.027
−0.015 1.966þ0.035

−0.042 1.966þ0.039
−0.056

Npivot 41þ6
−10 41þ10

−10 41þ20
−10

ns 0.9688� 0.0036 0.9688þ0.0072
−0.0071 0.9688þ0.0094

−0.0094

r 0.0198þ0.0043
−0.016 0.020þ0.030

−0.017 0.020þ0.048
−0.018

FIG. 2. Marginalized constraints on the potential parameters
and Npivot using Planck-2018, BICEP3 and BAO data.
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V. CONCLUSIONS

The Rβ term in Einstein Hilbert action with β slightly
different from 2 arises as a quantum correction to the
Starobinsky R2 term [21–23]. Inflation with Rβ term, named
the power law Starobinsky inflation, was first considered
in [16,17]. This model gained popularity in 2014 after
BICEP2 reported large tensor-to-scalar ratio, and it was
shown by [21,24,30] that large r can be generated in Rβ

inflation with β slightly less than 2. The analysis of power
law Starobinsky inflation was further done by [42–44] using
slow-roll approximation, and constraints on the parameters
of the potential (9), β and M, were obtained from CMB
constraints on inflationary parameters ns and r.
In this work we analyze power law Starobinsky inflation,

in the light of Planck-2018 and BICEP3 [53] CMB
observations and other large-scale structure observations.
We use the inflaton potential (9) for power law Starobinsky
inflation in the Einstein frame. We evaluate the power
spectra for scalar and tensor perturbations numerically
using MODECODE. With the help of this we perform
MCMC analysis using COSMOMC to put constraints on
the inflaton potential parameters β and M, and the number
of e-foldings Npivot. We vary β between 1.9 to 2.07 to
consider deviation from the Starobinsky inflation. We find
from Planck-2018 and BICEP3 [53] observations that
β ¼ 1.966þ0.035

−0.042 , 95% C.L. This implies that the current
CMB and LSS observations prefer slight deviation from
Starobinsky inflation. The value β ¼ 2 lies within 2σ of
the best fit value. For our analysis we consider the
general reheating scenario and we find that the number
of e-foldings from the end of inflation to the time when
pivot scale kpivot leaves the inflationary horizon Npivot ¼
41� 10, 95% C.L. We also find that the number of
e-foldings and the parameters M and β are strongly
correlated Figs. 3 and 4. Planck-2018 data prefers

FIG. 3. Joint 68% C.L., and 95% C.L. constraints on parameters of potential and Npivot using Planck-2018, BICEP3, and BAO data.

FIG. 4. Joint 68% C.L., and 95% C.L. constraints on potential
parameterM andNpivot from Planck-2018, BICEP3, and BAO data.

FIG. 5. Joint 68% C.L., and 95% C.L. constraints on ns and r
from Planck-2018, BICEP3, and BAO data.
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smaller Npivot for larger deviation from the Starobinsky
inflation.
Deviation from β ¼ 2 was also found in the analysis

done by [43–45] using slow-roll approximation. In [43]
selective values of ns and r, allowed by Planck-2013 data,
were used to find values of β (denoted by p there) and
Npivot, and it was shown that 1.9 ≤ β ≤ 2. It is also found
in [43] that ðβ;NpivotÞ¼ð1.93;30Þ for ðns;rÞ¼ð0.96;0.05Þ.
In [44] Planck-2018 joint constraints on ns and r were
used to obtain the constraints on β and it was found
that 1.9 ≤ β ≤ 1.9999 for Npivot ¼ ½50; 60�. Our results
shown in Table II agree with the analysis of [43,44],
however, we have performed a robust statistical analysis
by exploring the entire allowable range for the parameters
β, M, and Npivot. With our approach we have obtained the
best fit values for these parameters along with their
marginalized probability distributions and joint constraints
on them, which provides stronger statistical evidence for β
lower than 2. The value of β obtained in [45] is slightly

larger than 2 (β ¼ 2.0008), which deviates by 2σ from the
best-fit value (27).
It has been shown that the potential for the Starobinsky

inflation in the Einstein frame can be obtained from the
no-scale supergravity [35–37]. The potential for power law
Starobinsky inflation in the Einstein frame from no-scale
supergravity is derived by [42]. Since the variants of
Starobinsky inflation can be obtained from supergravity,
these models play an important role in particle physics
phenomenology. The bounds on inflaton potential param-
eters obtained in this work can be useful to build models of
inflation from supergravity that can help us in connecting
inflation with other high energy physics phenomena.
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