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Thermal effects from the ensemble average and thermal mass are analyzed in the model of axionic
inflaton interacting with U(1) gauge fields through the Chern-Simons coupling « ¢F ”UF’“’/ f under
equilibrium. The ensemble average eliminates the divergence of radiational spectral density. The cosmic
temperature is controlled by the parameter & = ¢/ (2Hf) and the renormalization coefficient az. It is found
that the adiabatic approximation is always corresponding to a slow-roll approximation in the (quasi—)de
Sitter universe. The equilibrium condition and backreaction constrain the parameter in a range of
247 < & < 6.52, and the axion becomes thermalized if £ ~4.0. Thermal mass leads to the correlation of
scalar perturbation and tensor perturbation, which may be a potential method to distinguish different
cosmological models. In addition, the tensor-to-scalar ratio is suppressed in a form proportional to H/T if
the fields become thermal in the Standard Model. On the other hand, the condition £ < 3.0 is the same as

cold inflation, i.e., r ~ 16¢, although thermal effects are taken into consideration.
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I. INTRODUCTION

Inflation theory has successfully explained the primordial
power spectrum of cosmic perturbation and is consistent
with observations. The most common scenario is an expo-
nential expansion through a cold state with an era of scalar
field slowly rolling down a flat potential, and reheating
occurs at the end of this stage. But cold inflation does not
involve the thermal effects directly, and one of the main tasks
of current cosmological research deals with the thermody-
namic problems of the early universe. An alternative scheme
is the warm inflation model [1,2] in which a dissipation term
couples to a thermal bath of particles to realize the transition
from potential to radiation. Another objective in warm
inflation is the realization of an exponential production of
radiation in order to overcome the exponential dilution
without spoiling the slow-roll stage. For this purpose, the
thermalized axion inflation model is introduced in which
the gauge fields A, simply couple to an axionlike field ¢
and the gauge fields are considered as the thermal bath [3].
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This model of inflation driven by an axionlike particle, often
dubbed as natural inflation [4,5], is one of the most well
motivated models of inflation to reheat the universe [6,7]. In
axion inflation, the flatness of the potential is guaranteed by
the shift in symmetry and ensures a periodic potential, where
the axion couples with the gauge field through the Chern-
Simons coupling < ¢FF/f [8].

In axion inflation, a strong production of gauge fields A,
lies in the constant inflationary field velocity ¢, or exactly
&= ¢/(2fH). At some extreme conditions with a large
enough value of £, the production of radiation fields is so
large that it backreacts on the background, which is often
referred to as the backreaction problem [9-11]. A large &
can also lead a significant non-Gaussianity of cosmic
microwave background in the curvature perturbation in
the absence of backreaction [12—14]. Another interesting
feature of this coupling is that the inflationary thermo-
dynamics is controlled by the parameter & [15,16].

It has been shown in Ref. [15] that there exists an
equilibrium state if the ratio 7/H > 20 is analyzed from
the Boltzmann equation. Inspired by this work, we continue
to focus on the problems of thermodynamics in axion

© 2023 American Physical Society
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inflation from the Standard Model. In the present paper, the
gauge field in the equilibrium state is fully considered as a
thermal bath to thermalize the early universe due to the
production of radiation from potential. Thermal equilib-
rium allows a Bose-Einstein distribution, followed by
which a radiational spectral density is further obtained.
Integrating the spectral density of radiation fields (magnetic
and electric fields) over momentum space and combining
the Stefan-Boltzmann law yield an equation of cosmic
temperature 7. Then the adiabaticity could be analytically
analyzed by the derivative of the logarithm of 7/H with
respect to cosmic time, based on which the parameter &
could also be constrained by the backreaction. The thermal
magnetic and electric fields are considered as sources to
perturb the cosmic scalar and tensor modes. Green’s
function method is applied to theoretically calculate the
correlation functions of sourced scalar and tensor pertur-
bation, and thus the critical value of ¢ thermalizing the
axion inflaton is obtained by comparing with the magni-
tudes of vacuum spectrum. Last, we can also analyze the
relation between the tensor-to-scalar ratio and parameter &
when thermalization happens.

The paper is organized as follows. In Sec. II, the axionic
inflationary model is introduced and the solutions of the
gauge field in terms of Coulomb functions are obtained. In
Sec. III, several problems are analyzed, such as the cosmic
temperature, spectral density of radiation (decomposing into
magnetic and electric parts), adiabatic approximation, and
constraints on parameter £ Then, in Sec. IV, treating the
thermal magnetic and electric fields as the source to perturb
the scalar and tensor modes, the spectrum of sourced scalar
and tensor perturbation is obtained; therefore, the suppres-
sion of the tensor-to-scalar ratio from thermal effects is
shown. Finally, in Sec. V, a brief conclusion of this work and
some further discussions about our results are given.

II. MODEL AND EQUATIONS

A. Equation of motion and solution of gauge field

We start from the model described by the following
Lagrangian [17]:

L MR 1
N 5 = 50,00 — V()

1 ach .
— —F F* —
4 Hv 4f ;w

Fr, (1)

where M, = (82G)~! is the Planck mass, ¢ is the (axion-)
inflaton regarded as a scalar field, and V(¢) is the potential
which is most motivated by the natural potential with

periodicity:
V(p) = A* [1 - cos @)] : (2)

The gauge field strength tensor is defined by
F,, =9,A, —0,A,. The U(1) gauge field A, couples with
inflaton through the Chern-Simons term ¢F qu” with
the dual tensor F*° = p**°F,, /(2,/=g) where n#*/° is the
Levi-Civita tensor in Minkowski spacetime. The line
element in the Friedmann-Robertson-Walker universe reads

S2 = —dtz + 612(5ij -+ hij)dxidxj
= 612 [—dfz + (51] + h,l)dx’dx/] s (3)

where ¢ is the cosmic time and 7 is the conformal time with
derivative relation df = adz, and h;; is the tensor pertur-
bation. The model we introduced above is about the axion-
inflaton ¢ coupled to the gauge field A, directly. A more
general model is ¢ couples to A, indirectly via a spectator
field o [18]. However, in this paper, we mainly attempt to
show the effects from the thermalized gauge field, instead
of the model itself.

The equation of motion of 4-potential A, is obtained by
varying the action with respect to A,:

1 0
\/—gox¥

This equation is convenient to work in the frame of
Coulomb gauge A = 0 and d'A; = 0; therefore, it yields

5 \;"5_ WrE, )] ~0. (4)

(ot

02
<ﬁ—a206’—a 7¢Vx> (x,7) =0, (5)
where the dot  denotes the derivative with respect to cosmic
time . To quantize the electric and magnetic (EM) fields,

the conjugate momentum IT; = 6£/8A; of the field A; is
introduced following the canonical quantization condition

[ PP
A0 =1 [ SEepy k). (6)
where the projection tensor P;;(K) = &;; — k;k;/k* is to
ensure the Coulomb gauge condition. The gauge field

A;(x) is quantized by the momentum space operator via
Fourier transform

Ax.7) = / P [

+e%*(k)A;(k,r)al'(k)e-ik'x}

A/l k T)Cl/l(k) ik-x

&’k . _
= [ G et [t )
+ A (=K. &}(—k)}, (7)

where €3 (k) is the polarization vectors that relate to the
orthonormal 3-vector in flat space é¥(k):
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&l koo .
e’i:i, 6322, with dual vector €4 = aé¥ (a==,3).
(8)

In Eq. (7), a,(k)/&; (k) is the annihilation/creation oper-
ator satisfying commutation relation

|4:(0).8,(K)] = 22)6,6 (k + ). (9)

Define the variable A; = aA, and substitute Eq. (7) into
Eq. (4), and then we obtain the equation of polarization
vector of 4-potential in momentum space

2k
A;;+k2Aii—‘5Ai =0, (10)

with £ = a,¢/(2Hf) and prime ' denoting the derivative
respect to conformal time z. In the process of deriving
the above equation, we have used the properties (B2) of
polarization vectors. The approximate equality in Eq. (10)
arises due to the assumption that the dimensionless measure
of field velocity & evolves adiabatically, i.e., £/EH < 1.

However, Eq. (10) is the equation of motion of the gauge
field without taking thermalization into account. As an
important modification to Eq. (10), when thermalization
happens, the gauge field develops a thermal mass
mr = arT via one-loop thermal correction [7,19]. Thus
Eq. (10) becomes

o 28
<6—Z2+1:F +H2 2>Ai:0 (11)

with z = —kz. Equation (11) is an equation in the form of
Coulomb function

» 2% LE+1)\

where ¢ is obtained by satisfying the equation
(¢ + 1) = —u?, with y? = a2 T?/H?. £ has two solutions,
and we take the one

1+ /1= %2
f:% (13)

as the index of two linearly independent Coulomb

(+)

functions H_~’, because solutions HP with 7' =

f/ ’

(=1 —+/1—4u*)/2, can be linearly represented from
H (fi). Obviously the relation between 442 and 1 determines
the solution of # to be a real number or a complex number.
The canonical relation (6) and the Bunch-Davies vacuum in
the subhorizon limit A, — (2k)™"/2e " as —kz - o0
lead the solution of Eq. (I1) on a superhorizon scale
approximately

1 .
Ay = ﬁexp i[+&In(-2kt) + /2 — of(jzf)]Hf X
i(—kz)~
ey erenl <1

fk expi[t&In(=2k7) + £7/2 — 6,(£E)] X

The definitions of o,(¢), H'"(¢,7), C,(£) and the
properties of the Coulomb function are listed in
Appendix A. In addition, the special value y = 1/2 has
only a mathematical specificity instead of a physical
meaning, and it does not lead to a special result, so in
the following sections we ignored it.

III. SPECTRUM OF GAUGE FIELD

A. Relevant definitions

The definitions of “electric” and “magnetic” fields from
gauge field strength tensor F',, are expressed as E, = u"F,
and B, = u FW For the observer w = (1/a,0,0,0), the
electromagnetrc fields of the spatial component are defined
with an extra inverse scale factor a~':

(m) (—kz)2 [1 +Wln(—kr)}, 42 =1. (14)

(=ka)~*
Cp (&) (=kr)" ! + 27+1)C (£8)°

4’ > 1

1 . W
= ;nijkéJmaknamAm (15)

or in momentum space

A 1 4

Ei(k,T) = —2A;,
a

A 1 . A

Bi(k, T) = i—zi’]ijl&m5lnkmAn(k,T). (16)
a

Definitions (15) and (16) make it convenient to deal with
the contraction, for example, B;B' = §/B;B; = B;B;. So in
the following sections, except for special instructions, the
vectors or tensors under contraction are dealt in Minkowski
spacetime.
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The energy density of component X is defined as

dp (k. 7)
— [ dmgPRET)
Px / T ik

3
:/ %;7 / FK (X (K D)X(K, 7). (17)

Here the component X may be a scalar perturbation, a
tensor perturbation, a radiation field, an electric field, or a
magnetic field. The spectrum density in terms of a two-
point correlation function reads

dpx (k, 7) _ S 33/ !
k) _/d KXk )X(K.7).  (18)

o2

Before we get the energy density of the radiation field, it is
necessary to introduce the energy momentum tensor of the
electric and magnetic fields [20]:

T :_Lé,/—gﬁ
M /—_g 59141/

1
= aﬁFWFVﬁ - ZgquaﬂFaﬂv

(19)
with a 00 component and a ij component, respectively,

1, . .
(Too) = pp +pe = 5 (B'B; + E'E;)(x, 1),

1

5 (20)

We should point out that (- - -) means the ensemble average

<AB>:tr[:Af9:], (21)
where : --- : represents the normal product meaning that
the annihilation operator always locates at the right-hand
side of the creation operator. Especially, the ensemble
average of the combination of the creation and annihilation
operators is

(af(1)ay (k') = (27)8,8°(k + k') - ny(on/aT). (22)

The equation above involves a Bose-Einstein distribution
function at equilibrium defined as [15,21]

ng(wy/aT) = (el‘% - 1)_]’ (23)

where T denotes the cosmic temperature during inflation
and @, = \/k*> + a*>m? is the comoving energy of a
particle. Note that w;/a is the physical wave number
corresponding to the energy of the gauged particle by the
timing constant 7c. It should be emphasized that the results
above are based on the (near) equilibrium hypothesis,
which will be discussed in detail subsequently. This
hypothesis is based on the fact that scattering rates
involving gauge fields can become larger than the expan-
sion rate H and create a thermal bath of particles of
temperature 7 during inflation.

B. Spectral electromagnetic energy density

The two-point correlation function of magnetic field in
momentum space is defined as

PB.ij<k7k/7T) = <Ei(k77)éj(k/77>>

(27)° 3 / Il
:75*(k+k)z > Nty Mty k12

A=t lhmimy

my ;Mm% * Nt
€' (€)' A (k,7)A; (K, 7)ng (aYk’)

(24)
Applying Eq. (B6) in Appendix B, then Eq. (24) becomes

)
Ppii(k, k' 1) = %53& + K )ng(wy/aT)(—7)

: [(51']' - ];i/%j)kQPB(k’ T)

+ i k" K2S (k. T)} ; (25)
where k; = k;/k is the unit vector parallel to k;, the

dimensionless variables Py is about the symmetric part,
and Sp is about the antisymmetric part:

Py(k.7) = — (AL +|A_P).

1
Sak7) = = (4. ~ |A_P). (26)

Equation (B4) has been used in the derivation of Eq. (25).
Based on the expression in Eq. (14), we have the approxi-
mate expressions of Pg and Sp,

(_k,[)—zflﬂ (2£+42) '3 —ng 2
1 Q17227 LF(fin:)IZ |I“(£il—i§)|2:|’ <l
P r— g
5/Sp(k,7) —kt X L(2¢+2)-exp(itn/2) 2 @)

(~kr)

It is obvious that S vanishes if £ = 0.

(20+1)2°

e et 2 .
|:|F(ff1+i§)2 + r(fil—i§)2:| ) 4ﬂ > 1
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Based on Eq. (B6), the two-point correlation function of the electric field in momentum space reads

Prij(k. K. 7) = (Ei(k.7)E;(K', 7))
2

3
- ( ;? 53(" + K )ng(wy/aT) - (_7)[(5 — kik; )kzPE(k’ 7) — i”ikmkmeSEU{’ 7)], (28)
with
Pe/Se(k.) = ——[|(4,)'P £ [(A)P) »
o R(=) T ke
_op (1-£)T2(2¢42) ot ort 5
(—k7) Q1) 27 [|F(f+1+i.§)\2i|F(f+1—i§)\2]’ 4us <1
x (1-£)T(2£+2)-exp(i¢n/2) ’ (29)
- +2)-exp(1icn 2
(_’“)' pranE [|r(f+1+1:)\2i| i 15)\] > 1

The projector tensor §;;

- IAc,-Ich in Eq. (28) comes from the Coulomb gauge k'E; = 0.

Similarly, the two-point correlation function of the crossing term between electric and magnetic fields in momentum

space is

Pe.ij(k. K\ 7) = (E;(k.7)B;(K', 7))
2n )

—

& (k = K )ng(ay/aT) - (=) x > _(=i)nmkle(ef) Al (k. )A; (k. 7)

A

=-——8(k — K')ng(w/aT)(=i)n,k' [5imkPC(k,T, 7))+ (62)™kSc(k . 7. T/):|

= T8k = K (o /aT) [ (5

with dimensionless variables

1

AP £AL
(A AP~

Pc/Sc(k,7) =

= kIS (K, 7.7) + gk "RPC(K 7. 7) |, (30)

_og (1-6)T2(26+2)
(=k) ™ e {

(~ke) - [1 =]

V3 e ¢
[C(£+1+i8)|? + F(f+1—i§)|2:| ’

['(2¢42)-exp(ifn/2)

4’ < 1
(31)

Another crossing correlation function of electric and
magnetic fields is (B;(k.7)E;(k',7)) = (E;(k.7)B;(k'.7))".
It is seen that it emerges as a regular and orderly form of
electromagnetic two-point correlation functions due to
definitions (15). These approximations will be used to

calculate the spectra in the next section.

C. Numerical results

Because of the analytical expressions of two-point
correlation functions of electric, magnetic, and crossing
fields obtained in Sec. III B and 4-potential A, in Eq. (14),
the spectral density and polarized density of the magnetic
field can be expressed as

(2+1)27

V3 —ré 2
[F(ff1+i§)|2iF(fil—i§)|2:|' 4t > 1

de(kyf) kg 37/
(K, K/
dink i | $HPrik K. T)
5
:27[[_]4i nBﬂpBi’
aH aTl aH
1 B VR P
dink Mm% 50 B.ij ¢

= 27 H* <aiH> g (Z’;) S (aiH) . (32)

Pp and Sy are defined in Eq. (26), and these expressions
also apply to electric field E and crossing term C.
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1. Spectral density and polarized density

In the case of the Standard Model, it gives a2 ~ 0.3 at the
energies of around 10'* GeV. The typical scale k, = a,H,
at the crossing horizon is set to 0.05 Mpc~!. The spectral
density and polarized density of the magnetic field, electric
field, cross term, and radiation field in terms of k/k, with
£ = 0.1 are plotted in Fig. 1, and the spectral density and
polarized density of the radiation field with é = 0.2 and
& = 0.3 are plotted in Fig. 2. Here the spectral density of
radiation means the sum of magnetic and electric spectral
density, and it also applies to the polarized density. The
numerical results are obtained from the analytical expres-
sions of 4-potentials A, in terms of the Whittaker function
in Eq. (A10). Lines with different styles stand for the
conditions with different values of 7/ H, and the black lines
represent the spectral densities while the red lines represent
the polarized densities. The lines with (T/H)* =5/6
represent the critical condition by 4u* = 1. The profiles
of spectral and polarized density with T/H >> 1 are similar
to those with T/H ~ 1, and the peaks always locate at
k/k, > 1, but the amplitudes are much larger, so we do not
plot these cases.

Figures 1 and 2 show that the spectrums vanish as k goes
to infinity, meaning the problem of ultraviolet divergence
no longer exists, which is often suffered in a zero temper-
ature condition [22]. The radiation energy density is mainly
contributed from the region inside the horizon. The
spectrums show the sharps similar to that in a black body,

(a) Spectral and polarized density of magnetic field

400 T
(T/H)*=0.7
-- -(T/H)? =5/6
< 300 -(T/H)* = 0.9 L
= (r/HP =10 ]
o5 i
<< 200 1
o
E 100} -
0
107! 10° 10!
k/k.
(c) Spectral and polarized density of cross correlation
400 ’ ’ g
<
T 300F ]
~
L—k
2lE
= 200} -
12
I 100F k
0 s
107! 10° 10!

FIG. 1.

which is consistent with observations on a cosmic micro-
wave background. The magnetic field and the electric field
contribute the opposite polarized density (noting the
positive and negative symbols in Fig. 1) due to the curl
asymmetry of the electric and magnetic fields. The peak of
the polarized density of radiation almost locates at the scale
of horizon but is a little smaller than that. This phenomenon
may come from the suppression on the horizon by the
scattering of the gauge field with an axionic inflaton. Based
on the discussions above, it suggests that the cosmological
horizon is not only important for dynamics of the scalar
field, but also is important for thermodynamic problems. In
addition, the last panel in Fig. 1 and the panels in Fig. 2
indicate that a large value £ means a higher energy density
and a stronger polarization of radiation.

2. Cosmic temperature

From the definition of spectral density, it is easy to test a
total form of the black body spectrum when a- = ar =0
(indicating £ = £ = 0):

d k\* 1
Pr_ anm? <> — (33
dink aH) exp (_g) 1

k
aH' T

and ds,/dInk = 0. The integral over logarithmic momen-
tum space corresponds to the Stefan-Boltzmann law

pr= % g.T*, where g, characterizes the number of

(b) Spectral and polarized density of electric field

Spectral density
Entropic density

400 F

5 4
wr/H

d.

d

dprp
dlnk?

0 o
107! 10° 10!
k/k,

800

600

7/H4

dlnk’ dlnk

ds,

400

dp,

200

0
107!

The spectral density and polarized density of (a) magnetic field, (b) electric field, (c) cross-correlation, and (d) radiation field

by setting £ = 0.1. The lines in each panel with different styles represent the density with different cosmic temperature; the black and red
lines represent the spectral density and polarized density, respectively.
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(a) Spectral and polarized density of radiation with ¢ = 0.2

1000 :
(T/H)? = 0.7

8001

/H!
D
3

ds,
dlnk? dlnk

400

dp,

200

1200 (b) Spectral and polarized density of radiation with & = 0.3

Spectral density
Entropic density

1000

800

/H!

ds,
dlnk

600 |

dp,

dInk?

400

200

0 \
107! 10° 10!

FIG. 2. The spectral density and polarized density of the radiation field with (a) £ = 0.2 and (b) £ = 0.3.

relativistic particle degrees of freedom. Then applying the
formula about energy density of radiation in Eq. (20), we
obtain the equation

dpp dpg n?
— [ dink =_gq.T"
Pr / " <dlnk+dlnk 307

It reveals that the equation above is about the variable 7/ H
and parameters £ and a7, which may only be solved by a
numerical method. To obtain the solution of T/H as
accurately as possible, the exact expressions of gauge field
A, in (14) in terms of Coulomb functions or Whittaker
functions are used. The relation of the ratio of cosmic
temperature to cosmic Hubble parameter 7/H and param-
eter &, ar is shown in Fig. 3. The parameters are set as
A~107M,, f~M, [6], and g, = 106.75 [23]. We see
that the ratio 7/ H is not sensitive on & (or a) when smaller

0
10 @ T 6
o 5.5
5
“ wiln "

LU TR b e T / 4.5
o
4

(34)

w0 “
35
3
2.5
2
) N "
10 1.5
0 0.2 0.4 0.6
ar

FIG. 3.

than a critical value and a stronger coupling constant of ar
means a higher cosmic temperature. This is because a
stronger interaction means a more intense conversion
process from potential to radiation, which makes it possible
to hold a higher temperature. On the other hand, larger
values of ay decrease the cosmic temperature. This may
come from a sufficiently heavy thermal mass my = arT
that suppresses the scattering between the scalar field and
the gauge field. So this is to maintain the temperature in an
appropriate range.

Another interesting phenomenon is that inflationary
temperature 7 never appears alone, but in the form of
a ratio to Hubble parameter H. So inflationary thermo-
dynamics is a physical process competing with geometric
dynamics, which is also mentioned in Ref. [16].

The equilibrium state requires 7/H > 20 [15], which
leads the first condition & > 2.47 at a7 ~0.3.

ar ( 0.2 0.4 O,%
8 > (b) ar = 0.20 £=0.01
N ar =030 £=0.50
N ar =040 - - - £ =0.80

TE ar=055---€6=100 17

107 107! 10°

(a) Contours of the ratio of cosmic temperature to Hubble parameter 7/ H in the ¢ — a; plane. (b) Relation between 7/H and &

(solid lines with different values of a scaled by the bottom axis) and @y (dashed lines with different values of £ scaled by the top axis).
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D. Adiabatic approximation

As seen in the previous section, the adiabatic approxi-
mation holds during inflation since the cosmic temperature
is nearly constant, which may be verified by the relation
|%| < 1. The derivative of the logarithm of 7/H over
cosmic time ¢ reads

1dinT/H T
e 35
H dr ar ¢ (35)

Another way to obtain In(7'/H) is from Eq. (34) which is
approximately analytically expressed from dpg/d1Ink and
dpg/dIn k. As mentioned previously, equilibrium condition
T/H > 20 yields the relation 4y*> > 1 or £ ~—1/2 +iu.
Thus, the adiabatic parameter with 44> > 1 can be approx-
imately expressed as

T H'z—ip(f+1+i¢) +cc]

or=~pr= F(O)ar I te (36)
with
i ) . .
+ c.c. + O(a}), (37)

where /(z) is the digamma function [24] and c.c. denotes
the complex conjugation. It is obvious F(¢) is a function
dependent on 7/H, and thus the adiabatic approximation
|| <1 holds only if H~'& < 1 which is equivalent to
the slow-roll approximation. So an intimate relation
between inflationary adiabatic approximation and infla-
tionary slow-roll approximation is shown. It also suggests
that adiabatic approximation naturally holds in the frame of
the axionic inflationary model. Figure 4 shows the evolu-
tionary trends of adiabatic parameter o7 as a function of the
e-folding number with 7/H = 25 and the same combina-
tion of parameters as that in Sec. III C 2.

E. Constraints from backreaction

The suffering on the backreaction problem often appears
in the case of a gauge field with zero temperature, which
may be overcome by an axionic inflaton dependent model
named the Ratra model [25]. This problem mainly comes
from the divergence of the ultraviolet band k¥ — oo, and a
conventional method to deal with it is setting a cutoff on an
ultraviolet band. In our analysis, the cutoff is removed by
introducing the ensemble average. The avoidance of the
backreaction problem requires energy density of radiation
p, and energy density of inflaton p, to hold the condition
pr < py = V(¢) during inflation, or exactly

T T T T T :
® Nong/= 60.9
E 0 0=1 e7/
£ 10 !
g |
®
-
@
)
B or

b
_%J F
£ o
B107F
g
<
N :
1 1 1 1 1
10 20 30 40 50 60 70

FIG. 4. Curves of 07, dp, and 6x with equilibrium condition
T/H = 25. The horizontal dotted line is the critical value of the
parameters with a unit value, and the vertical dashed line is the
e-folding number at the end of inflation quantified as slow-roll
parameter € = 1.

_Pr _PBtPE
py  3H*M;

n’g, T* A* ¢
=30 FTM@ [1 —cos<f>} <1, (38)

where the natural potential (2) is applied. If 6 > 1, it
assumes that the cosmic domination by inflaton is broken
down and the universe is dominated by radiation. Another
parameter is the ratio of the source term to the Hubble
friction term

F

pelf

3H¢

K = <1, (39)

which is used to characterize the instability of the
inflaton field. If 6x > 1, it means a suppression of the
gauge amplification. So, it requires the conditions dg < 1
and 6gx <1 during the inflationary era due to the
consistency of constraints from backreaction, which
leads another condition ¢ < 6.52 by setting A ~ 10‘3Mp,
f~M,, g,=106.75, and azT = 0.3. The parameters
Or and Ok as a function of the e-folding number with
T/H = 25 are plotted in Fig. 4 as well.

IV. SCALAR AND TENSOR PERTURBATION
FROM THERMALIZED GAUGE FIELD

In this section, we will have detailed discussions about
the spectrum of scalar perturbation, tensor perturbation, and
their crossing correlation.

A. Solutions of scalar and tensor perturbation
in terms of integral

The scalar perturbation related to the gauge field is
obtained by varying the action with respect to ¢,
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V_%p pw. (40)

[\/—gﬂb ﬂ¢] E 4f 12

\/— ox

The scalar fluctuation perturbed by the gauge field can be
studied through the equation in momentum space [14]

(:22 +k* - —) (abdgp)

f/" (k-p.0B(p.0).  (41)

Then the equation of motion of the tensor perturbation from
the Einstein equation reads
|

Bk -p.7)

7, 2 2
512+k _T_ (ahu) Wnij (k)Tmn(va)' (42)

P
Here Hij,mn(k) = Pim(k)Pjn(k) _%Pij(k)Pmn(k) is the
transverse traceless operator, projection operator P;;(k) is
defined in Eq. (6), and T,,,(k) is the spatial component
of electromagnetic energy-momentum tensor. The details
of the derivation of Egs. (41) and (42) are given in
Appendix C. By decomposing tensor perturbation A ; into
polarized state

ik, 1) = b (k. 2)esi (k) + b (k. 7)e; (k) (43)

and applying Eq. (BYS), then Eq. (42) becomes

Ej(p.7)+ B(k —p.7)B;(p.7)]. (44)

Here, we have also used the symmetric contraction relation g,,,I1;;”" = 0 of the transverse traceless operator.
Equations (41) and (44) can both be solved via Green’s function method:

adp(k, ) = g (5)by + ()b}, + % / dnG(zm)a (1) /

ahy(k,7) = v (2)éx + vy (1)2}
P

+— (k) / dnGi(r.n)a> ()T (k. ),

d3p

(27)?

Ei(k —p.7)B,(p.7). (45a)

(45b)

where u), and vy are scalar and tensor perturbations from vacuum fluctuation and G(z,7) is Green’s function [26,27]

1
Gi(z,n) = B

[(1 = K22n) sin k(z — ) + k(z — ) cos k(z — )]0z — ). (46)

The perturbations contributed from vacuum fluctuation and the sourced thermal axionic field are statistically
uncorrelated, and therefore, the total spectra can be simply obtained by the sum of them. Here, we are mainly concerned

about the latter.

B. Spectrum of scalar perturbation

In the case of single field inflation, curvature perturbation R =

(H/$)d¢ is obtained by solving Eq. (41). Then using

Eq. (45a), the sourced two-point correlator of R corresponds to

(R(k.7)R(K'.7)) = Zz (;fz/d’?le(T n)a (771>3'/dﬂsz’(T,ﬂz)a(ﬂz)S/éﬂI; (;iﬂ)
(Ei(k - P,’h)Bi(P”h)Ej(k/ - qnz)Bj(q,n2)>. (47)

The ensemble average on the right-hand side of the equation contains four field operators, and it can be decomposed into
three terms with two ensemble averages of each due to the Wick theorem [28]:

(Eik = p.n)Bi(pn)E;(K - q.m)B(am) ) =

#
#

i(k —p,n1)B;(p, ’71)><Ej(k, - q.m)B(a, ’72)>
Ei(k = p ) Bk = p.na) ) (B (o) B (e m2))

Ei(k - P,'71)Bj(q,ﬂ2)><gi(Pv'71)Ej(k/ - q,ﬂ2)>- (48)
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Equation (48) contains an unequal time correlation of  observable cosmic scale k, i.e., I’y < k. In fact, the value of
two fields. At equilibrium, a two-time correlation function  I'4 does not generate significant observational effects, as
decays exponentially as a function of dissipative coefficient =~ mathematically shown in Eq. (D8). On the other hand, the
[27]: (X;(p.m)X(q.12)) = (X;(p.m)X',(q.n))e Tal1="l, first term on the right-hand side of Eq. (48) contains only
where 7 = min (i, 77,) and T, is the dissipative coefficient  the disconnected diagram proportional to 5(k)3(k’), and
of the gauge field. Generally, I', relates to quantum effects,  this term could be ignored. Considering the symmetry of 7,
such as the Schwinger effect [29], and we assume the  and 7, and the superhorizon limit k — 0, then the corre-
freeze-out scale of the Schwinger effect is larger than any ~ lation function (47) corresponds to

|

. A H*>a?H? 1 0 sin ki, — ki, cos ki, m . sink'n, — k'n, cos k'n,
R(k,7)R(K’, =2 d 3 d 3
Rk AR ) =25 s [ gy SIS ) [ gy, SR RO g5

e~ 2Lalni—n| d3p d3q 2(27)08% (k + K/ S3 —4 4 2 4
€ (2”)3 (2”)3 (ﬂ:> ( + ) (p+q)a (’71)‘1 (’72)7]217

) {nB(w\k—p\/aT)nB(wp/aT)[PB(p"72)PE(pv772) + Sp(p,12)Se(p.m2)]
+ng(w,/aT)[Pi(p.my) + S2(p. )]} (49)

Here we have set 7, < 1, and the factor of 2 in front of the right-hand side comes from its opposite situation 7, > 7;. Notice
that the integral over p of ng (w|k_p‘ /aT) diverges as long as k > 0, and then the thermal mass should be taken into account

in the Bose-Einstein distribution function as shown in Eq. (23). The details on computation of the scalar correlator have
been shown in Appendix D, and we give only the final approximate results here:

(R(k,7)R(K',7)) ~ 27 (%) 2 <a°‘;4”> 2 (Mi) 2%530; +k')- <g+§(5 - 81n2)%>

(1+)2(20+2)
(26 +1)2-2%

2 eZﬂf e—2n’§
<|r<f+1+i:>|4+|r<f+1—1.»:>|4>
()T~ 40) 255 65 -4+ 1)eer +2¢(5-40) -2, 4 <1

%) 7r<7)e—\/4ﬂz—1/2 |:26"7Li7(°7“7)—f(7) + 24‘(7) _ 2] , 4”2 <1

X

T —1

N4”2 szach2 H\?21 4 ,
(7)) () () woeer)
(%)S_MF(S _4f)[2_(5—4f)e—ar +¢(5-4¢)-1], 4u* <1

AN (50)
(g) (72 "e o +¢(7) - 1], 42> 1

(14+2)2(2642)
(20 +1)2-2%

2 62”5 e—2n’.§
(IF(f+1+i€)I4+IF<f+ I —i€)|4)

with y? defined in Eq. (13).

It is still not convenient to obtain the numerical results from Eq. (50) if # > 1 or T/H > 1. The limit T/H > 1 leads the
approximations ¢~ —1/2+iu with x> 1. The asymptotic form of Gamma function [24] |['(x+iy)|=
V2zx|y[~ (/2 e=7l31/2 (as |y| > 1) helps to simplify the expression

62;15 e—2m§

TZT1+QF T +1-i0)

|F(2f+2)|4< 4> ~ 162 (% + 1), (51)

Because of the definition (18), the thermal sourced spectral density function of scalar perturbation from Eq. (50) could be
simplified as

P z% (%) ' (5) ’ <Mip> ) ﬁ (%% + DI(T)2Temr + ¢(7) — 1], (52)

&
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FIG. 5. (a) Curves of ratios Py /Py, P\ /P, Pﬁf)/’ng), and =P/ /PYPY 10 € by setting A = 1073M,, f = M,, & = 0.01,

A

and a2 = 0.3. (b) Curve of tensor-to-scalar ratio r/16¢ with the same parameter combination. The areas I-IV from left to right are cold
regime, equilibrium regime, thermal regime, and backreaction regime, respectively.

Figure 5(a) plots the ratio of the thermal sourced scalar
density spectrum to vacuum spectrum Pg) / Pg), where

(v) _ _ H?
PR T 8xteyMy

vacuum. The intersection point of the curve and horizontal
unit line locates at £~ 4.0, or T/H = 105, by setting
A=10"°M,, f =M,, ¢ =0.01, and a7 = 0.3. The ther-
malized condition is almost the same as the result in

is the scalar density spectrum from the

Ref. [15], meaning the thermalization of axionic inflation
happens.

C. Spectrum of tensor perturbation

The correlation function of tensor perturbation contains
two parts: correlation of the same polarization state and the
opposite polarization state. From Eq. (44), the tensor
perturbation correlator of polarization state A and A’ reads

(k. Dy () [ anGuemam) [ anGete.m)atr)

~h 2
M,,a

.. 3 3 ~ A~ N A
e ger (i) [ B [ S (B0 =) By 0B = p.o)B, 0.1 )

+2<Bz(k B nl)Bj(pv nl)Em(k - P, ﬂz)En@, ’72)> + <EiEjEmEn>:| .

(53)

Here we only show the computations containing four magnetic field operators as an example. Applying a similar
approximation in Appendix D, the contraction in Eq. (53) becomes

eij(k)eﬁ’,’”*(k)<l§i(k —-b 'll)gj(pv nl)Bm(k 2 WZ)En(p’ 772)>
& €ﬂ<k>€£(k)€ﬁn*(k)ef{*(k){”B (w|k—p\/aT)”B(wp/aT) [(5im - i)iﬁm)PB(pv n) + i’/limli)ZSB(pv ’7)}
+n]23(wp/aT) [(5jn - ﬁ]f)n)PB(p7 ’7) + i'ljnlﬁlSB(pi ’7)] }
. s\ 2
= [nj(w,/aT) + ng(wy_p|/aT)ng(w,/aT)] K@w - Esngel(z—z )(’1> Py(p.n) +cos’0(1 = 6,1)S5(pn) |, (54)
with 7 = min(;, 7,). In the last step, Eqs. (B8)—(B13) have been applied. Note that if A = A/, the term cos® (1 — &, ) in the

last step vanishes, and if A # A’ (or 2 = '), the term sin? fe!*~#*)¢ vanishes after integrating over ¢ since [?” dpe*2¢ = 0.
So Eq. (54) contains the important information about polarization correlation.
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With the help of the discussions above and taking the remaining two terms on the right-hand side of (53), it yields the
correlator of tensor perturbation with the same polarization mode

872 H* 1

<ﬁ,1(k,r)fzj(k’,r)> S sy

5 Mk

(2= £)2(2¢ +2)|?
(204 1)% - 2%

elr§ e—n§ 2
(W 1P e +1- i£>|2>

(5) 7 T@ -4 e 1 c4—d0) - 1), 4 <1
) 6 (55)
(%) L(6)[27% " + £(6) — 1], et > 1

and the opposite polarization mode

(2 - Or2(20 +2)P2

i k) (26 +1)2-2%

9 MK

R n 1672 H* 1
(hak, 2K 7)) ==

et e "¢ 2
(|1"(f 1+ T +1- i§)|2>
<%) 4—4£F(4 — 4L\ 2" L (4 —4f) = 1], 4P <1

6 . (56)
(g) 0(6)[2 % +£(6) — 1], 42 > 1

Repeating the asymptotic analysis in Sec. IV B, we have the approximate spectral density of tensor perturbation with the
same and the opposite polarization modes

Py e (2) 6 <Mip>4 ﬁ (&7 + 1PT(6)[2- % +£(6) — 1] (57)
and
P “2 G) 6 (Mi) 4 ﬁ (&2 = 1)°T(6)[2 %~ + ¢(6) — 1]. (58)

Figure 5(a) plots the curves of ratios P P / Ph and P& i / Ph , where Ph is the spectral density of vacuum tensor

2M2
perturbation. It is clear from the figure or from Eq. (56) that 79 =0if&=0. The critical value £ or 7/ H to thermalize the

geometrical tensor perturbation is slightly larger than that of scalar perturbation, and we still use & = 4.0 as the critical value
of thermalization.

D. Spectrum of crossing correlation between scalar and tensor perturbations

The correlator between scalar and tensor perturbations reads

Rk D) = 175 [ et )
3 3
< [ anuemameiege) [ s [ B BBk - pn)
< Bu(@. 1) By (6 = q.2) + Ep(a. ) En(K' = q.)| ). (59)

The part with the contraction becomes

) [ & [ @al(Eim)Ba(@)) (B =B, ~a)) + (Ew)B k- @) Bk ~p)B, (@)
- / & pey (K)[=(Bu = Pibn)Sc(p) + ninih'Pe(p)]

NG — PiPn)Ps(P) + i p'Sg(p)][ng(w,/aT) + ng(w,/aT)ng (0k—p|/aT)]

123502-12



EQUILIBRIUM THERMODYNAMICS OF AXION INFLATION

PHYS. REV. D 108, 123502 (2023)

= /d3p B sinzeei’“/’(SCPB + PcSp)(p) +cosO(ScSg + PcPg)(p) ["%(wp/aT) + nB(wp/aT)nB (60|k—p\/aT)]

= /d3p cosO[ScSp + PCPB](p)nB(a),,/aT)nB(a)|k_p‘/aT).

(60)

In the second step of the equation above, Egs. (B12) and (B13) have been used, and, in the third step, integrals [?* dpe'? =
fé’ dfsin @ cos @ = 0 have been used. Then the correlation function (59) is written as

)> 27 H3 H*a. M, 1

m=1 3X
47’ T 2H3H2aM 1 3
R——ar—| —5— =& (k +
o \"H) M3y 1 &

(6)[2 6™ + £(6) — 1].

Express the spectral density of the scalar-tensor crossing
at limit 7/H > 1 approximately

P o _% (%)Sa_ﬁ (Mi) “P6)2-%er + ¢(6) - 1.

€ p

(62)

It is also obvious that the crossing correlation comes from
the one-loop renormalization coefficient ay or thermal
mass. Figure 5(a) also plots the curves of ratio

P\ PR

E. Numerical results of tensor-to-scalar ratio

Because of the equation mentioned in Eq. (45), the
perturbations consist of two parts: vacuum and sourced
from the thermal gauge field. The vacuum part is expressed
as the standard form

H? » H?
=< k) =55, (63)
8 eM;

where ¢ = ¢/ (2H*M3}) is the slow-roll parameter con-
trolled by the axionic inflaton. The sourced spectral density
P (k) and P (k) are obtained from Egs. (50) and (55).
The quantum and thermal parts are statistically uncorre-
lated, so the total spectrum could be simply described by
the sum of them. Then the tensor-to-scalar ratio contributed
from the vacuum and sourced parts reads

[(4—4¢)2-44emar 1 (4 —47) - 1],

=== I _Fk+k) / dxx®(S¢Sp — ScSg + PcPg — PcPg)(x)

_ B amm(H/T)xg=m(H/T)(\/1P+T k) Ze—n H/T)x

k). £(1=2)(2=2)| | T@ee+2) |*
D2+ 1+iET( + 1 —ig)> | (26 +2) 27
4 < 1
. (61)
4> > 1
L P5V<>+m<k>
PR (k) + PR (k)
[1 Pl Pﬂ?<k>/v>n O] ——
1+ PR (k) /PR (k)

In Fig. 5(b), we show the line of tensor-to-scalar ratio r
corrected by thermal effects as a function of £. It is seen that
the ratio r/16¢ tends toward 1 if £ < 3.0, which indicates
that no thermalization has occurred, and the ratio drops
dramatically when & > 3.0. At the threshold of thermal-
ization £ = 4.0, the ratio r/16¢ falls to nearly 1/e. Four
regions mentioned in this paper are labeled I-IV from left
to right in the figure. Tensor-to-scalar ratio r is mathemati-
cally suppressed by

5.12H

N O3H/T. £z 40, (65)

Reference [15] has shown that r is suppressed by H/2T
when thermalization of axion fields happens. In addition,
Eq. (65) is also a typical result for warm inflation in the
weak dissipation regime [30,31]. The slight difference may
come from the difference of the approximation method.
Another interesting phenomenon is that when & < 3.0, the
tensor-to-scalar ratio r ~ 16¢ is the same as that in cold
inflation, although thermal effects are taken into consid-
eration. This indicates that only when the value of & is large
enough or the cosmic temperature 7 is high enough will it
have a significant impact on the cosmic perturbation, so the
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cold axion inflation is still a reasonable model from this
respective when & < 3.0.

V. CONCLUSIONS AND FURTHER DISCUSSIONS

In this paper, we investigate a model of axion inflaton
interacting with the U(1) gauge field through the Chern-
Simons term. Two thermal effects have been introduced:
ensemble average and thermal mass. The former leads to a
Bose-Einstein distribution of the gauge field and eliminates
the divergence at a short wavelength. The latter makes
the gauge field obtain an additional mass in the equation
of motion via one-loop correction. Larger a; can reduce
the cosmic temperature 77 due to a suppression on
the thermal effect. Theoretical and numerical calculations
confirm that cosmic temperature 7 and Hubble parameter
H always appear in the form of a ratio 7/H, meaning a
competition between the thermal effect and the geometric
effect. The constraints from the thermal equilibrium con-
dition and backreaction predict a parametric range of
247 < £ < 6.52. In addition, we also confirm that the
threshold of field thermalization is £ =~ 4.0. Another impor-
tant conclusion is that the adiabatic approximation always
corresponds to a slow-roll approximation, which may
indicate that cosmic temperature tends to a constant during
the inflationary epoch. At last, Green’s function method is
applied to calculate the thermal sourced spectral density of
scalar and tensor perturbation by assuming adiabatic
temperature changes. Analytical expressions show that a
larger value of the parameter £ enhances the cosmic thermal
effects and increases the sourced spectral density of scalar
perturbation and tensor perturbation. In addition, a new
effect from thermal mass is the appearance of the crossing
correlation of scalar perturbation and tensor perturbation,
which may be a potential method to distinguish inflationary
models. Theoretical calculations together with numerical
analysis show that the tensor-to-scalar ratio r is suppressed
by approximately 0.3H /T if the axion is thermalized, but if
£ < 3.0, the model is consistent with the cold inflation
model even if the gauge field is already thermal.

Let us now discuss the similarities and differences
between the present model involved and the warm infla-
tionary model [1,2,30-34], which may offer a better
understanding on thermal effects of the early universe.
The similarities between the two scenarios can be sum-
marized as follows:

(i) They both predict an equilibrium thermal bath with
T/H > 1 and the energy density of radiation to
satisfy the condition p, < V.

(i) Both cosmic temperatures tend to a constant during
the inflation era, which means a holding on adiabatic
approximation.

(iii) They both show an enhancement on scalar perturba-

tion from thermal effects with respect to cold in-
flation, leading to a suppressed tensor-to-scalar ratio.

(iv) Similar to the conclusions in this work, the cosmic
temperature in warm axion inflation is still
controlled by the coupling strength a., despite the
specific relationship depending on a. being differ-
ent [16].

(v) The final result for the tensor-to-scalar ratio in
Eq. (65) is also typical of warm inflation in the
weak dissipation regime [30,31]. This is a clear
indication that the model can be an explicit warm
inflation realization. This indicates an intimate
relation between the scenarios of cold inflation
and warm inflation when a thermal bath is taken
into account, though more study in understanding
this connection is worth being carried out in the
future. Additionally, the generation of a thermal
radiation bath during inflation may also claim that it
provides a realization of warm inflation starting from
a vacuum state.

The similarities discussed above can be summarized as
follows: in the two research schemes, there is almost no
difference in thermodynamic properties, and temperature
has an impact on cosmological observations in the same
form. From this perspective, it is reasonable to study the
thermodynamic effects of the very early universe based on
the fundamental principles of thermodynamics.

The differences can be summarized as follows:

(i) Mechanisms for generating the thermal bath are
different. Warm inflation suggests that the thermal
bath is produced via thermal damping, which is
described by a dissipation term coupling to the
velocity of inflaton, while, in this paper, the thermal
bath is from the scattering between the axion and
gauge fields, which is described by a Boltzmann
equation [15]. But, a similarity could be found that
the generation rates of the thermal background in
two models are both dependent on the velocity of the
inflation field.

(ii) Perturbations are generated from different mecha-
nisms. In warm inflation, the field perturbations
originate directly from the thermal bath which is
driven by a thermal fluctuation. But, in this work, we
still take the quantum fluctuation into consideration
and regard the gauge fields as a sourced thermal
fluctuation.

(iii) Warm inflation predicts a direct decrease of temper-
ature without reheating, but we do not summarize
any similar or opposite conclusions in this paper,
which needs further study on this problem.

Although there are still some inconsistencies or issues

that need to be clarified, the above similarities are enough
to help us understand the thermal effect: this effect may be
an unavoidable cosmological phenomenon in the early
universe and may compact on the observational parameters,
such as the tensor-to-scalar ratio. To better and further
understand this phenomenon, it is worth introducing new
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models, which is also what we are preparing to do in the
next work.
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APPENDIX A: COULOMB FUNCTION WITH
COMPLEX PARAMETERS

The Coulomb function is obtained by solving the
ordinary differential equation

dzw+(1—%—w>wzo. (A1)

dp? P s

This equation often appears in the model of a hydrogen
atom in terms of the Schrodinger equation, in which the
parameter ¢ is required to be a non-negative integer as
¢ =0,1,2,.... But here, parameter ¢ is a complex number
with ReZ > —1/2, and related properties are cited from
Ref. [35]. The two linearly independent solutions of
Eq. (A1) are Coulomb functions F,(n,p) and G, (1,p)
or H%(n.p) = Ge(n.p) £iFs(n,p), with asymptotic
relation

HE(n,p) ~exp {+ilp —nn(2p) - £7/2 + 6,(n)]}
& (L+in\ (£1\F T(=¢ Fin)
Z( k )(2ip> L(-¢ Fin—k)’

k=0

lp| > 1. (A2)

Phase o,(n) is defined as

o,(n) = % InC(Z+1+in) —InT(Z+1—in)] (A3)

—in)\ 1/2

eiocln) — (L"ﬂ“ T”)> " (A4)

I+ 1+in)

where I'(z) is the Gamma function. Notice that the phase

o,(n) is always a real number when 7 is real. The limit form
of the Coulomb functions reads

[C(Z + 1 +in(Z + 1 —in)]?

F , — 2 7+1
¢(n.p) Yexpn/2r2e 12) )
Y D)t & Celn)p”™! (AS5)
k=0
and
¢
G,(n,p)—"———, as 0, A6
where the Gamow factor writes
20 ™R[0(L 41 +in)D(£ 4 1 —in)]2
C = . A7
() a1 (A7)
A special case of £ = —1/2 approximates
o 1/2 ©
F_ , — 1/2 B k’
1/2('1 ) <exp(2m1) T 1) P ; C_1/2.kP
10 =1, (A8)
and
G_ , exp(2zn) + 1

F_i)2(n.p)

Coulomb functions also relate to Whittaker equation

HE:(n.p) = (F i)fenn/ziia/(n)wm , +%(:F 2ip).  (A10)

APPENDIX B: VECTORS AND TENSORS

The transverse-traceless projector is defined as

= P, (K)Pj, (k) —lP,»,-(k)Pmn(k),

(k) =5 (B1)

Hi j,mn(k)
where P;;(k) = 6;; — lAc,-lch is the transverse projection
operator with unit vector lAci = k;/k. The polarization
vectors are generated from x and y direction unit vectors
as €' (k) :%(efvj:ie;), based on which polarization
tensors read ejj(k) = e (k) ® €7 (k) and € = K. Tt is
clear that it holds the relations (contraction over repeated
indexes)

k"efE =0, nijkkjéi =F ikéfﬁ, efegt =0, 6;‘-‘:6;; =1,
(B2)
Sijefi (k) =P;(k)ef(k) =0, P;,(k)eh,(k)=¢/, (B3)

and
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(B4)

:()'2

Z € Oijs Zzle

2
where o, is the Pauli matrix along the y direction. Based
on (B3), it also yields

= —11;j3,

Hij,mn(k)e?j(k)zefnn(k)7 P;j(k)P;;(p)=cos®. (BS)

Then the summation over polarization state 4 of two
polarized vectors is

Zml mz Cﬁ—Zé‘ml n12
A==+
+Ze 1—C5)
2(C++C Zeml mz

—C—)Zk;ﬂ' (€;°)

C,ﬁ-C,l)

= (€ € 4L (CL=C ) o),

(B6)

where C; is any complex variable dependent on polariza-
tion state A and A = —A.
The tensors could be written in the form of matrices:

1 £ 0

eiij(k) =+ -1 0],
0 0 O
Py Puby Pib:

pibj= | bxby B3 Db |-

pube Byb. P2
0 ks —k

Mk = | <ks 0k (B7)
ky —k; 0

In a spherical coordinate system, p' read

px = sinfcos @, p, =sinfsing, p, = cosf. Thus we
obtain the following equations under contraction [36,37]:

e (K)nyjmp™ = e5;67 =0, (B8)
NijmP"Nijuk" = PR = cos 6, (B9)
ei;(k)p'p! = (p, £ip,)* = e sin’ 0, (B10)

. 1 o
e, (k)el* (k)P (p) = 6500 — Esinz gel=4w  (B11)

, 1 o
e;(k)ey” (k) pipy, = 5 sin® 04—, (B12)

i€} (K)el (K)n;p/ = cosO(1 = 5,).  (BI3)

APPENDIX C: DERIVATION
OF EQS. (41) AND (42)

Starting from Friedmann-Robertson-Walker equation (3)
in term of cosmic time 7, the equation of motion of axion ¢
from Eq. (40) in coordinate space reads

d? a, A
g7 H3H -9 +v4,¢_7 i(X, 1)B;(x, 1),

where V ; denotes the derivative of potential V(¢) with
respect to field ¢, i.e., dV/d¢. Axion inflaton could be
composed into three parts, the quantum background ¢, the
quantum fluctuation 6¢,, and the thermal fluctuation S¢r.
Following the main idea of the present paper that gauge
fields perturb the inflaton via thermal effects, ¢y and 6¢,
are treated as the normal case in cold inflation by equations
without sources while the equation of d¢¢ is perturbed by
the thermal gauge fields. Then we obtain three equations
about axion inflaton in momentum space:

(C1)

d2
d? k2
[d2+3H—|— +V¢¢]5¢q—0 (C2b)
and
d? K2
{d2+3H+ +V¢¢}5¢T
d*p N
=7 / i(k=p,)Bi(p,1). (C2c)

Substituting the definition of conformal time dz = dr/a
into Eq. (C2c), it arrives as

d2 a’
|: 5 + k2 + (12V dp —i| (115¢T)

dr
3p
=5 Gt

For later convenience of expression, we omit the subscript
T marked in Eq. (C3) and 6¢ specifically refers
to the thermal perturbation in this paper. If neglecting
the contribution of slow-roll approximations, namely
a=-1/(Ht), V 4,/H*~0, and a"/a =2/7*, we have
the leading order of Eq. (C3) as shown in Eq. (41).

i(k=p.7)Bi(p.7).  (C3)
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Tensor fluctuation perturbed from thermal gauge fields
could be obtained by Einstein equation

d? k7. A
[@ +3H + ;] hij = 16zGIL"(K)T (k. 1), (C4)
where IT,7" (k) is the transverse traceless operator along
direction k with symmetric contraction relation g,,,,I1,7" =
0 and T,,(k,7) is the energy-momentum tensor of the

primordial electromagnetic field that appeared in Eq. (20).
|

<E,-(k —p.m)E;(k' —p. 'Iz)><B;(Pv m)B;(q. 772)>

o 1 (@ pl/aT ) (0, /aT) - | (8 = (k= p),(k = p); ) Ik = pPPe(k —p

Repeating the calculations about thermal sourced scalar
perturbation, we get the motion of equation of sourced
tensor perturbation in terms of conformal time, which is
shown in Eq. (42).

APPENDIX D: DETAILS ON THE
CALCULATIONS OF SCALAR CORRELATOR

The computation of the scalar correlator starts from
Eq. (47) at the superhorizon limit, and the second term in
Eq. (48) reads (contraction over repeated indexes)

,T) = iﬂijm(k -p)"k - P|ZSE(|k - P

,r)}

: [(5ij - ﬁiﬁj)pZPB(va) + i’?ijnf?”PZSB(P»T)] = ng (w\k—p\/aT)nB(wp/aT”k - P|2P2

A1+ 6=p)pi k= p)p | Pr(k —p

)Py(p.7) + (k= p)ip'Sp(k —p

)S5(p.7) |

= nB(a)“(_m/aT)nB(co,,/aT)p2[(2p2 + k*> —4pkcos@)PgPg + 2(p — kcos 0)|k — p|SgSg]
= 2”B(a)\k—p|/aT>nB(wp/aT)p4[PE<p7T)PB(I)’T) + Se(p.7)Sp(p.7)] + O(kcos 6. k?). (D1)

Now recall Eq. (49). Define z, = —k,, z, = —kny, cos@ = p;k', x = p/aH, and k, = k/aH,

() 5] (42 ()

%

_53(k n k/) /oo de SN Zp — Zp COS 2o e—(r/k)Zz
0

X /ZZ dz, (sinz; — z; cos zy)el/Ka . 27 /ﬂ d9sin9/00 dxx®
0 0

0

x {ng(@k—p|/aT)ng (x)[Pp(x)Pr(x) + Sp(x)Sp(x)] + ng (x)[P2(x) + S(x)]}.  (D2)

We first calculate the integral including ng(|k — p|) for condition 4x* < 1:

L4p? <1) = A” dé sinQAoo dxx6nB(a)‘k_p|/aT)nB(x)[PB(x)PE(x) + Sp(x)Se(x)]

= / " dosing / T dex® 3N e MV, o0 e H/ TS [Py (x) Py(x) + S (x) S ()]
0 0

n=1 m=1

~2 / ” dxx® Z Z e~ (mtm)(H/T)xe=n(H/T) WAk =k, [P (x) Pr(x) 4 Sp(x)Sp(x)]
0

n=1 m=1
T\>% £+ DI22¢ +2))? e e 27
—\y F(5_4’/ﬂ)( ) (2 2f) T T4

H (204 1)*-2 T+ 1+i* T+ 1-if)

25705 =44, n + 1)e " HINWWHh=k,) (D3)
n=1

In the second step of the equation above, series expansion
Lo e (D4)
ef—1 l—e* o
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has been used. In the third step, integral Eq. (ES) and its approximation have been applied. In the fourth step, Egs. (E8) and
(E9), and electromagnetic correlators (27), (29), and (31) have been used. Since the series converges rapidly as n > 1, itis
safe to keep only the first term in series at the superhorizon limit

_aT

n(H/T 2-k,
sz+n54f n(HIT W) oy N S5ar (Ds)
= (

n=1m

Similarly, the second integral in Eq. (D2) for 44> < 1 reads
L4p* <1)= Aﬂ do sin@/ooo dxxSnd (x)[P2(x) + SZ(x)]
o © T\ 5-4¢
=2 [ dxx® —n(T/H)x(p2 S’ (x))=2(—] T(-4¢
7 @St pn) £ 520 =2( ) 15 = 40)

n=2
(¢ + 1226 +2))7
(26 +1)%- 2%

e o2ne
(lw Firaf re T i§)|4> €4 =52) 1] (D6)

and

Pl > 1) = A " d0sin 0 A " dex g (@pp/aT)ng (x) [P () P (x) + S5(x)Sx(x)]

7 2 2
+ )P + 20y w23 ) T | E IR

et e 27 e* Li;(e7) — £(7)
| (|r<f+ EETIAr if)l“) [ o1 e l]’ (&7)

where Li (z) is the polylogarithm function [see Eq. (E10)]. Finally, from Egs. (E1)-(E4), the double integral over z; and z,
in Eq. (D2) reads

. 2 4+L(5-8In2)+ O((T/k)?), T/k<1,
o) - Z;
/ dzzwe‘(r/km/ 2dzl(sinzl—zlcoszl)e(r/"ﬂlz (D8)
0 ZZ 0 4
Z+H+O((k/T)?), I'/k>1.

Substituting Eqgs. (D3), (D6), and (D7) into Eq. (D2), we can get the two-point correlation function (50) sourced from
thermal Abelian gauge fields.

APPENDIX E: INTEGRALS AND SPECIAL FUNCTIONS
The following integrals have been used in this paper:

2 +e“[=(2 + ax + @’x) cosx + (a(a® + 3) = (a® 4 1)x) sin x]

X
/0 (siny — ycosy)e®dy =

{ (2 —2cosx —xsinx) + a(=2x —xcosx + 3sinx) + O(a?), a<1 (E1)
NeaX s
(2—2cosx — xsinx) + 1 (sinx —xcosx) + O(a™?), a>1
/°<>dx(sinx—)5ccosx)2 :1, (E2)
0 X 4
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/00 dxx~>(sinx — x cos x)(3 sin x — x cos x — 2x)
0

1

(5-81n2), (E3)

(o]
/ dxx>(sinx — xcos x)(2 —2cos x — xsinx) = z
0

4 . /2 IR
/ d@ sin eV~ —2kx cos O+k*+p

0
1

" kx
—e VIR (1 (e 4 k7 ) |

~2e Ml VRN L O u?), k<1, (E5)

b3
/ dOsin O cos 96—\/x2—2kx 08 O+ k> +u>

0

[ VO (1 (x = k2 + 42

2
~ —g—e‘xe‘(\/k2+”2‘k>, W<, (E6)
X

and
+oo Sinzz — z3€08 73 [ %3 .
/ dgy—2 S 77293 73 3 / ' dz,(sinz, — 25 c0S 25)
0 23 0
2 177[
d i - =—. E7
XA zy(sinz; — zy cos z;) 2880 (E7)

An integral related to the Gamma function is
+o0
/ dxx*~le ™ = a=T'(s), (ER)
0

and the Hurwitz zeta function is defined as [24]

C(S’a):iwla)s- (E9)

m=0

The polylogarithm function is expressed as

(E10)
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