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Thermal effects from the ensemble average and thermal mass are analyzed in the model of axionic
inflaton interacting with U(1) gauge fields through the Chern-Simons coupling ∝ ϕFμνF̃μν=f under
equilibrium. The ensemble average eliminates the divergence of radiational spectral density. The cosmic
temperature is controlled by the parameter ξ ¼ ϕ̇=ð2HfÞ and the renormalization coefficient αT . It is found
that the adiabatic approximation is always corresponding to a slow-roll approximation in the (quasi–)de
Sitter universe. The equilibrium condition and backreaction constrain the parameter in a range of
2.47 < ξ < 6.52, and the axion becomes thermalized if ξ ≃ 4.0. Thermal mass leads to the correlation of
scalar perturbation and tensor perturbation, which may be a potential method to distinguish different
cosmological models. In addition, the tensor-to-scalar ratio is suppressed in a form proportional to H=T if
the fields become thermal in the Standard Model. On the other hand, the condition ξ < 3.0 is the same as
cold inflation, i.e., r ≃ 16ε, although thermal effects are taken into consideration.

DOI: 10.1103/PhysRevD.108.123502

I. INTRODUCTION

Inflation theory has successfully explained the primordial
power spectrum of cosmic perturbation and is consistent
with observations. The most common scenario is an expo-
nential expansion through a cold state with an era of scalar
field slowly rolling down a flat potential, and reheating
occurs at the end of this stage. But cold inflation does not
involve the thermal effects directly, and one of themain tasks
of current cosmological research deals with the thermody-
namic problems of the early universe. An alternative scheme
is thewarm inflationmodel [1,2] in which a dissipation term
couples to a thermal bath of particles to realize the transition
from potential to radiation. Another objective in warm
inflation is the realization of an exponential production of
radiation in order to overcome the exponential dilution
without spoiling the slow-roll stage. For this purpose, the
thermalized axion inflation model is introduced in which
the gauge fields Aμ simply couple to an axionlike field ϕ
and the gauge fields are considered as the thermal bath [3].

This model of inflation driven by an axionlike particle, often
dubbed as natural inflation [4,5], is one of the most well
motivated models of inflation to reheat the universe [6,7]. In
axion inflation, the flatness of the potential is guaranteed by
the shift in symmetry and ensures a periodic potential, where
the axion couples with the gauge field through the Chern-
Simons coupling ∝ ϕFF̃=f [8].
In axion inflation, a strong production of gauge fields Aμ

lies in the constant inflationary field velocity ϕ̇, or exactly
ξ ¼ ϕ̇=ð2fHÞ. At some extreme conditions with a large
enough value of ξ, the production of radiation fields is so
large that it backreacts on the background, which is often
referred to as the backreaction problem [9–11]. A large ξ
can also lead a significant non-Gaussianity of cosmic
microwave background in the curvature perturbation in
the absence of backreaction [12–14]. Another interesting
feature of this coupling is that the inflationary thermo-
dynamics is controlled by the parameter ξ [15,16].
It has been shown in Ref. [15] that there exists an

equilibrium state if the ratio T=H ≫ 20 is analyzed from
the Boltzmann equation. Inspired by this work, we continue
to focus on the problems of thermodynamics in axion
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inflation from the Standard Model. In the present paper, the
gauge field in the equilibrium state is fully considered as a
thermal bath to thermalize the early universe due to the
production of radiation from potential. Thermal equilib-
rium allows a Bose-Einstein distribution, followed by
which a radiational spectral density is further obtained.
Integrating the spectral density of radiation fields (magnetic
and electric fields) over momentum space and combining
the Stefan-Boltzmann law yield an equation of cosmic
temperature T. Then the adiabaticity could be analytically
analyzed by the derivative of the logarithm of T=H with
respect to cosmic time, based on which the parameter ξ
could also be constrained by the backreaction. The thermal
magnetic and electric fields are considered as sources to
perturb the cosmic scalar and tensor modes. Green’s
function method is applied to theoretically calculate the
correlation functions of sourced scalar and tensor pertur-
bation, and thus the critical value of ξ thermalizing the
axion inflaton is obtained by comparing with the magni-
tudes of vacuum spectrum. Last, we can also analyze the
relation between the tensor-to-scalar ratio and parameter ξ
when thermalization happens.
The paper is organized as follows. In Sec. II, the axionic

inflationary model is introduced and the solutions of the
gauge field in terms of Coulomb functions are obtained. In
Sec. III, several problems are analyzed, such as the cosmic
temperature, spectral density of radiation (decomposing into
magnetic and electric parts), adiabatic approximation, and
constraints on parameter ξ. Then, in Sec. IV, treating the
thermal magnetic and electric fields as the source to perturb
the scalar and tensor modes, the spectrum of sourced scalar
and tensor perturbation is obtained; therefore, the suppres-
sion of the tensor-to-scalar ratio from thermal effects is
shown. Finally, in Sec. V, a brief conclusion of this work and
some further discussions about our results are given.

II. MODEL AND EQUATIONS

A. Equation of motion and solution of gauge field

We start from the model described by the following
Lagrangian [17]:

Lffiffiffiffiffiffi−gp ¼ M2
pR

2
−
1

2
∂μϕ∂

μϕ − VðϕÞ

−
1

4
FμvFμν −

αcϕ

4f
FμvF̃μν; ð1Þ

where Mp ¼ ð8πGÞ−1 is the Planck mass, ϕ is the (axion-)
inflaton regarded as a scalar field, and VðϕÞ is the potential
which is most motivated by the natural potential with
periodicity:

VðϕÞ ¼ Λ4

�
1 − cos

�
ϕ

f

��
: ð2Þ

The gauge field strength tensor is defined by
Fμν ¼ ∂μAν − ∂νAμ. The U(1) gauge field Aμ couples with
inflaton through the Chern-Simons term ∝ ϕFμvF̃μν, with
the dual tensor F̃ρσ ¼ ημνρσFμν=ð2 ffiffiffiffiffiffi−gp Þ where ημνρσ is the
Levi-Civita tensor in Minkowski spacetime. The line
element in the Friedmann-Robertson-Walker universe reads

ds2 ¼ −dt2 þ a2ðδij þ hijÞdxidxj
¼ a2

�
−dτ2 þ ðδij þ hijÞdxidxj

�
; ð3Þ

where t is the cosmic time and τ is the conformal time with
derivative relation dt ¼ adτ, and hij is the tensor pertur-
bation. The model we introduced above is about the axion-
inflaton ϕ coupled to the gauge field Aμ directly. A more
general model is ϕ couples to Aμ indirectly via a spectator
field σ [18]. However, in this paper, we mainly attempt to
show the effects from the thermalized gauge field, instead
of the model itself.
The equation of motion of 4-potential Aμ is obtained by

varying the action with respect to Aμ:

1ffiffiffiffiffiffi−gp ∂

∂xν

� ffiffiffiffiffiffi
−g

p �
gμαgvβFαβ þ

αcϕ

2
ffiffiffiffiffiffi−gp ημvαβFαβ

��
¼ 0: ð4Þ

This equation is convenient to work in the frame of
Coulomb gauge A0 ¼ 0 and ∂

iAi ¼ 0; therefore, it yields�
∂
2

∂τ2
− a2∂i∂i − αc

aϕ̇
f

∇×

�
Aðx; τÞ ¼ 0; ð5Þ

where the dot ˙denotes the derivative with respect to cosmic
time t. To quantize the electric and magnetic (EM) fields,
the conjugate momentum Πi ¼ δL=δȦi of the field Ai is
introduced following the canonical quantization condition

½AiðxÞ;ΠjðyÞ� ¼ i
Z

d3p
ð2πÞ3 e

k·ðx−yÞPijðkÞ; ð6Þ

where the projection tensor PijðkÞ ¼ δij − kikj=k2 is to
ensure the Coulomb gauge condition. The gauge field
AiðxÞ is quantized by the momentum space operator via
Fourier transform

Âiðx; τÞ ¼
Z

d3k
ð2πÞ3

X
λ¼�

h
ϵλi ðkÞĀλðk; τÞâλðkÞeik·x

þ ϵλ�i ðkÞĀ�
λðk; τÞâ†λðkÞe−ik·x

i
¼

Z
d3k
ð2πÞ3

X
λ¼�

ϵλi ðkÞeik·x
h
Āλðk; τÞâλðkÞ

þ Ā�
λð−k; τÞâ†λð−kÞ

i
; ð7Þ

where ϵ�i ðkÞ is the polarization vectors that relate to the
orthonormal 3-vector in flat space ϵ̂αi ðkÞ:
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ϵi� ¼ ϵ̂i�
a
; ϵi3¼

k̂
a
; with dual vector ϵαi ¼ aϵ̂αi ðα¼�;3Þ:

ð8Þ
In Eq. (7), âλðkÞ=â†λðkÞ is the annihilation/creation oper-
ator satisfying commutation relationh

âλðkÞ; â†λ0 ðk0Þ
i
¼ ð2πÞ3δλλ0δ3ðkþ k0Þ: ð9Þ

Define the variable Aλ ¼ aĀλ and substitute Eq. (7) into
Eq. (4), and then we obtain the equation of polarization
vector of 4-potential in momentum space

A00
� þ k2A� � 2kξ

τ
A� ¼ 0; ð10Þ

with ξ ¼ αcϕ̇=ð2HfÞ and prime 0 denoting the derivative
respect to conformal time τ. In the process of deriving
the above equation, we have used the properties (B2) of
polarization vectors. The approximate equality in Eq. (10)
arises due to the assumption that the dimensionless measure
of field velocity ξ evolves adiabatically, i.e., ξ̇=ξH ≪ 1.
However, Eq. (10) is the equation of motion of the gauge

field without taking thermalization into account. As an
important modification to Eq. (10), when thermalization
happens, the gauge field develops a thermal mass
mT ¼ αTT via one-loop thermal correction [7,19]. Thus
Eq. (10) becomes

�
∂
2

∂z2
þ 1 ∓ 2ξ

z
þ α2TT

2

H2z2

�
A� ¼ 0 ð11Þ

with z ¼ −kτ. Equation (11) is an equation in the form of
Coulomb function

�
∂
2

∂z2
þ 1 −

2ξ

z
−
lðlþ 1Þ

z2

�
ψ ¼ 0; ð12Þ

where l is obtained by satisfying the equation
lðlþ 1Þ ¼ −μ2, with μ2 ¼ α2TT

2=H2. l has two solutions,
and we take the one

l ¼ −1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4μ2

p
2

ð13Þ

as the index of two linearly independent Coulomb

functions Hð�Þ
l , because solutions Hð�Þ

l0 , with l0 ¼
ð−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4μ2

p
Þ=2, can be linearly represented from

Hð�Þ
l . Obviously the relation between 4μ2 and 1 determines

the solution of l to be a real number or a complex number.
The canonical relation (6) and the Bunch-Davies vacuum in
the subhorizon limit A� → ð2kÞ−1=2e−ikτ as − kτ → ∞
lead the solution of Eq. (11) on a superhorizon scale
approximately

A� ¼ 1ffiffiffi
2

p
k
exp i½�ξ lnð−2kτÞ þ lπ=2 − σlð�ξÞ�Hð�Þ

l ðξ; τÞ

≈
1ffiffiffi
2

p
k
exp i½�ξ lnð−2kτÞ þ lπ=2 − σlð�ξÞ� ×

8>>>>><
>>>>>:

ið−kτÞ−l
ð2lþ1ÞClð�ξÞ ; 4μ2 < 1	

π
expð�2πξÞþ1


1
2ð−kτÞ12

h
1þ expð�2πξÞþ1

iπ lnð−kτÞ
i
; 4μ2 ¼ 1

Clð�ξÞð−kτÞlþ1 þ ð−kτÞ−l
ð2lþ1ÞClð�ξÞ ; 4μ2 > 1

: ð14Þ

The definitions of σlðξÞ, Hð�Þ
l ðξ; τÞ, ClðξÞ and the

properties of the Coulomb function are listed in
Appendix A. In addition, the special value μ ¼ 1=2 has
only a mathematical specificity instead of a physical
meaning, and it does not lead to a special result, so in
the following sections we ignored it.

III. SPECTRUM OF GAUGE FIELD

A. Relevant definitions

The definitions of “electric” and “magnetic” fields from
gauge field strength tensorFμν are expressed asEμ ¼ uνFμν

and Bμ ¼ uνF̃μν. For the observer uμ ¼ ð1=a; 0; 0; 0Þ, the
electromagnetic fields of the spatial component are defined
with an extra inverse scale factor a−1:

Êi ¼ −
1

a2
Â0
i; B̂i ¼

1

a2
ηijkδ

jmδkn∂mÂn; ð15Þ

or in momentum space

Êiðk; τÞ ¼ −
1

a2
Â0
i;

B̂iðk; τÞ ¼ i
1

a2
ηijlδ

jmδlnkmÂnðk; τÞ: ð16Þ

Definitions (15) and (16) make it convenient to deal with
the contraction, for example, BiBi ¼ δijBiBj ¼ BiBi. So in
the following sections, except for special instructions, the
vectors or tensors under contraction are dealt in Minkowski
spacetime.
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The energy density of component X is defined as

ρX ¼
Z

d ln k
dρXðk; τÞ
d ln k

¼
Z

dk
k

k3

2π2

Z
d3k0hXðk; τÞXðk0; τÞi: ð17Þ

Here the component X may be a scalar perturbation, a
tensor perturbation, a radiation field, an electric field, or a
magnetic field. The spectrum density in terms of a two-
point correlation function reads

dρXðk; τÞ
d ln k

≡ k3

2π2

Z
d3k0hXðk; τÞXðk0; τÞi: ð18Þ

Before we get the energy density of the radiation field, it is
necessary to introduce the energy momentum tensor of the
electric and magnetic fields [20]:

Tμν ¼ −
2ffiffiffiffiffiffi−gp δ

ffiffiffiffiffiffi−gp
L

δgμν

¼ gαβFμαFνβ −
1

4
gμνFαβFαβ; ð19Þ

with a 00 component and a ij component, respectively,

hT00i ¼ ρB þ ρE ¼ 1

2
hBiBi þ EiEiiðx; τÞ;

Tij ¼ BiBj þ EiEj −
1

2
gijðBmBm þ EmEmÞ: ð20Þ

We should point out that h� � �i means the ensemble average

hÂ B̂i ¼ tr½∶Â B̂ ∶�; ð21Þ

where ∶ � � � ∶ represents the normal product meaning that
the annihilation operator always locates at the right-hand
side of the creation operator. Especially, the ensemble
average of the combination of the creation and annihilation
operators isD
â†λðkÞâλ0 ðk0Þ

E
¼ ð2πÞ3δλλδ3ðkþ k0Þ · nBðωk=aTÞ: ð22Þ

The equation above involves a Bose-Einstein distribution
function at equilibrium defined as [15,21]

nBðωk=aTÞ ¼ ðeωkaT − 1Þ−1; ð23Þ

where T denotes the cosmic temperature during inflation
and ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ a2m2

T

p
is the comoving energy of a

particle. Note that ωk=a is the physical wave number
corresponding to the energy of the gauged particle by the
timing constant ℏc. It should be emphasized that the results
above are based on the (near) equilibrium hypothesis,
which will be discussed in detail subsequently. This
hypothesis is based on the fact that scattering rates
involving gauge fields can become larger than the expan-
sion rate H and create a thermal bath of particles of
temperature T during inflation.

B. Spectral electromagnetic energy density

The two-point correlation function of magnetic field in
momentum space is defined as

PB;ijðk;k0;τÞ¼hB̂iðk;τÞB̂jðk0;τÞi

¼ð2πÞ3
a4

δ3ðkþk0Þ
X
λ¼�

X
l1l2m1m2

ηil1m1
ηjl2m2

kl1kl2

·ϵm1

λ ðϵm2

λ Þ�Aλðk;τÞA�
λðk;τÞnB

�
ωk

aT

�
:

ð24Þ

Applying Eq. (B6) in Appendix B, then Eq. (24) becomes

PB;ijðk;k0; τÞ ¼ ð2πÞ3
a4

δ3ðkþ k0ÞnBðωk=aTÞð−τÞ

·
h
ðδij − k̂ik̂jÞk2PBðk; τÞ

þ iηikmk̂
mk2SBðk; τÞ

i
; ð25Þ

where k̂i ¼ ki=k is the unit vector parallel to ki, the
dimensionless variables PB is about the symmetric part,
and SB is about the antisymmetric part:

PBðk; τÞ ¼
1

−τ
ðjAþj2 þ jA−j2Þ;

SBðk; τÞ ¼
1

−τ
ðjAþj2 − jA−j2Þ: ð26Þ

Equation (B4) has been used in the derivation of Eq. (25).
Based on the expression in Eq. (14), we have the approxi-
mate expressions of PB and SB,

PB=SBðk; τÞ ≈
1

−kτ
×

8>><
>>:

ð−kτÞ−2lΓ2ð2lþ2Þ
ð2lþ1Þ2·22l

h
eπξ

jΓðlþ1þiξÞj2 � e−πξ

jΓðlþ1−iξÞj2
i
; 4μ2 < 1

ð−kτÞ
���� Γð2lþ2Þ·expðilπ=2Þ

ð2lþ1Þ·2l

����2
�

eπξ

jΓðlþ1þiξÞj2 � e−πξ

jΓðlþ1−iξÞj2

�
; 4μ2 > 1

: ð27Þ

It is obvious that SB vanishes if ξ ¼ 0.
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Based on Eq. (B6), the two-point correlation function of the electric field in momentum space reads

PE;ijðk;k0; τÞ ¼ hÊiðk; τÞÊjðk0; τÞi

¼ ð2πÞ3
a4

δ3ðkþ k0ÞnBðωk=aTÞ · ð−τÞ½ðδij − k̂ik̂jÞk2PEðk; τÞ − iηikmk̂
mk2SEðk; τÞ�; ð28Þ

with

PE=SEðk; τÞ ¼
1

k2ð−τÞ ½jðAþÞ0j2 � jðA−Þ0j2� ≈
1

−kτ

×

8>><
>>:

ð−kτÞ−2l ð1−lÞ2Γ2ð2lþ2Þ
ð2lþ1Þ2·22l

h
eπξ

jΓðlþ1þiξÞj2 � e−πξ

jΓðlþ1−iξÞj2
i
; 4μ2 < 1

ð−kτÞ
���� ð1−lÞΓð2lþ2Þ·expðilπ=2Þ

ð2lþ1Þ·2l

����2h eπξ

jΓðlþ1þiξÞj2 � e−πξ

jΓðlþ1−iξÞj2
i
: 4μ2 > 1

: ð29Þ

The projector tensor δij − k̂ik̂j in Eq. (28) comes from the Coulomb gauge kiEi ¼ 0.
Similarly, the two-point correlation function of the crossing term between electric and magnetic fields in momentum

space is

PC;ijðk;k0; τÞ ¼ hÊiðk; τÞB̂jðk0; τÞi

¼ ð2πÞ3
a4

δ3ðk − k0ÞnBðωk=aTÞ · ð−τÞ ×
X
λ

ð−iÞηjmlklϵiλðϵmλ Þ�A0
λðk; τÞA�

λðk; τÞ

¼ ð2πÞ3
a4

δ3ðk − k0ÞnBðωk=aTÞð−iÞηjmlkl
h
δimkPCðk; τ; τ0Þ þ ðσ2ÞimkSCðkp; τ; τ0Þ

i
¼ ð2πÞ3

a4
δ3ðk − k0ÞnBðωk=aTÞ

h
−ðδij − k̂ik̂jÞk2SCðkp; τ; τ0Þ þ iηijmk̂

mk2PCðkp; τ; τ0Þ
i
; ð30Þ

with dimensionless variables

PC=SCðk; τÞ ¼
1

−2kτ
∂

∂τ
ðjAþj2 � jA−j2Þ ≈

1

−kτ

×

8>><
>>:

ð−kτÞ−2l ð1−lÞΓ2ð2lþ2Þ
ð2lþ1Þ2·22l

�
eπξ

jΓðlþ1þiξÞj2 � e−πξ

jΓðlþ1−iξÞj2

�
; 4μ2 < 1

ð−kτÞ · j1 − lj ·
���� Γð2lþ2Þ·expðilπ=2Þ

ð2lþ1Þ·2l

����2
�

eπξ

jΓðlþ1þiξÞj2 � e−πξ

jΓðlþ1−iξÞj2

�
: 4μ2 > 1

: ð31Þ

Another crossing correlation function of electric and
magnetic fields is hB̂iðk;τÞÊjðk0;τÞi¼hÊiðk;τÞB̂jðk0;τÞi�.
It is seen that it emerges as a regular and orderly form of

electromagnetic two-point correlation functions due to
definitions (15). These approximations will be used to
calculate the spectra in the next section.

C. Numerical results

Because of the analytical expressions of two-point
correlation functions of electric, magnetic, and crossing
fields obtained in Sec. III B and 4-potential Aμ in Eq. (14),
the spectral density and polarized density of the magnetic
field can be expressed as

dρBðk; τÞ
d ln k

¼ δij
k3

2π2

Z
d3k0PB;ijðk;k0; τÞ

¼ 2πH4

�
k
aH

�
5

nB

�
ωk

aT

�
PB

�
k
aH

�
;

dsBðk; τÞ
d ln k

¼ −iηijnk̂n
k3

2π2

Z
d3k0PB;ijðk;k0; τÞ

¼ 2πH4

�
k
aH

�
5

nB

�
ωk

aT

�
SB

�
k
aH

�
: ð32Þ

PB and SB are defined in Eq. (26), and these expressions
also apply to electric field E and crossing term C.
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1. Spectral density and polarized density

In the case of the Standard Model, it gives α2T ≃ 0.3 at the
energies of around 1014 GeV. The typical scale k� ¼ a�H�
at the crossing horizon is set to 0.05 Mpc−1. The spectral
density and polarized density of the magnetic field, electric
field, cross term, and radiation field in terms of k=k� with
ξ ¼ 0.1 are plotted in Fig. 1, and the spectral density and
polarized density of the radiation field with ξ ¼ 0.2 and
ξ ¼ 0.3 are plotted in Fig. 2. Here the spectral density of
radiation means the sum of magnetic and electric spectral
density, and it also applies to the polarized density. The
numerical results are obtained from the analytical expres-
sions of 4-potentials Aμ in terms of the Whittaker function
in Eq. (A10). Lines with different styles stand for the
conditions with different values of T=H, and the black lines
represent the spectral densities while the red lines represent
the polarized densities. The lines with ðT=HÞ2 ¼ 5=6
represent the critical condition by 4μ2 ¼ 1. The profiles
of spectral and polarized density with T=H ≫ 1 are similar
to those with T=H ∼ 1, and the peaks always locate at
k=k� > 1, but the amplitudes are much larger, so we do not
plot these cases.
Figures 1 and 2 show that the spectrums vanish as k goes

to infinity, meaning the problem of ultraviolet divergence
no longer exists, which is often suffered in a zero temper-
ature condition [22]. The radiation energy density is mainly
contributed from the region inside the horizon. The
spectrums show the sharps similar to that in a black body,

which is consistent with observations on a cosmic micro-
wave background. The magnetic field and the electric field
contribute the opposite polarized density (noting the
positive and negative symbols in Fig. 1) due to the curl
asymmetry of the electric and magnetic fields. The peak of
the polarized density of radiation almost locates at the scale
of horizon but is a little smaller than that. This phenomenon
may come from the suppression on the horizon by the
scattering of the gauge field with an axionic inflaton. Based
on the discussions above, it suggests that the cosmological
horizon is not only important for dynamics of the scalar
field, but also is important for thermodynamic problems. In
addition, the last panel in Fig. 1 and the panels in Fig. 2
indicate that a large value ξ means a higher energy density
and a stronger polarization of radiation.

2. Cosmic temperature

From the definition of spectral density, it is easy to test a
total form of the black body spectrum when αC ¼ αT ¼ 0
(indicating ξ ¼ l ¼ 0):

dρr
d ln k

¼ 4πH4

�
k
aH

�
4 1

exp
	

k
aH

H
T



− 1

ð33Þ

and dsr=d ln k ¼ 0. The integral over logarithmic momen-
tum space corresponds to the Stefan-Boltzmann law

ρr ¼ π2

30
g�T4, where g� characterizes the number of

(a) Spectral and polarized density of magnetic field

10-1 100 101
0

100
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300

400
(b) Spectral and polarized density of electric field

10-1 100 101
0
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200

300

400 Spectral density
Entropic density

(c) Spectral and polarized density of cross correlation

10-1 100 101
0

100

200

300

400

10-1 100 101
0

200

400

600

800

(d)

FIG. 1. The spectral density and polarized density of (a) magnetic field, (b) electric field, (c) cross-correlation, and (d) radiation field
by setting ξ ¼ 0.1. The lines in each panel with different styles represent the density with different cosmic temperature; the black and red
lines represent the spectral density and polarized density, respectively.
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relativistic particle degrees of freedom. Then applying the
formula about energy density of radiation in Eq. (20), we
obtain the equation

ρr ¼
Z

d ln k

�
dρB
d ln k

þ dρE
d ln k

�
¼ π2

30
g�T4: ð34Þ

It reveals that the equation above is about the variable T=H
and parameters ξ and αT , which may only be solved by a
numerical method. To obtain the solution of T=H as
accurately as possible, the exact expressions of gauge field
A� in (14) in terms of Coulomb functions or Whittaker
functions are used. The relation of the ratio of cosmic
temperature to cosmic Hubble parameter T=H and param-
eter ξ, αT is shown in Fig. 3. The parameters are set as
Λ ∼ 10−3Mp, f ∼Mp [6], and g� ¼ 106.75 [23]. We see
that the ratio T=H is not sensitive on ξ (or αC) when smaller

than a critical value and a stronger coupling constant of αT
means a higher cosmic temperature. This is because a
stronger interaction means a more intense conversion
process from potential to radiation, which makes it possible
to hold a higher temperature. On the other hand, larger
values of αT decrease the cosmic temperature. This may
come from a sufficiently heavy thermal mass mT ¼ αTT
that suppresses the scattering between the scalar field and
the gauge field. So this is to maintain the temperature in an
appropriate range.
Another interesting phenomenon is that inflationary

temperature T never appears alone, but in the form of
a ratio to Hubble parameter H. So inflationary thermo-
dynamics is a physical process competing with geometric
dynamics, which is also mentioned in Ref. [16].
The equilibrium state requires T=H > 20 [15], which

leads the first condition ξ > 2.47 at α2T ≃ 0.3.
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FIG. 3. (a) Contours of the ratio of cosmic temperature to Hubble parameter T=H in the ξ − αT plane. (b) Relation between T=H and ξ
(solid lines with different values of αT scaled by the bottom axis) and αT (dashed lines with different values of ξ scaled by the top axis).
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FIG. 2. The spectral density and polarized density of the radiation field with (a) ξ ¼ 0.2 and (b) ξ ¼ 0.3.
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D. Adiabatic approximation

As seen in the previous section, the adiabatic approxi-
mation holds during inflation since the cosmic temperature
is nearly constant, which may be verified by the relation
j Ṫ
HT j ≪ 1. The derivative of the logarithm of T=H over
cosmic time t reads

1

H
d lnT=H

dt
¼ Ṫ

HT
þ ε: ð35Þ

Another way to obtain lnðT=HÞ is from Eq. (34) which is
approximately analytically expressed from dρB=d ln k and
dρE=d ln k. As mentioned previously, equilibrium condition
T=H > 20 yields the relation 4μ2 ≫ 1 or l ≃ −1=2þ iμ.
Thus, the adiabatic parameter with 4μ2 ≫ 1 can be approx-
imately expressed as

δT ¼ −
Ṫ
HT

≃
H−1ξ̇½π − iψðlþ 1þ iξÞ þ c:c:�

FðlÞαT T
H

þ ε ð36Þ

with

FðlÞ ¼
�

i
lðlþ 1Þ þ iψð2lþ 2Þ − π − iψðlþ 1þ iξÞ

�
þ c:c:þOðα2TÞ; ð37Þ

where ψðzÞ is the digamma function [24] and c:c: denotes
the complex conjugation. It is obvious FðlÞ is a function
dependent on T=H, and thus the adiabatic approximation
j Ṫ
HT j ≪ 1 holds only if H−1ξ̇ ≪ 1 which is equivalent to
the slow-roll approximation. So an intimate relation
between inflationary adiabatic approximation and infla-
tionary slow-roll approximation is shown. It also suggests
that adiabatic approximation naturally holds in the frame of
the axionic inflationary model. Figure 4 shows the evolu-
tionary trends of adiabatic parameter δT as a function of the
e-folding number with T=H ¼ 25 and the same combina-
tion of parameters as that in Sec. III C 2.

E. Constraints from backreaction

The suffering on the backreaction problem often appears
in the case of a gauge field with zero temperature, which
may be overcome by an axionic inflaton dependent model
named the Ratra model [25]. This problem mainly comes
from the divergence of the ultraviolet band k → ∞, and a
conventional method to deal with it is setting a cutoff on an
ultraviolet band. In our analysis, the cutoff is removed by
introducing the ensemble average. The avoidance of the
backreaction problem requires energy density of radiation
ρr and energy density of inflaton ρϕ to hold the condition
ρr ≪ ρϕ ≈ VðϕÞ during inflation, or exactly

δF ¼ ρr
ρϕ

≃
ρB þ ρE
3H2M2

p

¼ π2g�
30

T4

H4

Λ4

9M4
p

�
1 − cos

�
ϕ

f

��
≪ 1; ð38Þ

where the natural potential (2) is applied. If δF ≥ 1, it
assumes that the cosmic domination by inflaton is broken
down and the universe is dominated by radiation. Another
parameter is the ratio of the source term to the Hubble
friction term

δK ¼
���� ρBE=f3Hϕ̇

���� ≪ 1; ð39Þ

which is used to characterize the instability of the
inflaton field. If δK ≥ 1, it means a suppression of the
gauge amplification. So, it requires the conditions δF < 1
and δK < 1 during the inflationary era due to the
consistency of constraints from backreaction, which
leads another condition ξ < 6.52 by setting Λ ∼ 10−3Mp,
f ∼Mp, g� ¼ 106.75, and α2T ¼ 0.3. The parameters
δF and δK as a function of the e-folding number with
T=H ¼ 25 are plotted in Fig. 4 as well.

IV. SCALAR AND TENSOR PERTURBATION
FROM THERMALIZED GAUGE FIELD

In this section, we will have detailed discussions about
the spectrum of scalar perturbation, tensor perturbation, and
their crossing correlation.

A. Solutions of scalar and tensor perturbation
in terms of integral

The scalar perturbation related to the gauge field is
obtained by varying the action with respect to ϕ,

10 20 30 40 50 60 70

10-5

10
0

FIG. 4. Curves of δT , δF, and δK with equilibrium condition
T=H ¼ 25. The horizontal dotted line is the critical value of the
parameters with a unit value, and the vertical dashed line is the
e-folding number at the end of inflation quantified as slow-roll
parameter ε ¼ 1.
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1ffiffiffiffiffiffi−gp ∂

∂xν
½ ffiffiffiffiffiffi

−g
p

gμν∂μϕ� −
dV
dϕ

¼ αc
4f

FμνF̃μν: ð40Þ

The scalar fluctuation perturbed by the gauge field can be
studied through the equation in momentum space [14]

�
∂
2

∂τ2
þ k2 −

2

τ2

�
ðaδϕÞ

¼ a3
αc
f

Z
d3p
ð2πÞ3 Êiðk − p; τÞB̂iðp; τÞ: ð41Þ

Then the equation of motion of the tensor perturbation from
the Einstein equation reads

�
∂
2

∂τ2
þk2−

2

τ2

�
ðaĥijÞ¼a3

2

M2
p
Πij

mnðkÞT̂mnðk;τÞ: ð42Þ

Here Πij;mnðkÞ ¼ PimðkÞPjnðkÞ − 1
2
PijðkÞPmnðkÞ is the

transverse traceless operator, projection operator PijðkÞ is
defined in Eq. (6), and T̂mnðkÞ is the spatial component
of electromagnetic energy-momentum tensor. The details
of the derivation of Eqs. (41) and (42) are given in
Appendix C. By decomposing tensor perturbation ĥij into
polarized state

ĥijðk; τÞ ¼ ĥþðk; τÞeþijðkÞ þ ĥ−ðk; τÞe−ijðkÞ ð43Þ

and applying Eq. (B5), then Eq. (42) becomes

�
∂
2

∂τ2
þ k2 −

2

τ2

�
ðaĥλÞ ¼ a3

2

M2
p
eijλ ðkÞ ·

Z
d3p
ð2πÞ3 ½Êiðk − p; τÞÊjðp; τÞ þ B̂iðk − p; τÞB̂jðp; τÞ�: ð44Þ

Here, we have also used the symmetric contraction relation gmnΠij
mn ¼ 0 of the transverse traceless operator.

Equations (41) and (44) can both be solved via Green’s function method:

aδϕðk; τÞ ¼ ukðτÞb̂k þ u�kðτÞb̂†k þ αc
f

Z
dηGkðτ; ηÞa3ðηÞ

Z
d3p
ð2πÞ3 Êiðk − p; τÞB̂iðp; τÞ; ð45aÞ

aĥλðk; τÞ ¼ vkðτÞĉk þ v�kðτÞĉ†k þ 2

M2
p
eijλ ðkÞ

Z
dηGkðτ; ηÞa3ðηÞT̂ijðk; ηÞ; ð45bÞ

where uk and vk are scalar and tensor perturbations from vacuum fluctuation and Gkðτ; ηÞ is Green’s function [26,27]

Gkðτ; ηÞ ¼
1

k3τη
½ð1 − k2τηÞ sin kðτ − ηÞ þ kðτ − ηÞ cos kðτ − ηÞ�θðτ − ηÞ: ð46Þ

The perturbations contributed from vacuum fluctuation and the sourced thermal axionic field are statistically
uncorrelated, and therefore, the total spectra can be simply obtained by the sum of them. Here, we are mainly concerned
about the latter.

B. Spectrum of scalar perturbation

In the case of single field inflation, curvature perturbation R ¼ ðH=ϕ̇Þδϕ is obtained by solving Eq. (41). Then using
Eq. (45a), the sourced two-point correlator of R corresponds to

hR̂ðk; τÞR̂ðk0; τÞi ¼ H2

ϕ̇2

α2c
a2f2

Z
dη1Gkðτ; η1Þaðη1Þ3 ·

Z
dη2Gk0 ðτ; η2Þaðη2Þ3

Z
d3p
ð2πÞ3

d3q
ð2πÞ3

· hÊiðk − p; η1ÞB̂iðp; η2ÞÊjðk0 − qη2ÞB̂jðq; η2Þi: ð47Þ

The ensemble average on the right-hand side of the equation contains four field operators, and it can be decomposed into
three terms with two ensemble averages of each due to the Wick theorem [28]:D

Êiðk − p; η1ÞB̂iðp; η1ÞÊjðk0 − q; η2ÞB̂jðq; η2Þ
E
¼

D
Êiðk − p; η1ÞB̂iðp; η1Þ

ED
Êjðk0 − q; η2ÞB̂jðq; η2Þ

E
þ
D
Êiðk − p; η1ÞÊjðk0 − p; η2Þ

ED
B̂iðp; η1ÞB̂jðq; η2Þ

E
þ
D
Êiðk − p; η1ÞB̂jðq; η2Þ

ED
B̂iðp; η1ÞÊjðk0 − q; η2Þ

E
: ð48Þ
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Equation (48) contains an unequal time correlation of
two fields. At equilibrium, a two-time correlation function
decays exponentially as a function of dissipative coefficient
[27]: hXiðp; η1ÞX0

jðq; η2Þi ¼ hXiðp; ηÞX0
jðq; ηÞie−ΓAjt1−t2j,

where η ¼ min ðη1; η2Þ and ΓA is the dissipative coefficient
of the gauge field. Generally, ΓA relates to quantum effects,
such as the Schwinger effect [29], and we assume the
freeze-out scale of the Schwinger effect is larger than any

observable cosmic scale k, i.e., ΓA ≪ k. In fact, the value of
ΓA does not generate significant observational effects, as
mathematically shown in Eq. (D8). On the other hand, the
first term on the right-hand side of Eq. (48) contains only
the disconnected diagram proportional to δðkÞδðk0Þ, and
this term could be ignored. Considering the symmetry of η1
and η2 and the superhorizon limit k → 0, then the corre-
lation function (47) corresponds to

hR̂ðk; τÞR̂ðk0; τÞi ¼ 2
H2

ϕ̇2

α2cH2

f2
1

k2k02

Z
0

−∞
dη1

sin kη1 − kη1 cos kη1
kη1

a3ðη1Þ
Z

η1

−∞
dη2

sin k0η2 − k0η2 cos k0η2
k0η2

a3ðη2Þ

· e−2ΓAjη1−η2j
Z

d3p
ð2πÞ3

Z
d3q
ð2πÞ3 · 2ð2πÞ

6δ3ðkþ k0Þδ3ðpþ qÞa−4ðη1Þa−4ðη2Þη22p4

· fnBðωjk−pj=aTÞnBðωp=aTÞ½PBðp; η2ÞPEðp; η2Þ þ SBðp; η2ÞSEðp; η2Þ�
þ n2Bðωp=aTÞ½P2

cðp; η2Þ þ S2cðp; η2Þ�g: ð49Þ

Here we have set η2 < η1 and the factor of 2 in front of the right-hand side comes from its opposite situation η2 > η1. Notice
that the integral over p of nBðωjk−pj=aTÞ diverges as long as k > 0, and then the thermal mass should be taken into account
in the Bose-Einstein distribution function as shown in Eq. (23). The details on computation of the scalar correlator have
been shown in Appendix D, and we give only the final approximate results here:

hRðk;τÞRðk0;τÞi≈2π

�
H2

ϕ̇

�
2
�
αcMp

f

�
2
�

H
Mp

�
2 1

k3
δ3ðkþk0Þ ·

�
π

3
þ2

3
ð5−8 ln2ÞΓ

k

�

×

����ð1þlÞΓ2ð2lþ2Þ
ð2lþ1Þ2 ·22l

����2
�

e2πξ

jΓðlþ1þ iξÞj4þ
e−2πξ

jΓðlþ1− iξÞj4
�

×

8>><
>>:
	
T
H



5−4l

Γð5−4lÞ
h
2
P∞

n¼1 ζð5−4l;nþ1Þe−nαT þ2ζð5−4lÞ−2
i
; 4μ2 < 1	

T
H



7
Γð7Þe−

ffiffiffiffiffiffiffiffiffi
4μ2−1

p
=2
h
2
eαTLi7ðe−αT Þ−ζð7Þ

eαT−1 þ2ζð7Þ−2
i
; 4μ2 < 1

≈
4π2

3

�
H2

ϕ̇

�
2
�
αcMp

f

�
2
�

H
Mp

�
2 1

k3
δ3ðkþk0Þ

����ð1þlÞΓ2ð2lþ2Þ
ð2lþ1Þ2 ·22l

����2
�

e2πξ

jΓðlþ1þ iξÞj4þ
e−2πξ

jΓðlþ1− iξÞj4
�

×

8>><
>>:
	
T
H



5−4l

Γð5−4lÞ½2−ð5−4lÞe−αT þζð5−4lÞ−1�; 4μ2< 1	
T
H



7
Γð7Þ½2−7e−αT þζð7Þ−1�; 4μ2> 1

ð50Þ

with μ2 defined in Eq. (13).
It is still not convenient to obtain the numerical results from Eq. (50) if μ ≫ 1 or T=H ≫ 1. The limit T=H ≫ 1 leads the

approximations l ≈ −1=2þ iμ with μ ≫ 1. The asymptotic form of Gamma function [24] jΓðxþ iyÞj ≃ffiffiffiffiffiffi
2π

p jyjx−ð1=2Þe−πjyj=2 (as jyj ≫ 1) helps to simplify the expression

jΓð2lþ 2Þj4
�

e2πξ

jΓðlþ 1þ iξÞj4 þ
e−2πξ

jΓðlþ 1 − iξÞj4
�
≈ 16μ2ðe4πξ þ 1Þ: ð51Þ

Because of the definition (18), the thermal sourced spectral density function of scalar perturbation from Eq. (50) could be
simplified as

PðsÞ
R ≈

2

3

�
T
H

�
7
�
ξ

ε

�
2
�

H
Mp

�
4 1

j2lj4 ðe
4πξ þ 1ÞΓð7Þ½2−7e−αT þ ζð7Þ − 1�: ð52Þ
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Figure 5(a) plots the ratio of the thermal sourced scalar

density spectrum to vacuum spectrum PðsÞ
R =PðvÞ

R , where

PðvÞ
R ¼ H2

8π2εϕM2
p
is the scalar density spectrum from the

vacuum. The intersection point of the curve and horizontal
unit line locates at ξ ≈ 4.0, or T=H ≈ 105, by setting
Λ ¼ 10−3Mp, f ¼ Mp, ε ¼ 0.01, and α2T ¼ 0.3. The ther-
malized condition is almost the same as the result in

Ref. [15], meaning the thermalization of axionic inflation
happens.

C. Spectrum of tensor perturbation

The correlation function of tensor perturbation contains
two parts: correlation of the same polarization state and the
opposite polarization state. From Eq. (44), the tensor
perturbation correlator of polarization state λ and λ0 reads

D
ĥλðk; τÞĥλ0 ðk0; τÞ

E
¼ 4

M4
pa2

Z
dη1Gkðτ; η1Þa3ðη1Þ

Z
dη2Gk0 ðτ; η2Þa3ðη2Þ

× eijλ ðkÞemn �
λ0 ðkÞ

Z
d3p
ð2πÞ3

Z
d3q
ð2πÞ3

hD
B̂iðk − p; η1ÞB̂jðp; η1ÞB̂mðk − p; η2ÞB̂nðp; η2Þ

E
þ2

D
B̂iðk − p; η1ÞB̂jðp; η1ÞÊmðk − p; η2ÞÊnðp; η2Þ

E
þ
D
ÊiÊjÊmÊn

Ei
: ð53Þ

Here we only show the computations containing four magnetic field operators as an example. Applying a similar
approximation in Appendix D, the contraction in Eq. (53) becomes

eijλ ðkÞemn �
λ0 ðkÞ

D
B̂iðk − p; η1ÞB̂jðp; η1ÞB̂mðk − p; η2ÞB̂nðp; η2Þ

E
∝ ϵiλðkÞϵjλðkÞϵm�

λ ðkÞϵn�λ ðkÞ�nBðωjk−pj=aTÞnBðωp=aTÞ
�ðδim − p̂ip̂mÞPBðp; ηÞ þ iηimlp̂lSBðp; ηÞ

�
þn2Bðωp=aTÞ½ðδjn − p̂jp̂nÞPBðp; ηÞ þ iηjnlp̂lSBðp; ηÞ

�

¼ �

n2Bðωp=aTÞ þ nBðωjk−pj=aTÞnBðωp=aTÞ
���

δλλ0 −
1

2
sin2θeiðλ−λ0Þφ

�
2

P2
Bðp; ηÞ þ cos2θð1 − δλλ0 ÞS2Bðp; ηÞ

�
; ð54Þ

with η ¼ minðη1; η2Þ. In the last step, Eqs. (B8)–(B13) have been applied. Note that if λ ¼ λ0, the term cos2 θð1 − δλλ0 Þ in the
last step vanishes, and if λ ≠ λ0 (or λ ¼ λ̄0), the term sin2 θeiðλ−λ0Þφ vanishes after integrating over φ since

R
2π
0 dφe�i2φ ¼ 0.

So Eq. (54) contains the important information about polarization correlation.

FIG. 5. (a) Curves of ratios PðsÞ
R =PðvÞ

R , PðsÞ
λλ =P

ðvÞ
h , PðsÞ

λλ̄
=PðvÞ

h , and −PðsÞ
C =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðvÞ

R PðvÞ
h

q
to ξ by setting Λ ¼ 10−3Mp, f ¼ Mp, ε ¼ 0.01,

and α2T ¼ 0.3. (b) Curve of tensor-to-scalar ratio r=16ε with the same parameter combination. The areas I–IV from left to right are cold
regime, equilibrium regime, thermal regime, and backreaction regime, respectively.
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With the help of the discussions above and taking the remaining two terms on the right-hand side of (53), it yields the
correlator of tensor perturbation with the same polarization mode

D
ĥλðk; τÞĥλðk0; τÞ

E
¼ 8π2

5

H4

M4
p

1

k3
δ3ðkþ k0Þ

���� ð2 − lÞΓ2ð2lþ 2Þ
ð2lþ 1Þ2 · 22l

����2
�

eπξ

jΓðlþ 1þ iξÞj2 þ
e−πξ

jΓðlþ 1 − iξÞj2
�

2

×

8>><
>>:

	
T
H



4−4l

Γð4 − 4lÞ½2−ð4−4lÞe−αT þ ζð4 − 4lÞ − 1�; 4μ2 < 1	
T
H



6
Γð6Þ½2−6e−αT þ ζð6Þ − 1�; 4μ2 > 1

ð55Þ

and the opposite polarization mode

D
ĥλðk; τÞĥλ̄ðk0; τÞ

E
¼ 16π2

9

H4

M4
p

1

k3
δ3ðkþ k0Þ

���� ð2 − lÞΓ2ð2lþ 2Þ
ð2lþ 1Þ2 · 22l

����2
�

eπξ

jΓðlþ 1þ iξÞj2 −
e−πξ

jΓðlþ 1 − iξÞj2
�

2

×

8>><
>>:

	
T
H



4−4l

Γð4 − 4lÞ½2−ð4−4lÞe−αT þ ζð4 − 4lÞ − 1�; 4μ2 < 1	
T
H



6
Γð6Þ½2−6e−αT þ ζð6Þ − 1�: 4μ2 > 1

: ð56Þ

Repeating the asymptotic analysis in Sec. IV B, we have the approximate spectral density of tensor perturbation with the
same and the opposite polarization modes

PðsÞ
λλ ≈

4

5

�
T
H

�
6
�

H
Mp

�
4 1

j2lj4 ðe
2πξ þ 1Þ2Γð6Þ½2−6e−αT þ ζð6Þ − 1� ð57Þ

and

PðsÞ
λλ̄

≈
8

3

�
T
H

�
6
�

H
Mp

�
4 1

j2lj4 ðe
2πξ − 1Þ2Γð6Þ½2−6e−αT þ ζð6Þ − 1�: ð58Þ

Figure 5(a) plots the curves of ratios PðsÞ
λλ =P

ðvÞ
h and PðsÞ

λλ̄
=PðvÞ

h , where PðvÞ
h ¼ 2H2

π2M2
p
is the spectral density of vacuum tensor

perturbation. It is clear from the figure or from Eq. (56) that PðsÞ
λλ̄

¼ 0 if ξ ¼ 0. The critical value ξ or T=H to thermalize the
geometrical tensor perturbation is slightly larger than that of scalar perturbation, and we still use ξ ¼ 4.0 as the critical value
of thermalization.

D. Spectrum of crossing correlation between scalar and tensor perturbations

The correlator between scalar and tensor perturbations reads

hR̂ðk; τÞĥλðk0; τÞi ¼ 2

M2
p

H

ϕ̇

αc
f

1

a2

Z
dη1Gkðτ; η1Þa3ðη1Þ

×
Z

dη2Gkðτ; η2Þa3ðη2Þemn
λ ðkÞ

Z
d3p
ð2πÞ3

Z
d3p
ð2πÞ3

D
Êiðp; η1ÞB̂iðk − p; η1Þ

×
h
B̂mðq; η2ÞB̂nðk0 − q; η2Þ þ Êmðq; η2ÞÊnðk0 − q; η2Þ

iE
: ð59Þ

The part with the contraction becomes

emn
λ ðkÞ

Z
d3p

Z
d3q½

D
ÊiðpÞB̂mðqÞ

ED
B̂iðk − pÞB̂nðk0 − qÞ

E
þ
D
ÊiðpÞB̂nðk − qÞ

ED
B̂iðk − pÞB̂nðqÞ

Ei
∝
Z

d3pemn
λ ðkÞ½−ðδim − p̂ip̂mÞSCðpÞ þ iηimlp̂lPCðpÞ�

· ½ðδin − p̂ip̂nÞPBðpÞ þ iηinlp̂lSBðpÞ�½n2Bðωp=aTÞ þ nBðωp=aTÞnBðωjk−pj=aTÞ�
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¼
Z

d3p

�
1

2
sin2θeiλφðSCPB þ PCSBÞðpÞ þ cos θðSCSB þ PCPBÞðpÞ

�
½n2Bðωp=aTÞ þ nBðωp=aTÞnBðωjk−pj=aTÞ�

¼
Z

d3p cos θ½SCSB þ PCPB�ðpÞnBðωp=aTÞnBðωjk−pj=aTÞ: ð60Þ

In the second step of the equation above, Eqs. (B12) and (B13) have been used, and, in the third step, integrals
R
2π
0 dφeiλφ ¼R

π
0 dθ sin θ cos θ ¼ 0 have been used. Then the correlation function (59) is written as

D
R̂ðk; τÞĥλðk0; τÞ

E
¼ 2π2

3

H3

M3
p

H2

ϕ̇

αcMp

f
1

k3
δ3ðkþ k0Þ

Z
dxx6ðSCSB − SCSE þ PCPB − PCPEÞðxÞ

·
X∞
m¼1

−
μ2

3x
e−mðH=TÞxe−mðH=TÞð

ffiffiffiffiffiffiffiffiffiffi
μ2þk̃2p

p
−k̃pÞ

X∞
n¼1

e−nðH=TÞx

≈
4π2

9

�
αT

T
H

�
2 H3

M3
p

H2

ϕ̇

αcMp

f
1

k3
δ3ðkþ k0Þ · jlð1 − lÞð2 − lÞj

jΓðlþ 1þ iξÞΓðlþ 1 − iξÞj2 ·
���� Γð2lþ 2Þ
ð2lþ 2Þ · 2l

����4

·

8>><
>>:

	
T
H



4−4l

Γð4 − 4lÞ½2−ð4−4lÞe−αT þ ζð4 − 4lÞ − 1�; 4μ2 < 1	
T
H



6
Γð6Þ½2−6e−αT þ ζð6Þ − 1�: 4μ2 > 1

: ð61Þ

Express the spectral density of the scalar-tensor crossing
at limit T=H ≫ 1 approximately

PðsÞ
C ≈ −

2

9

�
T
H

�
8 αTξ

ε

�
H
Mp

�
4

Γð6Þ½2−6e−αT þ ζð6Þ − 1�:

ð62Þ

It is also obvious that the crossing correlation comes from
the one-loop renormalization coefficient αT or thermal
mass. Figure 5(a) also plots the curves of ratio

−PðsÞ
C =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðvÞ

R PðvÞ
h

q
.

E. Numerical results of tensor-to-scalar ratio

Because of the equation mentioned in Eq. (45), the
perturbations consist of two parts: vacuum and sourced
from the thermal gauge field. The vacuum part is expressed
as the standard form

PðvÞ
R ðkÞ ¼ H2

8π2εM2
p
; PðvÞ

� ðkÞ ¼ H2

π2M2
p
; ð63Þ

where ε ¼ ϕ̇2=ð2H2M2
pÞ is the slow-roll parameter con-

trolled by the axionic inflaton. The sourced spectral density

PðsÞ
R ðkÞ and PðsÞ

� ðkÞ are obtained from Eqs. (50) and (55).
The quantum and thermal parts are statistically uncorre-
lated, so the total spectrum could be simply described by
the sum of them. Then the tensor-to-scalar ratio contributed
from the vacuum and sourced parts reads

r ¼
X
λ¼�

PðvÞ
λ ðkÞ þ PðsÞ

λλ ðkÞ
PðvÞ

R ðkÞ þ PðsÞ
R ðkÞ

¼ 16ε

�
1þP

λ
1
16εP

ðsÞ
λλ ðkÞ=PðvÞ

R ðkÞ
1þ PðsÞ

R ðkÞ=PðvÞ
R ðkÞ

�
: ð64Þ

In Fig. 5(b), we show the line of tensor-to-scalar ratio r
corrected by thermal effects as a function of ξ. It is seen that
the ratio r=16ε tends toward 1 if ξ < 3.0, which indicates
that no thermalization has occurred, and the ratio drops
dramatically when ξ > 3.0. At the threshold of thermal-
ization ξ ¼ 4.0, the ratio r=16ε falls to nearly 1=e. Four
regions mentioned in this paper are labeled I–IV from left
to right in the figure. Tensor-to-scalar ratio r is mathemati-
cally suppressed by

r ≈
5.12
ξ2

H
T
∼ 0.3H=T; ξ≳ 4.0: ð65Þ

Reference [15] has shown that r is suppressed by H=2T
when thermalization of axion fields happens. In addition,
Eq. (65) is also a typical result for warm inflation in the
weak dissipation regime [30,31]. The slight difference may
come from the difference of the approximation method.
Another interesting phenomenon is that when ξ < 3.0, the
tensor-to-scalar ratio r ≃ 16ε is the same as that in cold
inflation, although thermal effects are taken into consid-
eration. This indicates that only when the value of ξ is large
enough or the cosmic temperature T is high enough will it
have a significant impact on the cosmic perturbation, so the
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cold axion inflation is still a reasonable model from this
respective when ξ < 3.0.

V. CONCLUSIONS AND FURTHER DISCUSSIONS

In this paper, we investigate a model of axion inflaton
interacting with the U(1) gauge field through the Chern-
Simons term. Two thermal effects have been introduced:
ensemble average and thermal mass. The former leads to a
Bose-Einstein distribution of the gauge field and eliminates
the divergence at a short wavelength. The latter makes
the gauge field obtain an additional mass in the equation
of motion via one-loop correction. Larger αT can reduce
the cosmic temperature T due to a suppression on
the thermal effect. Theoretical and numerical calculations
confirm that cosmic temperature T and Hubble parameter
H always appear in the form of a ratio T=H, meaning a
competition between the thermal effect and the geometric
effect. The constraints from the thermal equilibrium con-
dition and backreaction predict a parametric range of
2.47 < ξ < 6.52. In addition, we also confirm that the
threshold of field thermalization is ξ ≈ 4.0. Another impor-
tant conclusion is that the adiabatic approximation always
corresponds to a slow-roll approximation, which may
indicate that cosmic temperature tends to a constant during
the inflationary epoch. At last, Green’s function method is
applied to calculate the thermal sourced spectral density of
scalar and tensor perturbation by assuming adiabatic
temperature changes. Analytical expressions show that a
larger value of the parameter ξ enhances the cosmic thermal
effects and increases the sourced spectral density of scalar
perturbation and tensor perturbation. In addition, a new
effect from thermal mass is the appearance of the crossing
correlation of scalar perturbation and tensor perturbation,
which may be a potential method to distinguish inflationary
models. Theoretical calculations together with numerical
analysis show that the tensor-to-scalar ratio r is suppressed
by approximately 0.3H=T if the axion is thermalized, but if
ξ < 3.0, the model is consistent with the cold inflation
model even if the gauge field is already thermal.
Let us now discuss the similarities and differences

between the present model involved and the warm infla-
tionary model [1,2,30–34], which may offer a better
understanding on thermal effects of the early universe.
The similarities between the two scenarios can be sum-
marized as follows:

(i) They both predict an equilibrium thermal bath with
T=H > 1 and the energy density of radiation to
satisfy the condition ρr ≪ V.

(ii) Both cosmic temperatures tend to a constant during
the inflation era, which means a holding on adiabatic
approximation.

(iii) They both show an enhancement on scalar perturba-
tion from thermal effects with respect to cold in-
flation, leading to a suppressed tensor-to-scalar ratio.

(iv) Similar to the conclusions in this work, the cosmic
temperature in warm axion inflation is still
controlled by the coupling strength αC, despite the
specific relationship depending on αC being differ-
ent [16].

(v) The final result for the tensor-to-scalar ratio in
Eq. (65) is also typical of warm inflation in the
weak dissipation regime [30,31]. This is a clear
indication that the model can be an explicit warm
inflation realization. This indicates an intimate
relation between the scenarios of cold inflation
and warm inflation when a thermal bath is taken
into account, though more study in understanding
this connection is worth being carried out in the
future. Additionally, the generation of a thermal
radiation bath during inflation may also claim that it
provides a realization of warm inflation starting from
a vacuum state.

The similarities discussed above can be summarized as
follows: in the two research schemes, there is almost no
difference in thermodynamic properties, and temperature
has an impact on cosmological observations in the same
form. From this perspective, it is reasonable to study the
thermodynamic effects of the very early universe based on
the fundamental principles of thermodynamics.
The differences can be summarized as follows:
(i) Mechanisms for generating the thermal bath are

different. Warm inflation suggests that the thermal
bath is produced via thermal damping, which is
described by a dissipation term coupling to the
velocity of inflaton, while, in this paper, the thermal
bath is from the scattering between the axion and
gauge fields, which is described by a Boltzmann
equation [15]. But, a similarity could be found that
the generation rates of the thermal background in
two models are both dependent on the velocity of the
inflation field.

(ii) Perturbations are generated from different mecha-
nisms. In warm inflation, the field perturbations
originate directly from the thermal bath which is
driven by a thermal fluctuation. But, in this work, we
still take the quantum fluctuation into consideration
and regard the gauge fields as a sourced thermal
fluctuation.

(iii) Warm inflation predicts a direct decrease of temper-
ature without reheating, but we do not summarize
any similar or opposite conclusions in this paper,
which needs further study on this problem.

Although there are still some inconsistencies or issues
that need to be clarified, the above similarities are enough
to help us understand the thermal effect: this effect may be
an unavoidable cosmological phenomenon in the early
universe and may compact on the observational parameters,
such as the tensor-to-scalar ratio. To better and further
understand this phenomenon, it is worth introducing new

WU, LIU, SUI, WANG, LI, and BAI PHYS. REV. D 108, 123502 (2023)

123502-14



models, which is also what we are preparing to do in the
next work.
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APPENDIX A: COULOMB FUNCTION WITH
COMPLEX PARAMETERS

The Coulomb function is obtained by solving the
ordinary differential equation

d2ψ
dρ2

þ
�
1 −

2η

ρ
−
lðlþ 1Þ

ρ2

�
ψ ¼ 0: ðA1Þ

This equation often appears in the model of a hydrogen
atom in terms of the Schrödinger equation, in which the
parameter l is required to be a non-negative integer as
l ¼ 0; 1; 2;…. But here, parameter l is a complex number
with Rel ≥ −1=2, and related properties are cited from
Ref. [35]. The two linearly independent solutions of
Eq. (A1) are Coulomb functions Flðη; ρÞ and Glðη; ρÞ
or H�

l ðη; ρÞ ¼ Glðη; ρÞ � iFlðη; ρÞ, with asymptotic
relation

H�
l ðη; ρÞ ∼ exp f�i½ρ − η lnð2ρÞ − lπ=2þ σlðηÞ�g

·
X∞
k¼0

�
Lþ iη

k

���1

2iρ

�
k Γð−l ∓ iηÞ
Γð−l ∓ iη − kÞ ;

jρj ≫ 1: ðA2Þ

Phase σlðηÞ is defined as

σlðηÞ ¼
1

2i
½lnΓðlþ 1þ iηÞ − lnΓðlþ 1 − iηÞ� ðA3Þ

or

e−iσlðηÞ ¼
�
Γðlþ 1 − iηÞ
Γðlþ 1þ iηÞ

�
1=2

; ðA4Þ

where ΓðzÞ is the Gamma function. Notice that the phase
σlðηÞ is always a real number when η is real. The limit form
of the Coulomb functions reads

Flðη; ρÞ ¼
½Γðlþ 1þ iηÞΓðlþ 1 − iηÞ�12

2 expðηπ=2ÞΓð2lþ 2Þ ð2ρÞlþ1

·
X∞
k¼0

Dl;kðηÞρk ≈ ClðηÞρlþ1 ðA5Þ

and

Glðη; ρÞ ≈
ρ−l

ð2lþ 1ÞClðηÞ
; as jρj → 0; ðA6Þ

where the Gamow factor writes

ClðηÞ ¼
2le−πη=2½Γðlþ 1þ iηÞΓðlþ 1 − iηÞ�12

Γð2lþ 2Þ : ðA7Þ

A special case of l ¼ −1=2 approximates

F−1=2ðη; ρÞ ¼
�

π

expð2πηÞ þ 1

�
1=2

ρ1=2
X∞
k¼0

c−1=2;kρk;

c−1=2;0 ¼ 1; ðA8Þ

and

G−1=2ðη; ρÞ
F−1=2ðη; ρÞ

¼ expð2πηÞ þ 1

π
½lnð1=ρÞ þ 4ηρþ � � ��: ðA9Þ

Coulomb functions also relate to Whittaker equation

H�
l ðη; ρÞ ¼ ð∓ iÞleπη=2�iσlðηÞW∓iη;lþ1

2
ð∓ 2iρÞ: ðA10Þ

APPENDIX B: VECTORS AND TENSORS

The transverse-traceless projector is defined as

Πij;mnðkÞ ¼ PimðkÞPjnðkÞ −
1

2
PijðkÞPmnðkÞ; ðB1Þ

where PijðkÞ ¼ δij − k̂ik̂j is the transverse projection
operator with unit vector k̂i ¼ ki=k. The polarization
vectors are generated from x and y direction unit vectors
as ϵi�ðkÞ ¼ 1ffiffi

2
p ðeix � ieiyÞ, based on which polarization

tensors read e�ijðkÞ ¼ ϵ�i ðkÞ ⊗ ϵ�j ðkÞ and ϵi3 ¼ k̂i. It is
clear that it holds the relations (contraction over repeated
indexes)

kiϵ�i ¼ 0; ηijkkjϵ̂k� ¼∓ ikϵ̂�i ; ϵ�i ϵ
i
� ¼ 0; ϵ�i ϵ

i∓¼ 1;

ðB2Þ

δije�ijðkÞ¼PijðkÞe�ijðkÞ¼0; PimðkÞϵλmðkÞ¼ ϵλi ; ðB3Þ

and
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X
λ

ϵλi ðϵλjÞ� ¼δij;
X
λ

λϵλi ðϵλjÞ� ¼ðσ2Þij¼−iηij3; ðB4Þ

where σ2 is the Pauli matrix along the y direction. Based
on (B3), it also yields

Πij;mnðkÞeλijðkÞ¼eλmnðkÞ; PijðkÞPijðpÞ¼ cosθ: ðB5Þ

Then the summation over polarization state λ of two
polarized vectors is

X
λ¼�

ϵm1

λ ðϵm2

λ Þ�Cλ¼
X
λ¼�

ϵm1

λ ðϵm2

λ Þ�1
2
ðCλþCλ̄Þ

þ
X
λ¼�

ϵm1

λ ðϵm2

λ Þ�1
2
ðCλ−Cλ̄Þ

¼1

2
ðCþþC−Þ

X
λ¼�

ϵm1

λ ðϵm2

λ Þ�

þ1

2
ðCþ−C−Þ

X
λ¼�

λϵm1

λ ðϵm2

λ Þ�

¼1

2
ðCþþC−Þδm1m2þ1

2
ðCþ−C−Þðσ2Þm1m2 ;

ðB6Þ

where Cλ is any complex variable dependent on polariza-
tion state λ and λ̄ ¼ −λ.
The tensors could be written in the form of matrices:

e�ijðkÞ ¼

0
B@

1 �i 0

�i −1 0

0 0 0

1
CA;

p̂ip̂j ¼

0
B@

p̂2
x p̂xp̂y p̂xp̂z

p̂xp̂y p̂2
y p̂yp̂z

p̂xp̂z p̂yp̂z p̂2
z

1
CA;

ηijmk̂
m ¼

0
B@

0 k̂3 −k̂2
−k̂3 0 k̂1

k̂2 −k̂1 0

1
CA: ðB7Þ

In a spherical coordinate system, p̂i read
px ¼ sin θ cosφ; py ¼ sin θ sinφ; pz ¼ cos θ. Thus we
obtain the following equations under contraction [36,37]:

e�ijðkÞηijmp̂m ¼ e�ijδ
ij ¼ 0; ðB8Þ

ηijmp̂mηijnk̂
n ¼ p̂mk̂m ¼ cos θ; ðB9Þ

e�ijðkÞp̂ip̂j ¼ ðpx � ipyÞ2 ¼ e�i2φ sin2 θ; ðB10Þ

ϵiλðkÞϵm�
λ0 ðkÞPimðpÞ ¼ δλλ0 −

1

2
sin2 θeiðλ−λ0Þφ; ðB11Þ

ϵiλðkÞϵm�
λ0 ðkÞp̂ip̂m ¼ 1

2
sin2 θeiðλ−λ0Þφ; ðB12Þ

iϵiλðkÞϵm�
λ0 ðkÞηimjp̂j ¼ cos θð1 − δλλ0 Þ: ðB13Þ

APPENDIX C: DERIVATION
OF EQS. (41) AND (42)

Starting from Friedmann-Robertson-Walker equation (3)
in term of cosmic time t, the equation of motion of axion ϕ
from Eq. (40) in coordinate space reads�

d2

dt2
þ 3H − ∂

i
∂i þ V;ϕ

�
ϕ ¼ αc

f
Êiðx; tÞB̂iðx; tÞ; ðC1Þ

where V;ϕ denotes the derivative of potential VðϕÞ with
respect to field ϕ, i.e., dV=dϕ. Axion inflaton could be
composed into three parts, the quantum background ϕ0, the
quantum fluctuation δϕq, and the thermal fluctuation δϕT.
Following the main idea of the present paper that gauge
fields perturb the inflaton via thermal effects, ϕ0 and δϕq

are treated as the normal case in cold inflation by equations
without sources while the equation of δϕT is perturbed by
the thermal gauge fields. Then we obtain three equations
about axion inflaton in momentum space:�

d2

dt2
þ 3H þ V;ϕ

�
ϕ0 ¼ 0; ðC2aÞ

�
d2

dt2
þ 3H þ k2

a2
þ V;ϕϕ

�
δϕq ¼ 0; ðC2bÞ

and �
d2

dt2
þ 3H þ k2

a2
þ V;ϕϕ

�
δϕT

¼ αc
f

Z
d3p
ð2πÞ3 Êiðk − p; tÞB̂iðp; tÞ: ðC2cÞ

Substituting the definition of conformal time dτ ¼ dt=a
into Eq. (C2c), it arrives as�

d2

dτ2
þ k2 þ a2V;ϕϕ −

a00

a

�
ðaδϕTÞ

¼ a3
αc
f

Z
d3p
ð2πÞ3 Êiðk − p; τÞB̂iðp; τÞ: ðC3Þ

For later convenience of expression, we omit the subscript
T marked in Eq. (C3) and δϕ specifically refers
to the thermal perturbation in this paper. If neglecting
the contribution of slow-roll approximations, namely
a ¼ −1=ðHτÞ, V;ϕϕ=H2 ∼ 0, and a00=a ¼ 2=τ2, we have
the leading order of Eq. (C3) as shown in Eq. (41).
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Tensor fluctuation perturbed from thermal gauge fields
could be obtained by Einstein equation�

d2

dt2
þ 3H þ k2

a2

�
ĥij ¼ 16πGΠ mn

ij ðkÞT̂mnðk; tÞ; ðC4Þ

where Π mn
ij ðkÞ is the transverse traceless operator along

direction k with symmetric contraction relation gmnΠ mn
ij ¼

0 and T̂mnðk; τÞ is the energy-momentum tensor of the
primordial electromagnetic field that appeared in Eq. (20).

Repeating the calculations about thermal sourced scalar
perturbation, we get the motion of equation of sourced
tensor perturbation in terms of conformal time, which is
shown in Eq. (42).

APPENDIX D: DETAILS ON THE
CALCULATIONS OF SCALAR CORRELATOR

The computation of the scalar correlator starts from
Eq. (47) at the superhorizon limit, and the second term in
Eq. (48) reads (contraction over repeated indexes)

D
Êiðk − p; η1ÞÊjðk0 − p; η2Þ

ED
B̂iðp; η1ÞB̂jðq; η2Þ

E
∝ nBðωjk−pj=aTÞnBðωp=aTÞ ·

h	
δij − ð dk − pÞið dk − pÞj



jk − pj2PEðjk − pj; τÞ − iηijmð dk − pÞmjk − pj2SEðjk − pj; τÞ

i
· ½ðδij − p̂ip̂jÞp2PBðp; τÞ þ iηijnp̂np2SBðp; τÞ� ¼ nBðωjk−pj=aTÞnBðωp=aTÞjk − pj2p2

·
nh

1þ ð dk − pÞip̂ið dk − pÞjp̂j
i
PEðjk − pj; τÞPBðp; τÞ þ ð dk − pÞip̂iSEðjk − pj; τÞSBðp; τÞ

o
¼ nBðωjk−pj=aTÞnBðωp=aTÞp2½ð2p2 þ k2 − 4pk cos θÞPEPB þ 2ðp − k cos θÞjk − pjSESB�
¼ 2nBðωjk−pj=aTÞnBðωp=aTÞp4½PEðp; τÞPBðp; τÞ þ SEðp; τÞSBðp; τÞ� þOðk cos θ; k2Þ: ðD1Þ

Now recall Eq. (49). Define z1 ¼ −kη1, z2 ¼ −kη2, cos θ ¼ p̂ik̂
i, x ¼ p=aH, and k̃p ¼ k=aH,

D
R̂ðk; τÞR̂ðk0; τÞ

E
¼ 4

�
H2

ϕ̇

�
2
�
αcMp

f

�
2
�

H
Mp

�
2 1

k3
δ3ðkþ k0Þ

Z
∞

0

dz2
sin z2 − z2 cos z2

z52
e−ðΓ=kÞz2

×
Z

z2

0

dz1ðsin z1 − z1 cos z1ÞeðΓ=kÞz1 · 2π
Z

π

0

dθ sin θ
Z

∞

0

dxx6

× fnBðωjk−pj=aTÞnBðxÞ½PBðxÞPEðxÞ þ SBðxÞSEðxÞ� þ n2BðxÞ½P2
cðxÞ þ S2cðxÞ�g: ðD2Þ

We first calculate the integral including nBðjk − pjÞ for condition 4μ2 < 1:

Is1ð4μ2 < 1Þ ¼
Z

π

0

dθ sin θ
Z

∞

0

dxx6nBðωjk−pj=aTÞnBðxÞ½PBðxÞPEðxÞ þ SBðxÞSEðxÞ�

¼
Z

π

0

dθ sin θ
Z

∞

0

dxx6
X∞
n¼1

X∞
m¼1

e−nðH=TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−2x·k̃p cos θþk̃2pþμ2

p
e−mðH=TÞx½PBðxÞPEðxÞ þ SBðxÞSEðxÞ�

≈ 2

Z
∞

0

dxx6
X∞
n¼1

X∞
m¼1

e−ðmþnÞðH=TÞxe−nðH=TÞð
ffiffiffiffiffiffiffiffiffiffi
μ2þk̃2p

p
−k̃pÞ½PBðxÞPEðxÞ þ SBðxÞSEðxÞ�

¼
�
T
H

�
5−4l

Γð5 − 4lÞ
���� ðlþ 1ÞΓ2ð2lþ 2Þ

ð2lþ 1Þ2 · 22l
����2
�

e2πξ

jΓðlþ 1þ iξÞj4 þ
e−2πξ

jΓðlþ 1 − iξÞj4
�

· 2
X∞
n¼1

ζð5 − 4l; nþ 1Þe−nðH=TÞð
ffiffiffiffiffiffiffiffiffiffi
μ2þk̃2p

p
−k̃pÞ: ðD3Þ

In the second step of the equation above, series expansion

1

ex − 1
¼ e−x

1 − e−x
¼

X∞
n¼1

e−nx ðD4Þ
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has been used. In the third step, integral Eq. (E5) and its approximation have been applied. In the fourth step, Eqs. (E8) and
(E9), and electromagnetic correlators (27), (29), and (31) have been used. Since the series converges rapidly as n > 1, it is
safe to keep only the first term in series at the superhorizon limit

X∞
n¼1

X∞
m¼1

1

ðmþ nÞ5−4l e
−nðH=TÞð

ffiffiffiffiffiffiffiffiffiffi
μ2þk̃2p

p
−k̃pÞ ≈

e−αT

25−4l
: ðD5Þ

Similarly, the second integral in Eq. (D2) for 4μ2 < 1 reads

Is2ð4μ2 < 1Þ ¼
Z

π

0

dθ sin θ
Z

∞

0

dxx6n2BðxÞ½P2
CðxÞ þ S2CðxÞ�

¼ 2

Z
∞

0

dxx6
X∞
n¼2

ne−nðT=HÞxðP2
cðxÞ þ S2cðxÞÞ ¼ 2

�
T
H

�
5−4l

Γð5 − 4lÞ

·

���� ðlþ 1ÞΓ2ð2lþ 2Þ
ð2lþ 1Þ2 · 22l

����2
�

e2πξ

jΓðlþ 1þ iξÞj4 þ
e−2πξ

jΓðlþ 1 − iξÞj4
�
½ζð4 − 5lÞ − 1� ðD6Þ

and

Isð4μ2 > 1Þ ¼
Z

π

0

dθ sin θ
Z

∞

0

dxx6fnBðωjk−pj=aTÞnBðxÞ½PBðxÞPEðxÞ þ SBðxÞSEðxÞ�

þ nBðxÞ½P2
cðxÞ þ S2cðxÞ�g4μ2>1 ≈ 2

�
T
H

�
7

Γð7Þ
���� ðlþ 1ÞΓ2ð2lþ 2Þ

ð2lþ 1Þ2 · 22l
����2

·

�
e2πξ

jΓðlþ 1þ iξÞj4 þ
e−2πξ

jΓðlþ 1 − iξÞj4
��

eαTLi7ðe−αT Þ − ζð7Þ
eαT − 1

þ ζð7Þ − 1

�
; ðD7Þ

where LisðzÞ is the polylogarithm function [see Eq. (E10)]. Finally, from Eqs. (E1)–(E4), the double integral over z1 and z2
in Eq. (D2) reads

Z
∞

0

dz2
sinz2−z2cosz2

z52
e−ðΓ=kÞz2

Z
z2

0

dz1ðsinz1−z1cosz1ÞeðΓ=kÞz1 ≈

8>><
>>:

π
24
þ Γ

12kð5−8 ln2ÞþOððΓ=kÞ2Þ; Γ=k≪1;

π
24
þ 1

4
k
ΓþOððk=ΓÞ2Þ; Γ=k≫1:

ðD8Þ

Substituting Eqs. (D3), (D6), and (D7) into Eq. (D2), we can get the two-point correlation function (50) sourced from
thermal Abelian gauge fields.

APPENDIX E: INTEGRALS AND SPECIAL FUNCTIONS

The following integrals have been used in this paper:

Z
x

0

ðsin y − y cos yÞeaydy ¼ 2þ eax½−ð2þ axþ a3xÞ cos xþ ðaða2 þ 3Þ − ða2 þ 1ÞxÞ sin x�
ða2 þ 1Þ2

≈ eax
� ð2 − 2 cos x − x sin xÞ þ að−2x − x cos xþ 3 sin xÞ þOða2Þ; a ≪ 1

ð2 − 2 cos x − x sin xÞ þ 1
a ðsin x − x cos xÞ þOða−2Þ; a ≫ 1

; ðE1Þ

Z
∞

0

dx
ðsin x − x cos xÞ2

x5
¼ 1

4
; ðE2Þ
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Z
∞

0

dxx−5ðsin x − x cos xÞð3 sin x − x cos x − 2xÞ

¼ 1

12
ð5 − 8 ln 2Þ; ðE3Þ

Z
∞

0

dxx−5ðsin x − x cos xÞð2 − 2 cos x − x sin xÞ ¼ π

24
;

ðE4ÞZ
π

0

dθ sin θe−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−2kx cos θþk2þμ2

p

¼ 1

kx

h
e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−kÞ2þμ2

p 	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − kÞ2 þ μ2

q 

− e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþkÞ2þμ2

p 	
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ kÞ2 þ μ2

q 
i
≈ 2e−μek−

ffiffiffiffiffiffiffiffiffi
k2þμ2

p
þOðk2; μ2Þ; k ≪ 1; ðE5ÞZ

π

0

dθ sin θ cos θe−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2−2kx cos θþk2þμ2

p

≈ −
μ2

3x
e−xe−ð

ffiffiffiffiffiffiffiffiffi
k2þμ2

p
−kÞ; μ2 ≪ 1; ðE6Þ

andZ þ∞

0

dz3
sin z3 − z3 cos z3

z73

Z
z3

0

dz2ðsin z2 − z2 cos z2Þ

×
Z

z2

0

dz1ðsin z1 − z1 cos z1Þ ¼
17π

2880
: ðE7Þ

An integral related to the Gamma function isZ þ∞

0

dxxs−1e−ax ¼ a−sΓðsÞ; ðE8Þ

and the Hurwitz zeta function is defined as [24]

ζðs; aÞ ¼
X∞
m¼0

1

ðmþ aÞs : ðE9Þ

The polylogarithm function is expressed as

LisðzÞ ¼
X∞
n¼1

zn

ns
: ðE10Þ
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