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We present a rapid parameter estimation framework for compact binary coalescence (CBC) signals
observed by the LIGO-Virgo-KAGRA (LVK) detector network. The goal of our framework is to enable
optimal source localization of binary neutron star (BNS) signals in low latency as well as improve the
overall scalability of full CBC parameter estimation analyses. Our framework is based on the reduced order
quadrature (ROQ) technique and resolves its shortcomings by utilizing multiple ROQ bases in a single
parameter estimation run. We have also developed sets of compact ROQ bases for various waveform
models, IMRPhenomD, IMRPhenomPv2, IMRPhenomPv2_NRTidalv2, and IMRPhenomXPHM. We
benchmark our framework with hundreds of simulated observations of BNS signals by the LIGO-Virgo
detector network and demonstrate that it provides accurate and unbiased estimates on BNS source location,
with a median analysis time of 6 min. The median searched area is reduced by around 30% compared to
estimates produced by BAYESTAR: from 21.8 deg2 to 16.6 deg2. Our framework also enables detailed
parameter estimation taking into account gravitational-wave higher multipole moments, the tidal
deformation of colliding objects, and detector calibration errors of amplitude and phase with the timescale
of hours. Our rapid parameter estimation technique has been implemented in one of the LVK parameter
estimation engines, BILBY, and is being employed by the automated parameter estimation analysis of the
LVK alert system.

DOI: 10.1103/PhysRevD.108.123040

I. INTRODUCTION

The first joint observation of gravitational waves (GWs)
and electromagnetic waves from a binary neutron star (BNS)
merger has revolutionized relativistic astrophysics [1]. GW
emission encoded the dynamics of the colliding objects [2,3],
while electromagnetic emission encoded the rich physics
of the subsequent short gamma-ray burst [4–6], kilonova
[7–10], and afterglow of the merger remnant [11,12]. These
complementary observations provided information about

the origins of short gamma-ray bursts and heavy elements
[13–17], matter with supranuclear densities [18,19], the
expansion rate of the Universe [20,21], and the properties
of gravity [22–24]. More joint GW and electromagnetic
observations—so-called multimessenger observations—of
compact binary coalescence (CBC) events are required for
more accurate and precise understanding of those topics.
Increasing the number of the successful multimessenger
observations is one of the main goals of the fourth observing
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run (O4) of the LIGO Scientific, Virgo, and KAGRA
Collaboration (LVK) [25–28], which is currently ongoing.
Rapid and accurate source localization from GW data is

key to successful multimessenger observations of CBC
events. Additionally, as the global GW detector network
improves in sensitivity and detection rates reach around one
per day [29], rapid and accurate parameter estimation on all
compact binaries ensures that data analysis scales com-
mensurably with increasing detections. Reducing the com-
putational cost of source-parameter estimation has been
essential for making rapid and accurate parameter estima-
tion a reality. Several techniques have been developed
over the past years to this end. These include likelihood
approximation [30–35], parallelized algorithms [36–42],
machine learning approaches [43–47], reparametrizations to
remove parameter degeneracy and multimodalities [48,49],
and other techniques [50–52]. While each of these methods
has reduced the wall-time or CPU- or GPU-time cost of
parameter estimation (or both) to somedegree, they generally
require constant updating or modification to reflect progress
in, e.g., developments of new model gravitational wave-
forms; time sensitivity of particular observations (such as
observing electromagnetic counterparts); or scalability with
increasing event rate. The focus of this work is to present a
flexible set of approximatemethods for parameter estimation
on multiple GW sources for the foreseeable future of LVK
observing runs.
Here, we focus on the reduced order quadrature

(ROQ) [53,54] method, which accelerates parameter esti-
mation by significantly reducing the amount of waveform
evaluations—the dominant run-time cost. The key ingre-
dient in ROQ is a rerepresentation of waveform models as a
weighted sum over basis elements and coefficients. The
latter contain the waveform’s parametric dependence on the
CBC’s physical parameters, e.g., masses and spins. The
smaller the basis size (number of basis elements), the more
parameter estimation is accelerated. Previous work [55] has
demonstrated that the basis size is drastically reduced if the
ROQ basis is constructed over a targeted narrow mass-spin
space, reducing the run-time of parameter estimation on
BNS to tens of minutes. Parameter estimation provides
optimal (in the sense of minimizing the uncertainty) and
unbiased sky localization of compact binaries, allowing the
odds of discovering an electromagnetic counterpart to be
improved if updated sky maps can be quickly disseminated
to observers. Analyzing only a restricted region of the
mass-spin parameter space may lead to biases in the
inference if the data have support outside of the explored
region. In addition, the previous work [55] made use of a
simple waveform model which does not take into account
binary merger dynamics, neutron-star tidal deformability,
or generic spin configurations.
In this paper, we present a rapid parameter estimation

framework overcoming the shortcomings of the previous
approaches, which enables accurate source localization of a

BNS signal within minutes and greatly improves the scal-
ability of the detailed parameter estimation analysis, taking
into account general binary merger dynamics. The core idea
of our framework is to employmultipleROQbases in a single
parameter estimation analysis: Each basis is constructed in a
targeted parameter space to gain a significant speedup, and
the union of small patches in parameter space is broad
enough to cover the region consistentwith observed data.We
also present sets of targeted ROQ bases we have developed
for use with our optimized framework. Some of the bases
have been constructed for computationally cheap waveform
models to enable rapid sky localization, and the others for the
state-of-the-art waveform models taking into account gravi-
tational-wave highermultipolemoments or tidal deformation
of colliding objects.
Our rapid parameter estimation technique has been imple-

mented in one of the LVK parameter estimation engines,
BILBY [56,57], and that technique as well as our newly
developed ROQ bases are being employed by the automated
parameter estimation analysis of the LVK O4 alert system,
circulating source location estimates to follow-up observers
[58–61]. The typical analysis time is severalminutes forBNS
and hours for the other types of signal. In practice, there can
be a delay making the results public due to human vetting of
observed data and the inference results. This can increase the
time to send out an update General Coordinates Network
notice or circular to an hour to several hours. However, in the
future, human interventionmaybe removed from the process
so that they are circulated immediately after parameter
estimation is completed.
The rest of the paper is organized as follows. In Sec. II,

we review the basics of ROQ and describe our opti-
mizations to the ROQ method. In Sec. III, we present
our new ROQ bases and describe how they have been
constructed. In Sec. IV, we benchmark our optimized ROQ
method with hundreds of simulated signals. Finally, in
Sec. V, we conclude this paper with summarizing our
results. Throughout this paper, we apply the geometric unit
system c ¼ G ¼ 1.

II. IMPROVED REDUCED ORDER
QUADRATURE

In this section, we explain the basics of ROQ and present
our idea of using multiple ROQ bases in a single parameter
estimation run.

A. Basics

Parameter estimation of a CBC signal is typically based
on Bayesian inference, where Bayesian posterior proba-
bility density function is computed via Bayes’ theorem:

pðθjfdigNdet
i¼1Þ ¼

LðfdigNdet
i¼1 jθÞπðθÞ
Z

: ð1Þ
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Here, fdigNdet
i¼1 is a set of data from Ndet detectors, θ is a set

of parameters characterizing the CBC signal, LðfdigNdet
i¼1 jθÞ

is the likelihood function, πðθÞ is the prior probability
density function, and Z is evidence. For CBC parameter
estimation, we typically assume that instrumental noise is
stationary and Gaussian and employ the Whittle likelihood
[62], whose logarithm is given by

lnL ¼ −
1

2

XNdet

i¼1

ðdi − hiðθÞ; di − hiðθÞÞi þ const ð2Þ

¼
XNdet

i¼1

�
ðdi;hiðθÞÞi−

1

2
ðhiðθÞ;hiðθÞÞi

�
þ const: ð3Þ

ða; bÞi is the noise-weighted inner product,

ða; bÞi ¼
4

T
Re

�X
k

a�ðfkÞbðfkÞ
SiðfkÞ

�
; ð4Þ

where T is data duration, SðfÞ is the one-sided power
spectral density (PSD) of instrumental noise, and the sum is
taken over evenly spaced frequencies ffkgk ranging from
the low-frequency cutoff flow to the high-frequency cutoff
fhigh with the frequency interval of 1=T. The nonconstant
part of lnL is referred to as a log-likelihood ratio,

lnΛ ¼
XNdet

i¼1

�
ðdi; hiðθÞÞi −

1

2
ðhiðθÞ; hiðθÞÞi

�
; ð5Þ

and is computed typically more than millions of times
during the stochastic sampling of posterior.
The dominant computational cost of parameter estima-

tion comes from the generation of waveform fh̃iðfk; θÞgk,
which is required to compute the log-likelihood ratio (5).
The cost is proportional to the number of frequency points
K ¼ ðfhigh − flowÞT þ 1, which is equal to the number of
required waveform evaluations per waveform generation.
ROQ reduces the number of required waveform evaluations
by expressing the waveform and its squared amplitude as
linear functionals of ROQ bases:

hiðfk; θ0; tc ¼ 0Þ ≃
XNL

I¼1

hiðFI; θ
0; tc ¼ 0ÞBIðfkÞ; ð6Þ

jhiðfk; θÞj2 ≃
XNQ

J¼1

jhiðF J; θÞj2CJðfkÞ; ð7Þ

where tc is the coalescence time of signal, θ0 is the set

of the parameters except for tc, fFIgNL
I¼1 and fF JgNQ

J¼1

are known as empirical interpolation nodes, and

fBIðfkÞgNL
I¼1 and fCJðfkÞgNQ

J¼1 as linear and quadratic

ROQ bases.1 Generally, the bases are defined over a
subdomain in parameter space. The subdomain is typically
smaller than the full parameter space on which the wave-
form models themselves are defined.
Substituting the above expressions into the log-like-

lihood ratio (5), one arrives at the compressed ROQ log-
likelihood ratio [53,54]:

lnΛROQ ¼
XNdet

i¼1

�
LiðθÞ −

1

2
QiðθÞ

�
; ð8Þ

where the functions LiðθÞ and QiðθÞ are given, respec-
tively, by

LiðθÞ ¼ Re

�XNL

I¼1

hiðFI; θ
0; tc ¼ 0ÞωI;iðtcÞ

�
; ð9Þ

QiðθÞ ¼
XNQ

J¼1

jhiðF J; θÞj2ψJ;i: ð10Þ

The quantities ωI;iðtcÞ and ψJ;i are integration weights that
depend only on the bases, data, and noise power spectral
density:

ωI;iðtcÞ ¼
4

T

X
k

d�i ðfkÞBIðfkÞ
SiðfkÞ

e−2πifktc ; ð11Þ

ψJ;i ¼
4

T

XK
k¼1

CJðfkÞ
SiðfkÞ

: ð12Þ

These data-dependent weights are a one-time, upfront
calculation and can be efficiently computed using an
inverse fast Fourier transform. Since lnΛROQ can be
computed with waveform values at NL þ NQ frequency
points, the number of required waveform evaluations is
reduced by K=ðNL þ NQÞ, and the analysis is expected to
be accelerated by the same factor.
The ROQ bases fBIðfkÞgNL

I¼1 and fCJðfkÞgNQ

J¼1 need to
be preconstructed and stored. For signal with long duration,
which has large K, their file sizes can be a few tens of
gigabytes or even larger. This gets a more serious issue
when tens or hundreds of bases are constructed for different
mass-spin subdomains, as we do in this work. This practical
issue can be resolved by utilizing the likelihood approxi-
mation technique developed in [34]. In this approximation,
the total frequency range is divided into B frequency bands
with a set of smooth window functions fwðbÞðfÞgBb¼1.
They are constructed so that signal from the starting
frequency of the bth band has duration shorter than a

1Note that the representations in Eq. (6) are often referred to as
“reduced order models” or ROMs of waveforms. Here, we choose
to avoid using the term ROM to minimize the amount of technical
jargon, as we are primarily interested in the quantities derived
from Eq. (6).
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certain duration value TðbÞ, and their values can be chosen
so that they are decreasing T ¼ Tð1Þ > Tð2Þ > � � � > TðBÞ
thanks to the chirping nature of CBC signal (the increase of
frequency with time). The start and end frequencies of the
frequency bands are determined based on the time-fre-
quency relation of CBC signal computed with a certain
value of detector-frame chirp mass.
Then, the frequency sum of ðdi; hiðθÞÞi is decomposed

into sums over the B frequency bands, and the sum over the
bth band is approximately computed with hiðf; θÞ at down-
sampled frequency points fðbÞk ¼ k=TðbÞ. Similarly, ðhiðθÞ;
hiðθÞÞi is decomposed, and the sum over the bth band is

approximately computed with jhiðf; θÞj2 at f̂ðbÞk ¼ k=T̂ðbÞ,
T̂ðbÞ ¼ min½2TðbÞ; T�. Since 1=TðbÞ ≫ 1=T for large b, this
multiband approximation significantly reduces the number
of required waveform values at high frequency.
Substituting Eqs. (6) and (7) into the multiband forms of
the inner products, they are approximated by ROQ bases at
the downsampled frequency points [BIðfÞ at fffðbÞgkgBb¼1

and CJðfÞ at fff̂ðbÞgkgBb¼1]. The exact forms of the multi-
banded ROQ inner products are given in Appendix A.
Hence, we need to store only the multibanded basis
components. For typical BNS signal in the LVK frequency
range, the original number of frequency points K ∼ 106 is
reduced to ∼104 with the multiband approximation [34],
and, hence, the file size is reduced by a factor of ∼100.

B. Using multiple ROQ bases
for arbitrary mass-spin priors

In previous parameter estimation analyses using ROQ
likelihoods, the explored parameter range has typically been
set by thewidth of a single ROQmass-spin partition. Hence,
thewidth ofROQbases has been designed to bewide enough
so that posterior distributions of a signals’mass and spin will
be comfortably contained within them. This introduces a
trade-off between efficiency and accuracy: ROQ basis
constructed over a narrow mass-spin space has a smaller
basis size but restricts the explored parameter space.
Besides this trade-off, there are a number of drawbacks

to this approach. Analysts often chose priors based on
astrophysical considerations: These might be wider than
those offered by individual ROQ bases; a detection trigger
might have masses which fall near the boundary of an ROQ
basis; diagnostic checks (such as p-p tests) may require a
consistent broad prior; and catalogs of gravitational-wave
events might want to impose consistent priors for particular
classes of events.
To overcome these issues, it is straightforward to define

an ROQ likelihood over a parameter domain larger than the
small subdomains of the individual ROQ basis. One simply
builds multiple sets of ROQ weights constructed from
bases covering different parameter subdomains. The like-
lihood over the full domain is then just the union of the
likelihoods on the individual subdomains:

LROQðdjθ; all basesÞ ¼
�
LROQðdjθ; particular basisÞ; for θ in domain of a particular basis;

0; otherwise:
ð13Þ

Thus, when a parameter sample θ is drawn, one simply
computes the likelihood function using the precom-
puted ROQ weights associated with the basis set whose
domain contains θ. This likelihood construction from
multiple ROQ bases has been implemented in
ROQGravitationalWaveTransient of BILBY. In the current
implementation, ROQ bases used in a single run are
assumed to have the same values of flow, fhigh, and
1=T, while it can, in principle, be generalized.

III. CONSTRUCTION OF REDUCED ORDER
QUADRATURE BASES

Based on the idea of using multiple ROQ bases, we have
constructed sets of ROQ bases constructed over targeted
mass-spin subdomains. In this section, we present those
bases as well as explaining how they have been constructed.
In this work, we consider dividing the parameter space
based on a single parameter, detector-frame chirp mass2

M≡ ðm1m2Þ3=5=ðm1 þm2Þ1=5, where m1 and m2 are

detector-frame component masses satisfying m1 ≥ m2.
This parameter is known to predominantly determine the
gravitational waveforms’ phase and amplitude evolution and
groups waveforms with similar morphologies. Using more
sophisticated parameters such as the linear combinations of
GW phase coefficients introduced by [55] may reduce the
basis sizes further, but we leave exploration in that direction
to future work.

A. Waveforms and parameter ranges

We consider three different mass ranges: BNS, binary
black hole (BBH), and intermediate regions. For each region,
we have constructed ROQ bases for different waveform
models and parameter ranges. All of our bases have been con-
structed to approximate waveform values from flow¼20Hz,
the default low-frequency cutoff used in LVK parameter
estimation analyses [63,64]. They are summarized in Table I.

1. BNS

Astrophysical BNS masses plausibly span a range
between around 1 and 2M⊙, with mass ratios q≡m2=m1

2Sometimes referred to as redshifted chirp mass.
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roughly in the range 0.5 ≤ q ≤ 1 [65]. The upper and lower
limits are uncertain due to a limited number of galactic and
extragalactic observations, together with incomplete models
of binary neutron star astrophysics. The dimensionless spin
magnitudes of colliding neutron stars, a1 anda2, can be up to
∼0.7 assuming a plausible equation of state of matter with
supranuclear densities [66], while BNS systems that have
been found by electromagnetic observations and will merge
within a Hubble time will have spins of 0.04 at largest when
they merge [67]. Tidal deformation of the stars also affects
the gravitational waveform [68], and this effect is charac-
terized by dimensionless tidal deformability parameters Λ1

andΛ2.Measurements of thosevalues provide constraints on
the uncertain equation of state of matter with supranuclear
densities [18,19] and are of particular interest for nuclear
physics.
Our BNS ROQ bases span detector-frame chirp masses

in the range 0.6M⊙ ≤ M ≤ 4M⊙ and mass ratios in the
range 1=8 ≤ q ≤ 1. While this mass range extends far
beyond what is plausible for astrophysical BNSs, our
motivation is to provide an “insurance buffer” to

accommodate unexpected sources, unusually broad pos-
terior densities, etc. Over the mass range, we have con-
structed ROQ bases for three different sets of waveform
models and parameter ranges: IMRPhenomD [69,70] for
the low-spin range 0 ≤ a1; a2 ≤ 0.05, IMRPhenomPv2
[71] for the high-spin range 0 ≤ a1; a2 ≤ 0.99, and
IMRPhenomPv2_NRTidalv2 [72] for the high-spin range
and the broad tidal deformability range 0 ≤ Λ1;Λ2 ≤ 5000.
IMRPhenomPv2 and IMRPhenomPv2_NRTidalv2 have
cusps in waveform at a certain mass-spin space, where q ≲
0.4 and spins are antialigned with the orbital angular
momentum. As discussed in [54], those cusps make it
practically impossible to obtain converged ROQ bases.
Since the waveform models are not valid in that region
anyway, we exclude that parameter space for basis con-
struction. The excluded mass ratio-spin region for M ¼
1M⊙ is shown in gray in Fig. 1, where χ1 and χ2 are spin
components projected onto the orbital angular momentum,
and the region is almost unchanged for a differentM value
within the range. More details about the waveform cusps
will be explained in Appendix B.
The sole purpose of the low-spin IMRPhenomD ROQ

bases is to provide rapid sky location for BNS candidates.
IMRPhenomD is valid only for simple spin configurations
where spins are aligned with the orbital angular momen-
tum. While this waveform restriction and the low-spin
assumption does not allow us to explore a broader, more
agnostic spin space, parameter estimation using those
bases is extremely quick, enabling us to provide estimated
sky location with the timescale of minutes as demonstrated
in Sec. IV. On the other hand, IMRPhenomPv2 is valid
for general spin configurations and IMRPhenomPv2_
NRTidalv2 also takes into account tidal deformation of
colliding objects. Those two bases are useful for more
detailed follow-up analysis of BNS candidates.

2. BBH

For the BBH mass range, we have constructed ROQ
bases for IMRPhenomXPHM [73], which is valid for
general spin configurations and takes into account GW
higher multipole moments. Astrophysical BBH masses
observable by LVK detectors span a range between
around 2 and 400M⊙. The mass ratio distribution is subject
to large uncertainties; however, the IMRPhenomXPHM

FIG. 1. Excluded region of mass ratio q and projected total
spin χ ¼ ðχ1 þ q2χ2Þ=ð1þ qÞ2 in the basis construction of
IMRPhenomPv2 and IMRPhenomPv2_NRTidalv2, where χ1
and χ2 are dimensionless spins projected onto the orbital angular
momentum. The gray region is the excluded region, and the
blue region is the region allowed by the spin limit a1, a2 ≤ 0.99.
The excluded region is determined by Eq. (B4), and the gray
region presented here is calculated with M ¼ 1M⊙ and
fhigh ¼ 4096 Hz, while it very weakly depends on M within
the range we consider, 0.6M⊙ ≤ M ≤ 4.0M⊙.

TABLE I. Waveform models and parameter ranges for which ROQ bases have been constructed and widths of chirp-mass subdomains.

Mass range Waveform model Spin range Tides range Subdomain width

BNS (0.6M⊙ ≤ M ≤ 4.0M⊙; 1=8 ≤ q ≤ 1) IMRPhenomD a ≤ 0.05 � � � ΔM−5=3 ¼ 0.01 (M−5=3
⊙ )

IMRPhenomPv2 a ≤ 0.99 � � � ΔM−5=3 ¼ 0.1 (M−5=3
⊙ )

IMRPhenomPv2_NRTidalv2 Λ ≤ 5000

Intermediate (1.4M⊙ ≤ M ≤ 21M⊙; 1=20 ≤ q ≤ 1) IMRPhenomPv2 a ≤ 0.99 � � � ΔM−5=3 ¼ 0.01 (M−5=3
⊙ )

BBH (10.02M⊙ ≤ M ≤ 200M⊙; 1=20 ≤ q ≤ 1) IMRPhenomXPHM a ≤ 0.99 � � � See Sec. III C
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model itself accurately describes binaries with mass ratios
in the range 1=20≲ q ≤ 1. Current constraints on the spin
magnitude and orientations of astrophysical BBHs allow
any magnitude up to 1 and any possible orientation [74].
We allow our bases to span the spin magnitude range 0 ≤
a1; a2 ≤ 0.99 and all possible spin directions.
Currently, the mass range of our bases spans detector-

frame chirp masses in the range 10.02M⊙ ≤ M ≤ 200M⊙
and mass ratios in the range 1=20 ≤ q ≤ 1. The mass range
does not extend to the lowest mass regions of the binary
black hole space, which is due to current technical
limitations in the design and construction of ROQ bases.
Specifically, building comprehensive training sets for long-
duration, low-mass binary black hole waveforms is more
challenging than for binary neutron stars because of the
presence of higher multipole moments in the signals. This
requires significantly larger training sets, and hence
memory, than is currently feasible. Constructing low-mass
IMRPhenomXPHM ROQ bases will be the subject of
future work.

3. Intermediate

To fill in the gap between the BNS and BBHmass ranges,
we have constructed ROQ bases of IMRPhenomPv2 for
detector-frame chirp masses in the range 1.4M⊙ ≤ M ≤
21M⊙. Our bases span mass ratios in the range 1=20 ≤
q ≤ 1, which is broad enough to include any neutron star–
black hole (NSBH) binaries that may lead to electromagnetic
counterparts [75], and spins in the range 0 ≤ a1; a2 ≤ 0.99.
As with the BNS bases, we exclude the mass-spin space
where the waveform has cusps. These bases are being used
for automated LVKparameter estimation of event candidates
which do not fall in the BNS or BBH mass region.

B. Mass-frequency partitions and multibanding

Following [54], we divide each mass region into several
overlapping chirp-mass partitions with different frequency
resolution 1=T and high-frequency cutoffs fhigh. The chirp-
mass range and T of each partition are determined so that
the ROQ bases in that partition can accurately model any
waveform whose duration falls between 2n−1 and 2n s,
where n is an integer. More mathematically, given a map
from waveform duration τ to M, MðτÞ, the chirp-mass
range is determined by

Mðð2n − 2.1Þ sÞ ≤ M ≤ 1.2Mðð2n−1 − 2.1Þ sÞ; ð14Þ

and T ¼ 2n s. The time offset of 2.1 s is to accommodate
the time between the coalescence time tc and the end time
of analyzed data te. Let ttrig be trigger time reported at
signal detection, we typically have 2 s safety margin
between ttrig and te, and the standard prior of tc is uniform
distribution in ttrig − 0.1 s ≤ tc ≤ ttrig þ 0.1 s [76]. Hence,
ð2þ 0.1Þ s is the maximum time difference between tc and

te in the standard parameter estimation, ignoring the light-
traveling time between the geocenter and a detector.
For the BNS and intermediate mass regions, we employ

the leading-order τ −M relation:

MðτÞ ¼
�

5

256πflowτ

�3
5 1

πflow
; ð15Þ

with flow ¼ 20 Hz. With this algorithm, the BNS mass
region is divided into four chirp-mass partitions: 0.6M⊙ ≤
M ≤ 1.1M⊙, 0.92M⊙ ≤ M ≤ 1.7M⊙, 1.4M⊙ ≤ M ≤
2.6M⊙, and 2.1M⊙ ≤ M ≤ 4.0M⊙, with T ¼ 512, 256,
128, and 64 s, respectively. For the low-spin IMRPhenomD
bases, fhigh is 1024 Hz for all the partitions, which is high
enough not to degrade estimates on source locations. For
the IMRPhenomPv2 and IMRPhenomPv2_NRTidalv2
bases, fhigh is 4096 Hz for the first three partitions and
2048 Hz for the last partition to incorporate all the infor-
mation on binary merger. The intermediate mass region
is divided into five partitions: 1.4M⊙ ≤ M ≤ 2.6M⊙,
2.1M⊙ ≤ M ≤ 4.0M⊙, 3.3M⊙ ≤ M ≤ 6.3M⊙, 5.2M⊙ ≤
M ≤ 11M⊙, and 8.7M⊙ ≤ M ≤ 21M⊙ with T ¼ 128, 64,
32, 16, and 8 s, respectively. fhigh is 1024 Hz for all the
partitions.
IMRPhenomXPHM contains GW higher multipole

moments and their frequency-time relation is different
from that of the dominant quadrupole moment. However,
the duration of the ðl; jmjÞ modes can approximately be
calculated by the same formula (15) with the frequency
scaling flow → ð2=jmjÞflow. To obtain themost conservative
value of T, we assume jmj ¼ 4, the highest jmj of
IMRPhenomXPHM leading to the longest duration, and
employ the relation (15) with flow ¼ 10 Hz. With this
relation, the BBH region is divided into four partitions:
10.02M⊙ ≤ M ≤ 19.05M⊙, 17.32M⊙ ≤ M ≤ 31.85M⊙,
26.54M⊙≤M≤62.86M⊙, and 52.38M⊙ ≤M≤200.0M⊙
with T ¼ 32, 16, 8, and 4 s, respectively.
To reduce the total file size of ROQ bases with large T,

we downsample all the BNS bases, and the NSBH bases
with T ¼ 128, 64, and 32 s using the multiband approxi-
mation. The frequency bands of each partition are deter-
mined based on the time-frequency relation calculated
with the chirp-mass value 0.95Mmin, where Mmin is the
minimum chirp mass of the partition and 0.95 is a safety
factor. The duration of the band decreases at the rate of
1=2, TðbÞ ¼ T=2b−1.

C. Chirp-mass subdomains

Each partition is further divided into narrow M subdo-
mains to reduce the basis sizes. Each partition of the BNS
and intermediate mass regions is divided equally inM−5=3,
the leading-order mass combination entering into GW
phasing. For the IMRPhenomPv2 and IMRPhenomPv2_
NRTidalv2 bases of the BNS mass region, each partition is
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divided into subdomains with the width of ΔðM−5=3Þ ¼
0.1M−5=3

⊙ , and one set of linear and quadratic bases have been
constructed over each subdomain. It results in 15, eight, four,
and two linear and quadratic bases for the partitions of
T ¼ 512, 256, 128, and 64 s, respectively. For the low-spin
IMRPhenomD bases, each partition is divided into subdo-
mains with the width of ΔðM−5=3Þ ¼ 0.01M−5=3

⊙ , narrower
subdomains to obtain compact bases for low-latency source
localization.Wehave confirmed that reducing the chirp-mass
width further reduces the basis sizes only by a few tens of
percent. Only the linear basis is constructed over each
subdomain. Conversely, since the quadratic basis of low-
spin IMRPhenomD does not significantly depend on the
width of a subdomain and its basis size is much smaller than
the sizes of the linear bases, the quadratic bases have been
constructed over the whole mass partitions. It results in 149,
74, 37, and 20 linear bases for the partitions ofT ¼ 512, 256,
128, and 64 s, respectively, and one quadratic basis per
partition.
For the IMRPhenomPv2 bases of the intermediate mass

region, each partition is divided into subdomains with
the width of ΔðM−5=3Þ ¼ 0.01M−5=3

⊙ , and one set of linear
and quadratic bases have been constructed over each sub-
domain. It results in 37, 20, ten, five, and three linear and
quadratic bases for the partitions of T ¼ 128, 64, 32, 16,
and 8 s, respectively.
For IMRPhenomXPHM, we take a somewhat more

ad hoc approach than for the other waveform models used
in this paper. Studies to optimize the widths of subdomains
are still ongoing, and we present the results for the bases
which are currently being used in the LVK automated
parameter estimation analysis. The 4, 8, and 16 s mass
spaces are split into 11 equally sized subdomains, chosen to
manage memory and computational resources. The 32 s
mass space is split into 24 equal subdomains. We have
found empirically that it yields comparably sized base sets,
though we note that they are not optimal in the sense that
further reduction in size will likely yield more compact sets.
This is the topic of future work.

D. Basis construction

For constructing IMRPhenomXPHM bases, we employ
the same strategy and code base as used in [54]. The basis
construction is a combination of the greedy algorithm [77]
and the empirical interpolation method. First, the greedy
algorithm is run on a set of randomly drawn CBC wave-
forms, and N reduced basis vectors are obtained, whose
span can approximate any waveform in the set within a
specified accuracy. The set of waveforms used for con-
structing the reduced basis is referred to as training set.
Next, the empirical interpolation method uses the N
reduced basis vectors to constructN empirical interpolation
nodes and ROQ basis. The interpolant is then validated by
computing its representation errors for waveforms outside

the training set. If there are waveforms whose errors
exceed an error tolerance, these waveforms are added to
the training set, and the whole process is repeated. In
the IMRPhenomXPHM model, waveform morphology is
determined by the ten parameters, two masses, two spin
vectors, the inclination angle of the orbital plane, and the
coalescence phase. Hence, the training and validation sets
consist of waveforms with random realizations of those ten
parameter values.
For the BNS and NSBH bases, we employ a slightly

different strategy. We skip the empirical interpolation
method in the iterative loop and validate reduced basis
vectors by computing their projection errors for waveforms
outside the training set. Once reduced basis vectors passing
the validation test are obtained, they are mapped to
empirical nodes and ROQ basis with the empirical inter-
polation method.
Amplitude and phase deviations due to detector calibra-

tion errors [78] are also taken into account for the BNS and
NSBH bases. Those deviation factors are randomly realized
and multiplied by a certain fraction of waveforms in the
training and validation sets. They are calculated via spline
interpolation of their values at ten nodal frequency points
distributed log-uniformly. Their values at the nodes are
drawn from uniform distribution from −20% to 20% for
amplitude and −15° to 15° for phase. While they are not
considered in the basis construction for IMRPhenomXPHM,
the bases are shown to be accurate to represent waveforms
incorporating those deviations in Sec. III F.
For IMRPhenomD, GW polarizations hþðfÞ and h×ðfÞ

are linearly dependent. Hence, the reduced bases need
to be constructed only for hþðfÞ and jhþðfÞj2. Its wave-
form morphology is parametrized by the four para-
meters ðm1; m2; χ1; χ2Þ. The initial training set consists
of 3 × 54 ¼ 1875 waveforms, where one-third of them are
waveforms on 54 grid points of M − q − χ1 − χ2 space
with vanishing calibration errors and two-thirds of them are
waveforms on the same mass-spin grid points with random
calibration errors. The reduced basis is validated against
3 × 104 waveforms, where one-third of them are with
vanishing calibration errors and two-thirds of them are
with random calibration errors.
As explained in a previous subsection, all the

IMRPhenomD bases are multibanded. Rather than con-
structing ROQ basis for fully sampled waveforms and
downsampling it, we downsample the waveforms in the
training and validation sets and directly construct multi-
banded ROQ basis. To reflect the integration weights in the
multiband inner products, (A1) and (A2), we also multiplyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðbÞðfðbÞk Þ=TðbÞ

q
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðbÞðf̂ðbÞk Þ=T̂ðbÞ

q
by each compo-

nent of waveforms for linear and quadratic basis con-
struction, respectively. The waveforms are normalized in
the following ways for linear and quadratic basis con-
struction, respectively:
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XB
b¼1

1

TðbÞ
X
k

wðbÞðfðbÞk ÞjhþðfðbÞk Þj2 ¼ 1; ð16Þ

XB
b¼1

1

T̂ðbÞ
X
k

wðbÞðf̂ðbÞk Þjhþðf̂ðbÞk Þj2 ¼ 1: ð17Þ

The error tolerances for projection errors are 10−10 for all
the linear bases and 6.4 × 10−15, 9.8 × 10−15, 1.4 × 10−14,
and 1.7 × 10−14 for quadratic bases with T ¼ 512, 256,
128, and 64 s, respectively. Those tolerance values are
empirically determined so that the relative log-likelihood-
ratio errors measured in the next subsection are ≲10−4.
For IMRPhenomPv2 or IMRPhenomPv2_NRTidalv2,

hþðfÞ and h×ðfÞ are linear combinations of the following
five base waveforms (See Appendix C for more details):

lmðfÞ ¼ eiðmαðfÞ−2ϵðfÞÞd22;mð−βðfÞÞhDðfÞ
ðm ¼ −2;−1; 0; 1; 2Þ; ð18Þ

where αðfÞ, βðfÞ, and ϵðfÞ are Euler angles to parametrize
the rotation from an inertial frame whose z axis is aligned
with the total angular momentum to a coprecessing frame
whose z axis is aligned with the orbital angular momen-
tum, dlm0;mðβÞ is the component of the Wigner matrix, and
hDðfÞ is the waveform in the coprecessing frame computed
with the IMRPhenomD model. The basis vectors are
constructed to approximate those five base waveforms
instead of the original polarizations. The base waveforms
are parametrized by the five parameters ðm1; m2; χ1; χ2; χpÞ
for IMRPhenomPv2 and the seven parameters ðm1; m2;
χ1; χ2; χp;Λ1;Λ2Þ for IMRPhenomPv2_NRTidalv2, where
χp is the effective precessing spin parameter [79]. They do
not include the angle between the line of sight and the total
angular momentum, θJ, and the initial phase of αðfÞ, α0,
while those two parameters need to be taken into account
when basis vectors are constructed for the original polar-
izations [54]. Hence, building the basis vectors for the base
waveforms reduces the number of parameters by 2.
On the other hand, jFþhþ þ F×h×j2, where Fþ and F×

are detector beam pattern functions, is the linear combi-
nation of the following base waveforms:

qcosm;m0 ðfÞ ¼ ½d22;mð−βðfÞÞd22;m0 ð−βðfÞÞ
þ ð−1Þmþm0

d22;−mð−βðfÞÞd22;−m0 ð−βðfÞÞ�
× cos ½ðm −m0ÞαðfÞ�jhDðfÞj2; ð19Þ

qsinm;m0 ðfÞ ¼ ½d22;mð−βðfÞÞd22;m0 ð−βðfÞÞ
þ ð−1Þmþm0

d22;−mð−βðfÞÞd22;−m0 ð−βðfÞÞ�
× sin ½ðm −m0ÞαðfÞ�jhDðfÞj2
× ðm;m0 ¼ −2;−1; 0; 1; 2Þ: ð20Þ

Since qcosm;m0 ¼ qcosm0;m ¼ qcos−m;−m0 and qsinm;m0 ¼ −qsinm0;m ¼
−qsin−m;−m0 , only 15 of them are linearly independent.
Thus, basis vectors are constructed for the 15 base wave-
forms. Those base waveforms are parametrized by the same
parameters as those parametrizing flmðfÞg2m¼−2.
For IMRPhenomPv2 or IMRPhenomPv2_NRTidalv2

basis, we start with a training set of Oð104Þ of waveforms.
They are generated with Oð103Þ random source para-
meters, for each of which there are five base waveforms
for linear basis and 15 for quadratic basis. Validation is
carried out with 105–106 random source parameters for
IMRPhenomPv2 and 106–107 random source parameters
for IMRPhenomPv2_NRTidalv2, where half of them
incorporate random detector calibration errors. The base
waveforms are normalized so that their aligned-spin limits
have norm of unity:

XB
b¼1

1

TðbÞ
X
k

wðbÞðfðbÞk ÞjhDðfðbÞk Þj2 ¼ 1; ð21Þ

XB
b¼1

1

T̂ðbÞ
X
k

wðbÞðf̂ðbÞk ÞjhDðf̂ðbÞk Þj2 ¼ 1: ð22Þ

For the BNS IMRPhenomPv2 bases, the error tolerances
for projection errors are 10−11 for all the linear bases and
3.6 × 10−16, 4.4 × 10−16, 5.1 × 10−16, and 1.0 × 10−15 for
quadratic bases with T ¼ 512, 256, 128, and 64 s, respec-
tively. For the BNS IMRPhenomPv2_NRTidalv2 bases,
they are 10−12 for all the linear bases and 3.6 × 10−17,
4.4× 10−17, 5.1× 10−17, and 1.0× 10−16 for quadratic bases
with T ¼ 512, 256, 128, and 64 s, respectively. The lower
tolerance values for IMRPhenomPv2_NRTidalv2 is to
avoid any systematic biases from the ROQ approximation
on the measurement of tidal effects. For the NSBH
IMRPhenomPv2 bases, the error tolerances for projection
errors are 10−10 for all the linear bases and 1.4 × 10−14,
1.7 × 10−14, 2.0 × 10−14, 6.2 × 10−15, and 1.2 × 10−14 for
quadratic bases with T ¼ 128, 64, 32, 16, and 8 s,
respectively.

E. Basis sizes and speedup gains

The sizes and speedup gains of the bases are presented
in Table II. The low-spin IMRPhenomD bases are most
compact and have only ∼100 basis elements for each
in total. The IMRPhenomPv2 and IMRPhenomPv2_
NRTidalv2 bases of the BNS mass range have several
hundreds to ∼1000 basis elements for each, and the latter
ones are larger due to the presence of tidal effects. The
IMRPhenomPv2 bases of the intermediate mass range have
higher basis sizes (up to several thousands) than the BNS
bases due to the extended range of mass ratio. The sizes of
the IMRPhenomXPHM bases range from several hundreds
to thousands and significantly depend on chirp-mass range.
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The speedup gains presented in the tables are measured
speedup gains in likelihood evaluations. For each chirp-
mass subdomain, log-likelihood ratio is evaluated for 1000
random source parameter samples with and without the
ROQ approximation and a speedup gain is calculated as the
ratio of evaluation time for each sample. Each row in
the table presents the range of the medians of measured
speedup gains. For the low-spin IMRPhenomD bases, the
measured speedup gains are ∼10 times lower than the
expected speedup gains K=ðNL þ NQÞ. It arises because
waveform evaluations with those bases are so quick that
other fixed costs such as precomputations of IMRPhenomD
amplitude and phase coefficients dominate the cost. For the
other cases, the measured speedup gains are roughly the
same as the expected gains.

F. Likelihood errors

Figure 2 presents relative log-likelihood-ratio errors
introduced by our ROQ bases. The errors have been com-
puted for hundreds of source parameter samples per sub-
domain. For each parameter sample θ, a simulated signal
is generated and considered as observed data diðfÞ ¼
hiðf; θÞ, and the relative error between lnΛðfdigNdet

i¼1 jθÞ
and lnΛROQðfdigNdet

i¼1 jθÞ is computed. We consider only a

single LIGO detector with its design sensitivity for this
study. The source parameters contain amplitude and phase
calibration errors at ten log-uniformly distributed frequency
nodes, and interpolated calibration errors are multiplied by
simulated signal and template waveform used for like-
lihood evaluations. Their values at the nodes are drawn
from uniform distribution from−20% to 20% for amplitude
and −15° to 15° for phase.

TABLE II. Chirp-mass partitions, frequency range, number of bases for each partition, basis sizes, and speedup gains of our ROQ
bases. See Sec. III B for how the chirp-mass partitions are determined and Sec. III C for how each partition is divided into chirp-mass
subdomains, for each of which ROQ basis is constructed. The speedup gains are measured speedup gains in likelihood evaluations. See
Sec. III E for how they are measured.

MðM⊙Þ Frequencies (Hz) Number of bases Basis size

Waveform Min Max flow fhigh 1=T Linear Quadratic Linear Quadratic Speedup

IMRPhenomD 0.6 1.1 20 1024 1=512 149 1 126–137 24 250–460
0.92 1.7 20 1024 1=256 74 1 120–130 25 110–210
1.4 2.6 20 1024 1=128 37 1 112–122 28 58–100
2.1 4.0 20 1024 1=64 20 1 109–117 32 29–43

IMRPhenomPv2 (BNS) 0.6 1.1 20 4096 1=512 15 15 639–788 454–646 790–1100
0.92 1.7 20 4096 1=256 8 8 567–633 380–491 460–550
1.4 2.6 20 4096 1=128 4 4 555–567 335–392 260–300
2.1 4.0 20 2048 1=64 2 2 526–527 291–308 69–70

IMRPhenomPv2_NRTidalv2 0.6 1.1 20 4096 1=512 15 15 861–964 543–741 830–990
0.92 1.7 20 4096 1=256 8 8 803–859 487–587 450–550
1.4 2.6 20 4096 1=128 4 4 769–813 466–508 230–280
2.1 4.0 20 2048 1=64 2 2 756–765 457–466 58–60

IMRPhenomPv2 (Intermediate) 1.4 2.6 20 1024 1=128 37 37 1540–1824 2808–3484 26–31
2.1 4.0 20 1024 1=64 20 20 1716–2092 3256–4034 11–14
3.3 6.3 20 1024 1=32 10 10 1979–2377 3840–4170 5.7–6.4
5.2 11.0 20 1024 1=16 5 5 2304–2404 3794–4056 3.0–3.2
8.7 21.0 20 1024 1=8 3 3 2062–2232 2525–3204 2.0–2.3

IMRPhenomXPHM 10.02 19.05 20 4096 1=32 23 23 1870–2092 2444–2619 14–19
15.52 31.85 20 4096 1=16 15 15 1886–3095 2463–3095 4.9–8.0
26.54 62.86 20 4096 1=8 11 11 1222–1836 1222–1836 2.4–3.8
52.38 200.0 20 4096 1=4 11 11 308–806 308–806 1.9–3.7

FIG. 2. Relative log-likelihood-ratio errors of our ROQ bases
for random source parameter samples. They have been computed
for hundreds of source parameter samples per basis subdomain.
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As seen in the figure, the relative errors are≲10−5 for the
IMRPhenomPv2_NRTidalv2 bases and≲10−4 for the other
bases. The lower errors for IMRPhenomPv2_NRTidalv2
are due to the tighter error tolerances explained in the
previous subsection. Since log-likelihood ratio is in the
order of squared signal-to-noise ratio (SNR), the abso-
lute log-likelihood-ratio errors are smaller than unity for
SNR < 100, and our ROQ bases will not introduce biases
in inference for typical SNR values observed by LVK
detectors. We also note that the dominant errors of
IMRPhenomPv2_NRTidalv2 do not come from the bases
themselves but the numerical interpolation of ROQ weights
over the coalescence time tc. Relative errors computed
when weights are calculated exactly are shown as the
dashed-dotted line in the figure, and the errors get reduced
to ≲10−6.

IV. APPLICATIONS

In this section, we demonstrate the usefulness of our rapid
parameter estimation framework in various applications.

A. Rapid localization of BNS

Our rapid parameter estimation framework can be applied
to rapid and accurate source localization of BNS signals for
use in searches for their electromagnetic counterparts. In the
current LVK alert system, the rapid source localization
software, BAYESTAR [80,81], is run once CBC signal is
detected. It utilizes output from a CBC search pipeline
performing the matched-filtering [82–85] process on strain
data. Specifically, it reads in matched-filter SNR time series
for each detector and calculates the posterior probability
distribution over sky location and luminosity distance to the
source with a run-time of seconds. The input matched-filter
SNR time series is computed with the best-matching tem-
plate included in a template bank, a collection of simulated
gravitational waveforms for various mass and spin values
over which matched-filtering process is performed. To
mitigate potential bias or loss of precision due to the
mismatch between the signal and the best-matching tem-
plate, BILBY is run to explore mass-spin space broader than
that covered by the template bank and update the estimate of
source location. Our low-spin IMRPhenomD ROQ bases
have been developed specifically for speeding up this update
procedure for BNS signal.
In this section, we benchmark the speed and localization

accuracy of BILBY parameter estimation using the low-spin
IMRPhenomD ROQ bases. We inject simulated signals,
commonly called injections, into the third observing run (O3)
data of the LIGO Hanford–LIGO Livingston–Virgo (HLV)
detector network,which are publicly available [86]. Then,we
recover their locations with our rapid parameter estimation
framework and investigate the run-time and recovery accu-
racy. To benchmark its performance in a realistic situation,
we perform end-to-end tests, where the simulated data are

analyzed by a search pipeline and parameter estimation is run
with the settings determined based on the search outputs.We
also run BAYESTAR on the injections for comparison.
The source parameters of the injections are randomly

drawn from the astrophysical distribution we assume. The
detector-frame component masses are drawn from a uniform
distribution across 1M⊙ ≤ m1; m2 ≤ 3M⊙. The spins are
assumed to be parallel with the orbital angular momentum,
and their components projected over the orbital angular
momentum are drawn from a uniform distribution in
−0.05 ≤ χ1; χ2 ≤ 0.05. The effects of tidal deformation of
colliding bodies are not taken into account in injections. The
source locations are distributed isotropically over sky loca-
tion and uniformly in the cubic of luminosity distance DL
between 30 Mpc ≤ DL ≤ 600 Mpc. The distribution is iso-
tropic in binary orientation and uniform over coalescence
phase of binary motion. To avoid a lot of injections whose
optimal SNRs are too small to detect, we preestimate the
network optimal SNR, the rootmean square of optimal SNRs
at all the detectors, of each signal using referenceO3 detector
sensitivities, and inject only signals whose network optimal
SNRs exceed 8

ffiffiffi
2

p
,3 yielding 1047 injections in total. Those

signals are synthesized based on the IMRPhenomD wave-
formmodel and injected into theO3 dataset between 13 June
2019 18:46 UTC and 16 August 2019 12:45 UTC. They are
placed so that the interval of coalescence time tc between
neighboring injections is longer than 100 s to mitigate biases
due to signal overlap.4

To simulate a gravitational-wave search, we use the
GstLAL search pipeline (referred to as GstLAL hereafter)
[87] with a template bank constructed based on a stochastic
placement algorithm [88,89]. Each template is generated
using the TaylorF2 waveform model [90]. For quick tests,
we apply the matched-filter SNR maximized over coales-
cence phase and time as detection statistics rather than
performing full likelihood analysis. Specifically, we apply
the network matched-filter SNR above 12 and second
largest SNR among the three detectors above 5.5 as the
detection threshold, recovering 481 injections in total.
For 308 injections, data from all three detectors are

available since all of the detectors were in observing
mode. For the other 173 injections, one of the detectors
was not in the observing mode. We refer to those two
types of injections as triple-detector injections and double-
detector injections, respectively. For each injection, the

3SNR of 8 is a typical threshold used to estimate the observable
range of a detector, and SNRs exceeding 8 coincidentally at two
detectors require the network SNR to be larger than 8

ffiffiffi
2

p
.

4We have found that only one pair of neighboring injections
has time-frequency overlap, where the latter injection has lower
masses than those of the earlier one and has longer signal
duration. We expect its effects on our main results are negligible,
since they are statistical results from hundreds of injections
and the overlap has limited effects on the frequency integral of
likelihood.
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detection criteria are typically met for multiple templates in
the template bank. We refer to the template with the highest
SNR among them as the preferred template, and the
matched SNR time series computed with that template is
used as input to BAYESTAR.
For BILBYanalysis, we employ the DYNESTY sampler

[91] with the acceptance-walk Markov chain Monte Carlo
(MCMC) method. The number of live points and the
average number of accepted MCMC jumps are set to

500 and 10, respectively. The sampling is parallelized
with 24 processes. For each simulated signal, two inde-
pendent runs are performed and their samples are com-
bined. The PSD produced by GstLAL is used for likelihood
evaluations.
The prior probability distribution is the same as that used

to populate the injections, except for the explored range
of M. Since the chirp mass of the preferred template
Mtemplate is typically very close to its true value for BNS
[92], its explored range is set to 0.995Mtemplate ≤ M ≤
1.005Mtemplate. The explored range determined in that way
includes the true chirp mass value except for three double-
detector and four triple-detector injections. The errors of
chirp-mass recoveries for those seven injections are higher
than 20% and much higher than the errors for the other
detections. Hence, we anticipate it is due to nonstationary
or non-Gaussian noise around the injections. We exclude
those seven injections in the main results presented in this
section, while the effects of their inclusion are briefly
explained in the text. We analytically marginalize over the
coalescence phase, we marginalize over the luminosity
distance using the look-up table method, and they are
recovered at the postprocessing stage. Detector calibration
uncertainties are not taken into account in these simulations
and are not marginalized over.
Figure 3 presents the histogram of time taken by BILBY

sampling for each signal. As seen in the figure, most of the
runs complete within several minutes. The median run-time

FIG. 3. Sampling time of BILBY with the low-spin IMRPhe-
nomD ROQ bases for simulated BNS signals. The blue and
orange histograms show sampling time for 304 triple-detector
and 170 double-detector injections, respectively, and the median
sampling time is presented in the legend.

FIG. 4. P-P plots of estimates on sky location (2D, thin line) and three-dimensional location including distance (3D, thick line) from
BAYESTAR (blue) and BILBY (orange) running on simulated BNS signals. The left and right panels show results from 304 triple-
detector and 170 double-detector injections, respectively. The gray bands represent the 1, 2, and 3σ quantiles of statistical errors due to
the finite number of samples. The p value of KS test between the observed credible levels and a uniform distribution for each case is
presented in the legend. (a) triple-detector injections. (b) double-detector injections.
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is 4.96 min for the triple-detector case and 3.87 min for the
double-detector case. The runs are faster for the double-
detector case since fewer operations are required to evaluate
the likelihood due to fewer detectors. The runs are
performed with an Intel Xeon Gold 6136 CPU with a
clock rate of 3.0 GHz. In addition to the sampling time,
precomputations of ROQ weights take ∼1 min for the
triple-detector case and less for the double-detector case.
Thus, the total run-time is minutes to 10 min, which
provides enough time for follow-up observations of optical
radiation fading away with the timescale of days [1].
Figure 4 presents P-P plots of sky location (2D) and

three-dimensional location including distance (3D) for
BAYESTAR and BILBY. They are visual tools to check
whether the true signal parameters are found within the X%
credible region X% of the time; i.e., it tests whether the
posteriors have the correct statistical properties. If this is the
case, the cumulative distribution of observed credible levels
should be a diagonal line with statistical errors due to a
finite number of samples. The gray bands represent the 1, 2,
and 3σ quantiles of statistical errors. For the triple-detector

case, both BAYESTAR and BILBY P-P plots are within
the error band for credible level of≲0.9, while for the larger
credible level BAYESTAR P-P plots go outside the band
and BILBY performs better. The p value of KS test
between the observed credible levels and a uniform dis-
tribution for each case is presented in the legend, and, in
all the cases, the p values of BILBY are larger than those
from BAYESTAR, implying BILBY produces more accu-
rate results mitigating search biases. If the seven injec-
tions whose chirp-mass recoveries at the detection stage
are bad are included, the p values for BAYESTAR 2D,
BAYESTAR 3D, BILBY 2D, and BILBY 3D are degraded
to (0.06, 0.07, 0.41, 0.42) for the triple-detector case and
(0.09, 0.06, 0.10, 0.31) for the double-detector case.
Figure 5 presents cumulative distribution of searched

areas and volumes, the areas and volumes one needs to
search over from themost probable location to the least until
reaching the true source location. As seen in the figure,
searched areas and volumes are systematically smaller for
BILBY, demonstrating that BILBY can reduce the area
and volume follow-up observers need to search over.

FIG. 5. Cumulative distribution of searched areas and volumes from BAYESTAR (blue) and BILBY (orange) running on simulated
BNS signals. The top and bottom panels show searched areas and volumes respectively from 304 triple-detector (left) and 170 double-
detector (right) injections. By updating BAYESTAR results with BILBY results, the median searched area (volume) is reduced from
21.8 deg2 (2.47 × 104 Mpc3) to 16.6 deg2 (1.75 × 104 Mpc3) for the triple-detector case and 137 deg2 (8.30 × 104 Mpc3) to
117 deg2 (6.27 × 104 Mpc3) for the double-detector case. (a) searched areas for triple-detector injections, (b) searched volumes for
triple-detector injections, (c) searched areas for double-detector injections, and (d) searched volumes for double-detector injections.
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The median searched area (volume) is reduced from
21.8 deg2 (2.47 × 104 Mpc3) to 16.6 deg2 (1.75 ×
104 Mpc3) for the triple-detector case and 137 deg2

(8.30 × 104 Mpc3) to 117 deg2 (6.27 × 104 Mpc3) for
the double-detector case. In summary, BILBY with our
rapid parameter estimation technique improves the estimate
on source location with the timescale of minutes.

B. Full BNS parameter estimation

We also demonstrate that our rapid parameter estimation
framework can be applied to full BNS parameter estima-
tion incorporating precession effects, tidal effects, and
detector calibration uncertainties. We inject 100 simulated
BNS signals into simulated Gaussian noise data of a HLV
network drawn with their design sensitivities. We then
recover their source parameters using BILBY with our
rapid parameter estimation framework and investigate its
accuracy using the P-P plots.
The injections are synthesized based on the

IMRPhenomPv2_NRTidalv2waveformmodel and analyzed
with our IMRPhenomPv2_NRTidalv2 ROQ bases of the
256-s partition. The detector-frame component masses
are uniformly distributed with the chirp-mass constraint
1.15M⊙ ≤ M ≤ 1.25M⊙ and the mass ratio constraint
q ≥ 0.125. The spin magnitudes are uniformly distributed
across 0 ≤ a1; a2 ≤ 0.4, and the spin directions are isotropi-
cally distributed. The dimensionless tidal deformability
values are uniformly distributed in 0 ≤ Λ1;Λ2 ≤ 5000.
The source locations are distributed uniformly in comoving
volume and source frame time in the range 1 Mpc ≤
DL ≤ 100 Mpc. The distribution is isotropic in binary
orientation, uniform over coalescence phase, and uniform
over coalescence timewithin a timewindowwith thewidth of
0.2 s. The median network optimal SNR of injections is 21.
Injections are multiplied by randomly generated calibra-

tion errors. The amplitude and phase errors are calculated
as cubic spline interpolation of their values at ten frequency
nodes log-uniformly distributed from 20 to 4096 Hz. We
use calibration uncertainty budget of amplitude and phase
at the GPS time of 1244415456 (12 June 2019, 22:57:18
UTC), which is publicly available [93] and presented in
Fig. 6. The amplitude and phase errors at the nodes are
drawn from Gaussian distribution whose mean matches the
median shown as the dashed line and standard deviation is
the half width of the 1σ band shown as the shaded region.
BILBY is run with the same prior probability distribution

of source and calibration parameters as that to populate
injections and the same PSD as that used for simulating
Gaussian noise. The DYNESTY sampler is employed with
the acceptance-walkMCMCmethod, 500 live points, and an
average of 60 accepted MCMC jumps. We analytically
marginalize over the coalescence phase, we marginalize
over the luminosity distance using the look-up table method,
and they are recovered at the postprocessing stage. The
sampling is parallelized with 24 processes, and the median

sampling time is 108 min. Without the ROQ approximation,
the expected sampling time is on the order of a month.
Figure 7 presents P-P plots of all the source parameters.

As seen in the figure, they are well within the error band,

FIG. 6. Detector calibration uncertainties of amplitude (top)
and phase (bottom) used for simulations. The dashed lines
represent the median values, and the shaded regions represent
the 1σ uncertainties.

FIG. 7. P-P plots of all the parameters recovered by BILBY
with the IMRPhenomPv2_NRTidalv2 ROQ bases running on
100 injections. The recovered parameters are detector-frame chirp
mass (M), mass ratio (q), spin magnitudes (a1 and a2), spin
angles (θ1, θ2, ϕjl, and ϕ12), dimensionless tidal deformability
parameters (Λ1 and Λ2), right ascension (α) and declination (δ) of
the source location, luminosity distance to the source (DL),
inclination angle between total angular momentum and line of
sight (θjn), polarization angle (ψ ), coalescence phase (ϕc), and
coalescence time (tc). The gray bands represent the 1, 2, and 3σ
quantiles of statistical errors due to the finite number of samples.
The p value of KS test between the observed credible levels and a
uniform distribution from 0 to 1 for each parameter is presented in
the legend. The combined p value, the probability that each p
value is drawn from a uniform distribution from 0 to 1, is 0.78.
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and p values in the legend imply the observed deviations
are consistent with statical errors. The combined p value,
the probability that each p value is drawn from a uniform
distribution from 0 to 1, is 0.78. Hence, we conclude our
rapid parameter estimation framework can also be applied
to full and accurate parameter estimation analysis of BNS
signal.

C. BBH rapid parameter estimation

Finally, we also demonstrate the application of the
IMRPhenomXPHM bases to BBH signals. We inject
100 simulated BBH signals synthesized based on the
IMRPhenomXPHM waveform model into simulated
Gaussian noise of a HLV network and analyze them with
our IMRPhenomXPHM 8-s ROQ bases.
The distribution to populate injections and analysis

settings are almost same as what are used in the previous
section with the following differences. The mass and spin
range considered here is 26.54M⊙ ≤ M ≤ 62.86M⊙,
1=20 ≤ q ≤ 1, and 0 ≤ a1; a2 ≤ 0.99, and tidal deform-
ability values are fixed to zero. The distance range is
10 Mpc ≤ DL ≤ 1000 Mpc, yielding the median network
optimal SNR value of 30. Only the luminosity distance
parameter is marginalized over with the look-up table
method, since analytical phase marginalization is not appli-
cable when gravitational-wave higher multipole moments
are present. The median sampling time is 198 min.
Figure 8 presents P-P plots of all the source parameters.

The p values in the legend imply the observed deviations
from the diagonal line is consistent with statistical errors,

and the combined p value is 0.42. This demonstrates our
rapid parameter estimation framework can also be applied
to full parameter estimation analysis of BBH signal.

V. CONCLUSION

In this paper, we have presented a rapid parameter
estimation framework using multiple ROQ bases of state-
of-the-art GW signal models describing a broad range
of CBC sources. Each basis is constructed over narrow
parameter space to produce a significant speedup, while the
union of the bases covers broad parameter space. Hence, our
framework can accelerate parameter estimation significantly
without sacrificing accuracy. Based on this idea, we have
developed sets of ROQ bases constructed over narrow
chirp-mass subdomains. As demonstrated in Sec. IV, our
framework and new ROQ bases enable improved source
localization of BNS signal with the timescale of minutes, as
well as more detailed parameter estimation taking into
account general spin configurations, GW higher multipole
moments, and tidal deformation of colliding objects, with
the timescale of hours. The combined use cases greatly
improves the scalability of parameter estimation workflows
during observing runs, especially as event rates increase due
to improved detector sensitivity. Our multiple-ROQ-bases
framework has been implemented in one of the LVK
parameter estimation engines, BILBY, and that framework
as well as our newly developed ROQ bases are being
employed by the automated parameter estimation analysis
of the LVK O4 alert system, circulating source location
estimates to followup observers [58–61].
One possible extension of this work is to extend the

lower mass end of IMRPhenomXPHM bases. While con-
structing IMRPhenomXPHM bases in the lower mass
region is computationally costly and consumes excessive
amounts of memory, they are useful for rapid source locali-
zation of NSBH signal taking into account orbital pre-
cession and GW higher multipole moments. As we did for
the other bases, directly constructing multibanded bases
can significantly reduce the memory consumption. Dimen-
sionality reduction by a sophisticated choice of base wave-
forms, as done for the construction of the IMRPhenomPv2
and IMRPhenomPv2_NRTidalv2 bases, may also be
possible.
Another direction is to construct bases for other BNS

waveform models, such as SEOBNRv4ROM_NRTidalv2
[72,94], IMRPhenomXP_NRTidalv2, and SEOBNRv4T_
Surrogate [95]. Those bases enable us to infer tidal
deformability parameters with multiple waveform models,
mitigating waveform systematics to obtain accurate con-
straints on the nuclear equation of state.
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APPENDIX A: MULTIBAND DECOMPOSITION
OF ROQ LIKELIHOOD RATIO

In this appendix, we obtain a multibanded form of ROQ
likelihood ratio. In the multiband approximation developed
in [34], the total frequency range is divided into B over-

lapping frequency bands fðbÞs ≤ f ≤ fðbÞe ðb ¼ 1; 2;…; BÞ
with a set of smooth window functions fwðbÞðfÞgBb¼1.

The bth frequency band is constructed so that signal

duration from the starting frequency fðbÞs is smaller
than a certain duration value TðbÞ, where T ¼ Tð1Þ >
Tð2Þ > � � � > TðBÞ. The inner products ðdi; hiðθÞÞi and
ðhiðθÞ; hiðθÞÞi are then approximated into the following
forms [see Eqs. (24) and (45) in [34]]:

ðdi;hiðθÞÞi≃
XB
b¼1

4

TðbÞRe

" XbfðbÞe TðbÞc

k¼⌈fðbÞs TðbÞ⌉

wðbÞðfðbÞk ÞD̃ðbÞ�
k hðfðbÞk Þ

#
;

ðA1Þ

ðhiðθÞ; hiðθÞÞi ≃
XB
b¼1

4

T̂ðbÞ
XbfðbÞe T̂ðbÞc

k¼⌈fðbÞs T̂ðbÞ⌉

wðbÞðf̂ðbÞk ÞĨðbÞc;k jhðf̂ðbÞk Þj2;

ðA2Þ

where fðbÞk ¼ k=TðbÞ, D̃ðbÞ�
k is a quantity dependent on data

and PSD, T̂ðbÞ ¼ min ½2TðbÞ; T�, f̂ðbÞk ¼ k=T̂ðbÞ, and ĨðbÞc;k is a
quantity dependent on PSD.
Substituting Eqs. (6) and (7) into Eqs. (A1) and (A2) and

substituting the approximate inner products into the log-
likelihood ratio (5), we obtain

lnΛMB
ROQ ¼

XNdet

i¼1

�
LMB
i ðθÞ − 1

2
QMB

i ðθÞ
�
; ðA3Þ

LMB
i ðθÞ ¼ Re

�XNL

I¼1

hiðFI; θÞωMB
I;i ðtcÞ

�
; ðA4Þ

QMB
i ðθÞ ¼

XNQ

J¼1

jhiðF J; θÞj2ψMB
J;i ; ðA5Þ

where

ωMB
I;i ðtcÞ

¼
XB
b¼1

4

TðbÞRe

" XbfðbÞe TðbÞc

k¼⌈fðbÞs TðbÞ⌉

wðbÞðfðbÞk ÞD̃ðbÞ�
k BIðfðbÞk Þe−2πifðbÞk tc

#
;

ðA6Þ

ψMB
I ¼

XB
b¼1

4

T̂ðbÞ
XbfðbÞe T̂ðbÞc

k¼⌈fðbÞs T̂ðbÞ⌉

wðbÞðf̂ðbÞk ÞĨðbÞc;kCJðf̂ðbÞk Þ: ðA7Þ

The integration weights ωMB
I;i ðtcÞ and ψMB

J;i can be computed

with the multibanded ROQ bases ffBIðfðbÞk ÞgkgBb¼1 and

ffCJðf̂ðbÞk ÞgkgBb¼1, and, hence, only those downsampled
components need to be stored.
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APPENDIX B: CUSPS IN IMRPhenomPv2
WAVEFORMS

IMRPhenomPv2 waveforms have cusps in a certain
mass-spin space, where mass ratio q is relatively low
(q ≲ 0.4) and total spin angular momentum projected
onto the orbital angular momentum is negative. The
cusps come from the Wigner coefficients d22;mð−βðfÞÞ,
where βðfÞ is the opening angle between the total angular
momentum and the orbital angular momentum at a GW
frequency f.
By the definition of βðfÞ, cos βðfÞ can be calculated as

follows:

cos βðfÞ ¼ �ð1þ ðsðfÞÞ2Þ−1
2; ðB1Þ

where sðfÞ ¼ S⊥=ðLðfÞ þ SkÞ, LðfÞ is the norm of the
orbital angular momentum at a GW frequency f and Sk and
S⊥ are the components of total spin angular momentum
parallel with and orthogonal to the orbital angular momen-
tum, respectively. Mathematically, the sign of cos βðfÞ
should follow the sign of LðfÞ þ Sk. However, in
IMRPhenomPv2 the positive sign is always taken regard-
less of the sign of LðfÞ þ Sk. Thus, cos βðfÞ has a cusp at a
frequency where LðfÞ þ Sk crosses 0, and, hence,
d22;mð−βðfÞÞ also has a cusp there, since it depends on
cos βðfÞ, as shown in Fig. 9.
In the parameter space we consider, LðfÞ þ Sk is always

positive at f ¼ flow ¼ 20 Hz. Hence, the necessary and
sufficient condition for the existence of a waveform cusp
is that the minimum of LðfÞ þ Sk below f ¼ fhigh is

negative. In IMRPhenomPv2, LðfÞ is calculated with the
nonspinning second-order post-Newtonian formula:

LðfÞ ¼ ηðm1 þm2Þ2
v

×
�
1þ

�
3

2
þ η

6

�
v2 þ

�
27

8
−
19η

8
−
η2

24

�
v4
�
; ðB2Þ

where η ¼ q=ð1þ qÞ2 and v ¼ ðπðm1 þm2ÞfÞ13. Within
the frequency range from flow to fhigh, it gets its minimum
at v ¼ v̂, where

v̂ ¼ min

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð9þ η −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1539 − 1008η − 17η2

p
Þ

3ð−81þ 57ηþ η2Þ

s
; ðπðm1 þm2ÞfhighÞ13

#
: ðB3Þ

On the other hand, Sk ¼ m2
1χ1 þm2

2χ2. Thus, the mass-spin region where waveform has a cusp is expressed by

η

v̂

�
1þ

�
3

2
þ η

6

�
v̂2 þ

�
27

8
−
19η

8
−
η2

24

�
v̂4
�
þ χ1 þ q2χ2

ð1þ qÞ2 < 0: ðB4Þ

APPENDIX C: BASE WAVEFORMS FOR
IMRPhenomPv2

GW polarizations of IMRPhenomPv2 are given by

hþðfÞ ¼
1

2
e−2iϵðfÞðTðfÞ þ TcðfÞÞhDðfÞ; ðC1Þ

h×ðfÞ ¼
i
2
e−2iϵðfÞðTðfÞ − TcðfÞÞhDðfÞ; ðC2Þ

where

TðfÞ ¼
X2
m¼−2

ð−1ÞmeimαðfÞd22;mð−βðfÞÞY2
2;−mðθJ;0Þ; ðC3Þ

TcðfÞ ¼
X2
m¼−2

eimαðfÞd22;mð−βðfÞÞY2
2;mðθJ;0Þ; ðC4Þ

and Ys
l;mðθ;ϕÞ is spin-weighted spherical harmonics.

Hence, it is evident that hþðfÞ and h×ðfÞ are linear
combinations of lmðfÞ ðm ¼ −2;−1; 0; 1; 2Þ given
by Eq. (18).

FIG. 9. Wigner coefficients d22;mð−βðfÞÞ (top) and the total
angular momentum projected onto the orbital angular momentum
(bottom) of IMRPhenomPv2 for m1 ¼ 8M⊙, m2 ¼ 1M⊙,
χ1 ¼ −0.5, χ2 ¼ −0.5 and, χp ¼ 0.5. The dashed vertical line
indicates the frequency where the projected total angular mo-
mentum crosses 0.
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On the other hand, jFþhþ þ F×h×j2 contains the follow-
ing products:

jhþ=×ðfÞj2 ¼
1

4
ðjTðfÞj2 þ jTcðfÞj2

� 2Re½T�ðfÞTcðfÞ�ÞjhDðfÞj2; ðC5Þ

Re½h�þðfÞh×ðfÞ� ¼
1

2
Im½T�ðfÞTcðfÞ�jhDðfÞj2: ðC6Þ

jTðfÞj2 þ jTcðfÞj2 is linear combination of qcosm;m0 ðfÞ as
shown below:

jTðfÞj2 þ jTcðfÞj2
¼

X
m;m0

½ð−1Þmþm0
Y−mY−m0 þ YmYm0 �

× d22;mð−βðfÞÞd22;m0 ð−βðfÞÞeiðm−m0ÞαðfÞ

¼
X
m;m0

½ð−1Þmþm0
Y−mY−m0 þ YmYm0 �

× d22;mð−βðfÞÞd22;m0 ð−βðfÞÞ cos ½ðm −m0ÞαðfÞ�

¼ 1

2

X
m;m0

½ð−1Þmþm0
Y−mY−m0 þ YmYm0 �qcosm;m0 ðfÞ; ðC7Þ

where Ym represents Y2
2;mðθJ; 0Þ. Similarly, Re½T�ðfÞTcðfÞ�

is linear combination of qcosm;m0 ðfÞ:

Re½T�ðfÞTcðfÞ�
¼

X
m;m0

ð−1Þm0
YmY−m0

× d22;mð−βðfÞÞd22;m0 ð−βðfÞÞ cos ½ðm −m0ÞαðfÞ�

¼ 1

2

X
m;m0

½ð−1Þm0
YmY−m0 þ ð−1ÞmY−mYm0 �

× d22;mð−βðfÞÞd22;m0 ð−βðfÞÞ cos ½ðm −m0ÞαðfÞ�

¼ 1

4

X
m;m0

½ð−1Þm0
YmY−m0 þ ð−1ÞmY−mYm0 �qcosm;m0 ðfÞ; ðC8Þ

and Im½T�ðfÞTcðfÞ� is linear combination of qsinm;m0 ðfÞ:

Im½T�ðfÞTcðfÞ�
¼

X
m;m0

ð−1Þm0
YmY−m0

× d22;mð−βðfÞÞd22;m0 ð−βðfÞÞ sin ½ðm −m0ÞαðfÞ�

¼ 1

2

X
m;m0

½ð−1Þm0
YmY−m0 − ð−1ÞmY−mYm0 �

× d22;mð−βðfÞÞd22;m0 ð−βðfÞÞ sin ½ðm −m0ÞαðfÞ�

¼ 1

4

X
m;m0

½ð−1Þm0
YmY−m0 − ð−1ÞmY−mYm0 �qsinm;m0 ðfÞ: ðC9Þ

Hence, jFþhþ þ F×h×j2 is linear combination of qcosm;m0 ðfÞ
and qsinm;m0 ðfÞ.
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