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In this study, we employ a convolutional neural network to classify gravitational waves originating from
core-collapse supernovae. Training is conducted using spectrograms derived from three-dimensional
numerical simulations of waveforms, which are injected onto real noise data from the third observing run of
both Advanced LIGO and Advanced Virgo. To gain insights into the decision-making process of the model,
we apply class activation mapping techniques to visualize the regions in the input image that are significant
for the model’s prediction. The class activation maps reveal that the model’s predictions predominantly rely
on specific features within the input spectrograms, namely, the g-mode and low-frequency modes. The
visualization of convolutional neural network models provides interpretability to enhance their reliability
and offers guidance for improving detection efficiency.
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I. INTRODUCTION

The first detection of gravitational waves (GWs) from a
binary black hole merger by the Advanced Laser Inter-
ferometer Gravitational-wave Observatory (Advanced
LIGO) [1] in 2015 marked the beginning of GWastronomy
[2]. Throughout three observing runs (O1, O2, and O3),
Advanced LIGO and Advanced Virgo [3] reported 90 GW
events [4–7]. As of May 2023, the international GW
network, now including KAGRA [8], has begun its fourth
observing run (O4) with improved sensitivity.
All of the GWevents detected so far are exclusively from

compact binary coalescences. However, short-duration GW
bursts arising from core-collapse supernovae (CCSNe) are
expected to be detected by the current and next-generation
GW detectors, such as the Einstein Telescope [9] and the
Cosmic Explorer [10]. CCSNe, resulting from massive star
explosions leading to neutron stars or stellar-mass black
holes, stand as one of the most energetic astrophysical
events in the Universe, emitting electromagnetic waves,
neutrinos, and GWs. While electromagnetic waves from
CCSNe are frequently observed, neutrinos have only been

detected from SN1987A [11,12]. GWs are expected to
carry information about the inner core’s dynamics, pro-
viding vital insights into the explosion mechanism which
remains elusive. The primary conundrum lies in discerning
how a stalled shock wave is revived to cause a star to
explode. Currently, there are two prevailing theories [13]:
the neutrino-driven mechanism [14], in which shock
waves are revived by neutrinos stored behind the shock
wave heating the surrounding matter, and the magneto-
rotational mechanism [15], in which the rapid rotation of
the progenitor causes explosions driven by strong magnetic
fields. The typical GW detection range for neutrino-driven
signals is expected to be around 10 kpc, while the detection
range for magnetorotational signals is expected to be above
100 kpc [16].
Due to the stochastic nature of GW signals from CCSNe,

the conventional matched-filtering technique, which relies
on specific waveform templates, is unsuitable. Alternative
detection methods based on the time-frequency represen-
tation have been devised in response. In particular, the
coherent WaveBurst (cWB) pipeline [17,18] detects and
reconstructs burst GW signals by searching for excess
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power in a time-frequency map, with minimal reliance on a
specific source model.
Predicting GW signals from CCSNe remains a formida-

ble challenge. However, recent advancements in theoretical
research and multidimensional numerical simulations have
revealed certain signal properties. For neutrino-driven
CCSNe, the dominant emissions arise from the g-mode
oscillation of the proto–neutron star (PNS) surface. These
frequencies progressively increase over time, ranging from a
few hundred Hz to a few kHz. Additionally, at low frequen-
cies (≲200 Hz), GW emissions associated with hydrody-
namics instabilities including neutrino-driven convection
and standing accretion shock instability (SASI) [19] are
observed in some simulations. Insights obtained from these
simulations are pivotal in enhancing methods for CCSNe
detection and analysis.
In recent years, machine learning techniques, especially

deep learning, have gained traction in a variety of scientific
fields due to their capacity for recognizing intricate patterns
and extracting meaningful features from large data sets.
This ability has been especially noted in areas such as
computer vision and natural language processing. Its
application in GW research has followed, with numerous
implementations and explorations, as highlighted in a
comprehensive review in Ref. [20] and the foundational
efforts by George and Huerta [21,22]. In the field of
CCSNe analysis, Astone et al. [23] leveraged convolutional
neural networks (CNNs) to detect CCSNe within Gaussian
noise, using g-mode phenomenological waveforms for
training, outperforming the cWB pipeline. Consecutive
studies by Iess et al. [24,25] involved the training of both
one- and two-dimensional CNNs and long short-term
memory networks [26] to identify seven distinct CCSN
waveforms embedded in real noise and glitches, with
their models achieving 98% classification accuracy at
1 kpc with a three-detector network. Additionally, Chan
et al. [27] employed one-dimensional CNNs to investi-
gate both magnetorotational and neutrino-driven signals in
Gaussian noise, recording a true alarm probability of 80%
for magnetorotational signals from sources at 60 kpc and
55% for neutrino-driven signals from sources at 10 kpc
with a fixed false alarm probability of 10%. In another
study, Edwards [28] used two-dimensional CNNs to
classify 18 different equations of state (EOS) from pure
magnetorotational CCSN signals, attaining an accuracy of
72%. López et al. [29] refined phenomenological wave-
forms originally used by Astone et al. [23], achieving a
60% true alarm probability for signals located at 15 kpc
with a 5% false alarm rate.
Although deep learning exhibits strong performance on a

wide range of tasks, its intricate models, characterized by a
large number of parameters, pose challenges in elucidating
their decision-making processes. To address this, the field
of explainable artificial intelligence [30] has surged, aiming
to make model decisions transparent and interpretable.

Within the context of CNNs, efforts have been made to
develop techniques that attempt to understand the decision-
making process by reverse mapping the output of the
network into the input space to identify the specific input
components that were discriminative in producing the
output. Class activation mapping (CAM) [31] is one such
method, which computes a weighted sum of the outputs of
the last convolutional layer using the outputs of the global
average pooling layer after the last convolutional layer as
weights. It helps identify the regions in the input image that
were important for a prediction, but the model needs to be
modified to include a global average pooling layer, which
may result in lower accuracy. Gradient-weighted class
activation mapping (Grad-CAM) [32] was introduced as
a solution to this limitation of CAM, offering the advantage
of not requiring any modifications to the network archi-
tecture by using gradient information from the prediction
for weighted parameters. Subsequently, Grad-CAMþþ
[33], a generalization of Grad-CAM, and Score-CAM [34],
a gradient-free CAM method, were developed to generate
more accurate saliency maps than Grad-CAM. These
techniques to analyze deep learning models are commonly
used in fields such as electrocardiogram signal analysis
[35] and x-ray diagnosis [36]; however, for GW analysis,
they have only been used in Ref. [37] to the best of our
knowledge.
In this study, we first take an approach similar to

Ref. [25] and train a two-dimensional CNNmodel to classify
CCSNe signals using short-time Fourier-transformed spec-
trograms as input for simplicity. We use nine types of
waveforms from recent three-dimensional numerical simu-
lations and O3 real noise to train and validate our model. In
the test, signals from sources between 1 and 10 kpc are
considered, and the performance of the model for sources
at each distance is discussed. To interpret the model, we
use three CAM methods to generate saliency maps and
evaluate them using two metrics: average drop and average
increase. The best CAM method is then applied to correctly
classified and also misclassified samples to visualize the
regions in the input spectrogram that influence the predic-
tions of our model.
The remainder of this paper is organized as follows.

Section II describes our data sets, the CNN model, and the
CAM techniques. In Sec. III, we discuss the classification
performance of our model, and apply multiple visualization
techniques to interpret the model. We summarize and
conclude the paper in Sec. IV.

II. METHOD

Our CNN model is trained to classify strains at the three
detectors LIGO Hanford (H1), LIGO Livingston (L1), and
Virgo (V1) into ten classes: noise and nine different CCSN
waveforms. In this section, we first provide an overview of
the data used in this study, including a brief summary of the
CCSN simulation data and the preprocessing strategy to
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generate our training, validation, and test sets. Sub-
sequently, our CNN architecture and the theory of the
visualization technique of the model are explained.

A. Data set

1. CCSN waveforms

Modeling the stellar core collapse, bounce, and sub-
sequent post-bounce evolution is very complicated and
computationally expensive. However, remarkable advance-
ments in three-dimensional numerical simulations of neu-
trino-driven explosions have been achieved by several
groups in recent years. Specific details of the waveform
depend on various properties of the progenitor, such as the
mass, angular velocity, and EOS of the dense matter. Both
the general relativity approximation and the handling of
neutrino transport critically influence simulations. From
the available simulation data under a variety of conditions,
we select nine types of waveforms from four recent three-
dimensional numerical simulations [38–41]. All of them
allow us to compute the GW amplitude in any observer
direction from the quadrupole moment.
Powell and Müller [38] performed simulations using

the general-relativistic neutrino hydrodynamics code
CoCoNuT-FMT [42]. We use two waveforms from the
models he3.5 and s18. The progenitor of he3.5 is an
ultra-stripped star evolved from a helium star with an initial
mass of 3.5M⊙. The simulation is stopped at 0.7 s after core
bounce. The GW is dominated by excitation of g-modes in
the PNSwith a peak frequency around 900Hz.Models18 is
a single star with a zero-agemain-sequence (ZAMS)mass of
18M⊙. The simulation was stopped 0.89 s after core bounce.
The GWemission is similar to model he3.5, with g-mode
oscillations of thePNSwith a peak frequency around900Hz.
Radice et al. [39] studied eight models using the Eulerian

radiation-hydrodynamics code FORNAX [43]. We use
waveforms from the models s13 and s25 corresponding
to progenitors of 13 and 25M⊙ ZAMS, respectively. The
simulation is ended at 0.77 s in s13 and 0.62 s in s25
after bounce. Both waveforms are characterized by f- and
g-modes with a peak frequency around 1400 Hz in s13 and
1100 Hz in s25. In addition, the s25 waveform has a clear
SASI mode around 100 Hz.
From the simulation by Powell and Müller [40], we use

the three models m39, y20, and s18np. Model m39 is a
rapidly rotating 39M⊙ Wolf-Rayet star with an initial
surface rotation velocity of 600 km s−1. It produces a
neutrino-driven explosion without magnetic fields. The
other two are nonrotating models of 20M⊙ Wolf-Rayet
star and an 18M⊙ ZAMS star. The simulation is ended at
0.98, 1.2, 0.56 s after core bounce in models m39, y20, and
s18np, respectively. All three models show GW emission
associated with prompt convection shortly after bounce as
well as f-mode oscillations of the PNS. In model s18np,
the absence of strong perturbations from convective oxygen

burning, in contrast to s18, prevents the shock from being
revived and leads to the development of strong SASI
activity, with a frequency reaching ∼400 Hz by the end
of the simulation.
Powell et al. [41] performed simulations using three

different EOSs: LS220 [44], SFHx, and SFHo [45]. The
progenitor models are 85 and 100M⊙ Population III ZAMS
stars.We use the z85_sfhx andz100_sfhomodels. The
simulation is ended at 0.59 s in z85_sfhx and 0.62 s in
z100_sfho. Both waveforms show typical g-mode emis-
sion with a peak frequency of ∼700 Hz. In the z85_sfhx
model, the frequency of the SASI emission increases up to
the point of shock revival, reaching ∼200 Hz, and decreases
afterwards. In the z100_sfho model, which does not
explode, the frequency of the SASI emission continues to
increase by the end of the simulation, reaching ∼400 Hz.
Figure 1 shows the amplitude spectral density of the plus

mode of each waveform at 1 kpc from the polar direction.
The amplitude of the m39 waveform is the largest of these
waveforms. Waveforms that have peaks around 100 Hz
such as s25 and s13 indicate that they have SASI-induced
GW modes.

2. Data processing

Our datasets are generated from the simulation data
outlined in the previous section. A crucial step in this
process is the computation of the GW amplitude. This is
accomplished by uniformly sampling the direction of
radiation ðθ;ϕÞ and using the formulas for the plus and
cross polarization

hþ ¼ 1

D
2G
c4

ðQ̈θθ − Q̈ϕϕÞ; ð1Þ

h× ¼ 1

D
G
c4

Q̈θϕ; ð2Þ

FIG. 1. Amplitude spectral density of the plus mode of each
waveform at 1 kpc. The observer is in the polar direction.
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where Q is the traceless quadrupole moment and D is the
distance between a source and Earth. As the sampling of the
simulation is usually not uniform in time, we resample data
uniformly with a sampling rate of 4096 Hz. A high-pass
filter with a cutoff frequency of 11 Hz and a Tukey window
with α ¼ 0.1 are applied to the resampled signals. Each
signal is then truncated or padded with zeros to make the
length 1 second. In order to make the model robust, we
randomly time shift the signals so that the time of the core
bounce is between 0 and 0.15 s. For the training and
validation sets, the signals are scaled using an optimal
matched filter signal-to-noise ratio (SNR), as the ampli-
tudes of the simulated signals are quite different. The SNR
is defined as

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

Z
fmax

fmin

jh̃ðfÞj2
SnðfÞ

df

s
; ð3Þ

where h̃ðfÞ is the Fourier transform of the signal and SnðfÞ
is the one-side power spectral density of the noise. The
network SNR of the detectors H1, L1, and V1, given by

ρnet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2H1 þ ρ2L1 þ ρ2V1

q
; ð4Þ

is used to scale the signals. We generate samples with
network SNRs from 20 to 50 for training and validation
sets. For the test set, the signals are scaled to have distances
between 1 and 10 kpc. Sky location is also randomly
selected and the GW amplitude hðtÞ is computed, taking
into account the antenna pattern functions Fþ and F× and
the delay in arrival time of each detector with the following
equation:

hðtÞ ¼ Fþðα; δ;ψ ; tÞhþðtþ ΔtÞ
þ F×ðα; δ;ψ ; tÞh×ðtþ ΔtÞ; ð5Þ

where α is the right ascension, δ is the declination, and ψ
is the polarization angle. Δt is the delay in arrival time
between the detector and the center of the Earth. We
use the PyCBC software library [46] to carry out these
computations.
Noise used in this study is O3 real data of Advanced

LIGO and Advanced Virgo, obtained from the Gravi-
tational Wave Open Science Center [47]. Data from GPS
time 1238236470 to 1238252308 is used for the training
set, 1238265720 to 1238354855 is used for the validation
set, and 1238404064 to 1238457121 is used for the test set.
Data around the event time reported in the second Gravi-
tational Wave Transient Catalog [6] are excluded. After a
signal is injected into the noise, each sample is whitened
with the power spectral density computed using Welch’s
method [48] and then short-time Fourier transformed with a
window size of 0.0625 seconds to produce a spectrogram.

The spectrogram is normalized to [0, 1] before input to the
network.
We generate 60 000 samples for the training and vali-

dation sets, and 100 000 samples for the test set. The test set
has 1000 samples for each class and each distance. Sample
spectrograms in the training set are shown in Fig. 2.

B. CNN model

Our CNN model consists of two convolutional layers of
kernel size 3, each followed by a max-pooling layer of size
2 and a rectified linear unit (ReLU) layer. The outputs of

FIG. 2. Sample whitened spectrograms of each class at the H1
detector in the training set. Each signal sample is observed in the
polar direction and scaled to have an SNR of 40. The bounce time
is fixed at 0.1 s.
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these layers are fed into two fully connected layers, and
finally the softmax layer outputs a size-10 vector whose
elements represent a probability of each class. The model
has 427 378 trainable parameters in total. This model is
shallower than the one used in Ref. [25]. However, its
classification performance is comparable to the previous
study, prompting us to adopt this model. Reducing the
number of layers also helps us generate higher-resolution
CAM maps.
Themodel is trained using categorical cross entropy as the

loss function andAdamoptimizer [49] with a learning rate of
5 × 10−4 to update the weights. In the training, we adopt
curriculum learning [50] as a strategy to enhance the model
and accelerate the training by starting from inputting high-
SNR samples and gradually adding lower-SNR samples. We
train the model on a single GPU (NVIDIA GeForce
RTX3090) for 120 epochs with a mini-batch size of 128.

C. Visualization

After training the model, we use CAM techniques to
generate saliency maps. These maps show the regions in
the input that influenced the model’s prediction. In this
study, we select three CAM methods—Grad-CAM, Grad-
CAMþþ, and Score-CAM—which are widely used today
to interpret CNN models. All of these CAM techniques are
applied to the convolutional layer prior to the final max-
pooling layer in our model.

1. Grad-CAM

Grad-CAM is a gradient-based visualization technique
that highlights the important regions of an input image that
the model is looking at while making a prediction. Suppose
that for a given input, the prediction score for class c before
the softmax layer of the trained model is yc, and the kth
output matrix of the last convolutional layer is Ak. To obtain
the Grad-CAM map of class c, we first compute the
gradients of the score yc with respect to the ði; jÞ compo-
nent of the kth feature map Ak. We then take the global
average of these gradients:

αck ¼
1

Z

X
i;j

∂yc

∂Ak
ij
; ð6Þ

where Z is the number of pixels in Ak. This weight αck
represents the importance of the feature map k for the
class c.
The Grad-CAM map of the class c is computed as a

linear sum of Ak with αck as weights. The ReLU function is
applied to extract only features that have a positive
contribution to the prediction score. The resulting map
of class c is expressed as

Lc
Grad–CAM ¼ ReLU

�X
k

αckA
k

�
: ð7Þ

Since convolutional layers and pooling layers make the size
of the featuremap smaller than the input, theGrad-CAMmap
is finally interpolated to make it the same size as the input.

2. Grad-CAM + +

While Grad-CAM takes a global average of the gra-
dient matrix when calculating the weight αck in Eq. (6),
Chattopadhay et al. [33] proposed a method to fully include
the importance of each pixel in the gradient matrix by
taking its weighted average for the weight:

αck ¼
X
i;j

αkcij ReLU

�
∂yc

∂Ak
ij

�
: ð8Þ

The ReLU function is used to account for features that
increase the activation of the output neuron rather than
suppress the activation of the output neuron. Theweights αkcij
can be theoretically derived using higher-order derivatives:

αkcij ¼
∂
2yc

ð∂Ak
ijÞ2

2 ∂
2yc

ð∂Ak
ijÞ2

þP
a;bA

k
ab

∂
3yc

ð∂Ak
ijÞ3

: ð9Þ

This method is known as Grad-CAMþþ, since it can be
considered as a generalization of Grad-CAM. The saliency
map for Grad-CAMþþ is expressed in the sameway as for
Grad-CAM, using weights in Eq. (8) and feature maps, as

Lc
Grad-CAMþþ ¼ ReLU

�X
k

αckA
k

�
: ð10Þ

3. Score-CAM

Wang et al. [34] proposed a gradient-free CAM method
called Score-CAM. It solves the problem of gradient-based
CAM methods, namely, that the gradient is unstable, easily
disturbed by noise, and can vanish or explode in deep
networks. To generate a Score-CAM map, feature maps are
used to mask an input image. LetHk be the kth feature map,
up-sampled to the same size as the input and normalized to
[0, 1]. Given an input image X, the weight for the kth
feature map is computed as the difference between the
score of the masked image X ∘Hk and the score of the
baseline image Xb:

αk ¼ fðX ∘HkÞ − fðXbÞ; ð11Þ

where fð·Þ denotes the output of the CNN and ∘ denotes
the Hadamard product. A black image is used as a baseline
image. The Score-CAMmap of class c is then computed as
a linear sum of the cth value of αk and the feature map Ak as

Lc
Score−CAM ¼ ReLU

�X
k

αckA
k

�
: ð12Þ
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III. RESULTS AND DISCUSSION

A. Classification performance

Figure 3 shows the evolution of the categorical cross
entropy loss function during the training. Initially, we input
samples with SNRs between 40 and 50. In the subsequent
40 epochs, samples with SNRs between 30 and 40 are
input, leading to the temporary increase in the loss at epoch
40. In the last 40 epochs, as we input samples with SNRs
between 20 and 30, a similar temporary increase in loss is
observed at epoch 80. From the loss curves, we confirm that
there is no significant overfitting to the training data.
Classification accuracy is defined as the proportion of

correctly classified samples out of the total number of
samples. After training, the model achieves a classifica-
tion accuracy of 97.8% on a validation set consisting of
uniformly sampled signals with SNRs between 20 and 50.
On the test set, our model shows an accuracy of 98.4% for
signals with sources from 1 kpc, which is comparable to the
results of the previous study [25], despite some differences
in the condition that we used O3 noise instead of O2 noise
and performed ten-class classification instead of eight-class
classification. In Fig. 4, we plot a true positive rate (TPR)
for each waveform in the test set against distance. A TPR,
also known as the sensitivity of a class c, is defined as the
ratio of the number of samples correctly classified into class
c to the number of samples of class c in the test set. For
signals from sources at 1 kpc, each waveform has a TPR
greater than 90%, and this decreases monotonically with
the distance of the source, having an average TPR of 26.1%
at 10 kpc. For the m39 waveform, because the amplitude of
the strain is much larger than the others due to its rapid
rotation and high explosion energy, the TPR for sources at
10 kpc is 99.2%.
The performance of a multiclass classifier is also

expressed by a confusion matrix, which shows the number

of samples classified into each class. Figure 5 plots the
confusion matrices normalized for each class and the
distribution of the network SNR for signals from sources
at 1, 5, and 10 kpc. We can see from the confusion matrices
that as the distance increases, the amplitude of the signal
becomes smaller and the number of samples misclassified
as noise increases. The accuracy for signals at 10 kpc is
33.2%, and our model cannot identify most of these signals,
except for the m39 waveforms, whose SNR is much higher
than others with a median value of 47.9.

B. Dimensionality reduction

Before implementing CAM techniques, we use the
t-distributed stochastic neighbor embedding (t-SNE) [51]
algorithm to see if the convolutional layers in the model can
extract the features in the input to classify samples. The
t-SNE algorithm is a dimensionality-reduction technique
thatminimizes theKullback-Leibler divergence between two
probability distributions: one representing pairwise similar-
ities between data points in the original high-dimensional
space and another representing pairwise similarities in a
lower-dimensional space. In our CNN model, each sample
is compressed into a vector with a length of 2112 before
the dense layers. The t-SNE algorithm is used to map this
vector into two-dimensional space to make it interpretable
for humans. We visualize the dimensionally reduced feature
maps of the test set, whose signals are coming from sources
at 1 kpc, for which our model shows a good classification
accuracy. The visualized data are shown in Fig. 6. We can
clearly see that there are ten clusters in the data set and
our model could extract meaningful features to classify these
samples into ten classes. The fact that some signal samples
are also found in the noise cluster and that s13 samples
are found in other clusters, especially in the noise cluster,
is consistent with the results of the confusion matrix
in Fig. 5(a).

FIG. 3. Loss curves for the training and validation sets. During
the first 40 epochs, we input samples with SNRs between [40,
50], followed by [30, 40] SNR samples in the subsequent 40
epochs, and [20, 30] SNR samples in the last 40 epochs.

FIG. 4. True positive rate of each waveform in the test set
against source distance.
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FIG. 5. Confusion matrices of the test set (left) and violin plots of the network SNR of each waveform (right) from sources with
distances of 1, 5, and 10 kpc.
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C. Saliency maps

To quantitatively evaluate different CAM methods, we
use two metrics—average drop and average increase [33]—
which focus on the change in a model’s score caused by the
explanation map. An explanation map for a target class c is
generated as element-wise multiplication of a saliency map
Lc with an original image X:

Ec ¼ Lc ∘X: ð13Þ

Average drop measures the percentage decrease in a
model’s score for a target class c when inputting only the
explanation map, instead of the original image. It is
expressed as

Average drop ¼ 100 ·
1

N

X
i

maxð0; yci − oci Þ
yci

; ð14Þ

where yci is the score for class c on the ith original image
and oci is the score on the explanation map. The lower this
value, the more effective the visualization method, since the
explanation map includes more of the relevant information
for making a correct prediction.

Average increase measures the number of samples in the
data set, and the model’s confidence increases when pro-
viding only the explanation map as input. It is expressed as

Average increase ¼ 100 ·
1

N

X
i

Θðoci − yci Þ; ð15Þ

where Θ is the Heaviside step function. Unlike the pre-
vious metric, the higher this value is, the more effective
the visualization method will be because there are more
samples that score higher when given the explanation map
than when given the original image.
For the three visualization methods Grad-CAM,

Grad-CAMþþ, and Score-CAM, the two metrics des-
cribed above are computed using signals from sources at
1 kpc in the test set. The results are summarized in Table I.
Score-CAM shows the best results in both metrics, mean-
ing that it is the best visualization technique for our model
among the three CAM methods considered in this study.
We also qualitatively compare these methods by visualizing
some samples. One example is shown in Fig. 7. The input
image is represented by a color image, with the red, green,
and blue channels corresponding to the H1, L1, and V1
spectrograms, respectively. All three saliency maps take
large values around the SASI mode around 100 Hz. At high
frequencies, the Grad-CAM and Grad-CAMþþ maps
only take slightly larger values around 1 kHz, whereas
Score-CAM has g-mode-like arch shapes around 1 kHz.
This suggests that the visualization by Score-CAM captures
more of the input features that are discriminative for the
prediction.
As discussed above, we determine that the Score-CAM

is the optimal method for generating saliency maps for our
model. We produce saliency maps by Score-CAM for the
inputs of each class, which can be seen in Fig. 8. In the
input images, as in the previous figure, the red, green, and
blue channels corresponding to the H1, L1, and V1 data,
respectively. This means, for example, that in the reddish
image such as the m39 sample in Fig. 8, the SNR at the H1
detector is smaller than that at the L1 and V1 detectors. All
of the plotted signal samples are scaled to have an SNR of
40 and are correctly classified by our model. We plotted
several CAMmaps for noise samples, in addition to the one
shown in this figure. However, the regions identified by the
model for labeling the spectrograms as ‘noise’ do not
exhibit a clear distribution; instead, they appear to be
randomly distributed. In the he3.5 and s13 samples, we
can see that the model focuses on the g-mode arch shape,

FIG. 6. Features of the test samples at 1 kpc extracted by CNN
and mapped into two-dimensional space by the t-SNE algorithm.

TABLE I. Results for evaluation of the explanations generated by Grad-CAM, Grad-CAMþþ, and Score-CAM
on the test set.

Method Grad-CAM Grad-CAMþþ Score-CAM

Ave. Drop (%) (Lower is better) 30.70 17.58 9.61
Ave. Increase (%) (Higher is better) 1.30 1.40 1.96
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FIG. 7. Qualitative comparison of three CAM maps for the s25 sample at 1 kpc.

FIG. 8. Input spectrograms and Score-CAM maps of correctly classified samples. The SNR of each signal sample is 40.
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especially in their low- and high-frequency areas. In the
s18 and y20models, the models see all of the g-modes. In
the s18np model, the CAM map indicates that the model
considers not only the g-mode but also prompt convection
and SASI. The s25 model has SASI activity, but its
amplitude is not too large, and the CAM map shows that
the model’s prediction is based on the prompt convection
and the high-frequency g-mode. In the m39, z85_sfhx,
and z100_sfhomodels, the CAMmaps take large values
at high frequencies in the g-mode. In addition, in the
z85_sfhx and z100_sfho models, the low-frequency
SASI mode, whose frequency increases with time, is also
visible in the CAM maps. To summarize these outcomes,
we found that the model looks at the g-mode in all signal
waveforms, and also looks at SASI and prompt convection
in some signal waveforms when classified.
Additionally, we plot saliency maps of the misclassified

samples. Figure 9 shows a spectrogram of the s25 signal
sample and the Score-CAM map, which the model clas-
sified as s18np. An example spectrogram of the correct
class s18np is also shown. The SNR of this signal is 85,
which is quite large, and the g-mode and the prompt
convection are visible, but there is a glitch in the strain at
the L1 detector. The Score-CAMmap shows that the model
focuses on the prompt convection and the glitch, which are

used to determine that the signal is s18np. Because of this
glitch, the model predicted the signal as s18np, whose
g-mode frequency increases in a shorter period of time.
Another example is plotted in Fig. 10. This sample con-
tains a s13 signal with an SNR of 48, and there are no
glitches, but the model classified it as y20. We can see a
SASI-induced GW mode around 100 Hz from 0.2 to 0.4 s,
but the Score-CAM map indicates that the model only
looks at a portion of the g-mode and does not see the low-
frequency mode.
From the misclassified samples and the Score-CAM

maps, it is found that the performance of the model is
sometimes affected by glitches, and does not fully take
advantage of the characteristics of the signals. The former
could be resolved by generating training sets that contain
more glitches, and the latter could be resolved by using a
time-frequency representation that is better able to reflect
the various features of the CCSN signals.

IV. CONCLUSIONS

In this study, we trained a two-dimensional CNN model
to classify CCSN GW signals immersed in real noise
of O3 observation data. Our model showed a comparable
result to the previous study [25] for signals from sources
with distances of 1 kpc. To interpret the trained model,

FIG. 9. s25 sample classified as s18np. (a) Input spectrogram. The red, green, and blue channels correspond to the H1, L1, and V1
data, respectively. There is a glitch in the L1 data. (b) Score-CAM map. (c) Example spectrogram of a s18np sample.

FIG. 10. s13 sample classified as y20. (a) Input spectrogram. The red, green, and blue channels correspond to the H1, L1, and V1
data, respectively. (b) Score-CAM map. (c) Example spectrogram of a y20 sample.
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we used the t-SNE algorithm and mapped the extracted
features by the convolutional layers into a two-dimensional
space. The dimension-reduced features show that the
convolutional filters could extract meaningful features that
are significant for classifying the signals. To gain insights
into the decision-making process of the model, we applied
the CAM technique to visualize the regions in the inputs
that were influential to the predictions. Three methods—
Grad-CAM, Grad-CAMþþ, and Score-CAM—were
considered and we concluded that Score-CAM is the
best for our model in terms of the average drop and
average increase metrics. The Score-CAM maps of cor-
rectly classified signal samples revealed that the model’s
predictions were heavily affected by a part of the entire
g-mode in the spectrogram of each signal. In some wave-
form models such as s18np, s25, z85_sfho, and
z100_sfho, their CAM maps suggest that the prompt
convection or SASI-induced GW mode also affects the
model’s prediction.
It is important to note that ∼4% of the pure noise test

samples are identified as signal, which means that our
model produces a false alarm every ∼25 s, making it
unsuitable as a detection pipeline. Since this study is the
first to focus on the interpretability of CNN models in GW
data analysis and serves as a first step in showcasing the
effectiveness of the CAM techniques, we did not prioritize
its viability as a detection methodology. To utilize machine
learning models for a future detection pipeline, it is crucial
to lower the false alarm rate. Using the CAM techniques
can potentially enhance the efficacy of CNNmodels for this
purpose.
In this analysis, a time-frequency map was created from

the short-time Fourier transform, but its resolution is
limited by the uncertainty relationship between time and
frequency. In future studies, we would like to improve the
accuracy of the CNN model by using methods such as the
Hilbert-Huang transform [52], which can generate higher-
resolution time-frequency maps, and to confirm that the

CNN can also utilize several more GW modes to classify
CCSN signals.

ACKNOWLEDGMENTS

The authors would like to thank Jade Powell for
providing gravitational-wave simulation data. This research
was supported in part by the Japan Society for the
Promotion of Science (JSPS) Grant-in-Aid for Scientific
Research [No. 22H01228 (K. S.), and Nos. 19H01901,
23H01176, and 23H04520 (H. T.)]. This research was also
supported by the Joint Research Program of the Institute for
Cosmic Ray Research, University of Tokyo and Tokyo City
University Prioritized Studies. This research has made use
of data or software obtained from the Gravitational Wave
Open Science Center [53], a service of the LIGO Scientific
Collaboration, the Virgo Collaboration, and KAGRA. This
material is based upon work supported by NSF’s LIGO
Laboratory which is a major facility fully funded by the
National Science Foundation, as well as the Science and
Technology Facilities Council (STFC) of the United
Kingdom, the Max-Planck-Society (MPS), and the State
of Niedersachsen/Germany for support of the construction
of Advanced LIGO and construction and operation of the
GEO600 detector. Additional support for Advanced LIGO
was provided by the Australian Research Council. Virgo is
funded, through the European Gravitational Observatory
(EGO), by the French Centre National de Recherche
Scientifique (CNRS), the Italian Istituto Nazionale di
Fisica Nucleare (INFN) and the Dutch Nikhef, with
contributions by institutions from Belgium, Germany,
Greece, Hungary, Ireland, Japan, Monaco, Poland,
Portugal, Spain. KAGRA is supported by Ministry of
Education, Culture, Sports, Science and Technology
(MEXT), Japan Society for the Promotion of Science
(JSPS) in Japan; National Research Foundation (NRF)
and Ministry of Science and ICT (MSIT) in Korea;
Academia Sinica (AS) and National Science and
Technology Council (NSTC) in Taiwan.

[1] J. Aasi et al. (LIGO Scientific Collaboration), Advanced
LIGO, Classical Quantum Gravity 32, 074001 (2015).

[2] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Observation of gravitational waves from a
binary black hole merger, Phys. Rev. Lett. 116, 061102
(2016).

[3] F. Acernese et al., Advanced Virgo: A second-generation
interferometric gravitational wave detector, Classical Quan-
tum Gravity 32, 024001 (2014).

[4] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GWTC-1: A gravitational-wave transient
catalog of compact binary mergers observed by LIGO and

Virgo during the first and second observing runs, Phys. Rev.
X 9, 031040 (2019).

[5] R. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GWTC-2: Compact binary coalescences
observed by LIGO and Virgo during the first half of the
third observing run, Phys. Rev. X 11, 021053 (2021).

[6] R. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GWTC-2.1: Deep extended catalog of com-
pact binary coalescences observed by LIGO andVirgo during
the first half of the third observing run, arXiv:2108.01045.

[7] R. Abbott et al. (The LIGO Scientific Collaboration, the
Virgo Collaboration, and the KAGRA Collaboration),

VISUALIZING CONVOLUTIONAL NEURAL NETWORK FOR … PHYS. REV. D 108, 123033 (2023)

123033-11

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2108.01045


GWTC-3: Compact binary coalescences observed by LIGO
and Virgo during the second part of the third observing run,
Phys. Rev. X 13, 041039 (2023).

[8] T. Akutsu et al., KAGRA: 2.5 generation interferometric
gravitational wave detector, Nat. Astron. 3, 35 (2019).

[9] M. Punturo et al., The Einstein telescope: A third-generation
gravitational wave observatory, Classical Quantum Gravity
27, 194002 (2010).

[10] B. P. Abbott et al., Exploring the sensitivity of next gen-
eration gravitational wave detectors, Classical Quantum
Gravity 34, 044001 (2017).

[11] R. M. Bionta et al., Observation of a neutrino burst in
coincidence with supernova 1987A in the large magellanic
cloud, Phys. Rev. Lett. 58, 1494 (1987).

[12] K. Hirata et al., Observation of a neutrino burst from the
supernova SN1987A, Phys. Rev. Lett. 58, 1490 (1987).

[13] H.-T. Janka, Explosion mechanisms of core-collapse super-
novae, Annu. Rev. Nucl. Part. Sci. 62, 407 (2012).

[14] H. A. Bethe and J. R. Wilson, Revival of a stalled super-
nova shock by neutrino heating, Astrophys. J. 295, 14
(1985).

[15] J. M. LeBlanc and J. R. Wilson, A numerical example of the
collapse of a rotating magnetized star, Astrophys. J. 161,
541 (1970).

[16] M. J. Szczepańczyk, J. M. Antelis, M. Benjamin, M.
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