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We consider a non-self-gravitating geometrically thick torus described by the Weyssenhoff ideal spin
fluid in a black hole spacetime. The Weyssenhoff spin fluid shares the same symmetries of the background
geometry, i.e., stationarity and axisymmetry and further describes circular orbital motion in the black hole
spacetime. We further assume that the alignment of the spin is perpendicular to the equatorial plane. Under
this setup, we determine the integrability conditions of the general relativistic momentum conservation
equation of Weyssenhoff ideal spin fluid using the Frenkel spin supplementary condition. In light of the
integrability conditions, we then present stationary equilibrium solutions of the spin fluid torus with
constant specific angular momentum distributions around the Schwarzschild black hole by numerically
solving the general relativistic momentum conservation equation. Our study reveals that both the
isopressure and isodensity surfaces of torus get significantly modified in comparison to the ideal fluid
torus without a spin fluid, owing to the spin tensor and its coupling to the curvature of the Schwarzschild
black hole. In fact, the size of the torus is also found to be enhanced (diminished) depending on a positive
(negative) magnitude of spin parameter s0. We finally estimate the magnitude of s0 by assuming the torus to
be composed of spin-1=2 particles.

DOI: 10.1103/PhysRevD.108.123032

I. INTRODUCTION

The existence of black holes (BH) is one of the most
profound theoretical predictions of general relativity (GR).
Generally gravitational collapse of massive stars is thought
to be responsible for the existence of BHs [1,2]. Today, it is
widely believed that almost all galaxies in the observable
universe possess supermassive BH at their center. This fact
is supported by precision measurements, for example,
in [3,4] in combination with the remarkable series of works
[5–7]. Parallelly, significant support also comes out from
the shadows of ultracompact central objects [8,9]. In recent
times, an overwhelming support of this fact appeared from
the images published by the Event Horizon Telescope
Collaboration belonging to the shadow of the supermassive
BH residing at the center of the M87 galaxy [10] and that
of Sagittarius A* [11] at the center of the Milky Way.
Furthermore, the observations of gravitational waves gen-
erated from the BH mergers provide evidence of BHs [12].
Additionally, there are also observational evidences for
the existence of stellar-mass BHs through x-ray binaries,
coming from the earliest observations [13,14], and more
recently from electromagnetic observations [9,15–17] and
gravitational wave observations [18].

The accretion of matter onto BHs or any compact object
causes the conversion of enormous gravitational energy of
the infalling accreting matter into its rotational energy (in
the Newtonian case) and to radiation, part of which
contributes to the luminous disklike structures [19] com-
monly known as an accretion disk (AD) surrounding the
central compact object. Generally, ADs are found in diverse
astrophysical scenarios, namely quasars, young stellar
objects, cataclysmic variables, active galactic nuclei, micro-
quasars, x-ray binaries, the central engine of short Gamma-
ray bursts (GRBs), and kilonovae [20–26]. Depending on
different features such as the optical depth, mass accretion
rate, and geometrical thickness, they are categorized in
different classes of models, namely geometrically thick
disks or torus, thin disks, and advection-dominated accre-
tion flows (see, for example, [27,28]).
The geometrical thick ADs, also known as Polish

doughnuts, are the models which we will consider here-
after. These are stationary equilibrium configurations
which can be constructed analytically. Typically modeled
by a relativistic hydrodynamical fluid, the equilibrium
configurations were initially constructed using the ideal
fluid [29–33]. In recent years, different types of matter
models have been considered for studying stationary
equilibrium solutions, e.g., with a viscous fluid [34,35],
with an electrically charged fluid [36–38], or by a mag-
netized fluid [39–41]. The studies concerning properties
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and morphologies of ADs located in different BH geom-
etries have also been addressed in several works [42–47].
The studies with accretion in the presence of self-gravity
effects can be found in many works [48–52].
It is worthwhile to note that previously different cos-

mological scenarios were studied by taking into consid-
eration the Weyssenhoff fluid. For example, the status of
the cosmological principle in the presence of Weyssenhoff
fluid is investigated by Böhmer and Bronowski [53]. The
consequences of Weyssenhoff fluid are investigated for
addressing the dark energy of the universe [54], for averting
initial cosmological singularity [53,55], and in describing
the bouncing universe scenario [56]. However, to the best
of our knowledge, the possible effects of spin fluid on
stationary solutions of a torus have not been investigated so
far. On that note, it is also likely that the constituents of a
stationary torus may possess intrinsic spin angular momen-
tum whose cumulative effects induce an overall nonzero
spin of the fluid. Although spin is a microscopic property of
matter, for the macroscopic description of matter, a corre-
sponding hydrodynamical theory can be obtained by an
averaging technique from the microscopic theory of matter
with spin [57]. A prominent example is the phenomeno-
logical Weyssenhoff fluid model which describes classical
ideal hydrodynamical fluid with spin [58] where the fluid
elements are characterized by an intrinsic angular momen-
tum, i.e., spin proportional to the volume. In this model,
the spin angular momentum density is described by a
second-rank antisymmetric tensor Sμν whose spatial com-
ponent is a three-vector that coincides with three-density of
the spinning matter in the rest frame. Motivated by the
attempt to look for experiments/observations for torsion,
the Lagrangian formulation of the Weyssenhoff spin fluid
model has been developed in the context of the Einstein-
Cartan theory by taking torsion into consideration [59].
Moreover, using the Lagrangian formulation, it has been
shown by Obukhov and Piskareva [60] that in general
relativity, under the pole-dipole approximation, the
conservation laws of the Weyssenhoff ideal spin fluid
follows the generalized version of the evolution equation
of spinning test particles given by Mathisson [61],
Papapetrou [62], and Dixon [63], commonly known
as Mathisson-Papapetrou-Dixon (MPD) equations.
Additionally, in order to close the MPD equations a spin
supplementary condition (SSC) has to be stated. The SSC is
not unique. Several SSCs have been prescribed in the
literature [64–69]. Notably, the conservation laws of the
Weyssenhoff ideal spin fluid are obtained by adopting
the Frenkel SSC [59,60]. Analogous to test particles with
spin, the spin of the Weyssenhoff fluid interacts with the
curvature of the background geometry leading to an addi-
tional spin-curvature coupling contribution in the momen-
tum balance. Following this, a torus endowed with
Weyssenhoff spin fluid thus allows us to examine the
direct influences of spacetime curvature effects of the

central compact object through the spin-curvature coupling
term on the stationary solutions of the torus.
In the present work, we examine the consequences of

spin-curvature coupling on stationary equilibrium solutions
of relativistic torus modeled by the Weyssenhoff ideal spin
fluid. We have adopted the test-fluid approximation, and
thus, neglected any self-gravity effects of the torus. We start
with a stationary and axisymmetric BH background where
the spin fluid describes circular orbits and is endowed with
constant specific orbital angular momentum distribution. In
this background geometry, the integrability conditions of
the general relativistic momentum conservation equation of
ideal Weyssenhoff spin fluid are derived by considering the
spin being aligned perpendicular to the equatorial plane.
Our study reveals the newly obtained integrability con-
ditions of the spin fluid embody the integrability conditions
of the ideal fluid without spin, i.e., relativistic Von-Zeipel
conditions. Additional conditions are obtained due to the
presence of a spin tensor and its coupling to the spacetime
curvature of the stationary, axisymmetric BH geometry.
In order to determine the impacts of spin and curvature

on stationary solutions of a torus, we consider the simplest
nonrotating background geometry, i.e., a Schwarzschild
BH. Using the integrability condition, we then present the
allowed structure of the spin tensor necessary to produce
macroscopic spin effects on the morphology of the torus.
Here, we consider the scenario when the fluid within the
torus exactly fills its Roche lobe. Under this situation, the
equilibrium stationary solutions of the torus are constructed
by semianalytically solving the general relativistic momen-
tum conservation equation of Weyssenhoff fluid with
constant specific angular momentum distributions. The
corresponding solutions are then used to construct the
isopressure and the isodensity surfaces of the torus. By
comparing with a torus described with only ideal fluid
without spin, our analysis reveals that the spin tensor-
curvature coupling plays a crucial role in modifying the
overall morphology of the torus as well as altering the
locations of its cusp, center, and outer edge. The qualitative
effects of the spin on the torus is characterized by a
parameter s0, and the size and total energy density of
the torus are found to be either enhanced or reduced
depending on the magnitude and sign of s0. In the simplest
scenario, we have provided an estimation of s0 by assuming
that the torus is built with spin-1=2 particles.
The present paper is organized as follows. Section II

begins with the mathematical framework of the
Weyssenhoff ideal spin fluid model. Following this, the
integrability conditions of the general relativistic momen-
tum conservation equation of the Weyssenhoff spin fluid
are presented. In Sec. III, we determine the complete
structure of the spin tensor of the Weyssenhoff spin fluid
which undergoes circular motion in the Schwarzschild
spacetime. Using this, the stationary solutions of the
equilibrium torus are constructed in the Schwarzschild
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BH spacetime. We discuss the results pertaining to the
effects of spin and curvature on the morphology of the torus
by studying the isodensity and isopressure surfaces con-
structed from the stationary solutions in Sec. IV. Finally,
after giving an estimation for s0, in Sec. V, a summary of
our study is presented.

A. Notations and conventions

We take Riemannian geometry with the signature
−;þ;þ;þ. The covariant derivative is denoted by ∇μ.
We will use geometrized units (G ¼ c ¼ 1) throughout the
paper. The Greek indices represent the coordinate basis
which runs from t; r; θ;ϕ.

II. PHYSICAL FRAMEWORK

A. The matter model

The aim of our work is to construct equilibrium solutions
of a stationary torus composed of a fluid made of neutral
particles with spin which can be of classical or quantum
origin. In the continuum limit such a kind of matter can be
described by the Weyssenhoff ideal neutral spin fluid [58].
In GR, the symmetric energy momentum tensor of the
Weyssenhoff spin fluid model is given by [60]

Tμν¼ðϵþpÞuμuνþpgμνþ2ðgρσ−uρuσÞ∇ρ½uðμSνÞσ�; ð1Þ

where ϵ and p are the energy density and pressure of the
fluid. The round brackets in (1) denote the symmetrization
of μ and ν indices. The four-velocity uμ of the spinning
fluid constituents is normalized as uμuμ ¼ −1. The pro-
jection tensor to the particle’s rest frame is given by
Δμν ¼ gμν þ uμuν. Finally, Sμν is the antisymmetric spin
tensor that corresponds to the dipole contribution in the
context of multipole moment expansion [58]. The
Weyssenhoff spin fluid model employs the Frenkel SSC,
alternatively known as the Mathisson-Pirani SSC, given by

Sμνuν ¼ 0: ð2Þ

This defines uμ as the four-velocity of the center of mass of
the spinning body.
The divergence of (1) and using the SSC (2) gives the

momentum balance

ðϵþ pÞaμ þ ∂μpþ 2∇ρðuρSμσaσÞ þ RρστμSρσuτ ¼ 0; ð3Þ

where the Riemann curvature tensor is defined as

Rμ
νρδ ¼ ∂ρΓ

μ
δν − ∂δΓ

μ
ρν þ Γλ

δνΓ
μ
ρλ − Γλ

ρνΓ
μ
δλ ð4Þ

and Γμ
ρσ are the Christoffel symbols. The energy balance

equation reads as follows:

Dϵþ ðϵþ pÞ∇μuμ ¼ 0; ð5Þ

where D ¼ uν∇ν and the four-acceleration is given by
aμ ¼ uν∇νuμ. Equation (3) represents the MPD equation in
our spin fluid model. We note that in the absence of spin (3)
reduces to the Euler equation.
The spin four-vector is defined as

Sμ ¼ −
1

2
ϵμνρσuνSρσ; ð6Þ

and the inverse relation is given by

Sμν ¼ −ϵμνρσSρuσ: ð7Þ

The spin density scalar is defined by

S2 ¼ 1

2
SμνSμν: ð8Þ

S depends on r and θ but is constant along each particle
trajectory. Let us define the following quantity:

Sμρσ ¼ uμSρσ; ð9Þ

and by taking the divergence, one obtains

∇μðuμSρσÞ ¼ uρuλ∇μðuμSλσÞ − uσuλ∇μðuμSλρÞ
¼ ðuσSλρ − uρSλσÞaλ; ð10Þ

which implies the divergence of Sμρσ is vanishing if the
four-acceleration also vanishes or is orthogonal to the
spin tensor.

B. Symmetries

In order to find solutions of the Weyssenhoff ideal spin
fluid equation of motion we need to assume the following
symmetry conditions:

(i) The BH background spacetime is stationary and
axisymmetric. The corresponding Killing vectors
are given by ημ ¼ ∂t ¼ ð1; 0; 0; 0Þ and ξμ ¼ ∂ϕ ¼
ð0; 0; 0; 1Þ. Accordingly, the Lie derivatives along ξ
and η of all geometric quantities vanish.

(ii) The Weyssenhoff spin fluid shares the same sym-
metries of the background geometry; therefore, any
(tensorial) flow parameter f, including the spin,
satisfies the conditionsLηf ¼ 0 andLξf ¼ 0, where
L is the Lie derivative. Accordingly, in an adapted
coordinate system all quantities depend on r and θ
only. This represents a major restriction. However,
our aim is to determine the order of magnitude the
spin induced changes of the shape of ADs for which
special situations are fine.

(iii) The spin fluid describes circular orbits, and therefore
the four-velocity of the fluid is given by

uμ ¼ ðut; 0; 0; uϕÞ: ð11Þ
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This fluid does not constitute a stationary congru-
ence. The angular velocity then is

Ω ¼ dϕ
dt

¼ uϕ

ut
; ð12Þ

and the specific orbital angular momentum is

−l ¼ pϕ

pt
¼ gϕμuμ

gtνuν
¼ gϕtut þ gϕϕuϕ

gttut þ gtϕuϕ
: ð13Þ

We have

l ¼ −
gϕt þ gϕϕΩ
gtt þ gtϕΩ

; Ω ¼ −
gtϕ þ gttl

gϕϕ þ gtϕl
: ð14Þ

The four-velocity can be written as

uμ ¼ Aðημ þΩξμÞ ð15Þ

with

A ¼ ut ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtt þ 2gtϕΩþ gϕϕΩ2

q ; ð16Þ

−ut ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2tϕ − gttgϕϕ
l2gtt þ 2lgtϕ þ gϕϕ

s
: ð17Þ

The four-acceleration then can be computed as

aμ ¼ ∂μ ln ut −
Ω∂μl

ð1 −ΩlÞ ¼ ∂μ ln ut −
l∂μΩ
1 −Ωl

: ð18Þ

Such smooth orbital conditions are not compatible
with all SSCs [69].

(iv) The spin four-vector Sν is aligned perpendicular to
the equatorial plane; i.e., the spin vector is polar and
is given by

Sν ¼ Sθδνθ: ð19Þ

Then the nonzero components of the spin tensor can
be calculated from (7)

Str ¼ −S
ffiffiffiffiffiffi
gθθ
−g

r
uϕ; ð20Þ

Srϕ ¼ −S
ffiffiffiffiffiffi
gθθ
−g

r
ut; ð21Þ

where S is the spin scalar density (8) and is given
by S ¼ ffiffiffiffiffiffi

gθθ
p

Sθ.

C. Integrability conditions

In this section, we will determine the existence of
integrability conditions of (3). Using Eq. (10), one obtains

∇ρðuρSμσaσÞ ¼ gμαgσβ∇ρðuρSαβaσÞ
¼ gμαgσβ½∇ρðuρSαβÞaσ þ uρSαβð∇ρaσÞ�
¼ gμαgσβ½ðuβSλα − uαSλβÞaλ� þ SμσDaσ

¼ SλμaλðuσaσÞ − Sλβaλaβuμ þ SμσDaσ

¼ SμβDaβ; ð22Þ

where uσaσ ¼ 0 and Sλβaλaβ ¼ 0. Hence (3) reduces to

ðϵþ pÞaμ þ ∂μpþ 2SμβDaβ þ RρστμSρσuτ ¼ 0: ð23Þ
Note that (23) further reduces to the Euler equation in the
absence of the spin. Since the fluid undergoes circular
motion, the rate of the change in acceleration can be
considered to be proportional to the four-acceleration.
This implies that one can make the following ansatz for
the term Daβ in (3):

Daβ ¼ Ωβνaν; ð24Þ
where Ωαβ is the antisymmetric angular velocity tensor
satisfying Ωαβ ¼ −Ωβα. Using (15), the last term in (3) can
be written as

RρστμSρσuμ ¼ AðRρστμSρσημ þΩRρστμSρσξμÞ: ð25Þ
Let us make an ansatz and express it as follows:

RαβγμSαβηγ ¼ ∂μΦ; ð26Þ
RαβγμSαβξγ ¼ ∂μϕ; ð27Þ

where the scalars ϕ and Φ are functions of r and θ.
Note that LηðRαβγμSαβÞ ¼ LξðRαβγμSαβÞ ¼ 0 since due to
the symmetries, the Lie derivatives of the Riemann curva-
ture tensor and spin tensor along the Killing vectors η and ξ
vanish. Substituting (24), (26), (27), and (18) into (23)
we obtain

∂μp

ϵþ p
¼ −∂μ lnð−utÞ þ

Ω∂μl
1 −Ωl

−
2SμαΩαβaβ

ϵþ p
−
Að∂μΦþΩ∂μϕÞ

ϵþ p
ð28Þ

or, equivalently,

∂μp

ϵþ p
¼ −∂μ lnð−utÞ þ

l∂μΩ
1 − Ωl

−
SμαΩαβaβ
ϵþ p

−
Að∂μΦþ Ω∂μϕÞ

ϵþ p
: ð29Þ
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The integrability condition then reads

0 ¼ ∂½μp∂ν�ϵ
ðϵþ pÞ2 −

∂½μl∂ν�Ω
ð1 − ΩlÞ2 − ∂½μΦ∂ν�

�
A

ϵþ p

�

þ ∂½μϕ∂ν�

�
ΩA
ϵþ p

�
− ∂μ

�
2SναΩαβaβ
ϵþ p

�

þ ∂ν

�
2SμαΩαβaβ

ϵþ p

�
; ð30Þ

where the square brackets denote antisymmetrization. Here
all terms are independent from the others: the first term is
on energy and pressure, the second on angular velocity
and momentum, and the last two are on spin coupling.
Accordingly, we require that each term should vanish
separately. The first term vanishes provided ∂μϵ ∼ ∂μp,
the second term vanishes for ∂μΩ ∼ ∂μl, and for the other
two terms we require ∂μΦ ∼ ∂μ

A
ϵþp and ∂μϕ ∼ ∂μ

ΩA
ϵþp.

Since the last two terms of Eq. (30) must also vanish, this
then means,

ϵ ¼ ϵðpÞ; ð31Þ

Ω ¼ ΩðlÞ; ð32Þ

Φ ¼ Φ
�

A
ϵþ p

�
; ð33Þ

ϕ ¼ ϕ

�
ΩA
ϵþ p

�
; ð34Þ

∂μB ¼ 2SμαΩαβaβ
ϵþ p

; ð35Þ

that is, we obtain a number of equations of states between ϵ
and p (barotropic equation of state), between Ω and l,
between Φ and A

ϵþp, and between ϕ and between ΩA
ϵþp. The

integrability condition of an ideal fluid in the absence of
spin is only given by (31).1 In the stationary and axisym-
metric spacetime, where the spin of the fluid undergoing
circular motion is aligned along a specific orientation
[see (19)], one readily concludes that the function B is
independent of the coordinates t and ϕ. Therefore,
from (35), one obtains for μ ¼ t and μ ¼ ϕ the following
conditions:

∂tB ¼ StrΩrrar þ StrΩrθaθ ¼ 0; ð36Þ

∂ϕB ¼ SϕrΩrrar þ SϕrΩϕθaθ ¼ 0: ð37Þ

Given the fact that Ωrr ¼ 0, it follows that Ωrθ ¼ 0 from
the above conditions. Also ∂θB¼SθαΩαrarþSθαΩαθaθ¼0
as Sθα ¼ 0 due to (19). Therefore the integrability condition
holds provided B ¼ BðrÞ and is determined from (35)
using (20) and (21). Hence (23) is expressed in the integral
form as

ln jutj −
Z

l

0

Ωdl
1 −Ωl

þ
Z

p

0

dp
ϵþ p

þ
Z

dB

þ
Z

Φ

0

Aðr; θÞdΦ
ϵþ p

þ
Z

ϕ

0

ΩAðr; θÞdϕ
ϵþ p

¼ const: ð38Þ

At the surface and on the inner edge of the disk, both the
pressure and the energy density of the fluid vanish. Also
at the radial position of the inner edge, i.e., r ¼ rin, one
can usually express l ¼ lin, ut ¼ utin , and Φin ¼ 0 ¼ ϕin.
Therefore Eq. (38) becomes

W −Win þ
Z

p

0

dp
ϵþ p

þ
Z

rin

0

dBþ
Z

Φ

0

Aðr; θÞdΦ
ϵþ p

þ
Z

ϕ

0

ΩAðr; θÞdϕ
ϵþ p

¼ 0: ð39Þ

The total potential is given by

W −Win ¼ ln jutj − ln jutin j −
Z

l

lin

Ωdl
1 −Ωl

; ð40Þ

andWin is the total potential at the inner edge of the torus at
the equatorial plane.

III. EQUILIBRIUM TORI WITH
WEYSSENHOFF SPIN FLUID

A. Methodology

Let us now consider a relativistic non-self-gravitating
torus described by the Weyssenhoff ideal spin fluid in
static, nonrotating BH spacetime, described by the
Schwarzschild metric. In a simplified setup, the torus
is characterized by constant specific orbital angular
momentum distribution. The spin fluid in the torus is in
hydrostatic equilibrium, shares the same symmetries of the
Schwarzschild BH [see (19)–(21)], and undergoes purely
circular orbits. In addition, we assume the internal energy
density, ε, is very small, and, therefore, the total energy
is approximately equal to the rest-mass density, i.e.,
ϵ ¼ ρð1þ εÞ ≈ ρ. In Schwarzschild coordinates, the
Schwarzschild metric is given by

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gϕϕdϕ2; ð41Þ
where 0 < t < ∞, 0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π.
The metric coefficients are

gtt¼−
�
1−

2M
r

�
¼−

1

grr
; gθθ¼ r2; gϕϕ¼ r2 sin2θ; ð42Þ1The integrability condition of the Euler equation in the absence

of spin is commonly known as the Von-Zeipel condition [30].
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where M is the mass parameter of the Schwarzschild BH
which is set as M ¼ 1 in the rest of the paper. As gtϕ ¼ 0

for a nonrotating spacetime, the specific angular momen-
tum and the angular velocity are related as

lðr; θÞ
Ωðr; θÞ ¼ −

gϕϕ
gtt

: ð43Þ

With the assumption of constant specific angular momen-
tum distributions, we set lðr; θÞ ¼ l0 where l0 is a constant
and is in accordance to the integrability condition
[see (31)], and we consider the equation of state as
p ¼ κϵγ , so that (23) is expressed as

∂μϵ ¼
ðϵ2−γ þ κϵÞ

−κγ
∂μ lnð−utÞ −

ð2SαβDaβ þ RρστμSρσuτÞ
κγϵγ−1

;

ð44Þ

where κ is the polytropic constant and γ is the adiabatic
coefficient. Using (20) and (21), radial and polar compo-
nents of (44) can be read off as follows:

∂rϵ ¼
ðϵ2−γ þ κϵÞ

−κγ
∂r lnð−utÞ −

Sðr; θÞ
κγϵγ−1ð1 − Ωl0Þ

ffiffiffiffiffiffi
gθθ
−g

r
F1

−
2grrgttSðr; θÞ

κγϵγ−1

ffiffiffiffiffiffi
gθθ
−g

r �
uϕDat −

gϕϕ
gtt

utDaϕ
�
; ð45Þ

∂θϵ ¼
ðϵ2−γ þ κϵÞ

−κγ
∂θ lnð−utÞ −

Sðr; θÞ
κγϵγ−1ð1 −Ωl0Þ

ffiffiffiffiffiffi
gθθ
−g

r
F2;

ð46Þ

where F1 and F2 are given by

F1ðr; θÞ ¼ −Ωl0Rtrϕr þΩRrϕϕr − l0Rtrtr þ Rrϕtr;

F2ðr; θÞ ¼ −Ωl0Rtrϕθ þΩRrϕϕθ − l0Rtrtθ þ Rrϕtθ:

To obtain F1 and F2 the following relations are used:

uϕut ¼
l

1 −Ωl0
; utuϕ ¼ −

Ω
1 − Ωl0

: ð47Þ

The nonzero components of the curvature tensor appearing
in F1ðr; θÞ and F2ðr; θÞ are

Rtrtr ¼ −
2

r3
; Rrϕϕr ¼

sin2 θ
ðr − 2Þ ; ð48Þ

so that F1ðr; θÞ and F2ðr; θÞ finally reduce to

F1ðr; θÞ ¼
3l0
r3

; F2ðr; θÞ ¼ 0: ð49Þ

The stationary solutions of the equilibrium ideal spin fluid
torus are then obtained by computing the energy density
and the pressure which are determined by solving (45)
and (46) for a spin length function S along with the values
of the constants κ and γ.
The existence of integrability conditions imply dp=ðϵþ

pÞ is an exact differential [see (38)], and as a result, the
compatibility condition ∂θ∂rp ¼ ∂r∂θp expressed as the
commutation of partial second derivatives of the fluid
pressure is automatically satisfied. We utilize the compat-
ibility condition for determining the spin length function as
discussed in the following section.

B. Determination of spin length function

In order to obtain the solutions of fluid pressure and
energy density, we must assign values for κ, γ, and
determine the spin length function S. In view of the fact
that the Weyssenhoff fluid shares the same symmetries as
that of the background geometry, S is therefore purely a
function of radial and polar coordinates. The value of the
adiabatic index is chosen to be γ ¼ 2. The fluid pressure
and the energy density are then related by the equation of
state as p ¼ κϵ2. Note that this choice is high for any
physical systems, but taking this value of the adiabatic
index makes it convenient to perform analytic integration
for our simple model of spin fluid torus presented here. We
start with a general form of S as

Sðr; θÞ ¼ s0kðr; θÞϵγ−1ð1 −Ωl0Þ: ð50Þ

Here s0 is a constant that can take both positive and
negative values.
Substituting γ ¼ 2 in (50), (45), and (46), one immedi-

ately obtains

∂rϵ¼−
ð1þκϵÞ

2κ
∂r lnð−utÞ

−
l0s0kcscθ½l20ðr−2Þ2csc2θð3−rcsc2θÞþðr−3Þr3�

κðr−2Þr4ðr3− l20ðr−2Þcsc2θÞ ;

ð51Þ

∂θϵ ¼ −
ð1þ κϵÞ

2κ
∂θ lnð−utÞ: ð52Þ

Note that (51) and (52) reduce to the Euler equation valid
for an ideal fluid for s0 ¼ 0. With our choice of the equation
of state, the compatibility condition on the fluid pressure
also implies second derivatives of energy density commute
as ∂θ∂rϵ ¼ ∂r∂θϵ. Substituting (51) and (52) in the compat-
ibility condition, the first order differential equation for
kðr; θÞ can be read off as

∂θkþ
P1ðr; θÞ
P2ðr; θÞ

k ¼ 0; ð53Þ
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where

P1ðr;θÞ
P2ðr;θÞ

¼ cotθ½l20ðr− 2Þfðr− 2Þ csc2 θð20r4 − 10l20ðr− 2Þrcsc2 θþ 3l20ðr− 2ÞÞ þ 3r3ð24− 11rÞgþ 2r6 sin2 θð12− 5rÞ�
2l20ðr− 2Þ½ðr− 2Þ csc2 θð2l20ðr− 2Þr csc2 θ− 3l20ðr− 2Þ− 2r4Þ− 2r3ðr− 3Þ�− 2r6 sin2 θð12− 5rÞ :

The solution of kðr; θÞ is obtained as follows by solving (53) analytically:

kðr; θÞ ¼ 21=4 sin5=2 θ½l20ðr − 2Þ − r3 sin2 θ�5=4C1ðrÞ
4l20ðr − 2Þ2ð2r − 3 sin2 θÞ þ 4ð12 − 5rÞr3 sin4 θ ; ð54Þ

where C1ðrÞ is a constant of integration over θ and is fixed at the equatorial plane. Following (54), C1ðrÞ at the equatorial
plane can be readily expressed in terms of kðr; π=2Þ and l0 in the following way:

C1ðrÞ ¼ k
�
r;
π

2

�
4l20ðr − 2Þ2ð2r − 3Þ þ 4ð12 − 5rÞr3

21=4½l20ðr − 2Þ − r3�5=4 : ð55Þ

For convenience and simplicity of the computations, we choose kðr; π=2Þ ¼ 1 which is the simplest possible choice at par
with the integrability conditions. Using (54) and (50), the spin length function in terms of the energy density, s0, and l0 is
finally given by

Sðr; θÞ ¼ s0
sin5=2θ½l20ðr − 2Þ2ð2r − 3Þ þ r3ð12 − 5rÞ�

½l20ðr − 2Þ2ð2r − 3sin2θÞ þ r3ð12 − 5rÞsin4θ�
�
l20ðr − 2Þ − r3sin2θ

l20ðr − 2Þ − r3

�
5=4

ϵðr; θÞð1 −Ωl0Þ: ð56Þ

With the determination of the solutions of ϵðr; θÞ, the spin
length function can easily be computed using (56) for the
values of s0 and l0.

C. Results

We now obtain the stationary solutions of the energy
density and pressure of the equilibrium torus modeled by
the Weyssenhoff ideal spin fluid. By integrating Eq. (52)
directly, the expression for the energy density is found to be

ϵðr;θÞ¼21=4κC2ðrÞðr3 sin2θ− l20ðr−2ÞÞ1=4− ffiffiffiffiffiffiffiffiffi
sinθ

p

κ
ffiffiffiffiffiffiffiffiffi
sinθ

p ; ð57Þ

and C2ðrÞ is the radial coordinate dependent constant of
integration independent of θ. It is determined from the
first order ordinary differential equation at the equatorial
plane [about which the spin is defined by (19)] by
substituting (57) in (51) as follows:

dC2

dr
þ ð3r − 4Þ
4rðr − 2ÞC2

−
l0s0½l20ðr − 2Þ2ð2r − 3Þ þ r3ð12 − 5rÞ�
2κ:21=4ðr − 2Þr4½r3 − l20ðr − 2Þ�5=4 ¼ 0: ð58Þ

The above equation is solved numerically under appro-
priate boundary conditions which when substituted in (57)
generates the isodensity and isopressure surfaces of the
torus. We next describe the scheme for obtaining C2ðrÞ.

To demonstrate the effects of spin fluid on the equilib-
rium structure of a torus, we mainly concentrate on a closed
torus configuration which is characterized by its cusp rcusp
that corresponds to the radial location where the isopressure
and isodensity surfaces self-cross, center rc that corre-
sponds to the location of maximum pressure and energy
density, the inner edge rin, and an outer edge rout, all
defined at the equatorial plane. Furthermore, we build
stationary models of equilibrium torus for which the fluid
exactly fills the Roche lobe. In terms of the effective
potential, this amounts to the potential gap △W reducing
to ΔW ¼ Win −Wcusp ¼ 0 where Win and Wcusp are the
respective effective potentials of the inner edge and
the cusp at the equatorial plane [70]. Consequently, the
inner edge of the torus coincides with the cusp at the
equatorial plane.
Since for an exactly filling torus configuration with

△W ¼ 0 corresponds to pðrinÞ ¼ ϵðrinÞ ¼ 0 at rin ¼ rcusp,
using the condition ϵðrinÞ ¼ 0 one then obtains the boun-
dary condition for solving the differential equation for (58)
as follows:

C2ðrinÞ ¼
1

21=4κðr3in − l20ðrin − 2ÞÞ1=4 : ð59Þ

The inner edge of the torus must be known to compute
C2ðrinÞ which serves as the boundary condition for numeri-
cally solving (58) for given values of l0 and s0. Note that the
cusp of the torus corresponds to the location of the extrema
where isopressure and isodensity surfaces self-cross. In the
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present context, it coincides with the inner edge, therefore
imposing the condition ∂rϵðr ¼ rinÞ ¼ 0 in (51), together
with (57) and (59), and the polynomial equation for
determining the inner edge of the torus is found to be

r6in − l20ðrin − 2Þ2r3in − l30ðrin − 2Þ2ð2rin − 3Þs0
þ l0s0ð5rin − 12Þr3in ¼ 0; ð60Þ

where we have further set κ ¼ 1. Out of all six possible
roots of (60), the real positive root of rin > rSch is chosen,
where rSch corresponds to the Schwarzschild radius.
On a different note, it can easily be observed that for

s0 ¼ 0, one retrieves the Keplarian distribution given by

l0 ¼ r
ffiffi
r

p
r−2 ¼ lk, where lk is the Keplarian specific angular

momentum at rin coinciding with rcusp [31].
The isodensity surfaces of the equilibrium torus are

constructed with two constant values of specific angular
momentum, namely l0 ¼ 3.8 and l0 ¼ 4. We first consider
l0 ¼ 3.8; for this value of l0, solutions of closed equilib-
rium tori are obtained characterized by cusp, center, and a
well-defined outer edge. The constant energy density
profiles of such closed torus at the equatorial plane are
shown in Fig. 1(a) for s0 ¼ 0, s0 ¼ 0.1, and s0 ¼ −0.1.
Let us now discuss the procedure for obtaining the
solution of the energy density with s0 ¼ 0.1. First, rin
is evaluated by solving (60) which gives rise to two
positive real roots, namely rin ¼ 4.7424 and rin ¼ 8.1051.
Substituting rin in (59) and solving (58) numerically with
C2ðrinÞ produces the solution of the energy density
function (57). A closed torus structure possessing a cusp,
a center, and an outer edge only exists for rin ¼ 4.7424,
whereas with rin ¼ 8.1051, no torus structure could be
found. Similarly, for s0 ¼ −0.1 we choose rin that gen-
erates a torus configuration.

(a) (b)

FIG. 1. Isodensity and isopressure profiles of Weyssenhoff spin torus at the equatorial plane for s0 > 0, s0 ¼ 0, and s0 < 0 with
l0 ¼ 3.8. The red dotted line is the radial location of the center rc of a torus without spin fluid (s0 ¼ 0). The shift in the radial position of
rc occurs by changing the magnitude of s0 as shown by the blue dotted line for s0 ¼ 0.1 and the green dotted line for s0 ¼ −0.1. For each
s0, the outer edge of the torus rout is shown.

(a)

(b)

FIG. 2. Behavior of rc and ϵmax with changing s0 at the
equatorial plane. The black dotted lines in the upper and lower
panels denote respective values of ϵmax and rc for an ideal fluid
torus without spin contributions.
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The impacts of spin and its coupling to the spacetime
curvature of the BH geometry on equilibrium solutions can
be appreciated from both the isoenergy density and iso-
pressure contours, as shown, respectively, in Figs. 1(a)
and 1(b). Clearly, the radial location of the newly formed
center of torus in the presence of spin never coincides with
the torus center filled with ideal fluid without spin con-
tributions. Both Figs. 1(a) and 1(b) show this feature where
the center rc of the spin fluid torus gets slightly shifted in
comparison to a purely ideal fluid torus. This can be
observed for both s0 > 0 and s0 < 0. When compared to
the torus without spin fluid (s0 ¼ 0), in the former case, the
location of rc moves toward the horizon and the corre-
sponding magnitude of the maximum energy density well

as pressure at rc gets lowered, whereas in the latter case, rc
moves away from the horizon. The maximum energy
density as well as the maximum pressure at rc get further
enhanced for s0 < 0 in comparison to the torus charac-
terized by s0 ¼ 0. Additionally, the size of the torus also
gets diminished in the s0 > 0 parameter region. On the
other hand, it increases for all values with s0 < 0 and can be
clearly noticed from the changes in positions of rin and rout
when compared to the equilibrium torus without the
Weyssenhoff ideal fluid.
The effect of changing s0 on the radial position of the

center rc and the corresponding energy density (denoted by
ϵmax) can be noticed from Figs. 2(a) and 2(b), respectively.
When compared with a purely ideal fluid torus (s0 ¼ 0),

FIG. 3. Isodensity surfaces of a closed torus with l0 ¼ 3.8 and s0 > 0. The small red dot depicts the center of the torus. To furnish a
comparison with the s0 ¼ 0 case, same constant density surfaces (solid white and dotted white lines) are shown in all the panels. With
the increasing magnitude of s0, the closed isodensity surfaces become smaller leading to an overall decrease in the size of the torus in
comparison to a torus without a spin fluid.
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both rc and ϵmax monotonically decrease as s0 is increased
from s0 ¼ 0, whereas if the alignment of the spin is
reversed about the equatorial plane, i.e., in the s0 < 0
region, the radial positions of rc and ϵmax increase mono-
tonically. In essence, rc moves away from the horizon for
all s0 < 0 values, resulting in an enhancement of ϵmax. On
the other hand, rc comes closer to the BH horizon by
increasing s0 with positive values leading to a lowering of
ϵmax in comparison to a torus without the spin fluid.
The implications of spin-curvature contributions on the

morphology of a stationary geometrically thick spin fluid
torus are illustrated by the isoenergy density surfaces as
shown in Fig. 3 for s0 > 0 and Fig. 4 for s0 < 0. In Fig. 3,
one finds that increasing s0 leads to significant changes on
the morphology of the torus. First, the radial position of

rcusp shifts further away in comparison to rcusp of the torus
with s ¼ 0. At the same time, with a further increase in s0,
rout slowly moves closer to rcusp resulting in a decrease in
the overall size of the torus, which can be particularly noted
for s0 ¼ 0.25. On the other hand, due to the spin and its
coupling to curvature, the energy density at the center of the
torus diminishes and the corresponding radial position
slowly gets closer to the BH horizon. Such a feature is
also observed in Fig. 2(a) where the analysis is carried out
at the equatorial plane. Second, the overall energy density
of the torus gets systematically reduced with an increasing
magnitude of s0. Third, the spin fluid contributes to the
redistribution of the isodensity surfaces which can be
observed from Figs. 3 and 4, respectively. For the purpose
of illustration, it is observed that the reference contour lines

FIG. 4. Isodensity surfaces of the closed torus for s0 < 0 and l0 ¼ 3.8. The small red dot depicts the center of the torus. To furnish a
comparison with an ideal fluid torus, the same constant density surfaces (solid white and dotted white lines) are shown in all three panels
which spread away, leading to an increase in the size of the torus.
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ϵmax;0=3 (dashed white line) and ϵmax;0=4 (white line)
(ϵmax;0 is the maximum energy density for s0 ¼ 0) shrink
and become smaller with increasing s0.
However, the scenario is exactly reverse in the s0 < 0

region as shown in Fig. 4. Due to the opposite alignment of
spin (at the equatorial plane) the overall size of the torus
gets enlarged resulting in a larger difference between rcusp
and rout, which can be particularly observed for s0 ¼ −0.2
in Fig. 4. In this case, the energy density at rc also increases
while the location of rc shifts away from the horizon of the
BH. Notably, as s0 is reduced further, the overall energy
density of the torus gets enhanced. Similar to s0 > 0 torus
configurations, the redistribution of constant density sur-
faces can be observed where the contour lines expand,
increasing in the overall size of the torus.
By following a similar procedure as discussed before,

the isodensity surfaces for l0 ¼ 4 are illustrated in Fig. 5
demonstrating a comparison between s ¼ 0 and s0 ≠ 0 tori.
These constant density surfaces possess a cusp and a center
but are closed at infinity, a feature also found in equilibrium
solutions without a spin fluid in the Schwarzschild space-
time [31]. Note that in the presence of spin, the fluid lines
move outwards for s0 < 0 and inwards for s0 > 0 in
comparison to s ¼ 0. To highlight the spin-curvature
effects and facilitate the comparison with the no-spin fluid
torus configuration, we have plotted the same isodensity
surfaces, namely ϵ ¼ 0.0165 (dotted black line) and ϵ ¼
0.018 (solid line) for all three cases. Similar to the case of
l0 ¼ 3.8, the effects of spin can be observed from the
movement of constant density surfaces which for s0 > 0
come closer, whereas they move away for s0 < 0 when
compared with the ideal fluid torus.
Figure 6 presents the profiles of the spin length function

at the equatorial plane for different values of l0 and s0 > 0.
The figure shows that by increasing l0, the peak value of
SðrÞ at the equatorial plane denoted by Smax increases
further, the highest being for l0 ¼ 4, for which the torus is

closed at infinity. The corresponding radial position
denoted by rmax is found to be steadily shifting away from
the BH horizon. Furthermore, rout also increases with l0,
implying an increase in size of the torus, which can be
observed from the point of intersection of SðrÞ with the x
axis. In Table I, the solutions of Smax and rmax for a
representative value of s0 ¼ 0.001 are presented, from
which it is readily observed that rmax never coincides
with rc. On the other hand, for s0 < 0 the spin length
function takes negative values due to the negative sign
of s0. Once again, similar to the s0 > 0 case, rmax does not
coincide with rc while Smax and rout decrease with l0. In
Table II, representative values of l0 (which generates
solutions of equilibrium tori) are chosen to illustrate the
behavior of Smax and rmax due to changing values of s0. For
a fixed l0, Smax increases but rmax decreases in the s0 > 0

FIG. 5. Isodensity surfaces of an equilibrium torus corresponding to s0 < 0; s ¼ 0, s > 0with l0 ¼ 4. These tori are characterized by a
cusp, a center but are closed at infinity. The black solid and the black dotted lines illustrate redistribution of the same isodensity surfaces
for three different values of s0.

FIG. 6. Profiles of SðrÞ at the equatorial plane for different
values of l0 and a fixed s0 ¼ 0.001.
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region. This picture is opposite for all s0 < 0 cases, where
one finds that Smax takes a dip and rmax increases in the
similar way as rc. Table III shows a series of equilibrium
models of closed spin fluid torus for both positive and
negative values of s0.
Since the Schwarzschild BH spacetime and the

Weyssenhoff ideal spin fluid share the same symmetries,
in congruence to the orientation of the spin vector at the
equatorial plane, the nonzero contributions of the spin-
curvature coupling term only come from RtrtrStrut and
RrϕϕrSrϕuϕ. Together with (20), (21), and (57) we obtain

RtrtrStrut ¼
2l0s0
r4 sin θ

kðr; θÞϵðr; θÞ

¼ 2l0s0k
r4

�
21=4κC1ðrÞðr3sin2θ − l20ðr − 2ÞÞ1=4 − ffiffiffiffiffiffiffiffiffi

sin θ
p

κsin3=2θ

�
ð61Þ

and

RrϕϕrSrϕuϕ ¼ l0s0kðr; θÞ
r4 sin θ

ϵðr; θÞ

¼ l0s0k
r4

�
21=4κC1ðrÞðr3sin2θ − l20ðr − 2ÞÞ1=4 − ffiffiffiffiffiffiffiffiffi

sin θ
p

κsin3=2θ

�
; ð62Þ

TABLE I. Variation of Smax and rmax for different values of l0
and fixed s0.

s0 ¼ 0.001

l0 rc Smax rmax

3.7 6.91 3.73 × 10−7 6.96
3.75 7.71 1.81 × 10−6 7.87
3.8 8.35 4.06 × 10−6 8.69
3.85 8.91 6.97 × 10−6 6.97
3.9 9.45 1.05 × 10−5 10.25
4 10.47 1.95 × 10−5 11.99

TABLE II. The stationary solutions of an ideal Weyssenhoff fluid torus showing the behavior of Smax and rmax with s0 for both s0 > 0
and s0 < 0. Note that rmax never coincides with the center of the torus rc.

l0 ¼ 3.8, κ ¼ 1

s0 rc Smax rmax s0 rc Smax rmax

0.001 8.35 4.06 × 10−6 8.70 −0.001 8.35 −4.09 × 10−6 8.71
0.01 8.32 3.93 × 10−5 8.67 −0.01 8.37 −4.21 × 10−5 8.73
0.1 8.10 2.78 × 10−4 8.36 −0.1 8.57 −5.55 × 10−4 9.03
0.25 7.67 3.11 × 10−4 7.81 −0.25 8.88 −2.06 × 10−3 9.51
0.35 7.31 1.17 × 10−4 7.38 −0.35 9.07 −3.62 × 10−3 9.82
0.4 7.07 1 × 10−4 7.12 −0.4 9.16 −4.58 × 10−3 9.98

TABLE III. Solutions of a stationary equilibrium model closed torus supported by the ideal Weyssenhoff spin fluid for s0 ≠ 0. The
solutions are compared with the purely ideal fluid torus characterized by s0 ¼ 0.

Sðr; θÞ ¼ s0kðr; θÞð1 − Ωl0Þϵðr; θÞ; l0 ¼ 3.8; κ ¼ 1

s0 rcusp rc ϵmax pmax rout s0 rcusp rc ϵmax pmax rout

0 4.57 8.35 0.0048 2.31 × 10−5 15.89 0 4.57 8.35 0.0048 2.31 × 10−5 15.89
0.01 4.59 8.32 0.0046 2.16 × 10−5 15.63 −0.01 4.56 8.37 0.0049 2.47 × 10−5 16.15
0.05 4.65 8.23 0.0040 1.62 × 10−5 15.45 −0.05 4.50 8.46 0.0056 3.18 × 10−5 17.27
0.15 4.83 7.97 0.0026 7.04 × 10−6 12.54 −0.15 4.36 8.68 0.0074 5.55 × 10−5 20.67
0.25 5.05 7.67 0.0015 2.29 × 10−6 10.75 −0.25 4.23 8.88 0.0095 9.12 × 10−5 25.33
0.35 5.33 7.31 0.00063 4.04 × 10−7 9.14 −0.35 4.12 9.07 0.0118 1.40 × 10−4 32.21
0.45 5.78 6.76 7.52 × 10−5 5.65 × 10−9 7.41 −0.45 4.02 9.25 0.0144 2.07 × 10−4 43.50
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where kðr; θÞ is given by (54) and the constant of integration
C1ðrÞ is determined at the equatorial plane. It is observed
that the nonzero components of the spin-curvature coupling
term given by (61) and (62) are symmetric in both upper and
lower hemispheres under our present considerations which
therefore indicate a symmetric contribution of spin in both
the hemispheres of the torus. Both Figs. 3 and 4 confirm this
fact about the stationary equilibrium solutions of the torus
obtained with s0 ≠ 0 in the presence of spin.
The stationary solutions of the equilibrium torus with the

ideal Weyssenhoff spin fluid demonstrate the relocation
of radial positions of the cusp and center with changing
magnitudes of s0. The two radial positions correspond to
crossing of the actual specific angular momentum and the
Keplerian specific angular momentum which are deter-

mined from the condition ∂μp
ϵþp ¼ 0 ¼ aμ. In the presence of

spin, it is expected the Keplerian specific angular momen-
tum will be modified as well [71] and is determined from
the corresponding crossing condition. By putting ∂rϵ ¼ 0
in (51) together with (57), the Keplerian specific angular
momentum for the spin fluid is then obtained by solving the
following equation2:

½r3 − l20ðr − 2Þ�1=4 þ 23=4l0s0ðr − 3Þ½r3 − l20ðr − 2Þ2�
C2ðrÞr4ðr − 2Þðr3 − l20ðr − 2ÞÞ ¼ 0:

ð63Þ

One can easily observe that in the absence of spin, the
above relation gives rise to l0 ¼ lk. For a given s0,
Keplerian specific angular momentum is determined by
solving (63) for l0 after substituting C2ðrÞ from (58).

IV. ESTIMATION OF THE SPIN PARAMETER

The spin function Sðr; θÞ plays a crucial role in deter-
mining the effects of spin on the equilibrium solutions of a
torus. Therefore in order to pinpoint the spin effects for
astrophysical objects, it is important to estimate the relevant
magnitude of spin.
In geometrized units, length, time, and mass have the

same dimensions. In these units, the dimension of the spin
tensor is given by Sαβ ¼ ½L� using (23) whose nonzero
components of spin tensor are given by Eqs. (20) and (21).
The dimension of the spin length function is given by
½S� ¼ ½L�. Note that ϵ and k are dimensionless in geom-
etrized units, and from the relation S ¼ s0ϵkð1 −Ωl0Þ, one
readily finds the dimension of s0 as ½s0� ¼ ½L�.
In order to have a rough estimation of s0, let us assume

that the torus is composed of electrons only. The specific
spin (spin per unit mass) S̄ of an electron is ðℏ=2Þ=me ¼
1.93 × 10−11 cm, where me is the mass of an electron [72].

In terms of units of mass of a central compact object with
M ¼ 3M⊙ ¼ 4.43 × 105 cm, the specific spin is given by
S̄ ¼ 0.44 × 10−16meM. On the other hand, we can
express the specific spin as S̄ ¼ s0kðr; θÞ. On comparing,
s0 ¼ 0.44 × 10−16meM, where the value of kðr; θÞ ¼ 1
is taken at the equatorial plane. The electron density
within an accretion disk n ¼ 1018–1023 cm3. With this,
s0≈102–105 [73]. On the other hand, if the central compact
object is a supermassive BH with mass M ¼ 108M⊙,
s0 ¼ 10−6 − 0.1meMcm−3.

V. SUMMARY AND OUTLOOK

The study of non-self-gravitating ideal fluid moving in a
circular motion under hydrostatic equilibrium in a BH
spacetime has remained a topic of active research over a
long time, thanks to the simple theoretical framework that
can be used for developing analytical stationary equilib-
rium solutions, which serve as initial data for developing
numerical simulations of realistic accretion flows. In this
work, we have considered a different matter model where
the fluid constituents carry an additional intrinsic angular
momentum, proportional to their volume. In this case, the
spin angular momentum density of the fluid is described by
the rank-two spin tensor which is related to the macro-
scopic spin vector [see (6)] and the matter model of the
torus is described by the neutral ideal Weyssenhoff spin
fluid. Subjected to Frenkel SSC, the corresponding
momentum balance equation is characterized by its spin
and their coupling to curvature of the Schwarzschild BH,
all of which have substantial effects on stationary solutions
of the equilibrium torus.
By further allowing the spin fluid to undergo circular

motion in a stationary and axisymmetric background
and taking the orientation of the macroscopic spin vector
only perpendicular to the equatorial plane, the present work
addresses the following issues. First, we have determined
the integrability conditions of the general relativistic
momentum conservation equation using the Frenkel
SSC. These new sets of integrability conditions are found
to be straightforward extensions of Von-Zeipel conditions
with additional conditions that emerge solely due to
the spin, spacetime curvature of a compact object, and
their couplings. Although integrability conditions of spin-
ning particles have been earlier addressed (see, for exam-
ple, [74]), to the best of our knowledge, the integrability
conditions of a spin fluid moving in stationary and
axisymmetric spacetime, are, for the first time, reported
in the present work. Second, the existence of integrability
conditions has allowed us to determine the spin length
function (related to the spin tensor) and hence the complete
structure of the spin tensor. Third, using the spin tensor, the
general relativistic momentum conservation equation is
solved for constructing stationary models of equilibrium
tori in Schwarzschild geometry by assuming constant

2We thank M. Abramowciz for bringing Ref. [71] to our notice
and suggesting the computation.
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specific angular momentum distributions and a polytropic
equation of state.
Set in this simple scenario, this work presents several

novel features as described. Our study reveals that the
presence of the coupling term of the spin and the curvature
tensor of the central BH has some impact on the morphol-
ogy of the torus, particularly on the constant energy density
surfaces, though, qualitatively, the shape of the spin fluid
torus remains similar to that of a purely ideal fluid torus for
a given value of l0. The most pronounced signature of spin
is found to be for the case of closed torus configurations.
Therefore to furnish a quantitative study for determining
the effects of spin on stationary solutions of the torus, the
spin length is assigned with a constant free parameter s0
that is allowed to take both positive and negative values
characterizing alignment/anti-alignment of the spin vector
perpendicular to the equatorial plane. Then, s0 is varied
systematically from s ¼ 0 to both higher positive and
higher negative values to analyze the consequences of spin.
It is known that the innermost stable circular orbit (ISCO)

of a test particle is modified in the presence of the test
particle’s spin degree of freedom. For the Schwarzschild
spacetime, the ISCO of a spinning particle takes two values
corresponding to its two spin orientations [75]. Following
this, while considering a spin fluid torus, the positive and
negative signs of s0 will therefore generate two ISCOs of the
torus. Together with the change in the size of the torus, it will
be possible to differentiate the spin fluid torus with s0 > 0
and s0 < 0 for the same value of l0.
Our analysis reveals that increasing s0 from s0 ¼ 0 leads

to a decrease in the overall energy density and pressure of
the torus. The size of the torus also decreases which can be
noticed from the shift of rcusp away from the BH horizon
and rout toward the horizon. On the other hand, the
separation distance between rcusp and rout increase with
a systematic increase in s0 for anti-alignment of the spin,
leading to enhancement of both the energy density and the
pressure while also expanding its size. In addition, the
center of the torus gets shifted, either away from or toward
the horizon depending on s0 in comparison to an ideal spin
fluid torus. Eventually, the maximum energy density at the

center of the torus decreases (for tori with s0 > 0) or
increases (for tori with s0 < 0). It is further noted that the
existence of additional intrinsic spin angular momentum
leads to the redistribution of isodensity contours in the
torus configurations. On studying independently, from the
behavior of the spin function at the equatorial plane with
respect to changes in l0 and s0 it is found that the radial
location corresponding to its maximum value is shifted for
all s ≠ 0 and hence never coincides with the torus center.
Finally, the value of s0 is estimated by considering the torus
to be composed of spin 1=2 particles.
The present work is the first step toward studying the

stationary solutions of geometrically thick tori in the
presence of the ideal Weyssenhoff spin fluid. We adopted
several assumptions and presented a simple model; never-
theless, it is found that the presence of an additional
intrinsic angular momentum of fluid elements in the form
of spin produces a number of new features on the
morphology of a torus. Given the integrability conditions
in hand, it will be interesting to investigate the possible
changes of the morphology of the torus situated in a
rotating background, for example, in the astrophysically
relevant Kerr BH spacetime. The other realistic case worth
exploring is the case of nonconstant specific angular
momentum distributions of the torus. Particularly, for
realistic accretion flow, when viscous effects are no longer
small enough to be neglected, it would be pertinent to
consider shear viscous effects within the spin fluid, for
example, using a causal prescription [35]. We leave all
these issues for future investigations.
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