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Within the self-gravitating Bose-Einstein condensate (BEC) model of dark matter (DM), we argue that
the axionlike self-interaction of ultralight bosons ensures the existence of both rarefied and dense phases in
the DM halo core of (dwarf) galaxies. In fact, this stems from two independent solutions of the Gross-
Pitaevskii equation corresponding to the same model parameters. The existence of the two-phase structure
did also appear in previously studied models with polynomial self-interactions, which actually involve the
truncated expansion series of the axionlike self-interaction. For a small number of particles, this structure
disappears along with the gravitational interaction, and the Gross-Pitaevskii equation reduces to the
stationary sine-Gordon equation, the one-dimensional antikink solution of which mimics a single-phase
DM radial distribution in the halo core. Quantum mechanically, this solution corresponds to a zero-energy
bound state of two particles in a closed scattering channel formed by the domain-wall potential with a finite
asymptotics. To produce a two-particle composite with low positive energy and a finite lifetime, we appeal
to the resonant transition of one asymptotically free particle of a pair from an open channel (with a model
scattering potential) to the closed channel. Using the Feshbach resonance concept, the problem of two-
channel quantum mechanics is solved in the presence of a small external influence which couples the two
channels, and an analytical solution is obtained in the first approximation. Analyzing the dependence of
scattering data on interaction parameters, we reveal a long-lived two-particle composite (dimer) possessing
a lifetime of millions of years. This result is rather surprising and supposes important implications of dimers
being involved in forming large DM structures. It is shown that the dimers’ appearance is related with the
regime of infinite scattering length due to resonance. The revealed dependence of the DM scattering length
a on the parameters of interactions can theoretically justify variation of a in the DM dominated galaxies and
its role for large DM structures.
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I. INTRODUCTION

Axionlike bosons with low mass and periodic self-
interaction belong to the most popular candidates for the
role of dark matter (DM) particles [1]. Axions were
hypothetically introduced by Peccei-Quinn (PQ) [2,3] as
pseudo-Goldstone bosons to resolve the problem of strong
charge parity (CP) in quantum chromodynamics (QCD).
Two nonthermal mechanisms for the axion production in
the early Universe were soon proposed, namely vacuum
misalignment [4–6] and cosmic string decay [7]. In fact,
the thermalization of axions, which were created by the
vacuum realignment in the PQ scenarios with either broken
or unbroken symmetry, seems irrelevant at the early stage
because of their initial coherence. On the other hand, it was
argued that the axion component, which appeared during
the decay of topological defects, is thermalized due to

self-interactions [1]. Besides, gravitational scattering can
lead to the rethermalization of the QCD axions in the era of
radiation dominance, as suggested in [8,9]. This indicates
that a system of axions can have huge occupation numbers
and be treated nonrelativistically. In this regard, the dis-
cussion in the literature [8,10–12] on the existence of an
axion Bose-Einstein condensate (BEC) led to identifying
any condensate regime with a classical field, regardless of
whether the axions are in the ground state or not. Thereby,
it is recognized that the axions in an occupied state are
coherent, so their distribution should be considered from
the point of view of classical field theory or quantum
mechanics (in a spirit of Gross and Pitaevskii) [13]. More-
over, the wave-based approach does prevail over the
corpuscular one as the particle mass decreases.
It is argued that axions with masses predicted by

QCD [14,15] are not capable to form giant BECs compa-
rable in size to the DM halos [16,17]. Indeed, the first
attempt to describe galactic halos formed by bosons [18],
either in their ground state (BEC) or in an appropriate
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isothermal state, resulted in an extremely small mass of the
order of 10−24 eV=c2. A similar mass estimate was also
obtained in [19] when studying the rotation curves by
considering a giant system of self-gravitating Bose liquid.
This means that there may exist other types of axions with a
very small mass, called ultralight axions [1]. We also call
these (dark) particles axionlike. Note that the difference
between the masses of QCD axions and ultralight axions
can reach tens of orders of magnitude.
In view of significant mass spread, it is easy to miss the

emergence of composites (complexes of axionlike par-
ticles) due to specific nature of their interaction. In order to
fill the gap, we are studying the problem of axion dimer
formation in this paper. It is expected that interaction
characteristics (e.g., scattering length) differ greatly for
individual axions and their composites (like dimers).
Noteworthy, a large number of theoretical works are

devoted to the study of the one-sort BEC DM models
at vanishing absolute temperature (see, for instance,
[11–13,16,17,19–26]). Their being aimed at the description
of astrophysical phenomena should borrow the chiral
cosinelike self-interaction [2,27] (or at least its truncated
part), and also requires engaging the gravity (usually
treated separately from the unification theory), the account
of which leads to breaking the inherent symmetry. Note
also that there are works, including experimental ones
(see [1,28,29]), that study the interaction of axions with
other substances and their transformation (say, due to the
Primakoff effect, see [30,31]).
The condensate properties of the gravitating axionlike

DM, with both the leading pairwise contributions to the
self-interaction [24–26] and the next three-particle correc-
tions [17,32,33] being taken into account, are promising for
further exploration and application of axionlike particles.
Having got a number of characteristics, the dilute and dense
phases along with the first-order phase transitions are
theoretically predicted in BEC [17,32,33]. Besides, analy-
sis of the effects and ways to better describe the observables
suggest the existence of moleculelike composites [34] and
the relevance of deformation-based description [35–37].
Theoretically, these possibilities are considered as very
important, especially when dealing with the dark sector.
There are also indications that quantum entanglement may
be involved [33,38].
Thus, there are arguments concerning both the first-order

phase transition at zero temperature with changing the
interaction parameters and its influence on the rotation
curves of the DM-dominated galaxies [33]. The distinct
phases could also apparently affect the state of DM bosonic
stars [17], the merging of which may produce gravitational
waves [39,40] as an alternative to black hole merging [41].
Physically, the phase transition in BEC DM is associated
with quantum fluctuations in regions with a relatively high
number density of ultralight particles, where the three-
particle effects become significant.

Anyway, the choice of the self-interaction potential is
decisive. Having gained an idea of the nontrivial phase
structure of DM with two- and three-particle interactions
and its manifestations in observables [32,33], we want to
show here that the model with the cosinelike interaction
mentioned above should also lead to similar consequences.
Obviously, the already used self-interactions of the poly-
nomial form now may be treated as the expansion terms
of the total potential. It is important that the cosinelike
generalization not only complicates the form of interaction,
but also reduces the number of independent parameters.
We focus on revealing different phases of the DM with
axionlike interaction in the spherically symmetric case,
when the main function we find is the spatial distribution of
particles in the BEC.
In general, it is natural to assume that the DM also

consists of particles of different sorts, including compo-
sites. At first glance, composites (“molecules”) would be
produced in a dense environment. However, as was shown
earlier [34], high particle density leads to particle disinte-
gration triggered by frequent collisions. But the production
of composites may be caused by a large scattering length of
particle interaction. The very possibility of changing the
scattering length is able to shed new light on the properties
and behavior of the initial (elementary) DM particles,
the nature of which have not yet been identified. What
is observed and described, including in the present study,
is mainly the result of self-interaction (and that of gravi-
tation), that is, a steady state with a vanishingly small
scattering length, confirmed by numerous models based on
the Gross-Pitaevskii equation [17,25,33,34]. Therefore, we
need to explain these distinct particle states separated by an
energy gap.
Within qualitative treatment, formation of the simplest

“molecules” of two and three particles is explored in
Ref. [34]. Here, we turn to scattering processes, using
certain analogy with nuclear processes, and also with
experimentally studied phenomena in atomic BECs in the
laboratory [42]. Assuming this to be admissible in the DM
as well, we appeal to the quantum mechanical formation
of a dimer of two particles, borrowing the ideas of the Fesh-
bach resonance and using two scattering channels [42–45].
Although the different channels may be associated with
configurations of internal degrees of freedom of DM
particles (a detailed analysis of which is an independent
task), we include auxiliary influences in our consideration
to disclose a plausible mechanism for the formation of
bound states during the Universe evolution. Thereby, we
emphasize the fact that one good potential is not sufficient
to form DM composites in space.
The starting point for studying the dimer formation is the

bound state of two particles held by the axionlike inter-
action. Then, omitting the gravitational interaction between
a few ultralight particles, the Gross-Pitaevskii equation
reduces, in fact, to the stationary sine-Gordon equation.
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In order to gain more analytical results, we may restrict
ourselves to the one-dimensional case that enables repro-
ducing its (anti)kink solution at zero energy [46]. In the
absence of gravity, the two-phase structure should disap-
pear, leaving us with one (mixed) phase. Thanks to the
analytical solution, the sine-Gordon potential rewritten as a
function of space is, of course, a domain wall with finite
asymptotics. This means that a pair of particles is in a
closed channel with zero energy, and we are faced with the
task of bringing an asymptotically free particle with low
energy into this trap.
As mentioned above, our solution is to admit the

existence of an open channel in which an incident particle
is scattered by another interaction (one of those in which
DM particles may participate due to internal properties).
If the particle in this channel has a small positive energy
close to the energy of the bound state (i.e., zero), one can
expect a resonant transition between the open and closed
channels in the spatial region of the trap under a small
external influence/force. This mechanism leads to the
appearance of an isolated positive energy level of a two-
particle (compound) system, which becomes possessing
finite lifetime [44]. We treat this state as a dimer, whose
characteristics are important for understanding its role in
the formation of the DM halo. According to the Feshbach
resonance concept [43], the dimer emergence at resonance
is accompanied by an infinite scattering length, which
eventually depends on the interaction parameters. This fact
may also affect the elucidation of other processes. Indeed, it
was previously assumed that the so-called unitary regime
(of infinite scattering length) could induce instability of the
BEC DM halo, similar to what is observed in the laboratory
BEC [47,48]. But this phenomenon occurs at high density,
which we exclude.
The paper is organized as follows. In Sec. II we show the

existence of two phases of the BEC DM halo core on
the base of a pair of distinct solutions of the stationary
Gross-Pitaevskii equation with axionlike periodic and
gravitational interactions at fixed values of the coupling
constants and chemical potential. The reduction of the
Gross-Pitaevskii equation to the stationary sine-Gordon
equation is carried out in Sec. III for the case of a small
number of (ultralight) particles, when the gravitational
interaction is negligible. The exact one-dimensional sol-
ution is also discussed there, and its further use outlined.
The Feshbach resonance concept is applied to describe the
axion dimer formation in Sec. IV. Therein, divided in five
subsections for reader’s convenience, the problem is solved
and its various aspects are highlighted. The necessary
preliminaries and the model formulation are given in
Sec. IVA—it introduces the basic concepts and tools.
The most significant analytical part of study is presented
in Sec. IV B, where the quantum mechanics equations of
the two-channel problem are solved. Therein, an isolated
energy level of a compound system of two particles is

uncovered and discussed. Also, analytical expressions for
the wave functions are given in the first approximation. The
dependence of the scattering length on the interaction
parameters is studied in Sec. IV C. The free parameters
of the model are fixed there, and the Feshbach resonance at
zero energy is analyzed. In Sec. IV D, when considering
resonant scattering, the information about the resonance
(and dimer) involving incident particle with nonzero energy
is numerically extracted. The physical characteristics of the
dimer in the context of DM halo are given and discussed in
Sec. IV E. It is revealed and emphasized that the lifetime of
the dimer is of the order of millions of years. The final
Sec. V is devoted to discussion of implications as well as
concluding remarks.

II. GROSS-PITAEVSKII EQUATION FOR
AXIONLIKE DM AND ITS SOLUTION

To start with, we formulate stationary macroscopic
model of gravitating Bose-Einstein condensate (BEC) of
ultralight bosons with axionlike interaction VSI, restricting
ourselves to the spherical symmetry and the absence of
hydrodynamic flows. Let the BEC with a constant chemical
potential μ̃ be described by real function ψðrÞ of radial
variable r ¼ jrj, with ψ2ðrÞ defining a local particle density.
The behavior of ψðrÞ in the ball B ¼ fr∈R3jjrj ≤ Rg is
determined by the vanishing variation of the energy func-
tional Γ with respect to the variation of ψðrÞ along with the
Poisson equation for the gravitational potential VgrðrÞ:
Γ
4π

¼
Z

R

0

�
ℏ2

2m
ð∂rψÞ2 − μ̃ψ2 þmVgrψ

2 þ VSI

�
r2dr; ð1Þ

ΔrVgr ¼ 4πGmψ2: ð2Þ

The radial part of Laplace operator Δr and its inverse
Δ−1

r of variable r are

ΔrfðrÞ ¼ ∂
2
rfðrÞ þ

2

r
∂rfðrÞ; ð3Þ

Δ−1
r fðrÞ ¼ −

1

r

Z
r

0

fðsÞs2ds −
Z

R

r
fðsÞsds; ð4Þ

R is the radius of the ball where matter is concentrated.
The instantonic axionlike self-interaction is chosen here

to be [2,27]

VSI ¼
U
v

�
1 − cos ð ffiffiffi

v
p

ψÞ� − U
2
ψ2 ð5Þ

¼ U
�
−
v
4!
ψ4 þ v2

6!
ψ6 −…

�
; ð6Þ

where the axion field φ is related to the wave function by
jφj2 ¼ ðℏ2=mÞjψ j2 in the nonrelativistic limit [17]. Note
also that there exists the effective axionic potential [49,50].
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Thus, from the series expansion of cos ð ffiffiffi
v

p
ψÞ, we see

that the first term in (6) corresponds to a two-particle self-
interaction, and the next term ψ6 implies a three-particle
self-interaction.
Note that the works [24,25,37,51–53] (see also refer-

ences therein) intensively studied the BEC DM models
with only pair interaction for v ¼ −jvj, in the Thomas-
Fermi approximation, when ℏ → 0 in Eq. (1). Switching on
the three-particle interaction enables to observe the two-
phase structure of BEC DM that is studied in [17,32,33].
For this reason, we expect a similar effect to occur here.
The axionlike cosine-interaction (5) is characterized by

two constantsU and v, which have the dimensions of energy
and volume, respectively. In the particle physics [49,50],
they are related with the axion mass and decay constant fa
as U ¼ mc2, v ¼ ℏ3c=ðmf2aÞ. Their relativistic nature is
noted in [17] in the context of nonrelativistic model of axion
stars. However, in astrophysical applications, these con-
stants may have other meaning and values, which will be
discussed below.
To analyze the general properties of the model, we

reformulate it in dimensionless variables:

ξ ¼
ffiffiffiffiffiffiffiffi
mU

p

ℏ
r; χðξÞ ¼ ffiffiffi

v
p

ψðrÞ; ð7Þ

ξB ¼
ffiffiffiffiffiffiffiffi
mU

p

ℏ
R; A ¼ 4π

Gℏ2m
U2v

; ð8Þ

u ¼ μ̃

U
; ν ¼ 1þ 2uþ 2AΦ0; ð9Þ

where ν plays the role of effective chemical potential,
which absorbs the constant term of axion interaction and
the gravitational potential at the origin ξ ¼ 0, namely

Φ0 ¼ −
Z

ξB

0

χ2ðξÞξdξ: ð10Þ

In our study, ν is regarded as a free variable parameter, due
to arbitrariness of u.
The model equations in terms of the wave-function χðξÞ

and auxiliary gravitational potential ΦðξÞ read

ðΔξ þ νÞχ − 2AΦχ − sin χ ¼ 0; ð11Þ

ΦðξÞ ¼ −
1

ξ

Z
ξ

0

χ2ðsÞs2dsþ
Z

ξ

0

χ2ðsÞsds; ð12Þ

where ΔξΦðξÞ ¼ χ2ðξÞ is satisfied, and Φð0Þ ¼ 0.
To obtain a finite and stable solution χðξÞ, the nonlinear

Eqs. (11) and (12) should be (numerically) integrated under
the following conditions: χð0Þ < ∞, χ0ð0Þ ¼ 0, χ00ð0Þ < 0.
For given A and ν, the finite initial value χð0Þ ¼ z should be
positive solution of the transcendental equation

2Az2 þ
�
ν −

sin z
z

�
ðν − cos zÞ ¼ 0 ð13Þ

which is derived by substituting χðξÞ ¼ χð0Þ þ χ00ð0Þξ2=2
into (11) and (12) for ξ → 0 and by finding χ00ð0Þ. Note
that the requirement χ00ð0Þ < 0 is equivalent to imposing
ν > sin z=z for positive ν.
The absence of a solution z for a given pair ðA; νÞ means

that χðξÞ ¼ 0 everywhere. It happens for ν > νmax, where
νmaxðAÞ is also found numerically from (13). For ν < νmax,
two branches of χ0ðνÞ can occur, which indicate the
existence of two regimes and a first-order phase transition
in the model.
Let us emphasize that the magnitude of parameter A

plays a crucial role for subsequent implications. Assuming
that gravity is weaker than the axion self-interaction,
we take the parameter A≳ 10−3. Then, Eq. (13) leads to
two independent solutions for z > π. Indeed, choosing A
as in Fig. 1, the upper branch of χ0ðνÞ corresponds to
χ0 ∈ ½χs; 5π=2�, while the lower branch of χ0ðνÞ gives us
values of χ0 within the interval ½3π=2; χs�, where the
separating value χs ¼ χ0ðνmaxÞ ≲ 2π.
Therefore, there exist two independent solutions χðαÞðξÞ,

α ¼ 1; 2, of the set of Eqs. (11)–(13) for the same para-

meters A and ν. They are characterized by χðαÞ0 and ξðαÞB ,
which belong to different branches (α ¼ 1; 2) as in Fig. 1.

FIG. 1. The initial value χ0 ¼ χð0Þ (a) and the first zero ξB (b)
of χðξÞ versus parameter ν for different A. The curves are limited
from the right by the values νblackmax ¼ 0.841954176, νredmax ¼
0.818967072, νbluemax ¼ 0.795228679. Each rightmost point χs ¼
χ0ðνmaxÞ divides the corresponding curve into upper and lower
branches identified with different phases. At ν > νmax one has
χ0 ¼ 0 and χðξÞ ¼ 0.
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This means that any space average FðνÞ in the statistical
description, for instance, mean particle density

σðνÞ ¼ 3

ξ3B

Z
ξB

0

χ2ðξÞξ2dξ; ð14Þ

for fixed A and variable ν ≤ νmax, also consists of two
branches Fð1ÞðνÞ and Fð2ÞðνÞ, e.g.

σðαÞðνÞ ¼ 3ðξðαÞB Þ−3
Z

ξðαÞB

0

�
χðαÞðξÞ�2ξ2dξ: ð15Þ

Then the graph of the function FðνÞ is the union of the
graphs for Fð1ÞðνÞ and Fð2ÞðνÞ so that Fð1ÞðνmaxÞ ¼
Fð2ÞðνmaxÞ by construction. But it is convenient for us to
continue the use of the definition (14), keeping in mind the
need to take into account different branches.
Contrary to the expectation of a weak axion field

(χ0 < π) near the true vacuum [27], the situation looks
different in the nonrelativistic model of DM with
Newtonian interaction. Also, there is no invariance there
under the global transformation χ → χ þ 2π (it is violated
by gravitation). Besides, such a discrepancy is related with
the consideration of the condensate in a finite volume
(of galactic DM halo). We might expect some distinctions
when describing gravity as a space-time geometry.
Indeed, Fig. 1(b) demonstrates the value of (first) zero

ξB of oscillating function χðξÞ (that is, χðξBÞ ¼ 0), which
limits the system size in our model and is found by
integrating Eqs. (11) and (12) for given A and ν.
The typical solutions for the wave function χðξÞ are

presented in Fig. 2(a), where ξ∈ ½0; ξB�. They describe a core
with a finite magnitude of the particle (and mass) density at
the center ξ ¼ 0. Besides, an additional information may be
extracted through introducing the effective potentialW [see
Fig. 2(b)] as a function of radial variable ξ, namely

WðξÞ ¼ 2AΦ0 þ 2AΦðξÞ þ sin χðξÞ
χðξÞ ; ð16Þ

�
−Δξ þWðξÞ�χðξÞ ¼ εχðξÞ; ð17Þ

when Eq. (11) is rewritten in the form of Schrödinger
equation with the “energy” ε ¼ 1þ 2u, see Eq. (9).
Figure 2(b) shows the forms of potentialWðξÞ. The black

curve describes the effective potential of the mixed (single-
phase) state at ν ¼ νmax. The blue and red curves corre-
spond to the effective potentials of two phases for the same
parameters A and ν < νmax, but obtained from the solutions
χðξÞ with different χ0ðνÞ and ξBðνÞ belonging to different
branches in Fig. 1. The different positions and depths of the
minima of these potentials confirm the existence of two
macroscopic states in the axion system. The particles being
in one of the two phases is conditioned by the applied
factors, e.g., pressure [32,33].

Outside the system at ξ > ξB, where the matter is absent,
WðξÞ is continuously extended by the gravitational poten-
tial of the form 1 − 2AN =ξ, whereN is the total number of
particles in the ball ξ ≤ ξB.
Let us estimate the characteristics of our model, which

are related with the dimensionless quantities (7)–(9). For
this aim, we refer to the model from [32], which dictates to
separate the approaches to describing the core and the tail
of the DM halo due to different role of self-interaction in
relatively dense and rarefied regions. It is worth noting that
recent astronomical measurements indicate spatial fluctua-
tions in the density of cold DM (around the quasar) on
the scale of 10 kpc [54], which may be associated with an
oscillating tail of the condensate wave function, rather than
the mentioned smooth tail.
Focusing on the phenomena in the core, we need to

reproduce the size scale r0 and the central mass density ρ0,
which define r ¼ r0ξ and ρðξÞ ¼ ρ0χ

2ðξÞ=χ20. At the same
time, this is needed to control the parametersU and v in (5).
As it was stated in Ref. [17], models for describing

compact objects (such as axion stars) and cosmological
models lead to different parametrizations of axions. First of
all, this concerns the different mass ranges. While cosmo-
logical models constrain the axion mass as 10−7 eV<
mc2<10−2 eV, another kind of models suggests thatmc2∼
10−22 eV, commonly attributed to fuzzy DM [21,55].
Physically, the choice of a smaller particle mass ensures
the formation of certain structures in the Universe [16],

FIG. 2. A particular form of the wave function χðξÞ (a) and the
effective potentialWðξÞ (b) for the fixed parameters A and ν. Blue
and red lines are obtained with the same A and ν, but differ in the
initial values χ0, see Fig. 1(a). The value of χ0 for blue curves
belongs to the upper branch of χ0ðνÞ in Fig. 1(a), while the red
lines are plotted using χ0 of the lower branch of χ0ðνÞ. Black
curves correspond to a single state at ν ¼ νmax.
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some of which we are trying to describe. It motivates us to
fix m ∼ 10−22 eVc−2. Although the parameter U in the
chiral models is set proportional to mc2 [50], we do not
declare such an identity in the nonrelativistic case, and
admit only that the value of U provides the predominance
of axion repulsion over gravitation at relatively large
magnitude of axion field.
Besides, we have to determine fa in order to specify

v ¼ ℏ3c=ðmf2aÞ. Although 1018 eV < fa < 1021 eV in
cosmology [4], the decay constant fa may be appearing
larger in the models with ultralight particles [17].
Thus, combining the definition v ¼ ℏ3c=ðmf2aÞ and the

relation mχ20 ¼ vρ0 resulting from (7), we obtain that

fa ≃ 3.304 × 1019 eV

�
ρ0

10−19 kgm−3

�
1=2

×

�
mc2

10−22 eV

�−1�χ0
2π

�
−1
; ð18Þ

where the central mass density ρ0 is taken to be of the order
of 10−19 kgm−3, while a mean mass density is assumed to
be of the order of 10−20 kgm−3 as usual [17,25].
Using the second relation of (8) andmχ20 ¼ vρ0, we find:

U ≃ 2.145 × 10−29 eV

�
ρ0

10−19 kgm−3

�
1=2

×

�
A

2 × 10−3

�
−1=2

�
χ0
2π

�
−1
: ð19Þ

The characteristic scale is defined here as r0 ¼ ℏ=
ffiffiffiffiffiffiffiffi
mU

p
and equals to

r0 ≃ 0.138 kpc

�
ρ0

10−19 kgm−3

�
−1=4

�
mc2

10−22 eV

�−1=2

×

�
A

2 × 10−3

�
1=4

�
χ0
2π

�
1=2

: ð20Þ

Such r0 is appropriate for estimating the size of the central
part of the DM halo as R ¼ r0ξB, but should be fitted
together with the total mass M.
To justify the first-order phase transition in the model,

one has to develop a statistical approach, which is omitted
here. Nevertheless, the discontinuous change in particle
density (14) at zero temperature is expected to be caused by
a change in the long-wave part of pressure [32]

Π ¼ −
3

ξ3B

Z
ξB

0

�ð∂rχÞ2 − νχ2
�
ξ2dξ; ð21Þ

which also consists of two branches, as stated above.
Clearly, the effect of different DM phases on the obser-

vables, as well as on the rotation curves, also deserves a
separate study.

III. SINE-GORDON EQUATION
AND A BOUND STATE

Let us analyze the ground state of the DM halo core by
turning to a one-dimensional model with the coordinate
ξ∈ ½0;þ∞Þ, when gravity is absent and only the axion self-
interaction plays a key role. This means that Eq. (17) under
the simplifications

A ¼ 0; ε ¼ 0; Δξ →
d2

dξ2
ð22Þ

reduces to the stationary sine-Gordon equation:

�
−

d2

dξ2
þW

�
χ ¼ 0; W ¼ sin χ

χ
; ð23Þ

which is in the form of Schrödinger equation with the
axionlike potential W.
Equation (23) is invariant under the global transforma-

tion χðξÞ ↦ χðξÞ þ 2πn, n∈Z, while Eq. (11) is not. Its
general solution is easily derived by integration, which is
carried out in numerous works (see, for instance, Sec. V.3
in [46]). For physical reasons, we write down and exploit
the stationary antikink solution

χakðξÞ ¼ 4 arctan e−ξ; ξ ≥ 0: ð24Þ

We also consider the solution of the form χakðξ − LÞ with
an arbitrary constant L. Altogether these solutions at
dimensionless energy ε ¼ 0 describe the ground state and,
moreover, devoid any nodes, in contrast to the oscillating
solutions in Sec. II. According to (23), they determine the
potential W in terms of the coordinate ξ.
It is clear that the solution (24) can be also obtained from

Eq. (23) with the potential W depending directly on ξ.
Using the auxiliary formula

sin 4z ¼ 4
1 − tan2z

ð1þ tan2zÞ2 tan z; ð25Þ

one arrives at W of the form

WakðξÞ ¼
tanh ξ

2 cosh ξ arctan e−ξ
: ð26Þ

Note that, replacing χ with 4 arctanφ, the sine-Gordon
potential reduces to the form sin χ ¼ 4φ cosμ¼1 φ accord-
ingly to (25), where cosμ z is the μ-deformed cosine-
function [56,57] taken at μ ¼ 1. Moreover, cosμ¼1 ξ is
used in [56] to simulate the potential of two coupled axions
at the quantum mechanical level.
To reproduce (24) by solving Eq. (23), we have to take

χakð0Þ ¼ π and χ0akð0Þ ¼ −2. The same approach relates
the potential Wakðξ − LÞ with the solution χakðξ − LÞ. At
ξ ¼ 0, we set χak ¼ 4 arctan eL and χ0ak ¼ −2= coshL.
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The behavior of χakðξ − LÞ and Wakðξ − LÞ is shown in
Fig 3. For fixed L, we see that χak → 0 and Wak → 1 for
ξ → ∞ as long as χak reaches its maximum at ξ ¼ 0. For
large L, the value of χakðξ − LÞ at ξ ¼ 0 tends to 2π, which
is similar to the single-phase solution in Fig. 2(a), colored
in black. We can deduce that the profile of χak qualitatively
depicts the DM halo core due to the potential Wak, which
results in an infinite scattering length a in the Born approxi-
mation and forms a closed scattering channel for particles
with zero total energy ε (or ν), which are unable to over-
come the potential barrier/domain wall.
Although the gravitational interaction of a large number of

relatively fast particles modifies this barrier [cf. Fig. 2(b)],
the mechanism of injection of a slow particle into a closed
channel is of special interest. One possibility which we
further explore is the transfer of particle between different
scattering channels using the Feshbach resonance stimu-
lated by an additional impact.
Let us calculate the integral over the entire (one-

dimensional) space:

NðLÞ≡
Z

∞

0

χ2akðξ − LÞdξ ð27Þ

¼ 4

Z
α

0

z2

sin z
dz; α ¼ 2 arctan eL: ð28Þ

Note that 2α ¼ χakðξ − LÞ at ξ ¼ 0, that is the (maximal)
value of axion field at the origin.
On integrating, the result is presented in differing forms:

N ¼ 2α2 þ 4
X∞
n¼1

ð−1Þnþ1
22n−1 − 1

ðnþ 1Þð2nÞ!B2nα
2nþ2

¼ 2eiα
�
Φ
�
e2iα; 3;

1

2

�
− 2iαΦ

�
e2iα; 2;

1

2

��

þ 4α2
�
ln tan

α

2
− i

π

2

�
− 14ζð3Þ; ð29Þ

where B2n is the Bernoulli number; Φðz; s; aÞ is the Lerch
transcendent; ζð3Þ ¼ 1.20205… is the particular value of

Riemann zeta-function; at last, i ¼ ffiffiffiffiffiffi
−1

p
. The first expres-

sion is valid for α < π and given by Eq. (1.5.44.1) in [58].
Behavior of NðLÞ is also shown in Fig. 4.
By construction, NðLÞ is related with the number of

particles in nonlinear problem (23). This can be useful, for
instance, to control the effect of gravitation, as mentioned
above. It is obvious that NðLÞ is distinct from the (anti)kink
topological charge [46].
On the other hand, when formulating the linear

Schrödinger equation with potential Wakðξ − LÞ, we can
use NðLÞ to normalize χakðξ − LÞ, the fact that will be
applied below in the quantum mechanical setting.
Thus, we summarize that, neglecting gravity when consi-

dering a small number of axions, their (ground) bound state
is still revealed even in the one-dimensional case, which
nevertheless retains main physical properties of the model
we need and only simplifies the mathematical description.
Besides, the model (field) equation is reformulated in an
equivalent quantum-mechanical form through introducing
an effective potential depending on space.

IV. FESHBACH RESONANCE

We would like to consider in more detail the mechanism
of the transition of a DM particle into the bound state
described above, noting that the presence of one good
potential is apparently not enough for this. We appeal to
resonance scattering, which implies the existence of an
isolated (quasidiscrete) energy level.
Our approach inherits the ideas of Feshbach resonance

[43], which uses at least two channels of scattering, one
open and one closed channels with distinct Hamiltonians.
Coupling these channels enables to create an isolated level
and bind the scattered particle. This approach seems to be
appropriate, since it is difficult to directly transfer a zero-
energy particle through the domain wall into the trap of
sine-Gordon potential.
Let us assume that a spinless particle is able to jump

between open and closed channels. When the total energy
exceeds the open channel threshold (E ¼ 0), the open
channel becomes both an incoming and an outgoing

FIG. 3. Antikink solution χðξ − LÞ (solid lines) and corre-
sponding potential Wðξ − LÞ (dashed lines) for different L.

FIG. 4. Normalization (27) associated with the number of
particles as a function of length parameter L.
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channel. The Feshbach resonance occurs when the energy
of the bound state in the closed channel is close to the
threshold of the open channel. Due to the coupling of the
channels, the unperturbed bound state of the closed channel
becomes dressed. This dressed state is treated as a quasi-
bound state of the scattered particle. The scattered particle
temporarily passes into the quasibound state with positive
energy and returns to the open channel after a typical time
delay τ ¼ 2=Γ, determined by the decay width Γ of the
quasibound state. We associate this state of two interacting
particles with a composite (dimer).

A. Preliminaries and model formulation

Formulating our model on the base of stationary
Schrödinger equation, we consider in fact a slowly moving
particle which is assumed to be in one of the two channels.
One channel is closed and is described in the absence of
external interaction by the sine-Gordon equation in the
ground state with energy Eð1Þ ¼ 0, as mentioned earlier in
Sec. III. An open (entrance) channel, the existence of which
we assume, corresponds to elastic scattering due to another
interaction, where a wave/particle initially has low energy
Eð2Þ ¼ k2 > 0 determined by momentum k, which we also
treat as the relative momentum of the pair of interacting
particles. Then, there is an energy gap between these
channels Q ¼ Eð2Þ − Eð1Þ > 0, which is further affected
by external impact. Thus, such a model involves three
different interactions, and Eð1Þ and Eð2Þ are not energy
levels of the same Hamiltonian. For this reason, the inter-
action parameters must be tuned to obtain the desired effect
of resonant transition.
We describe the motions of a particle in two channels,

adopting the matrix representation [45]:

HX ¼ EX; H ¼
�
Hbs Ω
Ω† Hwv

�
; ð30Þ

where Hbs and Hwv are the Hamiltonians of the bound
state (in closed channel) and the scattered wave (in open
channel), respectively. The coupling between channels is
represented by Ω and is associated with extra force, which
is turned on and starts to act after fixing the gap Q. In other
words, Eð1Þ and Eð2Þ are given at Ω ¼ 0, while energy E is
determined by switching Ω.
We account for the energy gap Q in Eq. (30) by defining

Hbs ¼ Hak þQ, where

Hak ¼ −
d2

dξ2
þWakðξ − LÞ ð31Þ

with the potential WakðξÞ from Eq. (26), and Wakð0Þ ¼ 0.
Hence, we use the dependence on parameter L > 0,

which plays an important role in further constructions.

In a sense, the system is doubly degenerate at Ω ¼ 0 due
to existing two independent wave functions for the same
eigenvalue E:

Xð1Þ ¼
�
χð1Þ

0

�
; Xð2Þ ¼

�
0

χð2Þ

�
; ð32Þ

which are evidently orthogonal in this representation. We
identify χð1Þ with χakðξ − LÞ from Eq. (24). In principle, we
need to write X ¼ Xð1Þ cos αþ Xð2Þ sin α with some α in
order to normalize the total wave function X with respect to
the matrix representation.
As shown in Fig. 3, the spatial interval ξ∈ ½0;L� is

most significant for the manifestation of a bound state.
Therefore, essential processes should be related with this
region, which defines the resonance zone. For this reason,
we concentrate there on the external force, which is
parametrized by ω as

ΩðξÞ ¼ −ω2θðL − ξÞ; Ω† ¼ Ω: ð33Þ

Here θ is the Heaviside step-function.
Similarly, we define the interaction in the open channel

by the square-well potential:

VsqðξÞ ¼ −VθðL − ξÞ; V > 0: ð34Þ

The strength V along with ω2 are the variable parameters of
the model.
Since we are studying the mechanism of the emergence

of resonance and two-particle composite, the refinement
of the nature and form of these extra interactions remains
for further consideration. Here we only use their simplest
version and discuss their origin after the computations
performed.
By construction, all spatial functions in such a model are

divided into two components belonging either to the
interval ξ∈ ½0;L� or to the interval ξ∈ ½L;∞Þ, which we
label by “<” and “>” relative to the separating point ξ ¼ L.
Then, the wave functions for the channels are numbered by
α ¼ 1; 2 and decomposed as

χðαÞðξÞ ¼ θðL − ξÞχðαÞ< ðξÞ þ θðξ − LÞχðαÞ> ðξÞ: ð35Þ

We connect the functions at separating point ξ ¼ L by
the matching condition

d
dξ

ln χðαÞ< ðξÞ
				
ξ¼L

¼ d
dξ

ln χðαÞ> ðξÞ
				
ξ¼L

; ð36Þ

to guarantee the equality of derivatives and proportionality
of the functions in the left and right sides of (36).
Before proceeding further, we recall the known results

for the open channel (α ¼ 2) in the absence of coupling Ω.
The scattering characteristics result from the equation
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Hwvχ
ð2Þ ≡

�
−

d2

dξ2
þ VsqðξÞ

�
χð2Þ ¼ Eχð2Þ: ð37Þ

The solution to Eq. (37) is given as

χð2ÞðξÞ ¼ θðL − ξÞχð2Þ< ðξÞ þ θðξ − LÞχð2Þ> ðξÞ; ð38Þ

χð2Þ< ðξÞ ¼ sinKξ; χð2Þ> ðξÞ ¼ sinKL
sin ðkξþ δÞ
sin ðkLþ δÞ ; ð39Þ

where K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ V

p
and k ¼ ffiffiffiffi

E
p

, that is, E ¼ k2. Note

that χð2Þ> behaves as exp ð− ffiffiffiffiffiffijEjp
ξÞ when E < 0.

The phase shift δ is derived from the relation (36):

K cot ðKLÞ ¼ k cot ðkLþ δÞ: ð40Þ

Then, computing the scattering length as

a ¼ −lim
k→0

tan δðkÞ
k

; ð41Þ

one finds its expression for potential VsqðξÞ:

aV ¼ L

�
1 −

tan ð ffiffiffiffi
V

p
LÞffiffiffiffi

V
p

L

�
: ð42Þ

Note that aV demonstrates discontinuous behavior forffiffiffiffi
V

p
L ¼ ð2n − 1Þπ=2 and n∈N. We omit the detailed

consideration of this zero-energy resonance.
Let us emphasize the essential difference between the

physical consequences of the zero and divergent scattering
lengths aV in one and three dimensions, despite the formal
similarity of the presented expressions to the three-
dimensional case [59]. While the vanishing aV means
complete transparency in three dimensions, the opposite
effect occurs in one dimension: the reflection coefficient
becomes equal to unity, which leads to complete opacity.
Transparency in one dimension is achieved when aV
diverges. Nevertheless, the divergence of the scattering
length reveals a zero-energy bound state in both three-
dimensional and one-dimensional cases [60].
In one dimension (see [61]), the scattering matrix

S ¼ e2iδ and amplitude f are

S ¼ e−2ikL
K cot ðKLÞ þ ik
K cot ðKLÞ − ik

; f ¼ 1

2
ðe2iδ − 1Þ: ð43Þ

These formulas tell us how to extract scattering data in the
open channel.

B. Two-channel quantum mechanics

Thus, we admit a single bound state in the closed channel
and a continuum of waves with momentum k in the open
channel. Taking into account the complexity of the problem

involving antikink potential, we intend to analytically
describe the Feshbach resonance between the channels
in the first approximation.
As mentioned above, the initial set of equations in entire

space is

ðHak þQ − EÞχð1Þ þ Ωχð2Þ ¼ 0; ð44Þ

ðHwv − EÞχð2Þ þ Ω†χð1Þ ¼ 0: ð45Þ

For convenience, we will use the bra- and ket-vectors to
simplify the notation of matrix elements.
In the first approximation, we put [44]:

jχð1Þi ¼ λ

NðLÞ jχaki; hξjχaki ¼ χakðξ − LÞ; ð46Þ

where λ is a complex constant which should be found;
NðLÞ is given by Eq. (27).
Acting by hχakj on Eq. (44), one has

λ ¼ hχakjΩjχð2Þ< i
E −Q

; ð47Þ

where it has been used that Hakjχaki ¼ 0, the normali-

zation hχakjχaki ¼ NðLÞ, and the equality hχakjΩjχð2Þi ¼
hχakjΩjχð2Þ< i due to the form of ΩðξÞ. At this stage, the

coefficient λ still depends on the unknown function χð2Þ< .
Introducing the auxiliary Hamiltonian

H2 ¼ −
d2

dξ2
− K2; K2 ¼ Eþ V; ð48Þ

which is defined in the region ξ∈ ½0;L�, the equations for
the open channel take the form

H2jχð2Þ< i þ Ω†jχð1Þi ¼ 0; ð49Þ

−
d2χð2Þ>

dξ2
− k2χð2Þ> ¼ 0: ð50Þ

Solution to Eq. (49) can be written as

jχð2Þ< i ¼ jτ0i −GðþÞ
2 Ω†jχð1Þi

¼ jτ0i −
λ

NðLÞG
ðþÞ
2 Ω†jχaki; ð51Þ

where unperturbed wave function τ0ðξÞ ¼ hξjτ0i coincides
with χð2Þ< ðξÞ from Eq. (39) and is such that

H2τ0ðξÞ ¼ 0; τ0ðξÞ ¼ sinKξ: ð52Þ
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The Hamiltonian H2 determines also the Green’s oper-

ator GðþÞ
2 ¼ ðH2 − iϵÞ−1 that contains the shifted energy

Eþ iϵ at ϵ → 0. The corresponding Green’s function is

GðþÞ
2 ðξ; ζ;KÞ ¼ sinKξ1 cosKξ2

K
þ i

sinKξ sinKζ
K

;

ξ1 ¼ minðξ; ζÞ; ξ2 ¼ maxðξ; ζÞ; ð53Þ

which serves for finding the outgoing wave under the

boundary condition GðþÞ
2 ð0; ζ;KÞ ¼ 0.

To express λ in terms of the known solutions τ0 and χak,
let us operate by hχakjΩ on Eq. (51). Then we obtain

λ ¼ hχakjΩjτ0i
E −Qþ N−1ðLÞhχakjΩGðþÞ

2 Ω†jχaki
: ð54Þ

The condition of vanishing of the denominator reveals
the isolated (quasidiscrete) energy level of the dressed
state [43,44].
Having introduced the notations

ω4ΔLðKÞ ¼ N−1ðLÞRehχakjΩGðþÞ
2 Ω†jχaki; ð55Þ

ω4γLðKÞ ¼ N−1ðLÞImhχakjΩGðþÞ
2 Ω†jχaki; ð56Þ

let us sketch how this works for a fixed Q > 0. We first
imagine the situation when V ≫ E for E → 0, and the
denominator of λ vanishes at some complex value of the
energy E0 − iΓ0=2, thereby making the magnitude of
the wave functions extremely large. The resonance energy
E ¼ E0 and decay width Γ0 may be simply determined:

E0 ¼ Q − ω4ΔLð
ffiffiffiffi
V

p
Þ; Γ0 ¼ 2ω4γLð

ffiffiffiffi
V

p
Þ: ð57Þ

For relatively small ω2 and positive ΔLð
ffiffiffiffi
V

p Þ, we can
achieve that Q > E0 > 0 due to two additional interactions.
Besides, for positive γLð

ffiffiffiffi
V

p Þ, the lifetime of particle in
such a state is τ ¼ 2=Γ0, in dimensionless units.
In general case we write

λ ¼ hχakjΩjτ0i
E −Qþ ω4ΔLðKÞ þ iω4γLðKÞ : ð58Þ

Consider the overlap integral that defines hχakjΩjτ0i:

BLðKÞ≡ 4

Z
L

0

arctan eL−ξ sinKξdξ: ð59Þ

It can be transformed to the form

BLðKÞ ¼ 1

2i

�
ϕLðL; iKÞ − ϕLðL;−iKÞ�

−
1

2i

�
ϕLð0; iKÞ − ϕLð0;−iKÞ

�
: ð60Þ

Using the Lerch transcendent Φðz; s; aÞ, we introduce

ϕLðξ; aÞ≡ eaξ

a

�
4 arctan eL−ξ

− 2eL−ξΦ
�
−e2ðL−ξÞ; 1;

1 − a
2

��
: ð61Þ

This function is such that

∂ξϕLðξ; aÞ ¼ eaξχakðξ − LÞ: ð62Þ

Thus, we have hχakjΩjτ0i ¼ −ω2BLðKÞ.
As seen above, the first correction to the wave function

χð2Þ< ðxÞ is determined by GðþÞ
2 Ω†jχaki. To find the complex

function hξjGðþÞ
2 Ω†jχaki ¼ −ω2τ1ðξÞ, we turn to the sol-

ution of the inhomogeneous equation

H2τ1ðξÞ ¼ χakðξ − LÞ; ð63Þ

τ1ðξÞ ¼
Z

L

0

GðþÞ
2 ðξ; ζ;KÞχakðζ − LÞdζ: ð64Þ

On computing, the summands of τ1ðξÞ ¼ τR1 ðξÞ þ iτI1ðξÞ
are written as

τR1 ðξÞ ¼
e−iKξ

2iK
ϕLðξ; iKÞ − eiKξ

2iK
ϕLðξ;−iKÞ

þ �
ϕLðL; iKÞ þ ϕLðL;−iKÞ

� sin ðKξÞ
2K

þ i
�
ϕLð0; iKÞ − ϕLð0;−iKÞ� cos ðKξÞ

2K
; ð65Þ

τI1ðξÞ ¼ BLðKÞ sin ðKξÞ
K

: ð66Þ

Taking into account the form of τI1ðξÞ and the definition
of BLðKÞ, we specify the function γLðKÞ [see Eq. (56)]:

γLðKÞ ¼ B2
LðKÞ

KNðLÞ ≥ 0: ð67Þ

At the same time, the real part τR1 ðξÞ determines also the
deviation ΔLðKÞ so that

ΔLðKÞ ¼ N−1ðLÞ
Z

L

0

χakðξ − LÞτR1 ðξÞdξ: ð68Þ

This integral is not simple to be calculated analytically,
instead we present the numerical result in Fig. 5.
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Let us note the similarity of the behavior of γLðKÞ and
ΔLðKÞ with analogous functions from Ref. [56], which are
calculated for another potential in three dimensions. This
means that the number of spatial dimensions does not affect
main physical aspect of the problem. By combining, the
closed channel wave function in the first approximation reads

χð1ÞðξÞ ¼ −
ω2

DLðKÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KγLðKÞ
NðLÞ

s
χakðξ − LÞ; ð69Þ

where we have used the notation DLðKÞ introduced as

DLðKÞ ¼ K2 − V −Qþ ω4ΔLðKÞ þ iω4γLðKÞ
¼ DR

LðKÞ þ iDI
LðKÞ: ð70Þ

Solution (69) vanishes at ω ¼ 0 and describes a short-
lived state, that is seen by restoring for a moment the time
dependence due to decaying factor exp ð−iEtÞ determined
by the complex E ¼ Q − ω4ΔLðKÞ − iω4γLðKÞ.
Combining the terms with τ0ðξÞ and τI1ðξÞ due to

proportionality τI1ðξÞ ∝ τ0ðξÞ, we present the open channel
wave function in the resonance zone as

χð2Þ< ðξÞ ¼ DR
LðKÞ

DLðKÞ τ0ðξÞ −
ω4

DLðKÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KγLðKÞ
NðLÞ

s
τR1 ðξÞ: ð71Þ

To find the phase shift δ for the function χð2Þ> ðξÞ namely

χð2Þ> ðξÞ ¼ χð2Þ< ðLÞ sin ðkξþ δÞ
sin ðkLþ δÞ ;

χð2Þ< ðLÞ ¼ DR
LðKÞ sinKL −DI

LðKÞ cosKL
DLðKÞ

; ð72Þ

we appeal to the matching condition (36). We obtain

K
DR

LðKÞ cosKLþDI
LðKÞ sinKL

DR
LðKÞ sinKL −DI

LðKÞ cosKL
¼ k cot ðkLþ δÞ:

This relation can be rewritten as

K cot ðKL − δrsÞ ¼ k cot ðkLþ δÞ; ð73Þ

δrsðKÞ ¼ arctan
DI

LðKÞ
DR

LðKÞ ; ð74Þ

where δrs is the phase shift caused by interactions in the
resonance zone. At δrs ≡ 0, only potential scattering with
VsqðxÞ remains in the open channel.
Now it is easy to extract the total phase shift:

δ ¼ −kLþ arctan

�
k
K
tan ðKL − δrsÞ

�

≃ k

�
tan ðKL − δrsÞ

K
− L

�
; ð75Þ

where the second expression is used for k → 0.

C. Feshbach phenomenon

Let us dwell on the effects at zero energy and momentum
k. It is reasonable to study the properties of the scattering
length a of the particles in the open channel, having got
the phase shift δ in (75) and using the Eq. (41). For our
purposes, we represent a in the form

aðω2Þ ¼ abg

�
1þ D

ω4 − ω4
c

�
: ð76Þ

In this formula, we have explicitly taken into account the
dependence on the magnitude of the external influence ω2

[see (33)] and shown the presence of critical value ω2
c:

ω2
c ¼

ffiffiffiffi
Q

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔLðKVÞ þ γLðKVÞ tan ðKVLÞ

p ; KV ≡ ffiffiffiffi
V

p
: ð77Þ

This is determined by the energy gap Q > 0 between the
two channels, which actually coincides with the kinetic
energy of the incident particle outside the resonance zone
at ξ > L. Avoiding here the zero-energy resonances in the
open channel at KVL ¼ ð2n − 1Þπ=2 for n∈N, we require
0 < ΔLðKVÞ þ γLðKVÞ tan ðKVLÞ < ∞ to ensure a real
value of ω2

c.
The remaining characteristics are given as

abg ¼ aV þ l; D ¼ ω4
c
l
abg

; ð78Þ

l ¼ 1

KV

γLðKVÞ½1þ tan2ðKVLÞ�
ΔLðKVÞ þ γLðKVÞ tan ðKVLÞ

> 0; ð79Þ

where aV is defined by (42), while abg is the so-called
background scattering length. Note that the dependence of
a on ω2 vanishes at Q ¼ 0 (ω2

c ¼ 0) so that a ¼ aV þ l.

FIG. 5. The functions ΔLðKÞ and γLðKÞ which determine

hχakjΩGðþÞ
2 Ω†jχaki at L ¼ 5. There is KΔ ≃ 0.4563077 such that

ΔLðKΔÞ ¼ 0.
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At V → 0, we obtain aV ¼ 0, and

a ¼ l0

ω4

ω4 − ω4
c
; ω4

c ¼
Q

ΔLð0Þ
; ð80Þ

l0 ¼
1

NðLÞΔLð0Þ
lim
K→0

�
BLðKÞ
K

�
2

; ð81Þ

where BLðKÞ is defined by Eq. (59), and Eq. (67) is used.
Thus, we gain the relation a ¼ l0ðLÞ ∝ L when both

Q ¼ 0 and V ¼ 0.
In general, the Feshbach phenomenon which is in our

focus, results from the dependence of the scattering length
a on the interaction parameters, that allows us to detect
bound states by the divergence of a. Our model assumes
that the change in a depends onQ (defining ω2

c) and on ω2,
while V > 0 is given.
Analyzing Eq. (76), let us fix L ¼ 5, KV ¼ 0.2 that

provides KV < KΔ and ΔLðKVÞ > 0 (see Fig. 5), and
Q ¼ 0.15. It leads to the following characteristics in
dimensionless units: aV ≃ −2.787039, abg ≃ 3.467758,
ω2
c ≃ 0.1128185, and D ≃ 0.0229575. The dependence of

a on the external impact strength ω2 is shown in Fig. 6,
which confirms that the bound state does indeed occur at
ω2 ¼ ω2

c. Critical value ω2
c determines the threshold of the

production of shallow dimers at aðω2Þ ≫ L with the
binding energy [62]

Ebind ¼ −ϰ2 ∝ −
1

a2ðω2Þ : ð82Þ

This follows from considering the case of small negative

energy E → 0−, when χð2Þ> ∝ exp ½−ϰðξ − LÞ� for ξ > L,
and Eq. (36) yields

−ϰ ¼ lim
k→0

d
dξ

ln χð2Þ< ðξÞj
ξ¼L

¼ −
1

aðω2Þ − L
: ð83Þ

Thus, the Feshbach phenomenon justifies the need for
a large scattering length in the formation of composites

(of at least two particles), as predicted in Ref. [34] using
phenomenological approaches. This is due to the fact that
the Feshbach phenomenon as a zero-energy effect is valid
in a different number of spatial dimensions, although there
are distinct physical implications of zero and diverging
scattering lengths in one and three dimensions [60].
In principle, the energy gap Q can be maintained by

a spatially homogeneous interaction that induces the
energy predominance of one configuration of the system
of particles over another. In this regard, we mention
experiments with alkali atoms, the energy configurations
of which are determined by the spin and the applied
magnetic field. Therefore, there, the Feshbach phenomenon
is related with a resonant transition between configurations
with a change of the magnetic field [42,62].

D. Resonance scattering

To reveal the newly formed bound state (of two axions),
we also investigate the resonance scattering of an incident
particle with a nonzero energy E ¼ k2.
The scattering matrix element S ¼ e2iδ for the open

channel [cf. Eq. (43)] is

S ¼ e−2ikL
K cot ðKL − δrsÞ þ ik
K cot ðKL − δrsÞ − ik

: ð84Þ

Denoting its denominator as

FðkÞ ¼ K cot ðKL − δrsÞ − ik; K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ V

p
; ð85Þ

the condition FðkÞ ¼ 0 determines the pole of S and the
resonance point (although, not every pole of S is related
with the compound system existence).
Usually, a resonance is observed in narrow region of

energy E, which covers the resonant value Eres ¼ E0 −
iΓ0=2 with some E0 > 0 and Γ0 > 0. Positivity of E0

makes this level unstable, whose lifetime is τ ¼ 2=Γ0, in
dimensionless units.
Here, we find Eres ¼ K2

res − V for given Q, V, ω, and L
by solving the equation Fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

res − V
p

Þ ¼ 0 in an appro-
priate form. After identical transformation is performed,
the following equation should be solved numerically at
ω4 ≪ 1 by using an iterative procedure with the initial
value K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

V þQ
p

:

K2
mþ1 ¼ V þQ

− ω4

�
ΔLðKmÞ þ iγLðKmÞ

km cotKmL − iKm

Km cotKmL − ikm

�
;

km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

m − V
q

: ð86Þ

Omitting the indexes m and mþ 1 restores the equation
equivalent to Fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 − V

p
Þ ¼ 0.

FIG. 6. Scattering length a as the function of external impact
ω2. The dashed straight lines are asymptotics. Black line
corresponds to ω2 ¼ ω2

c, while green and orange lines are for
a ¼ abg and a ¼ aV , respectively.
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To extract the resonance part of S-matrix, we expand the
complex function FðkÞ of a real k in vicinity of complex
root kres ¼

ffiffiffiffiffiffiffiffi
Eres

p ¼ kr − iκr as

FðkÞ ≃ Cðk − kr þ iκrÞ; FðkresÞ ¼ 0; ð87Þ

where C≡ F0ðkresÞ is a complex constant.
Since k ¼ k�res solves conjugate equation F�ðkÞ ¼ 0, and

F�ðkÞ ≃ C�ðk − kr − iκrÞ near the resonance, we define the
phase shift δ0 related with potential scattering so that

e2iδ0 ¼ e−2ikL
C�

C
: ð88Þ

The calculated ingredients enable to write down the
scattering matrix and the total phase shift in the form:

S ≃ e2iδ0
k − kr − iκr
k − kr þ iκr

; ð89Þ

δ ¼ δ0 − arctan
κr

k − kr
: ð90Þ

Representing these quantities in the conventional form in
terms of E, we must expand Fð ffiffiffiffi

E
p Þ in powers of E:

Fð
ffiffiffiffi
E

p
Þ ≃ C

2kres
ðE − EresÞ; ð91Þ

whereC is as above. It leads to redefinition of phase shift δ0
because of the relation:

arctan
κr

k − kr
−
1

2
arctan

κr
kr

¼ arctan
Γ0

2ðE − E0Þ
: ð92Þ

Thus, we can see that the phase shift δ experiences a jump
δðkr − 0Þ − δðkr þ 0Þ ¼ π, which reveals a resonance.
Besides, δ determines the cross section σ in accordance
with the optic theorem in one dimension [61,63]:

σðkÞ ¼ 2 sin2 δðkÞ: ð93Þ

Iterating Eq. (86) for L ¼ 5, V ¼ 0.04, Q ¼ 0.15, and
ω4
1 ¼ ω4

c, used to test the Feshbach phenomenon above, we
obtain the solution:

Eres ¼ 0.1752355035 − i0.07423053097: ð94Þ

The behavior of δðkÞ and σðkÞ is depicted in Fig. 7 and
shows that the incident particle with momentum k ¼ ffiffiffiffi

Q
p

can be bound, if k is within the interval ðkr − κr=2; kr þ
κr=2Þ for kr ¼ Re

ffiffiffiffiffiffiffiffi
Eres

p
> 0 and κr ¼ −Im

ffiffiffiffiffiffiffiffi
Eres

p
> 0.

Note that the asymmetric form of the resonant peak in
Fig. 7(b) is due to the term −kL in the phase shift δ0.
The obtained formulas and results describe, in general,

the mechanism of the occurrence of resonance (associated

with two-particle complex—dimer) without specifying the
extra interactions used. Although the model needs to be
refined in accordance with specific physical conditions, this
formalism remains applicable to various studies.

E. Analysis of DM dimer

Let us now convert dimensionless characteristics into
physical units. The main scale we need is the length scale
r0 associated with the interaction radius. In principle, its
refinement requires additional considerations that are beyond
the scope of this study. Anyway, we apply r0 which is given
by Eq. (20) and is a measure of the size of the DM halo core.
Taking into account the relation to dimensionless variable in
Sec. II, the nonrelativistic scales for energy and time are

ε0 ¼
ℏ2

2mr20
; τ0 ¼

ℏ
2ε0

; ð95Þ

where m is the mass of axionlike particle, and τ0 is
determined using the (minimum) uncertainty principle.
Substituting the typical values of m ¼ 10−22 eV=c2 and

r0 ¼ 0.138 kpc from Sec. II, we arrive at the estimates

ε0 ≃ 1.074 × 10−29 eV; τ0 ≃ 9.715 × 105 yrs: ð96Þ

Analyzing, the resonance energy ε0ReEres ≃ 1.882 ×
10−30 eV turns out to be tens of orders of magnitude lower

than the critical temperature Tðd¼3Þ
c of free-boson BEC in

three dimensions. It results from substituting the axionlike
particle concentration nðd¼3Þ ¼ ρ0=m ≃ 5.61 × 1038 m−3 at

FIG. 7. Phase shift δ (a) and cross section σ (b) as functions of
incident momentum k. Jump and peak in the graphs indicate the
resonance and appear at kr ¼ Re

ffiffiffiffiffiffiffiffi
Eres

p
≃ 0.4275189270.
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typical parameters in Sec. II into the known expression
written for d dimensions:

TðdÞ
c ¼ 2πℏ2

m

�
nðdÞ

ζðd=2Þ
�

2=d

; ð97Þ

where ζðsÞ is the Riemann zeta-function.
In fact, we get the same result in the one-dimensional

case, defining the concentration as nðd¼1Þ ∼ ðnðd¼3ÞÞ1=3.
Defining the resonance lifetime as t ¼ 2τ0=Γ0 and

accounting for Γ0 ≃ 0.148 as in the test above, we deduce
compound system stability over a period

t ≃ 1.313 × 107 yrs: ð98Þ

We associate the resonance with a dimer (two-axion
composite), whose one-dimensional wave function χDðξÞ
and the binding energy Ebind in dimensionless units are
expected to be [see Eqs. (82) and (83)]

χDðξÞ ∝ exp

�
−
ξ

a

�
; Ebind ¼ −

1

a2
: ð99Þ

Here a is the large scattering length given by Eq. (76);
ξ ≫ L is a dimensionless distance between particles;
besides, the dimensionless binding energy has to be
converted into physical units using the scale ε0.
These formulas are valid for a ≫ L, where L is related

with the dimensionless radius of axionlike interaction (see
Sec. III). This indicates the regime of large scattering length
a, which is achieved for a coupling ω2 near its critical value
ω2
c (see Fig. 6). Thereby, it confirms the hypothesis about

the need for large a made in Ref. [34].
Note that the three-dimensional wave function of a dimer

in the spherically symmetric case behaves as exp ð−μrÞ=r,
where r is the distance between particles, and is often
encountered for a simplified description of composites in
nuclear physics, for example, as deuteron in the ground
state [59,62]. Zoo of diverse (two-particle) states in this
field of physics also enables to discover analogs of
molecules, the formation of which is viewed within the
Feshbach resonance concept. An important guide for
confirming the existence of axion dimers can be dipion
molecules. This follows from the common nature of axions
and pions [2], that may also lead to dark analogs of pions
and their molecules.
In any case, the long-term resonance in our scenario

suggests consideration of DM as multicomponent environ-
ment due to the participation of composites. The presence
of composites affects BEC DM properties and stimulates a
detailed study of aspects of the composites formation.
Moreover, the dependence of the pair scattering length

on interactions gives us a theoretical possibility to explain a
vanishingly small a observed in the BEC models with two-
particle interaction [25,32,33], as well as its variation in the

DM halo of dwarf galaxies. Indeed, this can be done on the
basis of Eq. (80). For the sake of correctness, it requires
specifying the interaction parameters V and ω2. Perhaps,
the gravity also plays a certain role, which we explicitly do
not take into account here when studying the Feshbach
resonance.

V. CONCLUSION

In an attempt to describe the axionlike DM, we have
involved a periodic chiral self-interaction that initially
possesses Uð1Þ symmetry, which is broken in the massive
system due to including Newtonian gravity. While the
expected two different phases in a self-gravitating BEC DM
are mostly revealed by a jump in the particle density,
the desired multispecies matter, according to the current
view, can be formed by both axionlike particles and their
composites created in the processes that are similar to those
in high energy (particle) physics. These phenomena can be
helpful for identifying DM particles.
We develop the effects within the quantum mechanics,

finding both the BEC wave function and the wave functions
of both the composite (dimer) and its constituents. This
means that we stay aside the quantized fields with a variable
number of particles, appealing to the quantum mecha-
nical formation and decay of DM dimers. Since the
Gamow’s tunneling seems unsuitable even for describing
dimer decay, the Feshbach resonance theory appears to be
relevant. Typically, the Feshbach resonance requires differ-
ent scattering channels with their own interaction poten-
tials, so one may be faced with assigning internal degrees
of freedom to DM particles, the configuration of which
determines each channel. Ignoring this issue as for now, we
only focus on the problem with additional model potentials.
This way, in particular, may be sufficient to describe the
spontaneous creation and decay of compound particles in
nuclear physics [45]. On the other hand, the detection of
Feshbach dimers in atomic BECs in the laboratory [42,62]
made it possible to trace the resonance mechanism in detail,
motivating us to apply it to the axionlike DM model and
outline its implementation. An important property of the
Feshbach resonance is the increase of the scattering length
to infinity, which coincides with the condition for the
creation of composites, disclosed by the use of effective
models [34].
Thus, in our theoretical study we combine the models

of axionlike particles, including the sine-Gordon equation
with its soliton solutions, and the Feshbach resonance
concept. We focused on the quantum-mechanical formation
of axion dimers in scattering processes and discussed in this
regard the multicomponent DM consisting of axions and
their composites, which were previously predicted in the
qualitative study in Ref. [34]. Besides, having obtained
the crucially important scattering length dependence on the
interaction parameters, we got an idea of how to ensure its
very small but different values when describing the DM
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halo of various (dwarf) galaxies on the base of the Gross-
Pitaevskii-Poisson equations with pair interaction [17,25,34].
Using the cosinelike self-interaction derived for QCD

axions [2,27], we formulated in Sec. II the gravitating BEC
DMmodel based on the modified Gross-Pitaevskii-Poisson
equations (11)–(12) at zero temperature. This type of non-
linearity generalizes the polynomial interactions that were
used in the preceding models and are looking as its
truncation [17,25,32,33]. On the other hand, the gained
properties motivated us, first, to look for distinct phases
of the axionlike BEC DM. Indeed, the existence of both
rarefied or dilute (gaseous) and dense (liquidlike) phases
immediately results from two independent solutions to the
Gross-Pitaevskii equation even without developing a stat-
istical description. But, the first-order phase transition in
this model, the dynamics of which has yet to be detailed,
would not be independently controlled by the strengths of
pair and three-particle interactions as previously. This
situation is in contrast with that considered in Ref. [33].
In any case, the phase transition between states must be
stimulated by pressure/compression induced by long-
wavelength quantum fluctuations [32]. The predominance
of one or another phase in the DM halo of a certain galaxy
can be inferred from the characteristics determined by
fitting rotation curves and other observables. For instance,
the DM gaseous (dilute) phase dominates in galaxy
M81dwB, according to Ref. [33].
Regarding composites of DM, we note that the dense

BEC phase is unfavored for composites because of their
probable destruction caused by frequent collisions, as
shown in [34]. On the other hand, for their appearance
in a rarefied phase, a large scattering length is needed and
has to be argued. Although an interaction potential with
nonzero asymptotics often leads to an extremely large
scattering length in the Born approximation [59], the
scattering length also diverges due to zero-energy reso-
nance, when the scattered particle goes into a bound state.
Choosing the latter option, the bound state associated with
a composite of at least two particles must be characterized
by an isolated (quasidiscrete) level of positive energy and
a finite lifetime. This is dictated, in particular, by the
Feshbach resonance concept [43–45].
Intending to get more analytical results, we turn to the

one-dimensional case. Then, focusing on the problem of a
few interacting axions in the ground state, the three-
dimensional Gross-Pitaevskii equation reduces to the sta-
tionary sine-Gordon equation with its antikink solution
as in Sec. III. Comparing Figs. 2 and 3, we see that the
effective potential W in Fig. 3 basically inherits the beha-
vior of the gravitation-modified potentials for the two
phases in Fig. 2(b), while the antikink solution mimics
the DM distribution in the DM halo core. The discrepancy
between the particle energies on the right-hand sides of
Eq. (17) and Eq. (23) means that the distribution profile in
Fig. 3 is formed by axions in the state of zero energy.

Therefore, we are faced with the need to explain the appea-
rance of axions with zero energy in a one-dimensional trap
W, despite the presence of a domain wall.
To resolve this problem for at least two particles, we use

two scattering channels: closed and open. A closed channel
is represented by a bound state induced by the potential W
with asymptotics W → 1. An open channel implies elastic
and asymptotically free scattering with a tiny positive
energy. Let a particle perform transit between the channels
coupled by an external impact. Given both the scattering
potential (34) in an open channel and the coupling (33), the
two-channel quantum-mechanical problem is formulated in
Sec. IV. Though the square-well potentials are used therein,
another form of them is also allowed. Then, with a certain
adjustment of the parameters of extra interactions, an inter-
mediate level appears, called the “dressed” state, which
enables it to overcome the initial energy gap Q > 0
between the two channels. In a sense, such a level appea-
rance is similar to the result of splitting, within a degen-
eracy problem under the action of perturbation.
The most significant processes take place in the reso-

nance zone, which is a finite region of space bounded by a
common radius of interaction L (in dimensionless units)
for all potentials. To infer the information about processes
far from the resonance zone, we resort to scattering theory
and, thereby, extract data from the phase shift δ of the
wave function of outgoing particle in an open channel, after
leaving the resonance zone. Although the basic scattering
characteristics in one and three dimensions do differ,
we relate the scattering length a with δ by Eq. (41) as
usual [63].
The analytical solution (69)–(72) of the two-channel

problem is obtained in the first approximation, by taking
into account potential scattering in an open channel with
square well (34). This also comprises the characteristics of
the dressed state that occurs when a particle hops between
channels with close energies. Possessing positive energy,
the dressed state has a finite lifetime and the resonance
property to decay. If we imagined two interacting particles,
one of which is pinned at the origin, then the dressed state
would be seen as a compound system or an excited dimer.
Besides, one justifies a nonzero decay width at zero energy
due to the dependence of dressed state characteristics (57)
on the magnitude V of the potential (34).
At zero energy, we consider the Feshbach phenomenon

to reveal a bound state by the divergence of the scattering
length a at certain (critical) value of the external influence.
Parametrizing the external interaction (33) by ω2, the
critical value ω2

c is determined by
ffiffiffiffi
Q

p
in Eq. (77). That

means that the scattering length aðω2Þ behaves as aðω2
c �

ϵ2Þ → �∞ at ϵ → 0, that is shown in Fig. 6, and confirms
the existence of a bound (dressed) state. This is valid in
both one and three dimensions, although the divergent and
zero scattering lengths have quite opposite effects on reflec-
tance and transparency in one and three dimensions [60].
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Note also the similarity of this phenomenon with that for
alkali atoms in the laboratory, when ω2 is replaced by a
magnetic field B. Thus, one can expect the formation of
shallow dimers with binding energy Ebind ¼ −1=a2 in
dimensionless units at large scattering length a ≫ L.
On the other hand, having got the dependence of a on the

interaction parameters, one could reproduce the vanish-
ingly small values of a that take place in the BEC DM
models with pair interaction [17,25,34]. Although we
provide formulas for this, a detailed analysis is omitted.
To complete the study, the resonance scattering at

nonzero energy is considered, and we find the complex
value of resonant energy Eres ¼ E0 − iΓ0=2 as a pole of the
scattering matrix for some fixed values of the parameters:
L ¼ 5,

ffiffiffiffi
V

p ¼ 0.2, and ω2 ¼ ω2
c at Q ¼ 0.15. One gets

E0 > 0 and Γ0 > 0, in contrast to the typical bound state
with E0 < 0 and Γ0 ¼ 0. We conclude that an incident
particle with energy E ¼ Q and momentum k ¼ ffiffiffiffi

Q
p

participates in the resonance in Fig. 7, because
E0 − Γ0=2 ≤ Q ≤ E0 þ Γ0=2.
To estimate the dimer lifetime t ¼ 2τ0=Γ0, we use the

timescale τ0 ¼ mr20=ℏ for nonrelativistic axions with mass
m ≃ 10−22 eV=c2. Substituting the scale for the DM halo
core r0 ≃ 0.138 kpc found in Sec. II, jointly with the
numerically obtained value Γ0 ≃ 0.148, we get the encour-
aging value of lifetime, namely t ≃ 1.3 × 107 yrs. This may
be sufficient for dimers participation in forming large
DM structures. But, the fate of dimers depends on the
potentials used, which can be of gravitational, stochastic,
and even (dark) electromagnetic (due to the desired
Primakoff effect [30]) nature. A reasonable justification
for the extra scattering channel(s) needs the existence of

internal degrees of freedom in DM particles, allowing
them to interact differently. In this way, two channels in
laboratory experiments with atoms result from energeti-
cally different spin configurations in an applied magnetic
field. Meanwhile, in the case of DM particles, the internal
degrees of freedom may be isospin or something else.
Although in DM-dominated galaxies the scattering

length takes on different values [25], caused in our model
by the effect of additional interactions with situationally
distinct characteristics, its extremely large value, leading to
the formation of dimers, does require fine tuning of certain
conditions. Probably, such tuning may not always occur in
all galaxies and appears to be spontaneous. However, the
emergence conditions for the (unitary) regime of infinite
scattering length may be fulfilled during the formation
of galaxies along with changes in the parameters of extra
interactions (similar to a magnetic field change in the
laboratory).
In addition, we would like to note the need to take into

account long-lived dimers in the formation of multi-
component DM halos, which ensures BEC stability accord-
ing to the results of Ref. [64]. Clearly, these issues requires
further study, and likewise the production of dimers and
other composites in the environment [65,66].
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