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We delve deeper into the potential composition of dark matter as stable scalar glueballs from a confining
dark SUðNÞ gauge theory, focusing on N ¼ f3; 4; 5g. To predict the relic abundance of glueballs for the
various gauge groups and scenarios of thermalization of the dark gluon gas, we employ a thermal effective
theory that accounts for the strong-coupling dynamics in agreement with lattice simulations. We compare
our methodology with previous works and discuss the possible sources of discrepancy. The results are
encouraging and show that glueballs can account for the totality of dark matter in many unconstrained
scenarios with a phase transition scale 20 MeV ≲ Λ≲ 1010 GeV, thus opening the possibility of exciting
future studies.
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I. INTRODUCTION

Dark Yang-Mills sectors, which undergo confinement to
form stable composite states known as glueballs, may
potentially explain the nature of dark matter (DM) [1–15]
(see also Ref. [16] for a more general class of DM). This
type of self-interacting DM has been shown to provide a
consistent explanation for the structure of the Universe at
small scales and may also help address issues such as the
missing satellite problem [17] and the cusp-core problem in
the DM distribution at galactic scales [18,19].
The first-order confining phase transition at a critical

temperature Tc, present in these models [20–24], makes it
highly nontrivial to follow the formation of glueball DM.
This challenging and interdisciplinary study requires a
detailed knowledge of thermal field theory in a non-
perturbative domain and a productive exchange of results
with lattice quantum chromodynamics (QCD).
In light of previous studies [1], the calculation of glueball

relic density is extended to a generic SUðNÞ gauge group
forN ¼ f3; 4; 5g by using a low-energy effective model for

the gluon-glueball dynamics [25]. Additionally, different
cosmological scenarios are considered to determine the
temperature of the dark gluon gas, an important parameter
in determining DM glueball abundance. More specifically,
the possibility that dark gluons are thermally produced
in the primordial plasma or result from a heavy particle
(perhaps the inflaton) decay is explored. In a very model-
independent way, we determine the glueball models
capable of explaining the existence of DM.
In Sec. II, we present the effective Lagrangian used

to describe the thermal evolution of the dark gluon-
glueball plasma. In Sec. III, we discuss how this picture
can be merged in a cosmological setting to predict the relic
glueball DM abundance. In Sec. IV, we analyze the
differences between our approach and the ones usually
employed in literature, to stress why this approach is the
most accurate to date. Section V discusses, in a very model-
independent fashion, the possible cosmological scenarios
in which the dark sector temperature is determined. Finally,
in Sec. VI, we summarize our findings and conclude.

II. THE EFFECTIVE LAGRANGIAN

Studying the confinement-deconfinement phase transi-
tion in SUðNÞ theories requires understanding nonpertur-
bative dynamics. Lattice simulations [20,26–28], effective
models [29–45], and renormalization group approaches [46]
have been used to study phase transitions in Yang-Mills
theory effective models. The aim of this work is to use an
effective field theory to study the dynamics of the dark gluon-
glueball system [25].
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At finite temperature T, the ZN center of SUðNÞ is a
relevant global symmetry [47], making it possible to
construct various gauge-invariant operators charged under
ZN . The Polyakov loop, which is charged with respect to
the center ZN of the SUðNÞ gauge group (it transforms as
l → zl with z∈ZN), is an example,

lðxÞ¼ 1

N
Tr½L�≡ 1

N
Tr

�
P exp

�
ig
Z

1=T

0

A0ðτ;xÞdτ
��

; ð1Þ

where P denotes path ordering, A0 is the time component
of the vector potential associated with this gauge group, g is
the SUðNÞ coupling constant, and ðτ;xÞ are Euclidean
spacetime coordinates.
The Polyakov loop serves as an order parameter for the

confinement phase transition in Yang-Mills theory, which
occurs at the energy scale Λ and is commonly used for
this purpose [47]. Below the critical temperature Tc, the
expectation value of the Polyakov loop operator is zero,
while it is nonzero at higher temperatures. The Polyakov
Loop model (PLM) is a mean field approach that models
the phase transition in terms of Polyakov loops [39]. This
simplified model captures the essential characteristics of
the confinement phase transition in SUðNÞ theories with
N ≥ 2 and has been applied to the study of heavy-ion
collisions at the Relativistic Heavy Ion Collider [28,45].
The dark gluon-glueball dynamics can be effectively

described by considering the dimension-four glueball field
H ∝ trðGμνGμνÞ, with Gμν QCD field strength tensor, and
the Polyakov loop l in an effective potential given by [25]

V½H;l� ¼ H
2
ln

�
H
Λ4

�
þ T4V½l� þHP½l� þ VT ½H�: ð2Þ

Here, the first term represents the zero-temperature
glueball potential, determined by the trace anomaly con-
straint [48,49]. The real polynomials V½l� and P½l� are
invariant underZN, with coefficients that are fitted to lattice
data. The term VT ½H� accounts for thermal corrections,
which may involve nonanalytic terms in H [46].
Remarkably, the potential in Eq. (2) reduces to the

glueball dynamics and PLM model in the low- and
high-temperature limits, respectively. Furthermore, the
coupling between H and l is the most general interaction
term that can be constructed without violating the zero-
temperature trace anomaly [see Eq. (21) in Ref. [49] ]. This
approach neglects heavier glueballs and pseudoscalar glue-
balls that are described by gauge-invariant operators with
different charges under ZN. Despite its simplicity, this
model captures the essential features of the Yang-Mills
phase transition.
In the deconfined phase, T ≫ Tc, the PLM term T4V½l�

dominates, i.e., dark gluons are the dominant component.
The precise relation between the confinement scale Λ and
the critical temperature of the phase transition Tc depends

mildly on the gauge group and is determined by lattice
simulations. In this paper, we consider Tc ¼ ð1.59þ
1.22=N2ÞΛ for N ¼ f3; 4; 5g [15,50].
The Lagrangian that describes the glueball and Polyakov

loop degrees of freedom is given by [25,51,52]

L ¼ c
2

∂μH∂
μH

H3=2 − V½H;l�: ð3Þ

Here, c ¼ ðΛ=mgbÞ2=2
ffiffiffi
e

p
is a constant that depends on the

glueball mass mgb, which we assume to be mgb ¼ 6Λ [53].
The Polyakov loop is a nondynamical, homogeneous in
space order parameter that describes the average dynamics
of the phase transition. It neglects bubble nucleation,
which might have a significant impact on the formation
of glueballs, as observed in the presence of matter
fields [54,55], but we leave this discussion for a future
work. The kinetic term for the glueball field H is non-
standard, due to its dimensionality. To canonically normal-
ize this field, we redefine the glueball field as ϕ, where
H ¼ 2−8c−2ϕ4, which evolves based on the following
effective Lagrangian:

L ¼ 1

2
∂μϕ∂

μϕ − V½ϕ;l�;

V½ϕ;l� ¼ ϕ4

28c2

�
2 ln

�
ϕ

Λ

�
− 4 ln 2 − ln c

�

þ ϕ4

28c2
P½l� þ T4V½l�;

P½l� ¼ c1jlj2; ð4Þ

where c1 is a free parameter relevant to the determination of
the glueball relic abundance. Note that we keep only the
lowest order in P½l� satisfying the symmetries. The
Polyakov loop potential V½l� for a generic SUðNÞ gauge
group, with N ¼ f3; 4; 5g, is determined from symmetry
arguments to fit lattice thermodynamic quantities [22],

V½l� ¼ T4

�
−
b2ðTÞ
2

jlj2 þ b4jlj4

− b3ðlN þ l�NÞ þ b6jlj6 þ b8jlj8
�
; ð5Þ

where

b2ðTÞ¼a0þa1

�
Tc

T

�
þa2

�
Tc

T

�
2

þa3

�
Tc

T

�
3

þa4

�
Tc

T

�
4

;

ð6Þ

and the parameters of this potential are shown in Table I,
with the corresponding potentials shown in the left panel of
Fig. 1. Here, we notice that the minima of l do not differ
strongly as a function of the chosen gauge group, albeit the
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overall potential being quite sensitive to this change. Since
the Polyakov loop is a nondynamical degree of freedom, its
temperature evolution is determined by the location of the
minimum in the effective potential. Being the order
parameter of the phase transition, l approaches 1 at high
temperatures and vanishes for temperatures below the
critical one. It is possible to numerically find the

temperature evolution of l by minimizing the potential
in Eq. (4) with respect to this variable. The solution l ¼ 0
denotes the confined phase and it is a global minimum only
for temperatures below the critical temperature. In the
deconfined phase, the solution l ¼ 0 becomes metastable
and a new solution l ¼ lþ becomes the new global
minimum. The temperature evolution of the minimum of
the Polyakov loop in these potentials is shown in the right
panel of Fig. 1. The three gauge groups shown lead
to a similar behavior for l during the phase transition,
with a slightly different critical temperature. Once the
minimum of l is determined, the Polyakov loop is
“integrated out” using its equation of motion l ¼ lðϕ; TÞ,
giving rise to a potential for the glueball field in the form
V½ϕ; T� ¼ V½ϕ;lðϕ; TÞ�. Moreover, we set the zero-point
energy of the glueball field to zero in order to properly
describe glueballs as matter. Figure 2, in the left panel,
shows the behavior of the glueball potential as a function of
the different gauge group. The deconfined phase (red lines)
is the only one sensitive to the choice of gauge group, and

FIG. 1. Left: Polyakov loop potential V½l� for different gauge groups: SUð3Þ, solid lines; SUð4Þ, dashed lines; and SUð5Þ, dotted
lines. The colors correspond to the confined (black) or deconfined (red) phase. Note that the minimum of the potential is arbitrarily set to
zero. Right: Polyakov loop evolution as function of the temperature for different gauge groups: SUð3Þ, solid lines; SUð4Þ, dashed lines;
and SUð5Þ, dotted lines.

TABLE I. Parameters for the Polyakov loop potential in Eq. (5)
taken from Ref. [22].

N 3 4 5

a0 3.72 9.51 14.3
a1 −5.73 −8.79 −14.2
a2 8.49 10.1 6.40
a3 −9.29 −12.2 1.74
a4 0.27 0.489 −10.1
b3 2.40 � � � −5.61
b4 4.53 −2.46 −10.5
b6 � � � 3.23 � � �

FIG. 2. Left: glueball potential V½ϕ; T� for different gauge groups: SUð3Þ, solid lines; SUð4Þ and SUð5Þ, dashed lines. The colors
correspond to the confined (black) or deconfined (red) phase. In the confined phase, the potential is independent of the gauge group,
while it is weakly dependent in the deconfined phase. Note that, in this case, the potentials for SUð4Þ and SUð5Þ are indistinguishable.
Right: effective glueball mass as function of the temperature for various gauge groups: SUð3Þ, solid line; SUð4Þ, dashed line; and SUð5Þ,
dotted line.
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the dependence is very mild. This is directly correlated with
the observation that the minimum of l does not change
sensibly for different gauge groups with slightly larger l
when the color increases, signaling the stronger jumping
and thus a stronger first-order phase transition. Connected
with this potential, it is possible to calculate how the
renormalized glueball mass evolves with temperature
through the phase transition. This is defined as

m2
gbðTÞ ¼

∂
2V½ϕ; T�
∂ϕ2

				
ϕ¼ϕmin

; ð7Þ

where ϕmin represents the minimum of the glueball field as
function of the temperature. This quantity is shown in the
right panel of Fig. 2, where we observe a minor difference
between the different gauge groups in the deconfined
phase. We note that, after confinement, the mass is fixed
to be mgb ¼ 6Λ by construction. The effect of the thermal
potential VT will show up in a temperature dependence of
the glueball mass in the confined phase. We estimated this
effect by using the following potential [44]:

VT ½ϕ� ¼
T4

2π2

Z
∞

0

dxx2 ln

"
1 − e

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ ϕ2

25c2T2

q #
: ð8Þ

We find consistent results with Ref. [1], since we verified
that the impact of this term on the glueball potential is
negligible. Namely, the glueball mass is affected less than
10%, with comparably small consequences on the consid-
ered phenomenology.1

By comparing the temperature evolution of the glueball
field to lattice simulations [56], it is possible to impose
limitations on the value of the glueball-Polyakov loop
coupling c1 in Eq. (4), in the case of SUð3Þ. We found this
value to be c1 ¼ 1.225� 0.19 at 95% confidence level
(CL) [1]. Since less or no information from the lattice is
available for other gauge groups, this will increase the
uncertainties on the prediction of the relic abundance. To
appropriately account for this, we increase the error
associated with SUð3Þ by a factor of ≈4, such that c1 ¼
1.225� 0.8 at 95% CL for SUðNÞ, N ¼ f4; 5g, and we fix
c1 ¼ 1.225 to generate the figures throughout the paper.
This parameter significantly affects the location of the
minimum of the Polyakov loop. Thus, it will play an
important role in determining the initial conditions for the
cosmological evolution of the glueball field and on the
resulting DM abundance.

III. CALCULATION OF THE GLUEBALL RELIC
DENSITY

As extensively discussed in Ref. [1], the glueball
field evolves in a Friedmann-Lemaître-Robertson-Walker
metric as

ϕ̈þ 3Hϕ̇þ ∂ϕV½ϕ; T� ¼ 0; ð9Þ

where the dot represents the derivative with respect to the
cosmic time t and H ¼ 1=2t is the Hubble parameter
during a radiation-dominated era. The energy density of the
glueball field is given by

ρ ¼ 1

2
ðϕ̇Þ2 þ V½ϕ; T�; ð10Þ

and this quantity is used to compute the glueball DM relic
density. During a radiation-dominated era, where we expect
the confinement to happen, there is a relation between the
time and photon temperature Tγ,

t ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
45

4π3g�;ρðTγÞ

s
mP

T2
γ
; ð11Þ

where mP ¼ 1.22 × 1019 GeV is the Planck mass and g�;ρ
is the number of energy-related degrees of freedom. Thus,
Eq. (9) can be rewritten as a function of the temperature as

4π3g�;ρ
45m2

P
ξ4TT

6
d2ϕ
dT2

þ 2π3

45m2
P

dg�;ρ
dT

ξ4TT
6
dϕ
dT

þ ∂ϕV½ϕ; T� ¼ 0;

ð12Þ

where the temperature of the dark sector T, such that
Tγ=T ¼ ζT , governs the moment of the phase transition and
ζT is model dependent, being determined by the inter-
actions with the visible sector. Moreover, the second term
can be neglected for a large range of temperatures, as g�;ρ is
constant except at a few isolated events of entropy
production (the QCD phase transition, for example). We
consider it as a free parameter, depending on the moment in
which the phase transition happens and, if g�;ρ is constant, it
can be reabsorbed in the definition of the temperature ratio
by defining ξ0T ¼ ξTg

1=4
�;ρ .

The glueball evolution is analogous to a damped
oscillator in a nonlinear potential, and the energy stored
in these oscillations around ϕmin ≈ 0.28Λ,

ρ ¼ 2π3g�;ρ
45m2

P
T6ξ4T

�
dϕ
dT

�
2

þ V½ϕ; T�; ð13Þ

will determine the relic DM abundance since this energy
density scales as ∼T3, as cold DM (CDM), when the
harmonic approximation is valid.

1With the finite temperature contributions, the minimum of the
thermal potential is shifted toward 0 with few percents. The larger
effect is on changing the slope around the minimum. This small
change cannot be calculated on the relic density because Eq. (17)
is already an oscillating function and all the uncertainties related
to this average process are much bigger than the shift given by the
inclusion of VT .
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Using the following definitions, ϕ ¼ Λ4ϕ̃, ρ ¼ Λ4ρ̃,
V ¼ Λ4Ṽ, ξ0T ¼ ξTg

1=4
�;ρ , T ¼ ΛT̃, and μ2 ¼ 4π3ξ04TΛ2=

45m2
P, Eq. (12) can be written as

μ2T̃6 d
2ϕ̃

dT̃2
þ ∂ϕ̃Ṽ½ϕ̃; T̃� ¼ 0;

ρ̃ ¼ μ2T̃6

2

�
dϕ̃

dT̃

�
2

þ Ṽ½ϕ̃; T̃�; ð14Þ

which is solved from an arbitrary temperature Ti > Tc
down to some final temperature Tf in the confined phase,
and from this temperature on the evolution is simply
determined by the cosmological expansion. In Fig. 3 we
show the results of Eq. (14). In the left panel we show the
evolution of the glueball field for different gauge groups.
The amplitude of the oscillations in the confined phase is
related to the relic energy density. Therefore, we expect
that, for the choice of parameters shown in the figure,
SUð5Þ gives an abundance slightly larger than SUð4Þ and
significantly larger than SUð3Þ. In the right panel of Fig. 3
we focus only on the case of SUð3Þ, to highlight the
dependence on the initial conditions. The evolution of the
glueball field is shown for three different choices of initial
conditions in the hot phase (on the right of the vertical
dashed line denoting the critical temperature). After the
phase transition, the evolution of the three lines is quali-
tatively similar, suggesting that there is a weak dependence
on the initial conditions. This was already observed in
Ref. [1]. Intuitively, in the hot phase, the glueball field is set
to some arbitrary initial condition, then starts to roll toward
the minimum of its potential. This happens when the
effective glueball massmgb ≃ 3.5Λ in the deconfined phase
becomes larger than the Hubble parameter; in the opposite
case, the glueball field evolution is frozen. Starting from the
moment in which the Hubble parameter is comparable with

the glueball mass, the glueball field efficiently converges to
the minimum of its potential. Given the discontinuous
nature of the phase transition, the minimum of the glueball
potential jumps from the value immediately before the
confinement to evolve in a temperature-independent poten-
tial. It means that, regardless of the evolution of the glueball
before the phase transition, only the initial condition set by
the properties of the glueball potential V½ϕ; T� in the
deconfined phase is relevant to predict the glueball relic
density. Moreover, the velocity of the field can be taken to
be equal to zero since any velocity acquired immediately
after the confinement is considerably larger than the
velocity accumulated in the evolution in the deconfined
phase. This feature can be interpreted as a washing out of
the initial conditions due to the strong first-order phase
transition.
We discovered that, although the numerical solution of

Eq. (14) is exact, the temperature-dependent potential
makes its evaluation computationally expensive. Thanks
to the weak sensitivity on the initial conditions, a good
approximation is given by solving Eq. (14) only in the
confined phase. The main advantage is using a temperature-
independent potential to evolve the glueball field from the
critical temperature Tc down to a final temperature Tf,
taking as initial conditions for the glueball field its mini-
mum value ϕ̃min just before the phase transition (at a
temperature T̃c þ ϵ with ϵ > 0) and a vanishing first
derivative

8>>><
>>>:

μ2T̃6 d2ϕ̃
dT̃2 þ ∂ϕ̃Ṽ½ϕ̃� ¼ 0;

ϕ̃ðT̃cÞ ¼ ϕ̃minðT̃c þ ϵÞ;
dϕ̃
dT̃
ðT̃cÞ ¼ 0;

ð15Þ

where the potential and the energy density are

FIG. 3. Left: glueball evolution obtained by solving Eq. (14) for SUð3Þ (black line), SUð4Þ (red line), and SUð5Þ (blue line) with
μ ¼ 0.05 and initial condition ϕ̃ðT̃iÞ ¼ 0.1. Right: similar to the left panel but only for SUð3Þ, with μ ¼ 0.05 and different initial
conditions. The vertical dashed line marks the phase transition, and the red dashed line shows the evolution of the minimum of the
glueball potential.
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ρ̃ ¼ μ2T̃6

2

�
dϕ̃

dT̃

�
2

þ Ṽ½ϕ̃�;

Ṽ½ϕ̃� ¼ ϕ̃4

28c2



2 ln ϕ̃ − 4 ln 2 − ln c

�
þ 1

2e
: ð16Þ

The energy density obtained from this calculation is shown
in Fig. 4 for three different gauge groups. It is clear that, as
the temperature drops, glueballs behave like CDM and their
relic density is redshifted as ∼a−3, where a ∼ 1=T is the
scale factor. Note that for T=Tc ≳ 0.2 the glueball energy
density does not redshift as CDM because in this inter-
mediate regime nonlinearities in the potential lead to
deviation from the perfect fluid behavior for the glueball
field; i.e., the glueball field does not behave like a
pressureless fluid, p ≠ 0. Indeed, only for T=Tc ≲ 0.2,
when the glueball field oscillates around its minimum
under the influence of an effectively quadratic potential, the
perfect fluid approximation is valid. Thus, the quantity
shown in Fig. 4 approaches asymptotically a constant
value. One can picture the intermediate phase 0.2≲
T=Tc ≲ 1 as a continuation of the phase transition, when
the nonrelativistic glueball population is still being estab-
lished. This result confirms the expectation from Fig. 3 that
the relic density with SUð5Þ is larger than the one obtained
with the two other gauge groups.
Since the energy density is an oscillating quantity, we

evaluate an average during the last oscillations before T̃f,�
ρ̃

T̃3



f
¼ 1

0.3T̃f

Z
1.3T̃f

T̃f

ρ̃ðτÞ
τ3

dτ; ð17Þ

and this quantity saturates to a value independent of the
phase transition scale. Then, the relic density today is
calculated by diluting the energy density in Eq. (17) with a
factor ðTγ;0=ζTTfÞ3, to take into account the Universe
expansion as

Ωgh2 ¼
Λ

ρc=h2

�
ρ̃

T̃3



f
T3
f

�
Tγ;0

ζTTf

�
3

¼ 0.12ζ−3T
Λ
Λ0

; ð18Þ

where the critical density is ρc=h2 ¼ 1.05 × 104 eV cm−3,
h ¼ 0.674, and the temperature of the photon bath today is
Tγ;0 ¼ 0.235 meV [57]. We defined Λ0 as the phase
transition scale that makes glueballs become the totality
of DM. Naively, after combining T3

γ;0=ðρc=h2Þ, we would

roughly have Λ0 ∼
D

ρ̃
T̃3

E
−1

f
eV. Note that here we introduce

the ζT parameter, related to the glueball and photon
temperatures, and not ζ0T which also includes the number
of degrees of freedom in the Universe. This implies that the
dependence on this parameter, equivalently μ, is weak in
the limit μ ≪ 1, realized in the relevant case when the
phase transition scale is much lower than the Planck scale.2

This approximation is proven to be excellent, predicting the
relic density with less than ∼10% uncertainty compared to
the exact result. The good agreement of the two results is a
proof that the detailed behavior of the glueball field in the
deconfined phase has a minimal impact on the relic density
prediction.

IV. RESULTS AND COMPARISON WITH
LITERATURE

In Table II we summarize our findings for the glueball
relic density. For each gauge group SUðNÞ considered,
labeled by N ¼ f3; 4; 5g (first column), we recall the range
of variability for the term c1 at 95% CL (second column).
Then we show the results of Eq. (17) (third column) and the
corresponding Λ0 (fourth column), as defined in Eq. (18),
for a calculation running down to T̃f ¼ 0.1.
Note that the value of Λ0 for N ¼ 3 is 20% larger

compared to the one presented in Ref. [1] because of the
different critical temperatures considered. The values of the
relic density found in Table II differ strongly from the
estimates in literature, since they report a relic density 1 or 2
orders of magnitude higher [2,15,58].
The reason for this difference is due to a combination of

several effects: inclusion of the higher-order interactions
leading to n → m transitions, energy budget of the dark
gluon field partially used for bubble formation, and differ-
ent equation of state for the glueball field immediately after
the phase transition.

FIG. 4. Evolution of the glueball energy density obtained by
solving Eq. (14) for SUð3Þ (black line), SUð4Þ (red line), and
SUð5Þ (blue line) with μ ¼ 1. The lines start in the point where
the phase transition happens, which is different for the three cases
shown here.

2The glueball energy density calculated by means of Eq. (15),
for sufficiently small values of μ, becomes independent of this
parameter. This is precisely the same behavior described in
Ref. [1] before Eq. (11). Intuitively, if the glueball self-inter-
actions are too weak (a large Λ), at the moment of their formation
the cannibalism is not efficient compared to the Universe
expansion, a situation never realized in our applications.

CARENZA, FERREIRA, PASECHNIK, and WANG PHYS. REV. D 108, 123027 (2023)

123027-6



In the following, we expand each point individually.
First, when solving the evolution equation, we are consid-
ering a nontrivial potential for the glueball field that, in the
confined phase, can be expanded around the minimum
ϕ̃min ¼ 4e−1=4

ffiffiffi
c

p
as

Ṽ½ϕ̃� ¼ ϕ̃4

28c2

�
2 ln ϕ̃ − 4 ln 2 − ln c

�
þ 1

2e

≃
1

4ce1=2
δϕ̃2 þ 5

48c3=2e1=4
δϕ̃3

þ 11

768c2
δϕ̃4 þ e1=4

2560c5=2
δϕ̃5 þ � � � ; ð19Þ

where δϕ̃ ¼ ϕ̃ − ϕ̃min. Only for δϕ̃ ≪ 1 the perturbative
concept of particle is valid.
However, our calculation is always valid, including all

the interactions predicted by the glueball potential. It can be
perturbatively understood as including all the possible
interactions corresponding to different powers of the
expansion in Eq. (19). In the literature, it is usually
considered that glueballs interact only with a ϕ5 interaction,
which makes the 3 → 2 annihilation the only relevant
process for DM formation. By contrast, in our case also
the lower-order terms are included.
We compared the glueball relic density in Table II with a

calculation including only the ϕ5 interaction, finding a
factor ∼1.3–1.5 (depending on N) of increase in this latter
case. This shows that ϕ3 and ϕ4 interactions are important
in the glueball thermalization process. Indeed, the 3 → 2

number-changing process can happen both due to a ϕ5

order vertex and because of a combination of ϕ3 and ϕ4

vertices as shown in Fig. 5.
Without lower-order interactions, just the ϕ5 term

induces a weaker interaction among the glueballs.
Consequently, glueballs freeze-out earlier, when their
number is higher, resulting in a larger relic density. In
other words, the number-changing interactions have less
time to reduce the number of glueballs. This picture is
confirmed by the observation that including interactions up

to the fourth order (ϕ2, ϕ3, and ϕ4) the relic density
increases only by less than 1% compared to the exact
calculation involving the log potential. This reasoning
also brings us to the conclusion that higher-order num-
ber-changing processes, like 4 → 2 interactions, do not
have a strong impact on the glueball thermalization. In
conclusion, when comparing with results in literature,
one should be careful in checking which potential is used.
From the perspective of a complete model, not including ϕ3

and ϕ4 interactions is inconsistent, leading to a larger relic
density. Moreover, note that the form of the glueball
potential fixes uniquely, once expanded around the mini-
mum, all the self-interaction couplings at any order. The
latter are usually taken to be Oð1Þ in the literature, while
our approach reveals that these numerical coefficients are
rather different from 1 and any comparison with the
literature must account for this important difference. As
a final remark, Eq. (10) in Ref. [58] is obtained by setting
the numerical factors in Eqs. (8) and (9), involving the
Lambert W-function, to 1. This is also causing a slight
overestimation of the relic density.
The second important point can be understood on the

basis of energy considerations. Starting from the effective
Lagrangian, it is straightforward to compute the energy
density of the gluon field at T → ∞, which corresponds
to [20,59]

ρg ¼ 1.21
π2

45
gT4; ð20Þ

with g ¼ N2 − 1 for SUðNÞ. As the temperature
approaches the critical one at the phase transition, this
energy reduces to match the fitted lattice data. The physical
reason is that the dark gluons dissipate energy in the
process of bubble nucleation and a smaller energy budget is
actually available for the glueball formation. This effect is

TABLE II. Results of the calculation of the relic density. The
first column represents the gauge group, the second one is the
value of c1 at 95% CL used in the calculation of the third column,
which also shows the result of Eq. (17) at 95% CL, evaluated for
μ ¼ 10−3 and T̃f ¼ 0.1. With these values, it is possible to
calculate the glueball relic density from Eq. (18) and the range of
Λ0 is reported in the fourth column.

N c1 100 ×
D

ρ̃
T̃3

E
f Λ0ðeVÞ

3 1.225� 0.19 0.59þ0.15
−0.14 133� 32

4 1.225� 0.8 1.1þ1.0
−0.9 204� 168

5 1.225� 0.8 1.3þ1.2
−1.0 139� 109

FIG. 5. Feynman diagrams of the 3 → 2 process involving a
combination of the ϕ3 and ϕ4 vertices (upper) and the only ϕ5

interactions (lower).
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purely nonperturbative, and it has been taken into account
in our analysis once that lattice fits are considered.
Calculating the amount of energy stored in dark gluons
at the phase transition, we realize that it is 3–4 times smaller
than Eq. (20), depending on N. Thus, the energy budget
available to glueballs was overestimated if taken equal to
the free dark gluon gas approximation. We remark on the
physical picture behind the energy exchanges within the
dark sector. Most of the energy stored in the dark gluon
plasma goes into formation of bound states, effectively
generating the “mass gap,” i.e., converted into the glueball
massmgb. Some of that energy still remains as “heat” in the
dark sector, essentially in the form of kinetic energy of
glueballs, as well as through a contribution to the potential
energy from glueball self-interactions. Hence, due to the
energy conservation and the absence of interactions with
the standard model (SM) sectors, the totality of energy
stored in the dark gluon gas remains in the dark sector.
Also, during the phase transition, some part of the energy of
the transition (latent heat) is released in the form of
gravitational waves [23,60], a dissipation effect that is
neglected in this paper and postponed to a future work.
The aforementioned reduction of the initial energy of the

dark gluon gas is partially counterbalanced by a slower
dilution of the glueball field compared to a pure cold DM
case. Indeed, immediately after the phase transition, the
glueball field is rolling fast in a potential that is much larger
than its kinetic energy. This results in an equation of state
p ¼ wρ with −1 < w < 0, leading to a slower dilution of
the glueball field. Only after this transient phase, glueballs
act like CDM. To summarize, here we list the various
effects explaining the discrepancy with the literature:

(i) We include ϕ3 and ϕ4 interactions, instead of only a
ϕ5 vertex. This makes the number-changing proc-
esses more efficient, reducing the glueball relic
density (note that in Ref. [15] the potential includes
ϕ3 and ϕ4 terms, but not ϕ5).

(ii) The glueball potential that we consider has “large”
couplings for self-interactions, leading to more than
1 order of magnitude of suppression in the relic
abundance.

(iii) Part of the energy stored in the dark gluon gas is
dissipated in bubble nucleation, reducing the relic
abundance of a factor 3–4.

(iv) The slower dilution of the glueball gas compared to
CDM goes in the direction of increasing the DM
relic abundance.

The interplay of all these effects is highly nontrivial,
motivating the numerical analysis we developed in this
work as a reliable method to compute the glueball DM relic
density.

V. COSMOLOGICAL HISTORIES

In order to accurately determine the glueball relic
density, we must specify the temperature of the dark sector

with respect to the photon one, i.e., the ζT parameter. This
quantity is vastly unconstrained because of the large
number of models predicting different interactions between
dark gluons and standard model particles. In a very model-
independent fashion, we consider two possibilities for the
dark gluon production in the early Universe: freeze-out and
the parent particle decay.
In the first casewe assume that, at some point, dark gluons

were in thermal equilibrium with the primeval plasma. This
is possible due to feeble interactions between the dark and
the visible sector. We prefer to keep a model-independent
point of view in this work, without specifying the origin of
this interaction, but just assuming that it is feeble enough that
decoupling happens soon after the end of inflation and the
DM is stable on cosmological timescales. A motivated
example of feeble interaction is given by fermions that
are charged under both the dark and SM gauge groups with a
mass much larger than the confining temperature. In this
case, all the interactions will be strongly suppressed by the
mass scale of this mediator. In the following, we do not
assume any particular model of interaction and our consid-
erations are completely model independent. When their
interaction rate becomes smaller than the Hubble parameter,
dark gluons decouple from the thermal bath. In this case, the
temperature of dark gluons will trace the photon one up to
the decoupling, then entropy production events will cause a
cooling of the dark sector following

ζ−1T ¼
�
g�;sðTγÞ
g�;sðTdÞ

�
1=3

; ð21Þ

where Td is the decoupling temperature, which determines
the number of entropic degrees of freedom at the freeze-
out. Without specifying the interaction between the dark
and visible sector, we know that the lowest temperature
of the dark sector is obtained when g�;sðTdÞ ¼ 106.75.
This corresponds to a weak interaction between the two
sectors that leads to a decoupling at T ≫ 100 GeV, where
we assume only standard model particles to exist. This is a
strong assumption given our ignorance of physics at
very high-energy scales; for instance, in the minimal
supersymmetric standard model extension g�;sðTdÞ ¼
228.75 [61]. This latter value will be used to fix the
coldest dark gluon scenario, which gives ζ−1T ≃ 0.26,
where we have used g�;sðTγÞ ¼ 3.909. This consideration
gives a sense of how the dark sector can be colder than the
visible one, proving that in this scenario of freeze-out the
two temperatures are never too different.
On the other extreme, a hot dark gluon sector is con-

strained by the measurements of the number of relativistic
species. Indeed, dark gluons cannot contribute to the
effective number of relativistic species Neff more than
the constraint ΔNeff < 0.35 at the 95% CL [62]. For a dark
sector that is not in equilibrium with the thermal bath, this
constraint translates into [63]
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ΔNeff ¼
4

7

�
11

4

�
4=3

gζ−4T ≲ 0.35; ð22Þ

where the number of degrees of freedom is g ¼ N2 − 1 for
N ¼ f3; 4; 5g. Therefore, ζ−1T ≲ 0.37 for N ¼ 3 and
ζ−1T ≲ 0.28 for N ¼ 5. We consider the former, more
conservative, value as the upper limit on ζ−1T . This con-
straint requires that dark gluons confine after the big bang
nucleosynthesis, which happens at Tγ ≃ 1 MeV.
There are several realizations of the parent particle decay

scenario, and we consider the one that we consider the
simplest. In this case, a heavy field (that can be associated
with the inflaton) decays into standard model particles and
also in dark gluons. We take the branching ratio to decay
into dark gluons to be f (and 1 − f is the branching ratio
into standard model radiation). Compared to the photon
energy density, the dark gluon one decreases because of
entropy production events in the visible sector and the
temperature evolves accordingly,

ζ−1T ¼
�
g�;sðTγÞ
g�;sðTdÞ

�
1=3

�
f

1 − f

�
1=4

: ð23Þ

Compared to the freeze-out case, depending on the value of
f, the dark sector can be extremely cold compared to the
visible one (see also the recent Ref. [64] for a discussion on
the temperature of confining dark sectors). We assume that
the coldest dark sector case corresponds to a confinement
happening soon after inflation, when the photon bath has a
temperature Tγ ≃ 1016 GeV. This limit corresponds to the
breakdown of our calculation, which is valid when the
Universe is radiation dominated. This discussion reveals
that dark gluons can be extremely cold compared to the
thermal photon bath, leading to a very early phase
transition, perhaps during inflation. In this case, we expect
a strong damping of the oscillations of the glueball field,
suppressing the relic density. Therefore, we consider that,
in order to produce glueball DM, the phase transition
cannot happen before or during inflation. This discussion
motivates us to use ζ−1T as a free parameter: if ζ−1T ∼Oð1Þ,
we are modeling a dark sector with interactions strong
enough to establish thermal equilibrium soon after infla-
tion; if ζ−1T ≲ 1, the interactions are so feeble (or even
absent) that there is no relation between the temperatures of
the visible and dark sectors. Thus, casting this discussion in
terms of ζ−1T is an extremely powerful and general method
describing in a unified way several possible models.
We remark that, despite the fact that glueballs undergo

3 → 2 number-changing interactions (a cannibalistic
phase) for a period of their evolution, this phase has to
end before matter-radiation equality in the case that glue-
balls make up the majority of DM. This condition is
verified in the allowed region of the parameter space.
When cannibalism is finished, glueballs are mildly

relativistic, with an average energy roughly 1.5mgb.
After that, they cool down quite rapidly because of the
Universe expansion, effectively becoming CDM. As shown
in Eq. (19), the glueball self-interactions are repulsive and
one may wonder if this feature affects structure formation.
A simple estimate of this effect is obtained by comparing
the intensity of self-interactions, proportional to the glue-
ball field amplitude ϕ0, with the particle massmgb [65]. The
field amplitude is directly connected to the glueball number
density ngb ¼ Ωρc=mgb ≃ 94 cm−3ðΛ=eVÞ−1 through ϕ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ngb=2mgb

p
≃ 2.5 × 10−7 eVðΛ=eVÞ−1. Since mgb ≫ ϕ0,

the structure formation is indistinguishable from collision-
less DM.
This discussion is motivated by the flexibility in model-

ing interactions between dark gluons and ordinary matter,
determining the cosmological evolution of the hidden
sector. This results in a broad parameter space available
to glueballs to explain the nature of DM.

VI. CONCLUSIONS

In this work, we explored in detail the formation of scalar
glueballs in generic SUðNÞ dark gauge sectors. We showed
that this composite state is a good DM candidate, viable in
several cosmological models. The delicate interplay
between microphysics governing the phase transition
(the confinement-deconfinement phase transition scale
Λ) and the macroscopic cosmological evolution (the
dark-to-visible temperature ratio ζ−1T ) determines the relic
density of the glueball DM. In Fig. 6, we summarized our
findings in the Λ vs ζ−1T parameter space, showing that a
large portion of it is viable and unconstrained.
The red band shows the parameter space where glueballs
constitute the whole DM, depending on the gauge group
considered. Above this line, glueballs would overclose the
Universe and this gray region is excluded. Moreover, we
require the phase transition to happen in a radiation-
dominated era, when the photon bath temperature is
assumed to be approximately below 1016 GeV; otherwise
the glueball relic density would be strongly suppressed by
inflation. Precisely, we require that the confining scale
matches the glueball temperature after inflation, i.e.,
T ¼ Λ ¼ ζ−1T Tγ < ζ−1T 1016 GeV. As another consistency
condition, we also mark the region where the confinement
scale is super-Planckian. The blue region shows the range
of ζ−1T easily accommodated in a freeze-out scenario for
dark gluons. For example, we find that a window with
2≲ Λ≲ 21 keV would explain the DM in a simple freeze-
out scenario for the dark gluons forming glueballs.
However, this region is in tension with constraints on
DM self-interactions, requiring the cross section to mass
ratio be σ=m≲ 0.19 cm2=g [66]. In our model, glueballs
undergo 2 → 2 scatterings with a cross section σ ∼m−2

Λ , in
the nonrelativistic limit, exceeding the current constraints if
Λ≲ 17 MeV and glueballs constitute the majority of DM.
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Cosmological observations of ΔNeff constrain models in
which dark gluons are extremely hot, excluding the
possibility for a very low confinement scale Λ ≪ 100 eV.
In conclusion, this study allowed us to delineate a useful

parameter space for glueball DM. We expect future studies
using observational constraints from cosmology and astro-
physics, as well as those produced from upcoming labo-
ratory experiments, will populate Fig. 6 to provide a clearer
picture and better understanding of glueball DM properties
and behaviors.
This work sets the necessary basis for future investigations

of the glueball phenomenology as a promising candidate
for unveiling the dark sector. Because of its very inter-
disciplinary nature, a line of research focused on glueballs
also opens up the possibility of various synergies between
cosmological surveys and collider searches [67–69].
In addition to phenomenological applications, future inves-
tigations should focus on comparing the results obtained in
the presented formalism with alternative methods to describe
the phase transition, in order to assess the robustness of these
calculations.
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