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Reduced order quadrature (ROQ)methods can greatly reduce the computational cost of gravitational wave
(GW) likelihood evaluations and therefore greatly speed up parameter estimation analyses, which is a vital
part tomaximize the science output of advancedGWdetectors. In this paper, we do an in-depth study of ROQ
techniques applied toGWdata analysis and present novel algorithms to enhance different aspects of the ROQ
bases’ construction. We improve upon previous ROQ construction algorithms, allowing for more efficient
bases in regions of parameter space that were previously challenging. In particular, we use singular value
decompositionmethods to characterize thewaveform space and choose a reduced order basis close to optimal
and also propose improved methods for empirical interpolation node selection, greatly reducing the error
added by the empirical interpolationmodel. To demonstrate the effectiveness of our algorithms, we construct
multiple ROQ bases ranging in duration from 4 to 256 s for compact binary coalescence waveforms,
including precession and higher order modes. We validate these bases by performing likelihood error tests
and percent-percent tests and explore the speedup they induce both theoretically and empirically with
positive results. Furthermore, we conduct end-to-end parameter estimation analyses on several confirmed
GW events, showing the validity of our approach in real GW data.
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I. INTRODUCTION

Gravitational wave (GW) astronomy has been made
possible in recent years by ground-based observatories like
LIGO [1], Virgo [2], and KAGRA [3], revolutionizing our
understanding of the Universe by enabling the direct
detection of GW signals emitted during extreme cosmic
phenomena such as the mergers of binary black holes,
binary neutron stars, and neutron star–black hole binaries.
With the continuous improvement in sensitivity of current
detectors [4] and the advent of next-generation detectors,
including projects like the Einstein Telescope [5], Cosmic
Explorer [6], and LISA [7–9], we anticipate a dramatic
increase in the number of GW candidates detected. For
maximum science outputs, a parameter estimation (PE) for
each candidate will have to be performed. With standard PE
methods [10], this can be prohibitively computationally
expensive, especially as we reduce the frequency from
which we can detect gravitational waves and the duration of
the signals becomes much longer [11].
To fully exploit the enhanced sensitivity of these advanced

detectors, it is essential to use accurate waveform models that
incorporate important physical effects such as precession or

higher order modes [12]. However, the computational chal-
lenge of calculating the likelihood of such signals poses a
significant bottleneck in the analysis pipeline. Traditional
likelihood calculations can be computationally intensive,
particularly for long-duration waveforms. Several methods
have been explored in the literature to reduce this computa-
tional burden, such as multibanding [13], heterodyned like-
lihood [14,15], likelihood-free approaches [16,17], reduced
order quadrature (ROQ)methods [18–23], andothers [24–26].
In this work, we will focus on the ROQ method, which is

one of the most promising approaches to fast GW like-
lihood evaluations, due to its ability to achieve very large
speedups while maintaining high accuracy and being able
to accommodate the effects of precession and higher order
modes [20,21]. ROQ methods exploit the fact that, for a
given parameter range, the corresponding GW waveforms
span only a small subspace of the vector space of all
possible signals. By constructing reduced bases that capture
the essential information of the templates, ROQ techniques
provide an efficient representation that enables fast like-
lihood evaluations. The ROQ has a startup cost associated
with the off-line basis building stage, which needs to be
performed in advance only once per waveform model and
parameter space. However, since for typical PE analyses we
have to compute more waveforms than what is needed to
construct the ROQ and a basis can be used to perform
multiple PEs, this startup cost quickly pays off.
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This paper presents several algorithms for ROQ con-
struction, which offer some key advantages over existing
methods. They are specifically designed to tackle the
challenges of speed in the basis construction and accuracy
in GW likelihood evaluation while maximizing the ROQ
speedup. As we will see, these algorithms have the ability
to handle complex waveform models in parameter ranges
that were intractable with existing procedures.
The paper is organized as follows. In Sec. II, we

introduce the basic theoretical framework, including a
discussion on GW inference as well as on the basics of
ROQ. In Sec. III, we describe the ROQ algorithms we
introduce in depth, going through the construction of the
reduced order basis, the choice of empirical interpolation
model, and how to construct a ROQ with a set tolerance for
a given parameter space. In Sec. IV, we present several
bases created for two phenomenological waveform models,
IMRPhenomPv2 [27] and IMRPhenomXPHM [28], and
test their speed and accuracy. We further test the ROQ by
performing parameter estimation analyses on three con-
firmed GW events. In Sec. V, we finally conclude. We
relegate some of the more convoluted numerical methods
used by our algorithms to the Appendixes.
The methods introduced in this paper have been imple-

mented in a PYTHON code called EigROQ [29].

II. THEORETICAL FRAMEWORK

In this section we will briefly describe the basic
theoretical framework to contextualize the rest of the paper.
In Sec. II A, we give a very brief overview on the basics of
GW parameter estimation, and in Sec. II B we summarize
the basics of the ROQ rule. For more details, we refer the
reader to Refs. [10,20].

A. A primer on gravitational wave inference

GW inference refers to the modern scientific discipline
taking care, among other things, of computing the posterior
probability distribution of the GW model parameters θ⃗ that
best fit the data, using the Bayes theorem,

pðθ⃗jdÞ ¼ Lðdjθ⃗Þπðθ⃗Þ
Z

: ð1Þ

In this equation, there are several objects that enter the
calculation. The first, πðθ⃗Þ refers to the prior employed,
from the nature of the event, which throughout this paper
will always be a compact binary coalescence (CBC) to
the distributions describing the parameters of the binary.
Next, the likelihood function Lðdjθ⃗Þ of the data given the
parameters θ⃗ and the evidence Z represent the probability
of the data given the model.
The likelihood is the most computationally expensive

part of estimating the posterior. Given a CBC signal
without eccentricity, there are 15 different parameters to

fit that enter the likelihood computation. The typical
gravitational wave astronomy likelihood is based on the
hypothesis that only Gaussian noise is present in the
detector and deviations from it are the result of a GW
signal. In such case, the likelihood can, up to a normali-
zation constant, be expressed as [30]

logLðdjθ⃗Þ ¼ −
1

2
ðd − hðθ⃗Þ; d − hðθ⃗ÞÞ

¼ −
1

2
ðd; dÞ þ ðd; hðθ⃗ÞÞ − 1

2
ðhðθ⃗Þ; hðθ⃗ÞÞ; ð2Þ

where hðθ⃗Þ represents, in this specific case, the CBC
waveform with parameters θ⃗ used to fit the data d. The
overlap integral ð·; ·Þ is defined as

ðd; hðθ⃗ÞÞ ¼ 4ΔfR
XL
j¼1

d̃�ðfjÞh̃ðfj; θ⃗Þ
SðfjÞ

; ð3Þ

where SnðfÞ is the detector’s noise power spectral density
(PSD) and ãðfÞ denotes the Fourier transform of aðtÞ.
Since the data of GW detectors are discretely sampled, we
will have discrete Fourier transforms having a frequency
spacing Δf ¼ 1=T, with T being the observation time.
For a frequency window ðfhigh − flowÞ there will be
L ¼ int½ðfhigh − flowÞT� terms in the sum of Eq. (3).1

Repeatedly computing the overlap integrals in Eq. (2) is
the bottleneck in gravitational waves inference and the
main part we aim to speed up in this paper.

B. Basics of reduced order quadratures
for gravitational wave inference

The parameters θ⃗ of the GW signal hðθ⃗Þ we are fitting to
the data [Eq. (2)] can be split on intrinsic and extrinsic
parameters. The extrinsic parameters are common to all
transient GW sources and they are the sky location, usually
measured with right ascension α and declination δ, the
polarization ψ , luminosity distance dL, and a reference time
of arrival of the signal tc.

2 The intrinsic parameters are
related to the source of the GWand are generically referred
to as λ⃗. For a quasicircular CBC they are composed of the
two component masses m1 and m2, three components per
black hole spin vector s⃗i, the inclination angle ι, and the
coalescence phase ϕc. For CBCs with at least one neutron
star (NS), λ⃗ can also contain a tidal deformability parameter
Λ per NS in the binary [31], as well as any other matter
effect information included in the model. If we break the
assumption of quasicircular orbits, the eccentricity e would

1Here int½x� refers to taking the integer part of x.
2We use tc because, for the CBC case, the reference time of

arrival for the signal is usually given by the coalescence time at
the geocenter.
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also have to be taken into account in the intrinsic param-
eters λ⃗ [32].
We assume that the signal hðt; θ⃗Þ is short enough to

ignore the dependence of the detector antenna patterns
Fþ;× with time and the time-varying Doppler shift due to
motion of the detector with respect to the Solar System
barycenter [33]. In practice, the signal will have to last less
than a few hours to be able to ignore the effects of Earth’s
rotation. Then, in the frequency domain, the GW signal can
be written as

h̃ðf; θ⃗Þ ¼ e−i2πftc
1

dL
ðFþðα; δ;ψÞh̃þðf; λ⃗Þ

þ F×ðα; δ;ψÞh̃×ðf; λ⃗ÞÞ
≡ e−i2πftc h̃ðf; Λ⃗Þ: ð4Þ

The main idea of the ROQ is to represent the GW
waveform model h̃ðfi; θ⃗Þ and its modulus squared
jh̃ðfi; θ⃗Þj2 in terms of an empirical interpolant each, which
is described in more detail in Sec. III. For now, we assume
that they can be approximated to arbitrary precision as

h̃ðfi; Λ⃗Þ ≈
XNL

j¼1

BjðfiÞh̃ðFj; Λ⃗Þ; ð5aÞ

jh̃ðfi; Λ⃗Þj2 ≈
XNQ

k¼1

CkðfiÞjh̃ðF k; Λ⃗Þj2; ð5bÞ

where the main focus of this paper is to find the optimal

values of the interpolation nodes fFjgNL
j¼1 and fF kgNQ

j¼1 and
of the “bases” BjðfiÞ and CkðfiÞ such that we minimize the
required number of elements ðNL þ NQÞ entering Eq. (5)
while respecting a given specified precision.
If we input Eq. (4) into Eq. (2) and use the approximation

for the GW waveform h̃ðfi; θ⃗Þ and its modulus squared
jh̃ðfi; θ⃗Þj2 of Eq. (5), we can represent the likelihood as

logLðdjθ⃗Þ ≈ −
1

2
ðd; dÞ þ ðd; hðθ⃗ÞÞROQ

−
1

2
ðhðθ⃗Þ; hðθ⃗ÞÞROQ; ð6Þ

where the term − 1
2
ðd; dÞ≡ logLnoise is a constant that

depends only on the data and cancels with the evidence Z
when we compute the posterior probability distribution
using the Bayes theorem [Eq. (1)]. In Eq. (6) we have also
implicitly defined the quantities

ðd; hðθ⃗ÞÞROQ ≡R
XNL

j¼1

wjðtcÞh̃ðFj; Λ⃗Þ; ð7aÞ

ðhðθ⃗Þ; hðθ⃗ÞÞROQ ≡XNQ

k¼1

ψkjh̃ðF k; Λ⃗Þj2; ð7bÞ

which approximates the corresponding overlap integrals
appearing in the likelihood calculation of Eq. (2). In Eq. (7)
we have introduced the linear and quadratic ROQ weights
wjðtcÞ and ψk, defined as

wjðtcÞ≡ 4Δf
XL
i¼1

d̃�ðfiÞBjðfiÞ
SðfiÞ

e−i2πfitc ; ð8aÞ

ψk ≡ 4Δf
XL
i¼1

CkðfiÞ
SðfiÞ

: ð8bÞ

Before starting PE analysis on an event, the weights have
to be computed for the observed data strain d̃ðfÞ and the
corresponding PSD [SðfÞ]. Since the linear weights are
smooth functions of time, they are usually evaluated in a
discrete set of times Nt and are interpolated for the PE
analysis [20]. The spacing between time samples is usually
on the order of the expected resolution in tc, which for CBC
signals can be as small as 0.1 ms, and for the typical tc
prior, which is uniform in �0.1 s around trigger time, this
equates to Nt ∼Oð103Þ. Therefore, at the beginning of the
analysis, we have to perform NtNL þ NQ full overlaps, as
prescribed in Eq. (8), and the startup cost of the ROQ
is OððNtNL þ NQÞLÞ.
Once the weights have been initialized, computing the

ROQ likelihood will only require NL þ NQ terms to
estimate the overlap integrals [Eq. (7)], compared to the
L terms in the full overlap integrals. We can therefore
expect a speedup in the likelihood computation of
OðL=ðNL þ NQÞÞ when using the ROQ rule. In GW
astronomy, typical CBC PE analyses require Oð108–109Þ
likelihood evaluations, which dominate the computational
cost required to sample the posterior of Eq. (1). In most
applications, the startup cost of the ROQ is negligible
compared to the sampling time and the ROQ will greatly
speed up the whole analysis. The likelihood speedup is
further explored in Sec. IV C.
The biggest overhead when using the ROQ rule is in

constructing the ROQ basis [Eq. (5)], since to explore
typical CBC parameter spaces we need Oð106–107Þ ran-
dom waveforms. With the methods outlined in this paper,
we also aim to reduce the computational time of the basis
generation, allowing us to handle complex waveform
models in parameter ranges that were intractable with
existing procedures. In practice, for the CBC case, we
train the ROQ on the hþ polarization, varying only the
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values of the intrinsic parameters λ⃗, defined in Eq. (4). The
same ROQ basis is valid for both polarizations since they
can be jointly decomposed in spherical harmonics of spin
weight −2, −2Ylm as [12]

hþ − ih× ¼
X∞
l¼2

Xl

m¼−l
−2Ylmðι;ϕcÞhlm; ð9Þ

where the inclination ι and coalescence phase ϕc are also
being sampled.

III. EFFICIENT ALGORITHM
FOR ROQ COMPUTATION

A. Reduced order basis

We generate N templates from the waveform model we
are trying to approximate,

fhAðxÞ; A ¼ 1;…; Ng; ð10Þ

where, in GW astronomy, x can be either frequency f or
time t. We can define the matrix of inner products between
templates as

MAB ¼ hhA; hBi: ð11Þ

In this context, the inner product is usually defined as

hhA; hBi ¼
Z

fhigh

flow

h̃�AðfÞh̃BðfÞdf; ð12Þ

although we could also use a reference PSD SnðfÞ to give
different weights at different frequencies to the integrand,
as in Eq. (3). Since MAB is a matrix of inner products, it is
Hermitian and positive semidefinite and, therefore, can
always be diagonalized as

MAB ¼
XN
C¼1

EACλCE�
BC; ð13Þ

where λC ≥ 0 are the eigenvalues and EAB is a unitary
matrix whose columns are the orthonormal eigenvectors

XN
C¼1

E�
CAECB ¼ δAB: ð14Þ

In the waveform space, we can then define the eigen-
vectors with λA ≠ 0 as

eAðxÞ ¼
1ffiffiffiffiffi
λA

p
XN
C¼1

hCðxÞECA: ð15Þ

It can be proven that these are an orthonormal set of
vectors under h·; ·i. That is,

heA; eBi ¼
�

1ffiffiffiffiffi
λA

p
XN
C¼1

hCðxÞECA;
1ffiffiffiffiffi
λB

p
XN
D¼1

hDðxÞEDB

�

¼ 1ffiffiffiffiffiffiffiffiffiffi
λAλB

p
XN
C¼1

XN
D¼1

E�
CAEDBhhC; hDi|fflfflfflffl{zfflfflfflffl}

MCD

¼ 1ffiffiffiffiffiffiffiffiffiffi
λAλB

p
XN
C¼1

E�
CA

XN
D¼1

MCDEDB|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
λBECB

ð16Þ

¼
ffiffiffiffiffi
λB
λA

s XN
C¼1

E�
CAECB|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
δAB

¼ δAB: ð17Þ

We can also prove that the inner product between one of
the waveforms used to compute MAB and a given eigen-
vector will be given by

hhA; eBi ¼
�
hA;

1ffiffiffiffiffi
λB

p
XN
C¼1

hCðxÞECB

�

¼ 1ffiffiffiffiffi
λB

p
XN
C¼1

hhA; hCi|fflfflfflffl{zfflfflfflffl}
MAC

ECD

¼ 1ffiffiffiffiffi
λB

p
XN
C¼1

MACECD|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
λBEAB

¼
ffiffiffiffiffi
λB

p
EAB: ð18Þ

We can define our reduced order basis (ROB) as a subset
of n < N elements of feAgNA¼1, which we will learn how to
optimally select later. To represent the waveform hA in
terms of this ROB feagna¼1, we project hA using the
orthonormality property of the ROB,

hROBA ðxÞ ¼
Xn
b¼1

heb; hAiebðxÞ ¼
Xn
b¼1

ffiffiffiffiffi
λb

p
E�
AbebðxÞ: ð19Þ

We can compute the representation error of projecting
hA as

σROB;A ¼ khA − hROBA k2 ¼ hhA − hROBA ; hA − hROBA i

¼
�
hA −

Xn
b¼1

heb; hAieb; hA −
Xn
c¼1

hec; hAiec
�

¼ hhA; hAi −
Xn
b¼1

jheb; hAij2

¼ hhA; hAi −
Xn
b¼1

λbjEAbj2: ð20Þ
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Ideally, to construct a ROB we would take a very large
number of templates fhAgNA¼1 that capture most of the
variability of the waveform in the parameter space of
interest, compute the matrix MAB as in Eq. (11), diago-
nalize it, and, to construct our ROB, pick the minimum
number of eigenvectors feagna¼1 such that the ROB error
of Eq. (20) is smaller than a specified tolerance.
Unfortunately, this cannot be done in practice, since the
number of random templates needed to fully span the
typical parameter spaces for GW applications is of order
Oð107Þ. Using the fact that MAB is Hermitian, we need
NðN − 1Þ=2 complex numbers to store the off-diagonal
elements and N real numbers for the diagonal elements.
Assuming that each real number is stored with nB bytes, the
memory required to store MAB is3

MemoryðMABÞ ¼ N2nB ¼ 80 GB

�
N
105

�
2
�
nB
8B

�
: ð21Þ

Therefore, in current computers, examining more than a
few tens of thousands of waveforms at a time is unfeasible,
and we will not be able to analyze the entire parameter
space at once. Motivated by this issue, we have developed a
multistep approach summarized in Algorithm 1. We con-
struct a first ROB for a set tolerance with random wave-
forms. Then, we calculate its orthogonal space and obtain
the corresponding ROB, which we add to the original ROB.
We repeat this process iteratively, reducing the tolerance at
every step. The equivalent to the matrixMAB of Eq. (11) for
the orthogonal space to the basis feagna¼1 is

MROB
AB ¼ hhA − hROBA ; hB − hROBB i

¼
�
hA −

Xn
c¼1

hec; hAiec; hB −
Xn
d¼1

hed; hBied
�

¼ hhA; hBi −
Xn
c¼1

hhA; ecihec; hBi: ð22Þ

We observe that the same formulas and reasoning of
Eqs. (11)–(21) apply to the space orthogonal to the ROB if
we make the identification hA → hA − hROBA . To find the
minimum number of elements that have to be added to the
ROB to reduce the error below the set tolerance σ, we use
Algorithm 2, where we iteratively subtract the contribution
of the eigenvalue that produces the largest drop in any
σROB;A, according to Eq. (20), until σROB;A < σ for all A.
The process of diagonalizing the matrixMAB of Eq. (11)

and finding the eigenvalues in the waveform domain using
Eq. (15) is equivalent to performing singular value decom-
position (SVD) on a set of waveforms fhAgNA¼1, which has
been previously used in the literature for the reduced order
modeling of GW waveforms (see Refs. [34,35]). However,

we follow the procedure outlined in this paper since it has a
few numerical advantages. Namely, if we have waveforms
with a number of sampling points M, storing them will
require 2MNnB bytes, which in the usual case thatM ≫ N,
will be much larger than the memory needed to store MAB
[Eq. (21)] and we will be even more limited in the number
of waveforms we can analyze at once. Moreover, if we are
studying the ROB of the space orthogonal to feagna¼1,
our algorithm is equivalent to computing the SVD of the
orthogonal part of the waveforms fhA − hROBA gNA¼1. Finding
this orthogonal part is, in general, a computationally

Algorithm 1. Construction of reduced order basis.

1: Input: Maximum number of waveforms selected N,
tolerances of each step ½σ0;…; σs�, maximum number of
waveforms computed per step ½Nlim;1;…; Nlim;s�

2: Generate N waveforms fhAgNA¼1

3: Compute the matrix MAB ¼ hhA; hBi
4: Diagonalize MAB to obtain eigenvalues λA and eigenvectors

EAB
5: Input fσ0; fhAgNA¼1; λA; EABg in Algorithm 2 to obtain initial

ROQ basis feign0i¼1

6: for j ¼ 1 → s do
7: repeat
8: Generate Nlim;j waveforms fhAgN lim;j

A¼1 and compute
their ROB error σROB;A

9: Select theN waveforms fhAgNA¼1 with largest σROB
10: Save the minimum value of σROB for the selected

waveforms: σROB;min

11: MROB
AB ¼ hhA; hBi −

Pnj−1
c¼1hhA; ecihec; hBi

12: Diagonalize MROB
AB and obtain eigenvalues λA and

eigenvectors EAB
13: Input fσj;fhA−hROBA gNA¼1;λA;EABg in Algorithm 2

to obtain next ROQ basis elements feignji¼nj−1þ1

14: until σROB;min < σs
15: end for

16: Output: ROB feigni¼1

Algorithm 2. Selection of eigenvectors.

1: Input: Tolerance σ, waveforms fhAgNA¼1, eigenvalues λA,
and eigenvectors EAB of the matrix MAB ¼ hhA; hBi

2: Initialize σA: fσA ¼ hhA; hAigNA¼1

3: Compute the maximum contribution of each eigenvector
fδσA;max ¼ λAmax

B
jEBAj2gNA¼1

4: Find order of δσA;max: fBngNn¼1 ¼ argsortðδσB;maxÞ
5: n ¼ N
6: repeat
7: Compute current error fσA ← σA − λBn

jEABn
j2gNA¼1

8: n ← n − 1
9: until σA < σ ∀A ¼ 1;…; N

10: Output: Eigenvectors in waveform domainn
ekðxÞ ¼ 1ffiffiffiffiffi

λBk
p P

N
A¼1 hAðxÞEABk

o
N

k¼n3
1 GB ¼ 109 bytes ¼ 8 × 109 bits.
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expensive process that can be avoided if MROB
AB is obtained

using Eq. (22). Since we are going to select nnew ≪ N
eigenvectors of MROB

AB , we can just compute the orthogonal
projection of their corresponding eigenvectors in the wave-
form domain at the end of the algorithm.

B. Empirical interpolation model

Writing a given template in the form of Eq. (19) will not
save computational cost, since one needs the full waveform
hAðxÞ to compute the inner product hhA; eBi. To avoid this,
we approximate the inner products hhðλ⃗Þ; eii by some
coefficients ciðλ⃗Þ that will, in general, be functions of the
parameters of the waveform λ⃗ (e.g., for a CBC this would
be masses, spins, inclination, and coalescence phase). The
approximate waveform can then be written as

In½h�ðx; λ⃗Þ ¼
Xn
i¼1

ciðλ⃗ÞeiðxÞ: ð23Þ

We force the approximation to be exact at some
interpolation nodes fXjgmj¼1,

In½h�ðXj; λ⃗Þ ¼ hðXj; λ⃗Þ ¼
Xn
i¼1

ciðλ⃗ÞeiðXjÞ: ð24Þ

This is what we define as an interpolant. If we identify the
matrix

Aij ¼ ejðXiÞ; ð25Þ
and take the number of interpolation nodesm to be equal to
the number of basis elements n, then Â is a square matrix
that we construct by choosing the interpolation nodes
fXjgnj¼1. Assuming that we construct Â to be invertible,

we can solve Eq. (24) for ciðλ⃗Þ in the following way:

ciðλ⃗Þ ¼
Xn
j¼1

ðÂ−1ÞijhðXj; λ⃗Þ: ð26Þ

We therefore observe that the value of ciðλ⃗Þ will just be a
linear combination of the values of the waveform at the
different interpolation nodes fXjgnj¼1. In practice, the func-
tions hðxÞ and the ROB elements feiðxÞgni¼1 are discretely
sampled in a set of pointsfxigMi¼1, andwecandefine thematrix

V̂ ≡ ½e⃗1;…; e⃗n�∈CM×n; ð27Þ
where e⃗A ¼ eAðx⃗Þ∈CM. From Eq. (25), we observe that the
matrix Â can be written in terms of V̂ as

Â ¼ P̂†V̂ ∈Cn×n; ð28Þ
where the matrix P̂∈CM×n is a projector that selects the rows
of V̂ corresponding to the interpolation nodes. That is,

Pαj ¼ δαβj ; ð29Þ

with fβjgnj¼1 as the indices of the interpolation nodes (i.e.,
xβj ¼ Xj). In terms of these matrices, the empirical interpo-
lation model (EIM) can be written as

In½h⃗� ¼ V̂ðP̂†V̂Þ−1P̂†h⃗; ð30Þ

which is an interpolant because P̂†In½h⃗� ¼ P̂†h⃗. In terms of
the matrix V̂, the ROB representation of h⃗ is given by

h⃗ROB ¼ V̂V̂†h⃗: ð31Þ
Note that, even though the basis elements e⃗A are ortho-

normal, and therefore V̂†V̂ ¼ 1n×n, since the matrices are
not square, we have that, in general, V̂V̂† ≠ 1M×M. From
Eqs. (30) and (31), we can explicitly see that the EIM acting
on awaveform in the ROB spacewill have no effect. That is,

In½h⃗ROB� ¼ V̂ðP̂†V̂Þ−1P̂†ðV̂V̂†h⃗Þ ¼ V̂ðP̂†V̂Þ−1ðP̂†V̂ÞV̂†h⃗

¼ V̂V̂†h⃗ ¼ h⃗ROB: ð32Þ

This can be used to relate the representation error of the
EIM with the representation error of the ROB. Computing
the modulus of the difference between the exact waveform
and its EIM representation, we obtain

σEIMðh⃗Þ ¼ kh⃗ − In½h⃗�k2 ¼ k½1 − V̂ðP̂†V̂Þ−1P̂†�h⃗k2

¼ k½1 − V̂ðP̂†V̂Þ−1P̂†�ðh⃗ − h⃗ROBÞk2

≤ k1 − V̂ðP̂†V̂Þ−1P̂†k22kh⃗ − h⃗ROBk2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
σROBðh⃗Þ

; ð33Þ

where k·k2 denotes the matrix two-norm, which is given by

kM̂k2 ¼ max
x⃗≠0

kM̂ x⃗ k
kx⃗k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðM̂†M̂Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmaxðM̂M̂†Þ

q
; ð34Þ

where kx⃗k is the usual vector norm and λmaxðM̂†M̂Þ denotes
the maximum eigenvalue of M̂†M̂. Since V̂ðP̂†V̂Þ−1P̂† is
idempotent, that is ðV̂ðP̂†V̂Þ−1P̂†Þ2 ¼ V̂ðP̂†V̂Þ−1P̂†, and it
is different from 0 or the identity 1, it follows that [36]

k1 − V̂ðP̂†V̂Þ−1P̂†k2 ¼ kV̂ðP̂†V̂Þ−1P̂†k2: ð35Þ

Furthermore, since V̂†V̂ ¼ 1n×n and P̂†P̂ ¼ 1n×n, from
the definition in Eq. (34) of the matrix two-norm, we have
that

kV̂ðP̂†V̂Þ−1P̂†k2 ¼ kðP̂†V̂Þ−1k2: ð36Þ
Substituting in Eq. (33),

σEIMðh⃗Þ ≤ kðP̂†V̂Þ−1k22σROBðh⃗Þ ¼ kÂ−1k22σROBðh⃗Þ: ð37Þ
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Using the definition of the matrix two-norm of Eq. (34), we
have that

kÂ−1k22 ¼ λmaxððÂ−1Þ†Â−1Þ ¼ λmaxððÂ†Þ−1Â−1Þ

¼ λmaxððÂÂ†Þ−1Þ ¼ 1

λminðÂÂ†Þ ; ð38Þ

and we can rewrite Eq. (37) as

σEIMðh⃗Þ ≤
σROBðh⃗Þ
λminðÂÂ†Þ : ð39Þ

Therefore, given a maximum error of the ROB, the error
of the EIM model is bounded from above by Eq. (39).
To make this bound as stringent as possible, we could
maximize the smallest eigenvalue of ÂÂ†. Using the
definition of Â from Eq. (28), we can write

ðÂÂ†Þij ¼
Xn
k¼1

ekðXiÞe�kðXjÞ ¼ hv⃗j; v⃗ii; ð40Þ

where we have defined the vectors fðv⃗iÞk ¼ ekðXiÞjk ¼
1;…; ngMi¼1 as the rows of V̂ corresponding to the inter-
polation nodes Xi. We then observe that ÂÂ† is the same as
the scalar product between the corresponding selected rows
of V̂.
If the vectors v⃗i were orthonormal, we would obtain that

ðÂÂ†Þij ¼ δij, and therefore λminðÂÂ†Þ ¼ 1 and the EIM
would not introduce additional error over the ROB.
Selecting n orthonormal rows of V̂ is, in general, not
possible; however, we can try to minimize the EIM error by
picking rows that are as close to orthogonal as possible
using Algorithm 3.
We observe that Algorithm 3 is equivalent to picking

the EIM nodes that maximize the determinant of ÂÂ†, since

detðÂÂ†Þ ¼ detðÂÞ detðÂ†Þ ¼ j detðÂÞj2

¼
Yn
j¼1

jhw⃗j; v⃗βjij2: ð41Þ

Algorithm 3 does not directly maximize the minimum
eigenvalue of ÂÂ†. However, based on the expression for
the determinant of ÂÂ†,

detðÂÂ†Þ ¼
Yn
j¼1

λi; ð42Þ

to maximize it, the values of the individual eigenvalues
have to be large, and thus, the output of the algorithm is
near to the minimum of kÂ−1k22. When compared to the
greedy algorithm typically used in the literature (e.g.,
Refs. [18–21]) to compute the interpolation nodes, we
observe a superior performance of Algorithm 3, as we will
later discuss in relation to Fig. 1.
If we wanted to create an EIM with a tolerance

smaller than σ, from Eq. (39) we could, in principle, just
construct a ROB with a tolerance better than λminðÂÂ†Þσ.
However, in real settings, we observe that Eq. (39) is a loose
upper bound on the EIM error, and we can obtain an EIM
with a tolerance better than σ using fewer basis elements.
Instead of bounding σEIMðh⃗Þ using the inequality of

Eq. (33), we can refine this expression by doing

σEIMðh⃗Þ ¼ k½1 − V̂ðP̂†V̂Þ−1P̂†�ðh⃗ − h⃗ROBÞk2

¼ kh⃗ − h⃗ROBk2 þ kV̂ðP̂†V̂Þ−1P̂†ðh⃗ − h⃗ROBÞk2

¼ σROBðh⃗Þ þ kðP̂†V̂Þ−1P̂†ðh⃗ − h⃗ROBÞk2; ð43Þ
where we have used that V̂†V̂ ¼ 1 and that the EIM
projects the waveform onto the ROB, and therefore
hV̂ðP̂†V̂Þ−1P̂†ðh⃗ − h⃗ROBÞ; h⃗ − h⃗ROBi ¼ 0. From Eq. (43)
we have that the EIM error is always larger than or
equal to the ROB error. We also observe that for the
bound of Eq. (39) to be saturated we need P̂†ðh⃗ − h⃗ROBÞ to
be the eigenvector of Â†Â with the maximum eigenvalue,
which is extremely unlikely in general. To explore this, we
assume that h⃗ − h⃗ROB ≡ δh⃗ is a random variable, such that

E½δh�αδhβ� ¼ cαδαβ; ð44Þ
where E½·� denotes the expected value (i.e., the average over
random waveform realizations). Using Eq. (44), we com-
pute the expected value of σEIM as

E½σEIM� ¼
XM
α¼1

E½δh�αδhα�

þ
Xn
k¼1

Xn
q¼1

Xn
l¼1

ðA−1Þ�lkðA−1ÞlqE½δh�βkδhβq �

¼
XM
α¼1

cα þ
Xn
k¼1

Xn
l¼1

cβk jðA−1Þlkj2

¼
XM
α¼1

cα þ k ˆ̃A−1k2F; ð45Þ

Algorithm 3. Selection of interpolation nodes.

1: Input: Evaluated basis fe⃗igni¼1

2: Define row vectors: fv⃗α ¼ feiðxαÞgni¼1gMα¼1

3: Initialize orthonormal base (OB) of columns: OB ¼ fw⃗ig0i¼1

4: Initialize the norm of the orthogonal part of v⃗α to OB:
fNα ¼ jv⃗αj2gMα¼1

5: for j ¼ 1 → n do
6: Choose vector with largest Nα: βj ¼ argmaxðNαÞ
7: Append v⃗βj to OB using the Gram-Schmidt process
8: Update Nα: fNα ← Nα − jhw⃗j; v⃗αijgMα¼1

9: end for

10: Output: EIM interpolation nodes fβigni¼1
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where ˆ̃A is the matrix

Ãkl ¼
1ffiffiffiffiffifficβk

p Akl ¼
1ffiffiffiffiffifficβk

p elðxβkÞ; ð46Þ

such that ðÃ−1Þlk ¼ ffiffiffiffiffifficβk
p ðA−1Þlk and k · kF is the Frobenius

norm, defined as

jjM̂jjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

Xn
l¼1

jMklj2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrfM̂†M̂g

q
: ð47Þ

Therefore, to optimize the EIM such that the expected
value of σEIM is minimum, we want to minimize the value

of the Frobenius norm of ˆ̃A
−1
. Using the properties of the

trace, we can rewrite it as

k ˆ̃A−1kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

1

λkð ˆ̃A† ˆ̃AÞ

s
: ð48Þ

To minimize the Frobenius norm of ˆ̃A we can start from
the EIM given by Algorithm 3 and allow the interpolation

nodes to “walk” in the direction of diminishing k ˆ̃A−1kF, as
outlined in Algorithm 4.
The time complexity of Algorithm 4 is OðNroundsnNFÞ,

where NF denotes the number of operations required to
compute Fðβ⃗Þ. Given that our target function is Fðβ⃗Þ ¼
k ˆ̃A−1kF, one could naively expect that, based on the size
n × n of the matrix Â, directly inverting it would takeOðn3Þ
operations, and therefore the time complexity of Algorithm 4
would be OðNroundsn4Þ. This can be computationally very
expensive even if n ≪ M. However, updating the value of
kÂ−1kF when only one row of the matrix changes can be
done in Oðn2Þ by following the procedure in the Appendix,
and we can implement Algorithm 4 with target function

Fðβ⃗Þ ¼ k ˆ̃A−1kF in away that takesOðNroundsn3Þ operations.
Even though Algorithm 4 is considerably better than the

greedy algorithms used in the literature, as we will later

FIG. 1. Comparison of methods to compute the EIM for the
256 s IMRPhenomPv2 ROB of Table I. We test the different
EIMs on the same 106 samples randomly drawn from the
parameter space over which the ROB is generated (see Table I).
The “greedy”method is the one outlined in [19], the “orthogonal”
method stands for Algorithm 3, the “Frobenius” method corre-
sponds to using Algorithm 4 to minimize kÂ−1kF, and the
“training” method is the one used to construct the EIM of Table I
with Algorithm 5. Upper: fraction of samples with an EIM error
larger than a tolerance σ as a function of σ. For comparison
purposes, we also show the distribution of the ROB error. Lower:
histogram of the ratio between the EIM error and the ROB error
for the same methods and test samples as in the upper figure. The
vertical dashed lines represent an upper bound, defined by the
value of kÂ−1k22 for each method.

Algorithm 4. Selection of interpolation nodes to minimize
target function of the EIM Fð·Þ.
1: Input: Maximum number of rounds Nrounds, initial

interpolation nodes β⃗, function to be minimized Fðβ⃗Þ.
2: for j ¼ 1 → Nrounds do
3: for k ¼ 1 → n do
4: for δβ in ½−1; 1� do
5: Copy interpolation nodes: β⃗0 ¼ β⃗
6: repeat
7: Test new EIM: β0k ← β0k þ δβ
8: if Fðβ⃗0Þ ≤ Fðβ⃗Þ then
9: Update reference EIM: β⃗ ← β⃗0

10: end if
11: until Fðβ⃗0Þ > Fðβ⃗Þ
12: end for
13: end for
14: if fβigni¼1 did not change this iteration then
15: break for loop
16: end if
17: end for

18: Output: EIM interpolation nodes fβigni¼1
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discuss in relation to Fig. 1, it can still be improved by
training the EIM directly on the waveform data. For this
purpose, we assume that we have an initial ROB fe⃗igni¼1

with a corresponding EIM that can be computed with, e.g.,
Algorithm 4. We want to update this EIM to better fit a
training set of waveforms fhAgNA¼1. We first generate a
ROB for the part of the training set orthogonal to the initial
ROB (h⃗ − h⃗ROB), which can be done by diagonalizing the
matrix of Eq. (22). Analogously to Eq. (19), we can write

h⃗A − h⃗ROBA ¼
XN
B¼1

ffiffiffiffiffi
λB

p
E�
ABu⃗B; ð49Þ

where λb and EAB are the eigenvalues and eigenvectors of
the matrix MROB

AB defined in Eq. (22) and u⃗B represent the
eigenvectors in the waveform domain. Substituting Eq. (49)
in the expression for σEIM derived in Eq. (43), we obtain

σEIM;A ¼ kh⃗A − In½h⃗A�k2

¼
����XN

B¼1

ffiffiffiffiffi
λB

p
E�
ABu⃗B

����2

þ
����XN

B¼1

ffiffiffiffiffi
λB

p
E�
ABðP̂†V̂Þ−1P̂†u⃗B

����2

¼
XN
B¼1

λBjEABj2

þ
XN
B¼1

XN
C¼1

ffiffiffiffiffiffiffiffiffiffi
λBλC

p
E�
ABEAChw⃗C; w⃗Bi; ð50Þ

where we have defined

w⃗B ¼ ðP̂†V̂Þ−1P̂†u⃗B: ð51Þ

From Eq. (50), we can compute the sum of all the EIM
errors of the waveforms in the training set. That is,

σtotEIM ¼
XN
A¼1

σEIM;A ¼
XN
B¼1

λBð1þ hw⃗B; w⃗BiÞ

¼
XN
B¼1

λBð1þ kðP̂†V̂Þ−1P̂†u⃗Bk2Þ

≈
Xnλ
B¼1

λBð1þ kðP̂†V̂Þ−1P̂†u⃗Bk2Þ; ð52Þ

where we have used that EAB is unitary and that the matrix
MROB

AB will usually have a small number of large eigenval-
ues, with the rest of the eigenvalues close to 0. Therefore,
we can truncate the sum to be made only over the largest nλ
eigenvalues and obtain a very good approximation of σtotEIM.

To minimize the value of σtotEIM, we follow Algorithm 5, in
which we start with an EIM and perform walks around the
initial solution in the direction of diminishing σtotEIM. For
the initial solution, we will use the EIM generated by

Algorithm 4 with target function Fðβ⃗Þ ¼ k ˆ̃A−1kF. Since we
want to fit fhAgNA¼1, following Eq. (44), the weights cα of
Eq. (46) are

cα ¼ E½δh�αδhα� ¼
1

N

XN
A¼1

jhA;α − hROBA;α j2

¼ 1

N

XN
A¼1

XN
B¼1

XN
C¼1

ffiffiffiffiffiffiffiffiffiffi
λBλC

p
E�
ABEACu�C;αuB;α

¼ 1

N

XN
B¼1

λBjuB;αj2 ≈
1

N

Xnλ
B¼1

λBjuB;αj2; ð53Þ

where we have once again used that EAB is unitary and that
the sum can be approximated by taking only the largest nλ
eigenvalues. In Algorithm 4, using σtotEIM as target function,
the value of σtotEIM can be efficiently updated with OðnnλÞ
operations, as described in the Appendix. Therefore, using
Algorithm 4 to walk around an initial solution minimizing
σtotEIM will require OðNroundsn2nλÞ operations.
In Fig. 1, we show for the 256 s IMRPhenomPv2 ROB

listed in Table I a comparison between Algorithms 3–5
proposed in this paper, the usual greedy algorithm used
in the literature, and the lower bound imposed by the
ROB error. We show only the analysis for the 256 s
IMRPhenomPv2 basis of Table I, but we find similar results
for all the other cases in Tables I and II. In the upper panel
of Fig. 1 we show the fraction of points with an EIM error
larger than a tolerance σ as a function of σ. Comparing the
methods, we observe that the training one (Algorithm 5)
outperforms the others, which is expected since it has been

Algorithm 5. Selection of interpolation nodes trained on a set
of waveforms fhAgNA¼1.

1: Input: Evaluated basis fe⃗igni¼1, maximum number of rounds
Nrounds, nλ eigenvalues λB, and eigenvectors in waveform
domain u⃗B of the matrix MROB

AB ¼ hh⃗A − h⃗ROBA ; h⃗B − h⃗ROBB i.
2: Compute weights: cα ¼

Pnλ
B¼1 λBjuB;αj2

3: Compute weighted basis:

ffwiðxαÞgMα¼1gni¼1 ¼
nn

1ffiffiffiffi
cα

p eiðxαÞ
o
M

α¼1

o
n

i¼1

4: Get initial EIM β⃗ inputting fw⃗igni¼1 in Algorithm 3
5: Update β⃗ using Algorithm 4 with maximum rounds Nrounds

and target function Fðβ⃗Þ ¼ k ˆ̃A−1kF, where Ãij ¼ wjðxβiÞ
6: Update β⃗ again with Algorithm 4 with maximum rounds

Nrounds and target function Fðβ⃗Þ ¼ σtotEIM, where σtotEIM¼Pnλ
B¼1λBð1þ

P
n
i¼1 j

P
n
j¼1ðÂ−1ÞijuB;βj j2Þ and Aij ¼ ejðxβiÞ

7: Output: EIM interpolation nodes fβigni¼1
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trained on the waveform data to reduce the EIM error. The
worst performer is the greedy method, since it induces the
largest EIM error in all cases tested. We also observe that
the Frobenius method, which uses Algorithm 4 to minimize
kÂ−1kF, induces the smallest EIM error among the algo-
rithms that do not train on waveforms, which could make it
more robust against overfitting.
In the lower panel of Fig. 1, we show the ratio between the

EIMand theROBerror for the samemethodsand test samples

as in the upper panel.We observe that this ratio is in the range
1 ≤ σEIM=σROB ≤ kÂ−1k22, as was derived in Eqs. (37) and
(43). In general, we observe that the EIM errors obtainedwith
the different methods are always considerably below the
upper limit imposed by Eq. (37) (σEIM=σROB ≪ kÂ−1k22).
This is expected, since to saturate this upper bound we need

P̂†ðh⃗ − h⃗ROBÞ to be the eigenvector of Â†Â with the maxi-
mum eigenvalue, which is hard to get in practice. We also

TABLE I. Summary of the reduced bases constructed with EigROQ for the IMRPhenomPv2 waveform model. We limit the mass ratio
1 ≤ q ≤ 8, the magnitudes of the two spins −0.8 ≤ χi ≤ 0.8 for i∈ ½1; 2�, and the full range for the spin angles
ð0; 0Þ ≤ ðθJ; α0Þ ≤ ðπ; 2πÞ. For the first base (Δf ¼ 0.25 Hz) we extend the coverage in spins to −0.88 ≤ χi ≤ 0.88. For the creation
of all the bases, we run EigROQ with the same configuration. In Algorithm 1, we set the maximum number of waveforms selected
N ¼ 20000, tolerances of each step σi ¼ ½10−1; 10−3; 10−5�, and maximum number of waveforms computed per step
Nlim;i ¼ ½106; 3.16 × 106�. In Algorithm 6, we set N ¼ 107, σ ¼ 10−5, Nlim ¼ 107, and the maximum number of eigenvectors used
nλ ¼ 5000, except for the 256 s basis, where we set nλ ¼ 4000 due to memory limitations. The bases are tested on 107 randomly
generated waveforms in the same parameter space on which the training was done. The “Theoretical” speedup has been computed with
Eq. (56), while the “Empirical” speedup is the median and 90% credible interval of the corresponding points in the upper panel of Fig. 5.

Frequency range (Hz) McðM⊙Þ Basis size Test set σEI;max Test set σEI > 10−5 Likelihood speedup

Min. Max. Δf ðHzÞ Min. Max. Linear Quadratic Linear Quadratic Linear Quadratic Theoretical Empirical

20 1024 1=4 12.3 45 242 194 1.00 × 10−3 1.09 × 10−4 31 19 9.2 3.7þ1.0
−0.6

20 1024 1=8 7.93 14.76 369 294 4.91 × 10−4 1.46 × 10−4 55 31 12.1 7.1þ0.7
−0.1

20 2048 1=16 5.14 9.52 493 389 6.85 × 10−4 5.72 × 10−4 110 59 36.8 22.3þ0.6
−1.4

20 2048 1=32 3.35 6.17 631 438 6.88 × 10−4 5.83 × 10−4 98 75 60.7 38.1þ0.5
−0.4

20 2048 1=64 2.18 4.02 848 407 1.51 × 10−3 5.71 × 10−4 103 71 103.4 65.7þ1.6
−0.9

20 4096 1=128 1.42 2.60 1315 306 6.4 × 10−4 2.46 × 10−3 83 50 321.9 232.3þ8.0
−7.0

20 4096 1=256 0.95 1.72 2196 300 1.43 × 10−4 6.32 × 10−5 69 28 418.1 350.7þ49.8
−17.8

TABLE II. Summary of the reduced bases constructed with EigROQ for the IMRPhenomXPHM waveform model. We limit the mass
ratio 1 ≤ q ≤ 4, the magnitudes of the two spins −0.8 ≤ χi ≤ 0.8 for i∈ ½1; 2�, and the full range for the spin angles
ð0; 0Þ ≤ ðθJ; α0Þ ≤ ðπ; 2πÞ. For the creation of all the basis, we run EigROQ with the same configuration. In Algorithm 1, we set
the maximum number of waveforms selected N ¼ 20000, tolerances of each step σi ¼ ½10−2; 10−3; 10−4�, and maximum number of
waveforms computed per step Nlim;i ¼ ½106; 3.16 × 106�. In Algorithm 6, we set N ¼ 107, σ ¼ 10−4, Nlim ¼ 107, and the maximum
number of eigenvectors used nλ ¼ 5000. The basis are tested on 107 randomly generated waveforms in the same parameter space on
which the training was done. The theoretical (Th.) speedup has been computed with Eq. (56), while the empirical (Emp.) speedup is the
median and 90% credible interval of the corresponding points in the lower panel of Fig. 5. For the empirical speedups, we show the
values both without (Emp.) and with (MB) the IMRPhenomXPHM multibanding option enabled [37].

Frequency
range (Hz) McðM⊙Þ Basis size Test set σEI;max Test set σEI > 10−4 Likelihood speedup

Min. Max. Δf ðHzÞ Min. Max. Linear Quadratic Linear Quadratic Linear Quadratic Theoretical Empirical MB

20 1024 1=4 55 110 303 195 3.67 × 10−2 2.47 × 10−2 119 86 8.1 3.2þ1.2
−0.6 1.4þ0.3

−0.3
20 1024 1=4 35 66 339 192 6.95 × 10−2 2.47 × 10−2 115 64 7.6 4.5þ1.7

−1.0 1.7þ0.5
−0.3

20 1024 1=4 26 42 328 204 9.57 × 10−3 1.04 × 10−2 84 21 7.6 6.1þ1.8
−1.1 2.2þ0.6

−0.5
20 1024 1=4 18 33 348 201 1.80 × 10−2 1.32 × 10−3 70 19 7.3 7.8þ0.4

−1.7 2.6þ0.7
−0.6

20 1024 1=4 12 20 371 264 1.18 × 10−2 1.03 × 10−3 67 16 6.3 7.5þ0.3
−1.6 3.1þ0.7

−0.6
20 1024 1=8 10 15 491 386 4.32 × 10−3 4.39 × 10−4 50 6 9.2 11.1þ0.3

−0.4 4.3þ1.2
−1.0

20 1024 1=8 8.6 11.8 505 435 9.33 × 10−3 1.96 × 10−4 48 3 8.5 10.5þ0.3
−0.9 4.8þ0.8

−1.0
20 2048 1=16 5.1 9.6 868 942 2.95 × 10−3 2.38 × 10−3 56 11 17.9 24.6þ2.3

−4.6 4.8þ1.2
−0.8

20 2048 1=32 3.35 6.17 1539 1826 9.62 × 10−4 2.53 × 10−4 46 1 19.3 27.6þ1.1
−0.8 4.6þ1.8

−0.9
20 2048 1=64 2.18 4.02 2924 3636 6.37 × 10−4 2.68 × 10−4 19 7 19.8 28.6þ0.7

−0.5 4.2þ1.7
−0.7
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observe that the training method is almost optimal since most
samples are close to the lower bound of σEIM=σROB ≥ 1. In
contrast, most of the samples for the methods that do not
involve training on waveform data concentrate at values of
σEIM=σROB ⪆ 103. This is probably because, when we train
on the waveform data, we are selecting an EIM that avoids
coincidences between P̂†ðh⃗ − h⃗ROBÞ andeigenvectors of Â†Â
with large eigenvalues.

C. Construction of the ROQ

In this section, we describe how we use the methods of
Secs. III A and III B to create, in an efficient way, an EIM
that fits a waveform model over a parameter space with a
tolerance better than σ.
We obtain an initial ROB fe⃗igni¼1 using Algorithm 1 and

construct its corresponding EIM with Algorithm 5, where
the set of training waveforms is the fhAgNA¼1, selected in the
last step of Algorithm 1. We add elements to this initial
ROB following a similar philosophy to that of Algorithm 1,
in which we generate Nlim random waveforms, compute

their EIM error σEIM, and select the N waveforms with
largest EIM error for further study. Again, we want N to be
as large as allowed by the memory [see Eq. (21)]. We then
compute the matrix MROB

AB for the N selected waveforms,
find its eigenvalues λB and compute the nλ < N most
relevant eigenvectors in the waveform domain fu⃗BgnλB¼1,
where the value of nλ is again limited by the memory of the
system. We iteratively select the eigenvector with the
largest contribution to the EIM error, add it to the ROB,
and construct a new EIM with Algorithm 5 until all N
waveforms are fitted with a tolerance better than the
required one. The process is summarized in Algorithm 6.

IV. CODE VALIDATION

In this section, we aim to quantify and assess the validity
of the ROQ basis obtained using the algorithm described in
Sec. III. For that matter, we would like to evaluate the
accuracy of the different bases in reconstructing the original
waveform as well as the speedup gained. First, in Sec. IVA
we describe the bases to be tested and compare them with
examples found in the literature, in Sec. IV B we show the
results of two statistical tests for the various bases, in
Sec. IV C we comment on the theoretical and empirical
speedups using the ROQ, and finally in Sec. IV D we
compare the results of doing a parameter estimation
analysis with the standard and the ROQ likelihoods.

A. Basis generation and comparison
with other ROQ methods

In this section, we describe how we generate the bases that
will be used for testing andparameter estimation.Weconstruct
bases for both IMRPhenomPv2 [27] and IMRPhenomXPHM
[28]. Both waveform models take into account the effects of
spin precession and IMRPhenomXPHM also includes higher
order mode GW emission.
For IMRPhenomPv2 we generate the bases listed in

Table I, covering a chirp mass (M) range between 0.95M⊙
and 45M⊙. Given that integration is performed from a low-
frequency cutoff of 20 Hz, we find the bases’ duration
ranging from 256 to 4 s. For IMRPhenomXPHM, we
generate the bases listed in Table I, with chirp masses
ranging between 2.18M⊙ and 110M⊙ and corresponding
durations between 64 and 4 s from 20 Hz. We show in
Fig. 2 an example of an IMRPhenomXPHM waveform and
its corresponding empirical interpolant. More specifically,
the upper panel shows the real part of the plus polarization
Reðh̃þÞ and the lower panel shows its square jh̃þj2 in the
frequency domain. The corresponding interpolation nodes
and empirical interpolant are shown to visually confirm the
goodness of the fit to the original waveform. The param-
eters of the template are shown in the caption of Fig. 2 and
are selected so that the quadratic EIM error is equal to the
median quadratic EIM error over the testing set of wave-
forms of the basis of Table II covering M∈ ½10; 15�M⊙.

Algorithm 6. EnrichROB to construct anEIMunder tolerance.

1: Input: Initial ROB fe⃗igni¼1 and EIM fβigni¼1, maximum
number of waveforms selected N, tolerance σ, maximum
number of waveforms computed Nlim, maximum number of
eigenvectors used nλ

2: repeat
3: Generate Nlim;j waveforms fhAgN lim;j

A¼1 and compute their
EIM error σEIM;A

4: Select the N waveforms fhAgNA¼1 with largest σEIM
5: Save the minimum value of σEIM for the selected

waveforms: σEIM;min

6: MROB
AB ¼ hhA; hBi −

Pnj−1
c¼1hhA; ecihec; hBi

7: Diagonalize MROB
AB and obtain eigenvalues λA and

eigenvectors EAB
8: Compute the nλ normalized eigenvectors in waveform

domain with largest δσA;max ¼ λA max
B

jEABj2: fu⃗AgnλA¼1

9: repeat
10: Compute the maximum contribution of each

eigenvector to σEIM;A:
fδσEIMA;max ¼ λAð1þ kðP̂†V̂Þ−1P̂†u⃗Bk2ÞmaxBjEBAj2gnλA¼1

11: Find largest δσEIMA;max: Asel ¼ argmax
A

ðδσEIMA;maxÞ
12: Add the corresponding eigenvector to the ROB:

fe⃗igni¼1 ← fe⃗igni¼1 ∪ fu⃗Asel
g

13: Remove the selected eigenvector from the
eigenvector list: fu⃗AgnλA¼1 ← fu⃗AgnλA¼1nfu⃗Asel

g
14: Input fe⃗igni¼1, Nrounds, fu⃗AgnλA¼1 and their

corresponding eigenvalues fλAgnλA¼1 into Algorithm 5 to
obtain a new EIM fβigni¼1.

15: Find new error of selected waveforms fσnewEIM;AgNA¼1

16: until maxA σnewEIM;A ≤ σ
17: until σEIM;min < σ

18: Output: ROB feigni¼1
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We can observe how both the linear and quadratic parts
have a complicated dependence on frequency, coming
from the interference of the higher order modes with
the main (2,2) mode. This is the principal reason for the
larger number of linear and specially quadratic elements
when comparing the basis of IMRPhenomPv2 and
IMRPhenomXPHM.
The 4 and 8 s basis of IMRPhenomPv2 and

IMRPhenomXPHM are directly comparable with those
published in Ref. [21] computed using PyROQ, since they
cover the exact same parameter space and frequency range.
We observe that the number of basis elements in PyROQ and
EigROQ is generally similar and we expect it to be smaller

than that of a comparable basis constructed with GreedyCPP.
However, the number of test points over the set tolerance is
about an order of magnitude smaller in our bases than in the
PyROQ ones.4 We attribute this improvement to the way we
approach the minimization in the error of the empirical
interpolant. In the PyROQ algorithm, it is implicitly assumed
that once a template is below the tolerance it will remain
like this throughout the computation, which would be true
if the EIM error were monotonically decreasing. This,
however, is not true, in general, as adding new templates to
the base can deteriorate the fit and, in particular, it can bring
some of the waveforms that were under the tolerance, back
over tolerance. The fact that this is happening can be
explicitly seen in Ref. [21] because the maximum EIM
error in the training set is over the tolerance. To alleviate
this problem, we simultaneously use the N waveforms with
initially more EIM error, even if some of them are already
below tolerance.
We have also extended the parameter space of the ROQ

bases with respect to those computed by PyROQ in Ref. [21],
with durations up to 256 s for IMRPhenomPv2 and 64 s for
IMRPhenomXPHM. Doing this in PyROQ is computation-
ally challenging since finding the template with the
largest associated EIM error requires the recomputation
of the waveforms in the training set many times. With our
methods, this is no longer the case, as we only need to
compute any given waveform once. This allows more
complex case studies to be feasible.

B. Statistical tests

In this section, we perform two different statistical tests
to check the faithfulness of the ROQ basis in gravitational
waves inference, a likelihood test and a percent-percent
(P-P) test.
The likelihood test consists of a comparison of the log-

likelihood ratios evaluated using the standard waveform
with those obtained using the ROQ approximation. The
log-likelihood ratio is defined as the ratio between the
likelihood of Eq. (2) and the likelihood of the noise
hypothesis (h ¼ 0); that is,

logLratioðdjθ⃗Þ ¼ log
Lðdjhðθ⃗ÞÞ
Lðdj0Þ

¼ ðd; hðθ⃗ÞÞ − 1

2
ðhðθ⃗Þ; hðθ⃗ÞÞ: ð54Þ

This quantity, which is just the likelihood of Eq. (2)
removing the constant part that only depends on the data, is
what wewill be referring to as the log-likelihood throughout
the rest of the text. The log-likelihood is the crucial quantity
used in estimating the parameters of a given GW event,

FIG. 2. Example of an IMRPhenomXPHM template and its
empirical interpolant. Upper: we show the real part of the plus
polarization of the template Reðh̃þÞ as a function of the frequency.
Lower: we depict its square jh̃þj2. We superimpose in each panel
the corresponding interpolation nodes and empirical interpolants
as defined in (24). The template shown has M ¼ 13.6M⊙,
q ¼ 2.61, χeff ¼ −0.011 [38,39], χp ¼ 0.208 [40], and inclination
angle ι ¼ 61.6°. Using the ROQ basis of Table II covering
M∈ ½10; 15�M⊙, we have linear and quadratic EIM errors of
σEIMlinear ¼ 1.26 × 10−9 and σEIMlinear ¼ 6.06 × 10−8, respectively.

4Note that while in Ref. [21] the bases use 106 points for
testing, we use 107 points.
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which is the ultimate end for which the ROQ is created.
We perform likelihood tests on the IMRPhenomPv2 and
IMRPhenomXPHM bases described in Tables I and II,
respectively, and show the results in Fig. 3. To obtain the
difference in the log-likelihood, we create a random reali-
zation of Gaussian noise and inject a waveform calculated
using the corresponding approximant. The injected wave-
forms’ parameters are randomly sampled from uniform
distributions whose boundaries are the respective ROQs’
ranges of validity. We use a fixed distance of 100 Mpc and
randomly sample the incoming direction of the GW from a
uniform distribution in the sky. We then compute the
standard log-likelihood and the ROQ log-likelihood using
the same injected waveform and compare them. What we
plot is the relative difference between both logarithms for a
total of 1.5 × 105 realizations. We see the maximum
discrepancy lies below 0.1 for every case considered here,
and the bulk of the samples lie below 10−3.
Given that the likelihood is the only signal-dependent

quantity that enters the computation of the posterior [Eq. (1)],
as long as the ROQ and standard likelihoods agree

reasonably well, we can expect the PE posteriors with and
without the ROQ to be virtually the same. According to the
Wilks theorem [41] in the frequentist and large sample size
limits, the quantity −2 logfL=Lmaxg is distributed as a χ2

with a number of degrees of freedom equal to the number of
parameters being fitted by the PE. In the case of a CBC, we
need 15 parameters to fully characterize the binary, although,
since the azimuthal spin angles and phase of coalescence are
usually so poorly constrained, in most cases the effective
number of parameters is reduced to 12. We then expect
logfL=Lmaxg ¼ −5.7þ3.1

−4.8 , which is in accordancewith most
of the GWobservations, especially thosewith high signal-to-
noise ratio (SNR). Under the same model, the standard
deviation of logL is σL ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Neff=2

p
∼

ffiffiffi
6

p
∼ 2.4, where Neff

is the effective number of parameters. Therefore, as long as
the difference between the logarithm of the standard and the
ROQ likelihoods is much smaller than σL ∼ 2.4, we expect
the posteriors to be similar.
From Eq. (54), we observe that the likelihood ratio of a

GW signal will approximately be given by logL ∼ ρ2=2,
where ρ is the SNR. Therefore, the condition that Δ logL ≪
2.3 can be translated into a condition on the SNR,

ρ ≪ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logL
Δ logL

s
; ð55Þ

which can be used to interpret Fig. 3 in terms of up to which
SNR we can trust the posteriors obtained when using the
corresponding ROQ. If we want the ROQ to be valid for
the analysis of larger SNRs, we can always decrease the
tolerance σ with which we generate it, at the expense of
having more basis elements.
The second of the tests is the percent-percent plot [42,43].

P-P plots have been widely used in the literature [44] to
validate codes that perform Bayesian parameter estimation.
Therefore, we use the P-P plots to directly test the ROQ’s
faithfulness in its intended use. In this specific case, to
make the P-P plots shown in Fig. 4, we use the posteriors
probability density functions (PDFs) resulting fromperform-
ing PE on 200 injections. The PE analyses are done using the
ROQ likelihood and the DYNESTY [45] sampler within the
BILBY [46] framework, and the injections use the same
waveform model for which the corresponding ROQ was
constructed. The priors of the PE and the distribution from
which the injections are drawn are the sameand coincidewith
the parameter space in which each ROQ basis has been
constructed. For the extrinsic parameters, we put priors that
are uniform in the sky and in comoving volume, going to a
maximumdistance tailored for each chirpmass range to have
detectable signals.
In the P-P plots of Fig. 4 we show the fraction of

posterior PDFs for which the injected value of the param-
eter is found in a given confidence interval (C.I.) as a
function of that same confidence interval. We expect the
fraction of injected parameter values that fall into a

FIG. 3. Likelihood error tests for various M ranges. Specifi-
cally, we plot Δ lnL= lnL, that is, the fractional error of the
lnL when calculated with and without the ROQ. Upper:
IMRPhenomPv2. Lower: IMRPhenomXPHM.
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particular confidence interval of the posterior PDFs to be
drawn from a uniform distribution. We can thus assign a p
value quantifying such claim [43], individually for each
binary parameter and jointly for all the parameters. The p
values are shown in the legends of Fig. 4. For all the P-P
plots shown, the cumulative distribution functions of the
majority of the parameters fall within the 3σ regions,
leading to p values that are consistent with a uniform
distribution. The combined p values lie between 0.49 and
0.89, indicating that the posterior PDFs produced using
these ROQs are well calibrated.

C. Speedup analysis

The main purpose of the ROQ is to accelerate the
computation of the GW likelihood. To test how good it is
in this regard we perform a series of speedup trials shown in
Fig. 5. There are two quantities that we evaluate for the
benchmarking test: the waveform and the Gaussian log-
likelihood described in Eq. (2). The tests consist of timing
several calculations of both quantities for the standard case
and the ROQ case. The sets of parameters used as inputs are
drawn from uniform distributions with boundaries based on
the range of validity of the corresponding ROQ basis. The
ratio between the time for the standard method and the ROQ
is what we call the empirical speedup, where we use the
term empirical because we perform the actual likelihood

and waveform computations using PYTHON [47] and the
BILBY [46] framework. For IMRPhenomXPHM waveform
speedups,we disable the defaultmultibanding [37], which is
used to speed up the full waveform computation by reducing
the number of frequencies the model is evaluated at and then
interpolates between them. Therefore, we disable this to test
if the model is linear with the number of frequencies at
which it is evaluated. However, for the likelihood test, we
compute the speedups both without and with multibanding
enabled, to explore real-world speedup gains.
In Fig. 5, we differentiate the speedups using triangles

for the waveform, squares for the log-likelihood, and in the
IMRPhenomXPHM case, circles for the log-likelihood
with multibanding enabled. We can also compare with
the theoretical speedups that are plotted as histogramlike

FIG. 4. P-P plots performed with different ROQ bases as stated
in each subplot’s legend. We show here the result of 200
injections being drawn from the corresponding ROQ-compatible
prior, as stated in Tables I and II. The contours in gray delimit the
1σ, 2σ, and 3σ regions. We plot a line for every parameter that
uniquely characterizes a given CBC with consistent colors and
styles across subplots. The lines represent the cumulative fraction
of events.

FIG. 5. Speedup factor for the IMRPhenomXPHM (upper) and
IMRPhenomPv2 (lower) waveforms in the different regions in
chirp mass where the ROQ has been computed. We can differ-
entiate theoretical and empirical speedups. The empirical speed-
ups are calculated as the ratio between the time spent in
computing the waveform without and with the ROQ and are
plotted as triangles. Squares are obtained in the same way, but
employing the likelihood. In the IMRPhenomXPHM case, we
include the likelihood speedups with the multibanding option
enabled (circles) and disabled (squares). The theoretical speedups
are drawn as bars. The dashed bars represent the speedup when
array frequency duplications are accounted for, while solid bars
are for when they do not.
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bars in the figure. There are two kinds of bars, the solid
ones represent the quantity

theoretical speedup ¼ L
NL þ NQ

; ð56Þ

where L is the number of frequencies for the waveform
evaluation in the standard computation, and NL and NQ are
the frequency nodes for the linear and quadratic ROQ bases
without factoring out repeated frequencies. This is the
theoretical speedup that is usually attributed to the ROQ
in the literature [20]. The dashed bars are the samequantity as
in Eq. (56) when the frequencies belonging to both the linear
and thequadratic interpolation list of frequency nodes are just
considered once, thus the notation L=NL∪Q. In the ROQ
likelihood we need to call the waveform model only once at

the frequencies defined by ffigNL∪Q
i¼1 ¼ fFjgNL

j¼1 ∪ fF kgNQ

k¼1,
as is done in BILBY. Therefore,L=NL∪Q will be the theoretical
speedup of the waveform evaluation if we assume that its
computation time is proportional to the number of sampling
points. For the IMRPhenomXPHM case, the difference
between NL þ NQ and NL∪Q can be significant since there
are many repeated interpolation nodes at low frequencies.
The reason is that, in the low-frequency region, the amplitude
is larger and thewaveform oscillates more rapidly than in the
high-frequency part. Consequently, the interpolation nodes
tend to concentrate at low frequencies, leading some of them
to coincide in the linear and quadratic ROQ. This behavior
can be seen in Fig. 2.
For M smaller than ∼20M⊙, we see that the waveform

speedups are constant in the entireM range of a given basis
and are always close to the theoretical value of L=NL∪Q.
This is in agreement with our expectations, since the
IMRPhenom models describe the inspiral in a way that
the computation time is linear with the number of sampling
points, and their implementation in LALSimulation [48]
being tested is written efficiently in C [49], with minimal
overheads. In the case of large M, above ∼20M⊙, the

waveforms start being dominated by the merger and ring-
down, the last two phases of a CBC, which are harder to
model, and the speedup of the IMRPhenom models is
smaller than the theoretical expectation. This can be due to
the waveform generation stopping above the ringdown
frequency, meaning that the model is evaluated at fewer
frequency points for high mass signals. Furthermore, when
the waveform uses sufficiently few frequency points, fixed
costs associated with calculating post-Newtonian and
phenomenological parameters of the model become impor-
tant. Therefore, as M increases, the trend of the waveform
speedup is to decrease until a value of Oð1Þ is reached and
we have no speedup at all.
For the IMRPhenomXPHM likelihood speedups, we

show both the results with and without disabling the default
multibanding [37],which is used in the standard likelihood to
speed up the full waveform computation. We observe that
without multibanding IMRPhenomXPHM has a likelihood
speedup very close to the theoretical value. This is due to the
fact that the computation time of the likelihood is dominated
by the waveform evaluation, and the BILBY implementa-
tion of the ROQ likelihood only generates the waveform

once at the frequencies ffigNL∪Q
i¼1 ¼ fFjgNL

j¼1 ∪ fF kgNQ

k¼1.
However, when one includes the multibanding option, the
IMRPhenomXPHM is already internally being evaluated in
fewer frequency points, and therefore the speedup can be
significantly lower than the expected one, although it still
reachesmedianvalues that can be as large as 5 andwhichwill
be noticeable in PE applications. Looking at the targeted
bases that are introduced in Table III, we observe that, in this
case, the speedup over the standard multibanded case can be
even larger, reaching a value of 29.2þ1.4

−4.6 for the base targeted
at GW170817 [50].
In the IMRPhenomPv2 case, we observe that the like-

lihood speedup is significantly below thewaveform speedup
and, therefore, also below the theoretical speedup. To
understand this discrepancy, we note that, for the standard
likelihood case, the computation time is dominated by
evaluating the waveform in all the required frequencies

TABLE III. Focused IMRPhenomXPHM bases for GW190814 (Δf ¼ 1=16 Hz) and GW170817 (Δf ¼ 1=256 Hz). We limit the
magnitudes of the two spins −0.8 ≤ χi ≤ 0.8 for i∈ ½1; 2� and the full range for the spin angles ð0; 0Þ ≤ ðθJ; α0Þ ≤ ðπ; 2πÞ. For the
GW190814, we limit the mass ratio q ≤ 16, while for GW170817 we limit it q ≤ 4. For the creation of the two bases, we run EigROQ
with the same configuration. In Algorithm 1, we set the maximum number of waveforms selected N ¼ 20000, tolerances of each step
σi ¼ ½10−2; 10−3; 10−4�, and maximum number of waveforms computed per step Nlim;i ¼ ½105; 3.16 × 105�. In Algorithm 6, we set
N ¼ 106, σ ¼ 10−4, Nlim ¼ 107, and the maximum number of eigenvectors used nλ ¼ 5000. The theoretical speedup has been
computed with Eq. (56), while the empirical speedup is the median and 90% credible interval of the corresponding points in the lower
panel of Fig. 5. For the empirical speedups, we show the values both without (Emp.) and with (MB) the IMRPhenomXPHM
multibanding option enabled [37].

Frequency range (Hz) McðM⊙Þ Basis size Likelihood speedup

Min. Max. Δf ðHzÞ Min. Max Linear Quadratic Theoretical Empirical MB

20 2048 1=16 6.2 6.6 1090 816 17.0 21.6þ3.8
−3.6 4.8þ1.1

−0.6
20 2048 1=256 1.195 1.200 1392 2007 152.7 151.8þ4.5

−4.1 29.2þ1.4
−4.6
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and computing the overlap integrals of Eq. (2), both ofwhich
will be proportional to L. However, for the ROQ likelihood,
the time to compute the waveform and overlap integrals is
significantly reduced since they are proportional to
NL þ NQ ≪ L. Given the fact that IMRPhenomPv2 is much
faster to generate than IMRPhenomXPHM, the computation
time starts to be dominated by fixed-cost operations, which,
for example, include computing the parameters of the
waveform models and finding the detector responses as well
as possible overheads.
To further explore this hypothesis, we model the com-

putation time of the likelihood as a coefficient multiplying
the number of frequencies being evaluated plus a constant
term that represents the fixed-cost operations. Since for
IMRPhenomPv2, NL∪Q ∼ NL þ NQ, we have

T ¼ A · Lþ B; ð57Þ

TROQ ¼ a · ðNL þ NQÞ þ b: ð58Þ
To compute the speedup, we divide Eq. (57) by Eq. (58),
obtaining

fðL;NL; NQ;B; a; bÞ ¼
Lþ B

aðNL þ NQÞ þ b
; ð59Þ

where we have divided all the coefficients by A, which is not
expected to be 0. In Fig. 6, we show the ratio between the
empirical and theoretical likelihood speedups, together with
the best fit of our model in Eq. (59). We observe very good
agreement between the model and the data. From the fitted
values of B, a, and b, also displayed in the plot, we can
substantiate our hypothesis that the fixed-cost operations in

the ROQ likelihood is making the empirical speedup of the
IMRPhenomPv2 smaller than the theoretical value.We find a
value of a ¼ 1.00� 0.16, and therefore, from Eq. (59),
we observe that, if the coefficients B and b describing
the fixed costs were zero, we would recover the theoreti-
cal speedup result. However, since we find a value of
b ¼ ð6.7� 2.0Þ × 102, the IMRPhenomPv2 speedup is
reduced with respect to the theoretical unless we have a very
large number of basis elements such thata · ðNL þ NQÞ ≫ b.

D. Application to GW events

Wenow perform four PE analyses [10] on three confirmed
GWevents using the ROQapproximation.More specifically,
we use the IMRPhenomXPHM 16 s basis described in
Table II for the GW191129_134029 [51] event and the
IMRPhenomPv2 256 s basis of Table I for the GW170817
[50] event. For the other two PE analyses of GW190814 [52]
and GW170817 with IMRPhenomXPHM, in a similar spirit
to Refs. [22,23], we construct targeted ROQ bases with
narrow M ranges, listed in Table III. These bases are
centered on the search M value and have a narrow width
tuned to be larger than the expected chirp mass resolution.
Note that the bases have been generated using a factor of 10
times fewer waveforms than that of Tables I and II, since the
parameter space they cover is smaller.
The analyses use the ROQ likelihood and the DYNESTY

[45] sampler within version 2.1.0 of BILBY [46] and the
version 5.1.0. of LALSimulation. The PSDs employed were
estimated using BayesWave [53,54] and are those used by the
LVK Collaboration for the public analysis of the events. We
also include the effects of calibration uncertainties [55–57]
in the phase and the amplitude.
The first event we discuss is GW191129_134029

[51,58]. This is an event with Mdetector ¼ 8.48þ0.06
−0.05M⊙,

so we can use the 16 s IMRPhenomXPHM ROQ basis. It
has a relatively big median network SNR of 13.1, allowing
us to put tight constraints on the parameters and better see if
any differences arise between the ROQ and the standard
posterior. We perform two BILBY runs with the exact same
configuration, one using the standard GW likelihood and
the other using the ROQ likelihood.
In Fig. 7, we show the difference between the logarithm

of the standard and the ROQ likelihoods, for the posterior
samples of the PE with the ROQ likelihood. This difference
corresponds to the ROQ error in the log-likelihood. We find
a 90% C.L. error of Δ logL ¼ 0.075þ0.051

−0.057 . Since
Δ logL ≪ 1, we expect the posteriors with and without
the ROQ to be almost the same. Using that the log-
likelihood of this event is logL ¼ 84.2þ2.9

−4.1 , and the frac-
tional error in the ROQ log-likelihood computation is
δL ¼ ð9.1þ6.3

−6.8Þ × 10−4.5 The distribution of errors is

FIG. 6. Ratio between empirical speedup and the theoretical
speedup of Eq. (56), plotted as a function of the total elements of
the ROQ basis (NL þ NQ) for IMRPhenomPv2. The color of the
error bars encodes the logarithm of the number of frequencies
where the waveform is evaluated in the standard computation
logL. In the inset, we show the functional form we fit, which
comes from Eq. (59), as well as the 1σ uncertainty for the three
fitted parameters. We also plot as black crosses the results
obtained evaluating the best fit in the data points.

5We define the fractional error in the ROQ log-likelihood
computation as δL ¼ Δ logL= logL.
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centered at a positive value, as one would expect if the
waveform model were a good representation of reality,
since any error in the ROQ modelization of the waveform
would push it away from the true GW and, thus, to a lower
likelihood value.
In Fig. 8, we corroborate that, indeed, the posteriors

with and without the ROQ are similar by showing the
corresponding distributions for the detector frame chirp
mass M and the mass ratio q. We find a Jensen-Shannon
divergence [59] of 1.3 × 10−4 and 1.9 × 10−4, respectively,

robustly assessing the similarity between the distributions
with and without the ROQ approximation.
The second event we analyze is GW190814 [52,58].

This event was measured to have a chirp mass of
M ¼ 6.42−0.020.02 M⊙ and a very unequal mass ratio of
0.11−0.010.01 , which is below the mass ratios of q > 0.25
explored in the bases of Table II. Therefore, we create
a targeted ROQ base with 16 s of duration and a
chirp mass range from 6.2M⊙ to 6.6M⊙ for the
IMRPhenomXPHM waveform. In Fig. 7, we show the
ROQ log-likelihood errors of the posterior samples of
the PE performed using this targeted basis. We have that
Δ logL ¼ 0.034þ0.048

−0.043 , which is similar in magnitude to
that of GW191129_134029. Again, since Δ logL ≪ 1, we
expect the posteriors with and without the ROQ to be
almost the same. However, for this event, the log-likelihood
is larger, at logL ¼ 310.3eþ 02þ3.1

−5.0 , and therefore the
relative error in the ROQ log-likelihood computation is
smaller, at δL ¼ ð1.1þ1.5

−1.4Þ × 10−4.
The last GW event we analyze is GW170817 [50], the

event with the largest network SNR (∼33) ever detected.
It was identified as a binary neutron star with M ¼
1.1976þ0.0004

−0.0002 [60] and we use it to probe the longest of

FIG. 8. Posterior distributions for the mass ratio and M in the
detector frame for the ROQ and non-ROQ analysis of
GW191129_134029. The 90% credible regions are indicated
by the solid contour in the joint distribution and by the dashed
vertical and horizontal lines in the marginalized distributions.

FIG. 7. Difference between the logarithm of the standard
likelihood and the logarithm of the ROQ likelihood for the three
events analyzed.

FIG. 9. Posterior distributions for the mass ratio q and the
inclination angle θJN for the ROQ analysis of GW170817. In blue
we plot the IMRPhenomXPHM run and in green IMRPhe-
nomPv2. Three contours per run delimit the 1σ (68.3% C.L.),
2σ (95.4% C.L.), and 3σ (99.7% C.L.) credible regions in the
joint q − θJN distribution. Note that the noncontinuous behavior
of the contours near the border is an artifact of the Gaussian
kernel employed in the drawing. This is expected whenever the
parameter is bounded and presents many samples close to the
border.
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our IMRPhenomPv2 bases with 256 s in duration as well as
a targeted ROQ using IMRPhenomXPHM for such long
signals. For our analysis, we make use of the public strain
data after noise subtraction [61]. In Fig. 7, we show the
ROQ log-likelihood errors of the posterior samples of both
PEs. For both cases, we do not expect the ROQ error to
significantly impact the posterior, sinceΔ logL ≪ 2.3. The
IMRPhenomPv2 PE has an order of magnitude smaller
ROQ error than the IMRPhenomXPHM case. This is most
likely the result of the IMRPhenomPv2 basis being con-
structed with a tolerance σ ¼ 10−5, which is an order of
magnitude smaller than the tolerance σ ¼ 10−4 used in the
IMRPhenomXPHM case. In the IMRPhenomPv2 case, the
log-likelihood is 536.1þ3.2

−4.3 and the corresponding fractional
error is δL ¼ ð−0.1þ2.8

−2.6Þ × 10−5. In the IMRPhenomXPHM
case, we find a larger likelihood of 538.1þ4.3

−5.1 , which is
expected since the higher order modes give more freedom
to the waveform to fit the data. The corresponding frac-
tional error is δL ¼ ð0.5þ4.1

−4.0Þ × 10−4. Comparing the Bayes
factors of both PE runs, adjusted to have the same priors,
we find logB ¼ 1.1� 0.3 in favor of IMRPhenomXPHM,
which can be taken as evidence for higher order modes in
the signal. This highlights the importance of considering all
physical effects of the waveform. To further make this
point, we show in Fig. 9 how the addition of the higher
order modes improves the determination of the mass ratio
and the inclination angle θJN , even for this low mass CBC
for which the higher order modes are harder to measure in
LIGO-Virgo [12].

V. CONCLUSIONS

In this paper, we have explored in-depth reduced order
quadrature methods applied to GW data analysis and have
presented novel algorithms to improve different aspects of
the ROQ bases’ construction. ROQ methods offer a signifi-
cant advantage by reducing the computational burden
associated with likelihood evaluations, especially for
long-duration waveforms and therefore can greatly speed
up parameter estimation analyses. Existing procedures for
constructing ROQ bases encounter challenges in approxi-
mating waveforms that include complicated features such as
precession or higher order modes. We present algorithms to
address these limitations by making use of SVDmethods to
characterize thewaveform space and choose a reduced order
basis close to optimal.We also propose improvedmethods to
select the empirical interpolation nodes, greatly reducing the
error induced by the empirical interpolation model.
We have demonstrated the effectiveness of our

algorithm by constructing multiple ROQ bases for the
IMRPhenomPv2 and IMRPhenomXPHM waveforms,
ranging in duration from 4 to 256 s. These bases have
been subjected to various tests, including likelihood error
tests and P-P tests, to validate their accuracy and trust-
worthiness for data analysis applications. The speedup of

these bases has also been empirically explored, confirming
that ROQ methods provide close to the expected reduction
in computational time compared to traditional likelihood
calculations.
Furthermore, we have performed end-to-end parameter

estimation analyses on several confirmed GW events. The
results provide compelling evidence of the algorithm’s
ability to generate ROQ bases that accurately represent
complex waveform models over both broad and targeted
parameter spaces. By directly comparing the posterior
distributions using the ROQ and standard methods and
understanding the log-likelihood error distributions, we
validate that our bases can straightforwardly be incorpo-
rated into current pipelines to produce precise and unbiased
parameter estimations in real gravitational wave detec-
tor data.
In conclusion, the algorithms introduced in this paper

represent a step forward in the quest to efficiently exploit
the capabilities of advanced gravitational wave detectors.
We improve upon previous ROQ construction algorithms
allowing for more efficient bases in regions of parameter
space that were previously inaccessible. As gravitational
wave astronomy continues to evolve, and the number of
events detected per year continues to grow, having fast and
accurate techniques to perform parameter estimation will
undoubtedly play a vital role in maximizing the scientific
potential of future observatories and advancing our knowl-
edge of the Universe.
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APPENDIX: FAST WAY TO UPDATE
kÂ− 1kF AND σtotEIM

In this appendix, we assume that we have the inverse of

the matrix Āij ¼ ejðXiÞ and its Frobenius norm k ˆ̄A−1kF,
defined in Eq. (47), and wewant to compute the inverse and
Frobenius norm of the inverse of the matrix Aij, defined as

Aij ¼
	 ejðxβiÞ i ≠ k

ejðxβ0kÞ i ¼ k;
ðA1Þ

which is just the result of changing the row k of Āij. We
then use the fact that, from the properties of the inverse Āij,
we have

ðÂ ˆ̄A
−1Þij ¼

(
δij i ≠ kP

n
l¼1 elðxβ0kÞð ˆ̄A

−1Þlj ≡ cj i ¼ k:
ðA2Þ

Since the matrix of Eq. (A2) has such a simple structure,
it can be analytically inverted as

ððÂ ˆ̄A
−1Þ−1Þij ¼

8>><
>>:

δij i ≠ k

− cj
ck

i ¼ k; j ≠ k

1
ck

i ¼ j ¼ k;

ðA3Þ

and we can use that Â−1 ¼ ˆ̄A
−1ðÂ ˆ̄A

−1Þ−1 to show that

ðÂ−1Þij ¼
( ð ˆ̄A−1Þij − cj

ck
ð ˆ̄A−1Þik j ≠ k

1
ck
ð ˆ̄A−1Þik j ¼ k:

ðA4Þ

We observe that this way of computing the inverse will
require Oðn2Þ for computing cj with Eq. (A2) and also
Oðn2Þ operations to update each element of Â−1 using
Eq. (A4). So the total number of operations will be Oðn2Þ,
much smaller than the Oðn3Þ required to directly invert the
matrix.
Using this expression for the updated inverse, we can

find a way to update also the Frobenius norm of the inverse,
which is given by

kÂ−1k2F ¼
Xn
i;j¼1

jðÂ−1Þijj2

¼
Xn
i;j¼1





ð ˆ̄A−1Þij −
cj
ck

ð ˆ̄A−1Þik




2 þXn

i¼1





 1ck ð ˆ̄A−1Þik




2

¼ k ˆ̄A−1k2F þ 1

jckj2
�
1þ

Xn
j¼1

jcjj2
��Xn

i¼1

jð ˆ̄A−1Þikj2
�

− 2Re

�
1

ck

Xn
j¼1

�Xn
i¼1

ð ˆ̄A−1Þikð ˆ̄A−1Þ�ij
�
cj

�
; ðA5Þ

where we can precompute with Oðn2Þ operations the

factors in square brackets that only depend on ˆ̄A for each
row k that we will change, and afterward, updating the
Frobenius norm will only need OðnÞ operations on top of
the Oðn2Þ operations needed to compute cj for each new
row q we want to test. Since with Eq. (A5) we do not need
to update the inverse each time that we want to update its
Frobenius norm, we can avoid the Oðn2Þ memory alloca-
tions that are needed in Eq. (A4).
We will now also look for a method to rapidly compute

σtotEIM. We assume that we have the value computed for an
EIM whose variables we denote with a bar over them,

σ̄totEIM ¼
Xnλ
B¼1

ðλB þ k ˆ̄A−1 ⃗v̄Bk2Þ; ðA6Þ

where we have defined

v̄B;i ¼
ffiffiffiffiffi
λB

p
uB;βi : ðA7Þ
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When we change the kth interpolation node of the EIM
from βk to β0k, this becomes

vB;i ¼
	 ffiffiffiffiffi

λB
p

uB;βi i ≠ kffiffiffiffiffi
λB

p
uB;β0k i ¼ k;

ðA8Þ

and the value of multiplying Â by v⃗B will change to

ðÂ−1v⃗BÞi ¼
Xn
j¼1

ðÂ−1ÞijvB;j

¼
Xn
j¼1

�
ˆ̄A
−1
ij −

cj
ck

ˆ̄A
−1
ik

�
vB;j þ

1

ck
ˆ̄A
−1
ik vB;k

¼
Xn
j¼1

ˆ̄A
−1
ij v̄B;j|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

Ω̄B;i

þ
�
1

ck

�
vB;k −

Xn
i¼1

cjv̄B;j

��
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΘB

ˆ̄A
−1
ik|{z}
Γ̄i

;

ðA9Þ

where we have used the updated value of Â−1 computed in
Eq. (A4) and we put a bar over the variables that do not
depend on the value of the new interpolation node. Using
Eq. (A9), σ̄totEIM becomes

σtotEIM ¼
Xnλ
B¼1

�
λB þ

Xn
i¼1

jΩ̄B;i þ ΘBΓ̄ij2
�

¼ σ̄totEIM þ
�Xnλ

B¼1

jΘBj2
��Xn

i¼1

jΓ̄ij2
�

þ 2Re

	Xnλ
B¼1

�
ΘB

�Xn
i¼1

Ω̄�
B;iΓ̄i

��
: ðA10Þ

In general, wewill assume that nλ ≫ n. For each row k that
we change,we canprecomputewithOðnnλÞ operations all the
factors in square brackets that will stay constant. Afterward,
the computational complexity of updating the value of σtotEIM
will require OðnnλÞ operations for computing ΘB and only
OðnλÞ additional operations to evaluate Eq. (A10).
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