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Accurate noise estimation from gravitational wave GW data is critical for Bayesian inference. However,
recent studies on ringdown signal, such as those by Isi et al. [Phys. Rev. Lett. 127, 011103 (2021)], Cotesta
et al. [Phys. Rev. Lett. 129, 111102 (2022)], and Isi and Farr [arXiv:2202.02941], have encountered
disagreement in noise estimation, leading to inconsistent results. The key discrepancy between these
studies lies in the usage of different noise estimation methods, augmented by the usage of different
sampling rates. We achieved consistent results across various sampling rates by correctly managing noise
estimation, shown in the case study of the GW150914 ringdown signal. By conducting a time-domain
Bayesian inference analysis on GW data, starting from the peak of the signal, we discovered that the first
overtone mode is weakly supported by the amplitude distribution, with a confidence level of 1.6σ, and is
slightly disfavored by the log-Bayes factor. Overall, in our time-domain analysis we conclude there is no
strong evidence for overtones in GW150914.
DOI: 10.1103/PhysRevD.108.123018

I. INTRODUCTION

Over 90 gravitational wave (GW) events have been
identified by the LIGO-Virgo-KAGRA (LVK) Collaboration
throughout its first three observing runs [1–3]. It is envisaged
that the aftermath of a violent collision is a distorted object
that emits ringdown signal during its oscillatory phase until it
stabilizes [4,5]. The ringdown signal is characterized by a
superposition of quasinormal modes (QNMs) [6–8], which
are usually decomposed into spin-weighted spheroidal
harmonics with angular indices ðl; mÞ. Each angular index
encompasses a series of overtone modes, represented
by n [9]. The analysis of ringdown signal presents a unique
opportunity to test general relativity (GR) in the strong field
of gravity.
Typically, aside from the fundamental mode (l ¼ m ¼ 2,

n ¼ 0), we anticipate that higher multipoles would be
readily detectable in GW data for asymmetric mass-ratio
systems [10–13]. However, for events similar to GW150914
[14], which has a mass ratio nearing 1, the contributions of
higher multipoles can be disregarded. Note that higher
modes excitation is also strongly correlated with the source
inclination. Contributions of them are suppressed for a
face-off source, which is the case for GW150914 [15].
GW150914 represents the first binary black hole (BBH)
event identified by the LVKCollaboration during its first two
observing runs [1]. This event is particularly suitable for

ringdown analyses, given that the signal-to-noise ratio
(SNR) contained in the “linear” regime is around 8 while
the postpeak SNR is around 14 [16–19]. Note that the post-
peak data are likely not entirely describable through a linear
ringdown model, because nonlinear and time-dependent
corrections have a big impact very close to the peak [20]
Carullo et al. [21] performed an analysis of its ringdown
signal and confirmed the absence of evidence for higher
multipoles.
Promisingly, Giesler et al. [22] determined that when

overtone modes are incorporated into the ringdown wave-
form, it can correspond to a numerical relativity (NR)
waveform commencing from the peak amplitude, immedi-
ately following the merger. The existence of the first
overtone mode, based on GW150914, has been investi-
gated by various methods. These include the time-domain
(TD) method [17,18,23–27], the frequency-domain (FD)
method [28–31], and the mode cleaning method [32–34].
Among these techniques, the TD method is particularly
prevalent and has been applied in ringdown analyses
for other events [17,18]. Moreover, it has been exten-
sively utilized in testing the no-hair theorem [16,30],
the black hole (BH) area law [23], non-Kerr parameters
[17,18,35–42], as well as in the exploration of BH
thermodynamics [43,44].
However, employing the TD method, Cotesta et al. [24]

concluded that the “claims of an overtone detection are
noise dominated” when they scrutinized the ringdown
signal of GW150914 at a sampling rate of 16 kHz. This
is at odds with the findings of Isi et al. [23], who analyzed
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the identical ringdown signal at a sampling rate of 2 kHz.
In response to Cotesta et al. [24], Isi and Farr [45] reanalyzed
the same ringdown signal using different solutions for the
TDmethod (i.e., a distinct sampling algorithm, sampling rate
at 4 kHz, and a Fourier based autocorrelation function
estimation method), leading to different parameter con-
straints compared to Cotesta et al. [24] and Isi et al. [23].
A crucial aspect of these solutions is the autocorrelation
function (ACF) estimation method. As explained by Isi and
Farr [46], it can be computed directly from the GW data, or it
can be truncated from the inverse fast Fourier transform
(FFT) of the one-sided power spectral density (PSD) in
accordance with the Wiener-Khinchin theorem. We referred
to these two TDmethods as the TTD1 method and the TTD2
method, respectively. The default method in pyRing, hence
in, e.g., Refs. [17,18] is TTD2. The TTD1 method was used
in Refs. [23,24]. The TTD2 method is expected to be more
robust, and we will employ it to analyze the ringdown signal
of GW150914.
The organization of this paper is as follows. In Sec. II,

we present comparisons between noise estimates. In
Sec. III, we show the results of Bayesian inference
using the TD method. Finally, in Sec. IV, we provide a
succinct summary and discussion. Unless specified oth-
erwise, we adopt geometric units with G ¼ c ¼ 1
throughout the paper.

II. THE COMPARISON OF NOISE ESTIMATES

Within the framework of GR, the TD ringdown wave-
form of a Kerr BH can be represented as

hþðtÞ − ih×ðtÞ

¼
X

l

X

m

XN

n

Almn exp

�
i2πflmntþ iϕlmn −

t
τlmn

�

× −2Ylmðι; δÞ: ð1Þ

Here, N denotes the total number of the overtone modes
under consideration, while Almn and ϕlmn correspond to
the amplitudes and phases for the various modes. ι and δ
represent the inclination and azimuth angles, respec-
tively, with the latter fixed at zero for our study. It
should be noted that we disregard the contributions from
higher multipoles due to the absence of evidence in
GW150914 [21]. flmn denotes the oscillation frequency,
and τlmn the damping time, with both being determined
by the final mass (Mf) and the final spin (χf) of the
remnant. For GW150914, we only consider the
l ¼ jmj ¼ 2 multipole and assume hlm ¼ ð−1Þlh�l−m.
Contributions from mode-mixing are not considered in
our analysis.
The ringdown signal is veiled within the noise present in

GW data. To extract the information from the ringdown
signal, an understanding of the noise is required. For these

data, two sampling rates are available, 4096 Hz and
16384 Hz, provided by the GW Open Science Center
(GWOSC). Before we proceed to estimate the PSD, two
critical steps must be undertaken. First, we must resample
the GW data to the required sampling rate, which in
our case is 2048 Hz. Second, a high-pass filter can be
implemented at approximately 20 Hz on the resampled
data. If these steps are not appropriately managed, one may
end up with biased PSDs. To address the first step, we
employ a resampling algorithm that uses the Butterworth
filter. For the second step, we utilize a finite impulse
response filter [47], setting the order at 512. Both of these
steps are implemented using PyCBC [48].
We assume the noise data are Gaussian and stationary.

Typically, one can estimate the one-side PSD using the
Welch method [49]. In our study, we merge the Welch
method with the inverse spectrum truncation algorithm, as
implemented in PyCBC. Moreover, an algorithm based on
Bayesian inference, called BayesLine, has been developed to
model the PSD [50,51]. In Fig. 1, we exhibit PSDs of GW
data detected by the Handford detector, estimated by these
various methods. For the PyCBC estimation, we utilize the
GW data obtained from the GWOSC [52] with a sampling
rate of 4096 Hz and a duration of 4096 s. As shown, the
PSD estimated by the PyCBC package aligns closely with
that provided by LVK Collaboration [53].
To gain a deeper understanding of the effects of noise

estimation, we also give a characteristic strain of a
ringdown signal similar to GW150914. The definition
of characteristic strain can be found in Ref. [54]. We
inject a GW150914-like ringdown signal into the Hanford
detector, characterized by the following parameters:
Mf ¼ 71.73M⊙, χf ¼ 0.74, A220 ¼ 0.73 × 10−20, A221 ¼
0.95 × 10−20, ϕ220 ¼ 0.95, ϕ221 ¼ 2.28, ι ¼ 2.42, RA ¼
1.95, DEC ¼ −1.27, ψ ¼ 0.82, where RA and DEC
represent two sky position angles and ψ denotes the
polarization angle. The detected ringdown signal can be

FIG. 1. Characteristic strains of a ringdown signal analogous to
GW150914 and PSDs estimated by various methods. The dashed
green curve is publicly available in Ref. [53].
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expressed as hðtÞ ¼ Fþhþ þ F×h×, where Fþ;× are the
antenna pattern functions, determined by the sky location
and the polarization angle. In Fig. 1, we display the
dimensionless strain amplitude, 2fjh̃ðfÞj, where h̃ðfÞ
denotes the FFT of hðtÞ.

III. RESULTS OF BAYESIAN INFERENCES

To obtain ringdown parameters from GW data h, we use
an algorithm grounded in the Bayes theorem, Pðθjd; IÞ ¼
Pðdjθ; IÞPðθjIÞ=PðdjIÞ, where Pðθjd; IÞ is the desired
posteriors, Pðdjθ; IÞ is the likelihood function, PðθjIÞ is
the priors, PðdjIÞ is the evidence, I is the chosen model,
and θ stands for the model parameters. In TD, the log-
likelihood function can be expressed as

logL ¼ −
1

2
ðdðtÞ − hðtÞÞC−1ðdðtÞ − hðtÞÞ⊺ þ C0; ð2Þ

where C is the autocovariance matrix and C0 is a constant.
In our analysis, the autocovariance matrix adopts the
Toeplitz form of the truncated autocovariance func-
tion (ACF).
For the priors of the ringdown parameters, we fix the sky

location, polarization angle, and geocentric time, with
RA ¼ 1.95, DEC¼ −1.27, ψ ¼ 0.82, and tc ¼ tref þΔts;
tref ¼ 1126259462.40854 corresponds to a trigger time
at tH1 ¼ 1126259462.42323 s for the Hanford detector.
For all other parameters, we assume flat priors within
the following ranges: Mf ∈ ½50; 100�M⊙, χf ∈ ½0; 0.99�,
cos ι∈ ½−1; 1�, A22n ∈ ½0; 5� × 10−20, and ϕ22n ∈ ½0; 2π�.
To examine the impact on the parameter estimation of the

GW150914 ringdown signal, we perform Bayesian infer-
ences using ACFs computed via PyCBC with two distinct
sampling frequencies, 2048 Hz and 16384 Hz. In the case
of a sampling rate of 2048 Hz, we downsample the GW
data from the original raw data, which has a duration of
4096 s and a sampling rate of 4096 Hz. No downsampling
is required for the 16384 Hz case. The PSDs for both cases
are derived from the entire on-source data spanning 4096 s.
For the 2048 Hz (16384 Hz) case, the slice duration for the
Welch method is 8 (2) s, while the data duration used in the
likelihood computation is 0.4 (0.1) s. We use different
durations for various sampling rates due to two primary
reasons. Firstly, we aim to maintain a similar dimension
for the covariance matrix across varying sampling rates.
Secondly, a duration of 0.5 (0.1) s was employed in
Refs. [23,24]. We aimed to compare our results with theirs
and hence adopted similar settings. We integrate our
algorithm with the BILBY package [55] and perform
Bayesian inferences utilizing the DYNESTY sampler [56],
deploying 1000 live points and a maximum of 1000
Markov chain (MC) steps.
We plot the posterior distributions of the redshifted

final mass Mf and final spin χf in Fig. 2. With different
sampling frequencies, results of PSDs estimated using the

PyCBC package show negligible differences. For the 2 kHz
(16 kHz) case, the constraints are Mf ¼ 68.8þ17.3

−14.2M⊙

(Mf ¼ 68.5þ16.7
−13.9M⊙) and χf ¼ 0.66þ0.21

−0.41 (χf ¼ 0.65þ0.22
−0.43 )

at 90% credible level, respectively. Repeating the analysis
using a rate of 4096 Hz or 8192 Hz left our conclusions
unaltered, utilizing the same noise estimation method.
From these comparisons, we conclude that it is critical
to accurately estimate noise to ensure the stability in TD
analyses across different sampling rates.
To further scrutinize the presence of the first overtone

mode and the stability of the TD method based on the PSD
estimated by the PyCBC package, we conduct an analysis on
the ringdown signal using varied starting times, i.e., Δt ¼
ð−2; 0; 2; 4; 6; 8ÞM with M ¼ 68.8M⊙, and two overtone
numbers, N ¼ ð0; 1Þ. For those scenarios involving the
contribution of the first overtone mode, an inclusion of
more GW data (i.e. smaller Δt values) in the analyses
prompts the posterior distributions of the redshifted final
mass to progressively shift toward the high mass region,
while the posterior distributions of the final spin gradually
transition into the high spin region, as depicted in Fig. 3.
Specifically, when Δt > 4M, the constraints derived from
the N ¼ 1 scenario are weaker than those from the N ¼ 0

FIG. 2. The posterior distributions of the redshifted final mass
Mf and final spin χf of the GW150914 remnant, derived using
PSDs estimated by the PyCBC package. The ringdown signal of
GW150914 is analyzed at two distinct sampling rates, specifi-
cally, 2048 Hz and 16384 Hz. The contribution of the first
overtone mode in the ringdown signal is considered in all
instances. For both analyses, the data commence at the peak
strain (Δt ¼ 0). The contours depict the 90%-credible regions for
the remnant parameters, while the top and right-hand panels show
the one-dimensional (1D) posteriors for Mf and χf , respectively.
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scenario. Because the GW frequency of an IMR waveform
is a monotonically increasing function of time. The
increase of the frequency with time, which is larger than
the difference between the first overtone and the funda-
mental mode frequency, explains the higher mass obtained.
Similar considerations (i.e., a longer amount of signal
included) explain the longer τ hence the larger spin.
In scenarios where only the fundamental mode is

considered, the joint posterior distributions barely cover
the median value from the IMR analysis until Δt exceeds
4M. These patterns may be due to the presence of nonlinear
signal components close to the merger region [20]. This
observation is consistent with the trend of the log-Bayes
factors depicted in Fig. 4, where a noticeable decline is seen
between Δt ¼ 2M and Δt ¼ 6M. The fact that log-Bayes
factors for all differing Δt values are less than zero implies
that there is no evidence supporting the first overtone mode.
Conversely, the distributions of the amplitude of the first
overtone mode progress as anticipated when Δt > 0.
However, in the case where Δt ¼ 0, the mean of the
posteriors of A221 is only 1.6σ from zero. Therefore, the
evidence of the first overtone mode in GW150914 is
statistically not significant. For scenarios where only
the contribution of the fundamental mode is considered
and it is assumed to start from Δt ¼ 8M, constraints
on the remnant parameters are Mf ¼ 67.5þ18.8

−14.1M⊙ and
χf ¼ 0.65þ0.24

−0.46 at the 90% credible level.

FIG. 3. The posterior distributions of the redshifted final mass (Mf) and final spin (χf) of the GW150914 remnant, using PSDs
estimated by the PyCBC package. The contours illustrate 90% credible regions for the remnant parameters, while the top and right-hand
panels display 1D posteriors for Mf and χf , respectively. The left (right) panel denotes results that assume only the fundamental mode
(both the fundamental mode and the first overtone mode) in the ringdown signal. In each panel, the GW data utilized in Bayesian
inferences start at different peak times: Δt ¼ ð−2; 0; 2; 4; 6; 8ÞM, with M ¼ 68.8M⊙. The dotted orange contour indicates the results
from the full inspiral-merger-ringdown (IMR) analysis [17].

FIG. 4. In the upper panel, the log-Bayes factors between the
N ¼ 1 scenario and the N ¼ 0 scenario are displayed, taking into
account various starting times denoted by Δt. The lower panel
illustrates the distributions of the amplitude of the first overtone
mode. The light blue bands, representing the expected decay rates
of A1 starting from Δt ¼ 0, indicate the 90% credible level. PSD
is estimated by the PyCBC package.
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IV. DISCUSSION AND CONCLUSION

Utilizing the ACF based on the PyCBC package, we
conducted a reanalysis of the GW150914 ringdown signal.
We highlight that the results remained robust across
different sampling rates. Then, we perform more analyses,
starting from the peak amplitude with a deviation of
Δt=M ¼ ð−2; 0; 2; 4; 6; 8Þ. For the case where Δt ¼ 0,
the constraints on the redshifted final mass and the final
spin are Mf ¼ 68.5þ16.7

−13.9M⊙ and χf ¼ 0.65þ0.22
−0.43 at the 90%

credible level, respectively.
Additionally, our analysis yielded a log-Bayes factor of

logBN¼1
N¼0 ¼ −0.2 when Δt ¼ 0, which remains negative

across all Δt values. However, the log-Bayes factor is
affected by the larger parameter space resulting from the
additional overtone mode. Normally, we also evaluate the
evidence of the first overtone mode using its amplitude
distribution. By this measure, the evidence for the first
overtone mode is 1.6σ. This is significantly lower than the
3.6σ reported by Isi et al. [23]. Thus, the signal strength
from the traditional TD method currently employed is not
sufficient to confirm a significant contribution from the first
overtone mode.
Multiple studies [22,32] have confirmed that the inclusion

of higher overtone modes can result in more precise con-
straints on the parameters of the remnant. However, there are
some studies demenstrate that it is just a numerical match
rather than a physical match. For example, Refs. [20,57,58]
definitively disproves the physical validity of the “overtone”
model employed in the model under discussion.
The results of this work might affect data analysis for

gravitational waves, including future detectors like the
Einstein Telescope [59], Cosmic Explorer [60], Laser
Interferometer Space Antenna [61], TianQin [62,63], and
Taiji [64]. We use the PyCBC version 2.0.5 and the BILBY

version 1.2.1. To allow for reproducibility, we release codes
for noise estimation based on the PyCBC package at [65].
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