
Signatures of ultralight bosons in compact binary inspiral and outspiral

Yan Cao 1 and Yong Tang 1,2,3,4,*

1School of Astronomy and Space Sciences,
University of Chinese Academy of Sciences (UCAS), Beijing 100049, China

2School of Fundamental Physics and Mathematical Sciences,
Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China

3International Center for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China
4National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

(Received 21 July 2023; accepted 8 November 2023; published 13 December 2023)

Ultralight bosons are well-motivated particles from various physical and cosmological theories and can
be spontaneously produced during the superradiant process, forming a dense hydrogenlike cloud around
the spinning black hole. After the growth saturates, the cloud slowly depletes its mass through
gravitational-wave emission. In this work we study the orbit dynamics of a circular binary system
containing such a gravitational atom saturated in various spin-0, -1 and -2 superradiant states, taking into
account both the effects of dynamical friction and the cloud mass depletion. We estimate the significance of
mass depletion, finding that although dynamical friction could dominate the inspiral phase, it typically does
not affect the outspiral phase driven by the mass depletion. Focusing on the large orbit radius, we
investigate the condition to observe the outspiral and the detectability of the cloud via pulsar-timing signal
in the case of black hole–pulsar binary.
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I. INTRODUCTION

Ultralight bosons are well-motivated particles from
various theories beyond the Standard Model and can be
good candidates of dark matter (DM) [1–24]. Their non-
gravitational couplings to normal matter are generally
predicted to be extremely weak, so that experimental
and astrophysical searches of these direct couplings can
be rather difficult, and typically reply on the assumption of
the boson’s background abundance. The black hole (BH)
superradiance (SR) [25,26], however, provides a natural
astrophysical mechanism to produce these bosons solely
from their minimum coupling to gravity. Due to the
rotational superradiant instability in Kerr background,
macroscopic condensate of free spin-0, -1 and -2 bosons
can spontaneously develop around the host BHs by
extracting their energy and angular momentum. The
observational signatures of the resulted cloud-BH systems,
so-called gravitational atoms (GAs), provide promising
ways to detect these ultralight degrees of freedoms [27–34].
If the GA is part of a binary system, further interesting

phenomenology arises already in the perturbative regime,
such as the orbit-cloud resonances [35–39], dynamical
friction (DF) or ionization [40–44], companion-induced
suppression of the SR instabilities [45] and the cloud-
induced orbit precession [46]. In discussion of these effects

the gravity of the cloud is usually neglected (an exception
being [47], which studies the orbits of a small companion at
relatively small distance from the cloud in scalar SR ground
state), and the cloud mass is usually assumed to be not
much smaller than its initial saturated value (an exception
being [48]). However, as first pointed out in [49] for the
scalar GA, if the cloud mass is included in the orbit
dynamics, the intrinsic mass depletion of the cloud (DC)
due to its gravitational-wave (GW) emission would affect
the orbit evolution in an opposite manner with other
dissipative effects, i.e., it tends to make the binary outspiral,
and this effect is actually important at large radius.
Recently, the cloud mass depletion has also been consid-
ered in [50] for the scalar cloud (albeit using a different sign
for its effect), and in [51] for a relativistic vector cloud in
the SR ground state, but neglecting other cloud-induced
dissipations. Besides the SR clouds, there are proposals to
search for the anomalous orbit evolution due to mass varia-
tion arising, e.g., from enhanced BH evaporation [52] and
the accretion of background DM into the BH [53].
In this work, we present a systematic model for the

GAþ companion system, describing various spin-0, -1 and
-2 SR states in a unified manner. The focus is to study the
interplay between binary GW emission, dynamical friction
and the cloud mass depletion and to compare the situations
for GA saturated in different SR states. The possibility of
outspiral also has implications on the secular evolution of
such systems and whether the binary could undergo fine
and hyperfine resonances (taking place also at large radius).*Corresponding author: tangy@ucas.ac.cn

PHYSICAL REVIEW D 108, 123017 (2023)

2470-0010=2023=108(12)=123017(18) 123017-1 © 2023 American Physical Society

https://orcid.org/0009-0002-3959-5059
https://orcid.org/0000-0003-1100-2741
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.123017&domain=pdf&date_stamp=2023-12-13
https://doi.org/10.1103/PhysRevD.108.123017
https://doi.org/10.1103/PhysRevD.108.123017
https://doi.org/10.1103/PhysRevD.108.123017
https://doi.org/10.1103/PhysRevD.108.123017


Finally, the cloud depletion may already leave imprints
on the orbit evolution that is directly observable via GW
and pulsar-timing measurements, even in the absence of
resonance events and dramatic mode mixings. Indeed, we
find that for circular binary containing scalar and vector
atoms in their SR ground states, the observable parameter
space is largely independent from the dynamical friction,
though the inclusion of DF enlarges the observable regions.
The structure of this paper is as follows: In Sec. II we

review the properties of an isolated GA and formulate the
binary model. Then in Sec. III we discuss the orbit evolution
quantitatively and in Sec. IV investigate the detectability
of the cloud from orbit phase measurements. Finally, we
summarize our results and discuss some possible future
directions in Sec.V. Throughout our discussion, unless stated
otherwise, we use the natural unit with ℏ ¼ G ¼ c ¼ 1.

II. GRAVITATIONAL ATOM IN BINARY

A. Gravitational atom

First we briefly summarize the main properties of the
nonrelativistic superradiant clouds around Kerr BH. For the
physical (spatial) components of a real bosonic fieldΦ, far
away from a central mass M, the wave function Ψ defined
byΦ ¼ 1ffiffiffiffi

2μ
p ðΨe−iμt þ c:c:Þ (and 1ffiffi

μ
p Ψe−iμt ifΦ is complex,

but we shall focus on the real fields) satisfies the
Schrödinger equation

i∂tΨ ¼ −
1

2μ
∇2Ψ −

α

r
Ψ; ð1Þ

where μ is the mass of the boson and α≡ GMμ
ℏc ¼ Mμ

the gravitational fine structure constant. For scalar fields
Ψ ¼ ψ , for Proca fields ½Ψ�i ¼ ψ i and for spin-2 tensor
fields ½Ψ�ij ¼ ψ ij. This is as the same as the Schrödinger
equation for hydrogen atom (for each field component)
with well-known bound state solutions; in case that the
central body is a Kerr BH, these hydrogenic states can be
spontaneously populated by rotational superradiance and a
GA is formed. In this work we focus on GA with α ≪ 1

(hence the Bohr radius rc ¼ M=α2 ≫ M), for which this
nonrelativistic Newtonian description is appropriate. The
mass density of the cloud (same for both real and complex
Φ fields) is given by ρ ¼ McTrðΨ†ΨÞ, where we choose
the normalization

R
d3xρ ¼ Mc andMc is the total mass of

the cloud. For convenience we also define β≡Mc=M.
The cloud is generally a superposition of all bound

atomic levels, jΨi ¼ P
i cijΨii. Then using an orthonor-

mal basis hΨijΨi0 i ¼ δii0 , we have
P

i jcij2 ¼ 1. However,
the modes are not static. In the case of a single occupied
mode this time dependence can be absorbed to McðtÞ. For
multiple modes this is not feasible, and it is more
convenient to track the evolution of individual ci.
The eigenstates are labeled by the quantum numbers

n, l, j, and m, the principal, orbit angular momentum,
total angular momentum and azimuthal quantum number,

respectively (for scalar GA, j ¼ l, so we write n, l, m),
corresponding to an orthonormalized wave function
jnljmi ¼ Ψnljmðt; rÞ (the detailed forms are listed in
Appendix A). For a spin-s field, the quantum numbers
satisfy n ≥ 1, l∈ ½0; n − 1�, j∈ ½l − s; lþ s�, and
m∈ ½−j; j�. The real part of the energy level ω≡ ωR þ
iωI is given by μð1 − α2

2n2 þOðα4ÞÞ. Crucially, ω also
contains an imaginary part, and the superradiant growth
can occur only if ωI > 0, i.e., when ωR=m < ΩH ≡
1
2M

χ

1þ
ffiffiffiffiffiffiffiffi
1−χ2

p , which demands a large enough BH spin χ.

Starting with a sufficiently fast-spinning bare black hole,
the superradiant growth is expected to be dominated by
the most unstable mode, which is the 211 state for scalar
GA, the 1011 state for vector GA and the 1022 state for
spin-2 GA.1 The cloud then slowly decays by its intrinsic
gravitational-wave emission after the instability saturates,
until the growth of the next unstable mode [37], which is
the 322 state for scalar GA and the 2122 state for vector
GA. Depending on the initial condition, the cloud may also
be occupied by multiple modes [56]. In this work we shall
focus on a single saturated mode, that would be charac-
terized by its mass distribution ρðrÞ and mass depletion rate
Pgw;c. Generically, the density profile and depletion power
have the scaling form

ρðrÞ ¼ Mc

r3c
gðx; θÞ; ð2Þ

with x≡ r=rc, and

Pgw;c ¼ β2pðαÞ; ð3Þ
where the dimensionless function gðx; θÞ and pðαÞ are state
dependent. We use the accurate polynomial fits of pðαÞ
provided in [57] for scalar and vector states and the
analytical approximation for tensor states with α ≪ 1
calculated in [54]. In physical units,

ρðxÞ¼ gðx;θÞ β

0.1

�
α

0.1

�
6
�
M⊙

M

�
2

×3.46×1034 GeV=cm3:

ð4Þ
The functions gðx; π=2Þ for various SR states are plotted
in Fig. 1 and their complete expressions are listed in
Appendix A. The interested bosonic field has a typical mass

μ ¼
�

α

0.1

��
M⊙

M

�
× 1.3 × 10−11 eV: ð5Þ

1The situation is a little more complicated for spin-2 atom [54];
the 1022 and 2111 states grow simultaneously, yet by the time
1022 state saturates with ΩH spinning down to ωR=2, the 2111
state has been completely reabsorbed. For comparison, we shall
also include the possibility of a saturated 2111 state. Also, for
α ∼Oð0.1Þ, the fastest growing spin-2 state is a nonhydrogenic
dipole mode with m ¼ 1 [55]. But here we are interested in the
regime α ≪ 1.
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Neglecting the change of black hole mass, we have
Ṁc ¼ 2ωIMc ¼ Mc=τI during the superradiant growth.
Thus the cloud mass grows exponentially in an instability
timescale τI ≡ 1=2ωI (note this is a decelerating process
since ωI ∝ χ in the Newtonian limit). When the mass
change of the cloud is dominated by GW emission,
−Ṁc ¼ Pgw;c ∝ M2

c, the cloud mass decays according to

McðtÞ ¼
Mc;0

1þ t−t0
τgw

; ð6Þ

where τgw ≡ Mc;0

Pgw;c
¼ M

βpðαÞ is the mass depletion timescale.

For α ≪ 1, τgw ≫ τI , the GW emission can be neglected in
the superradiant growth. From energy and angular momen-
tum conservation, the mass or angular momentum of the
cloud after the growth (of a mode with azimuthal quantum
number m) saturates is given by the difference between
initial and final BH mass or spin:

Mc;0 ¼Mi −Mf; Jf ¼ Ji −
m
ωR

ðMi−MfÞ; ð7Þ

with [58]

Mf ¼
m3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6 − 16m2ω2

RðmMi − ωRJiÞ2
p

8ω2
RðmMi − ωRJiÞ

: ð8Þ

For χi ≈ 1, Mc;0 ≈ α
mMi and the saturated BH spin is

χf ≈ 4α
m . The spin can be further extracted by the next

growing mode m0. Then the saturated values become
Mc;0 ≈

4ðm0−mÞ
mm02 α2Mi and χf ≈ 4α

m0.

B. Binary orbit dynamics

Now we consider the situation when the saturated GA
belongs to a binary system2 and contrast the various

possible effects induced by the cloud. We focus on the
Keplerian circular orbits on the equatorial plane of the host
BH (for a brief discussion of inclined and elliptical orbits
see Appendix. C) and assume a large orbit radius so that
the cloud’s tidal distortion is completely negligible. As we
shall see, the binary motion can still receive significant
modifications due to the presence of the cloud.
We take the BH mass M and the companion’s mass

M� ≡ qM to be constant; the Newtonian orbit energy and
angular momentum are given, respectively, by

E¼−
ðMþ M̃cÞM�

2r
; L¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððMþ M̃cÞM�Þ2
Mþ M̃cþM�

r

s
; ð9Þ

where M̃cðrÞ is the effective cloud mass experienced by the
companion (the detailed definition is given in Appendix B).
In the following we shall take the limit M þ M̃c ≈M. To
restore M̃c one needs just the replacement M → M þ M̃c

and q → M
MþM̃c

q; however, such corrections remain small

and do not affect the main results. Without the mass
change, the orbit would evolve according to

−Ė ¼ Pgw þ Pothers; ð10Þ
where Pgw is the binary GW radiation power:

PgwðxÞ ¼
32

5

α10ð1þ qÞq2
x5

ð11Þ

(the correction to this power due to cloud depletion is
negligible, see Appendix B) and Pothers is the contribution
from extra dissipation channels. In the Newtonian order, the
orbit evolution can also be written as

ẋ ¼ −
2

qMα2
PðxÞx2; ð12Þ

where P is the net effective power; now it also receives a
contribution

PDC ¼ qα2

2ð1þ qÞx
dM̃c

dt
ð13Þ

from the mass change of the system due to the cloud’s GW
emission, which can be approximated as an isotropic mass
loss of the host BH; see Appendix C. Hence in the present
case,

PDC ¼ −
M̃c

Mc

qα2

2ð1þ qÞxPgw;c ð14Þ

and

P ¼ Pgw þ Pothers þ PDC: ð15Þ

For Pothers, we examine the following effects.

FIG. 1. The density distribution of spin-0, -1, and -2 super-
radiant ground states on the equatorial plane.

2In principle, the companion can also carry its own environ-
ment, but we neglect this since the companion is assumed to be
small.
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1. Mode mixing and dynamical friction

In the presence of a companion body, there can be
“global” exchange of angular momentum between the
cloud and the orbit mediated by the companion’s gravita-
tional potential (including the potential of an inertial
acceleration due to the orbit motion) V�ðt; rÞ. In the
Newtonian regime, the companion’s gravitational influence
is fully captured by adding V� to the Schrödinger equation
of the bosonic field [35,44]. The resulted cloud evolution
due to nonzero level mixingHab ¼ hΨajV�jΨbi backreacts
on the orbit dynamics and leads to rich phenomenology.
There are two types of mixing: the mixing between bound
states and the mixing between a bound state with con-
tinuum states. The former is responsible for the resonance
effects occurring at a discrete set of orbit frequencies Ω ¼
ΔωR
Δm [35–39] and the modifications of the cloud’s super-
radiant instabilities from nonresonant mode mixings [45],
while the latter leads to a continuous orbit dissipation from
the “ionization” of the bound state [40–44].
When the binary orbit frequency is off resonance, the

effect from bound-state mixing is expected to be unim-
portant at least for the SR ground state [42]. In [40,44] it
has been argued that ionization is actually the manifestation
of dynamical friction in the GA system. Since the ioniza-
tion for higher-spin field has not yet been calculated, in this
work we would still use the model of [12] to estimate the
consequence of DF. In this DF model, a test body traveling
in a nonrelativistic scalar field background with relative
velocity V experiences a gravitational drag force3

FDF ¼ −
4πM2�ρðrÞ

V3
CΛðξ; μVrΛÞV: ð16Þ

Treating scalar GA as the environment, V is the compan-
ion’s velocity relative to the cloud, V ¼ jv ∓ m

μr j ¼
αj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ qÞxp ∓ mjx−1, where the plus (minus) sign cor-
responds to counterrotating (corotating) orbit. For large
radius V is dominated by the orbit velocity v, and

ξ≡ M�μ
V ≈ q

ffiffi
x

pffiffiffiffiffiffiffi
1þq

p . The uncertainly of DF lies mainly in

the estimation of CΛ, which in the present problem depends
solely on the orbit radius (for circular orbit the DF force
is also expected to have a radial component [63]; it is
however irrelevant to the orbit dissipation). In this model it
is given by [12]

CΛðyÞ ¼ Cinð2yÞ þ sin 2y
2y

− 1; ð17Þ

for ξ ≪ 1; here CinðzÞ ¼ R
z
0 ð1 − cos tÞdt=t. Following [42]

we choose the IR regularization scale rΛ to be the cloud
size measured by r97 ¼ x97rc (the radius encompassing
97% of the cloud mass) for orbit radius x > x97; hence

y≡ μvrΛ ¼
ffiffiffiffiffiffiffi
1þq
x

q
x97. The resulted dissipation power due

to DF is then

PDF ¼ −FDF · v ¼ 4πq2M2

α
ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p ρðxÞCΛ
ffiffiffi
x

p ≡ q2α5βffiffiffiffiffiffiffiffiffiffiffi
1þ q

p PðxÞ:

ð18Þ
Since the nonrelativistic Coulomb scattering problem (based
on which the DF above is derived [12]) is the same for each
component of the wave function of a higher spin field, the
result can be generalized simply with ρ ¼ McTrðΨ†ΨÞ.
Strikingly, we find that for scalar cloud this estimation

(with V ≈ v) agrees well with the ionization power calcu-
lated in [44] in the overall trend and magnitude; see Fig. 2.
Indeed, the scaling form of ionization power is the same
with Eq. (18) for V ≈ v if q ≪ 1 (the result only changes
slightly at the small radius after including the cloud velocity
in DF model). This demonstrates that the DF and the
ionization model are indeed compatible, though the DF
model tends to overestimate the orbit dissipation [espe-
cially for the corotating orbit—a smaller value of rΛ fits

FIG. 2. Comparison of DF power Eq. (18) with ionization
power of scalar 211 and 322 states for equatorial plane circular
orbit.

3Note that this formula was originally derived for an infinite
and homogeneous background; here we apply it to the local scalar
field of GA as an approximation. An extension of this result for
BH moving at relativistic speeds can be found in [59,60]. The
effects of dynamical friction on the binary in ultralight scalar field
environment have also been studied in [61,62].
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better with Pion in Fig. 2, but the relative difference is
within Oð1Þ] and without the features of discontinuity,4

also in the ionization model the cloud is being consumed.
For higher-spin field, the ionization power has not yet
been calculated, but since the difference lies mainly in the
angular mixing, we expect a similar result.

2. Accretion

If the companion is a BH, besides friction, additional
drag force arises due to its accretion of the ambient cloud.
In a uniform background of ultralight scalar field, the force
due to accretion is Facc ¼ −Ṁ�V with Ṁ� ≡ σρV. For
V > 2πM�μ the absorption cross section can be approxi-
mated [64] as σ ¼ A=V, where A ∼ 16πM2� is the area of
BH horizon (see also [40]), while for V < 2πM�μ the result
is σ ¼ 32π2M3�μ

V2 . The effective powers due to accretion in the
two regimes are

Pacc ¼ 16πq2M2α2ρðxÞx−1 ð19Þ
and

Pacc ¼ 32π2q3M2α2ρðxÞx−1=2: ð20Þ
The accretion powers from both estimations are strongly
suppressed relative to the dynamical friction as

Pacc

PDF
<

α3

CΛ
; ð21Þ

and the effect from cloud mass loss due to accretion is even
smaller, suppressed relative toPacc by q2. Although there are
currently no quantitative computations for the accretion rate
of higher-spin massive bosonic fields, we expect the result
will be at the same order of magnitude. Hence we shall
neglect the companion’s mass accretion in the following.

III. BINARY EVOLUTION

In this section we analyze the binary orbit evolution
under DC and DF. The GA is approximately rigid provided
that it is off resonance and the companion’s perturbation is
small, jV�=ð− α

rÞj≲ qðx97x Þ3 ≪ 1. Therefore, besides the
extreme-mass-ratio system with q ≪ 1, this model can
also be applied to binary with larger mass ratio so long as x
is sufficiently large [65]. Since the innermost stable circular
orbit (ISCO) radius xISCO ¼ 6α2 of the host BH is deep
inside the cloud where the binary may subject to strong
mode mixing or even nonperturbative effects, our discus-
sion would be restricted to the phase of orbit evolution at
large radius; specifically we would take x > 10.

The evolution of circular orbit is given by Eq. (12),
where the power function PðxÞ depends solely on β, α and
q, so the BH massM only affects the overall timescale.5 At
radius x, the binary GW frequency is

f ¼ Ω=π ¼
�ð1þ qÞ1=2α3

πM

�
x−3=2 ≡ κx−3=2

¼ ð1þ qÞ1=2M⊙

M

�
α

0.1

�
3
�
10

x

�
3=2

× 2 Hz: ð22Þ

From Eq. (12), we have

ḟ ¼ M−5=3
�
3ð1þ qÞ1=3

π2=3q

�
PðxÞf1=3: ð23Þ

The deviation of P from Pgw could then be observed in the
binary GW signal or through high-precision pulsar timing,
if the companion happens to be a pulsar (PSR). A
characteristic measure for the frequency change is the
braking index, which in the case of circular orbit can be
written directly with the effective power:

nb ≡ Ω̇ Ω̈
Ω̇2

¼ 5

3
−
2

3

xẍ
ẋ2

¼ 1

3
−
2

3

xP0

P
: ð24Þ

For P ¼ Pgw, nb ¼ 11
3
, while for P ¼ PDC and assuming an

approximately constant mass depletion rate, nb ¼ 1.
Another useful measure is the overall GW dephasing

ΔΦðtÞ ¼ ΦðtÞ −ΦGRðtÞ ¼ 2π

Z
t

0

dt0½fðt0Þ − fGRðt0Þ�;

ð25Þ
where ½0; t� is the time span of an observation and fGRðtÞ is
given by the vacuum evolution.

A. Early inspiral

For the companion to inspiral, the combined dissipation
power from binary GW emission and the DF should
overwhelm the negative power of cloud mass depletion,
which is the case for a sufficiently small orbit radius or
cloud mass. Typically the DF power could strongly
dominate over PGW for small radius with x > 1, which
might lead to a considerable amount of GW dephasing and
a shorter merger time. The situation at larger radius depends
on the state and the cloud mass; e.g., among the six states
depicted in Fig. 3, for scalar 211, 322 and vector 2122
states there is an intermediate PGW domination spanning a
broad range of radius, followed by a transition to PDC
domination at even larger radius. While for the other states
of vector and tensor atom the region of PGW domination is
negligible (for smaller cloud mass, it is broadened). As
shown by the power ratios for q ≪ 1:

4Such discontinuity originates from the nonzero mode mixing
between the given bound state being ionized and a continuum
state with zero wave number [40].

5This is the case even if the time-dependent depleted value of β
is used, since the depletion timescale is also proportional to M.
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PDF

Pgw
∼

β

α5
x5PðxÞ; PDC

Pgw
∼
β2pðαÞ
α8q

x4: ð26Þ

PDC is enhanced for smaller q but suppressed for smaller α
and β relative to PDF.

B. Outspiral

Since PDC always dominates at sufficiently large radius,
there would be a critical radius beyond which the
companion outspirals. The critical radii around GA in
various SR states computed with the full power model are
shown in Fig. 4. We notice that for scalar 211, 322 and
vector 2122 state, the critical radius is completely fixed by
the balance between Pgw and PDC such that

xcrit ¼
�
64

5

qð1þ qÞ2α8
pðαÞβ2

�
1=4

: ð27Þ

For states with large pðαÞ (vector 1011, tensor 1022
and tensor 2111), the critical radius is enlarged as
compared to the result without DF since Eq. (27) dives
into smaller radius where orbit dissipation is stronger.
By the same reason, this enlargement is stronger for
smaller mass ratio q and larger cloud mass β.
For small enough β, the critical radius is still given
by Eq. (27).
The transition to PDC domination turns out to be rather

sharp. For x > xcrit (or for x < xcrit before PDF becomes
important), the power is well approximated by Pgw þ PDC;
the resulted orbit evolution is

ẋ ¼ −Ax−3 þ B
ð1þ t

τgw
Þ2 x;

A≡ 64

5

α8ð1þ qÞq
M

; B≡ β2pðαÞ
Mð1þ qÞ : ð28Þ

FIG. 3. Upper left: the effective power jPðxÞj for GA saturated in various states; the sharp dip is due to the sign change and represents
the critical radius of outspiral, and the dashed line is the vacuum power Pgw. Upper right: the corresponding braking index, for P ¼ Pgw,
nb ¼ 11

3
, while for P ¼ PDC with approximately constant cloud mass, nb ¼ 1, as shown by the dotted lines. Lower plots depict the

components of the net power for scalar 211 and vector 1011 state, where we also show the effective power due to accretion according to
the estimation Eq. (19) for the scalar GA. It is seen that accretion into the companion could lead to much stronger cloud mass loss (gray
dot-dashed line) at small orbit radius comparing to the intrinsic mass depletion of the cloud (blue dot-dashed line), where however the
orbit evolution is dominated by the DF. For this set of parameters, μ ¼ 4 × 10−14 eV (the frequency of the GWemitted from the cloud is
μ=π ¼ 19 Hz), and xISCO ¼ 0.0054.
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where β is the cloud mass ratio at some initial time. With
xð0Þ ¼ x0, this equation admits an analytical solution:

x4ðtÞ ¼ e−
4Bτ2gw
tþτgw

�
16ABτ2gw

�
Ei

�
4Bτ2gw
tþ τgw

�
− Eið4BτgwÞ

�

þ e4Bτgwð4Aτgw þ x40Þ
�
− 4Aðtþ τgwÞ; ð29Þ

describing both inspiral and outspiral, where EiðxÞ ¼
−
R∞
−x dz

e−z
z is the exponential integral. In timescale much

shorter than τgw, β is approximately constant and this
simplifies to

xðtÞ ¼
��

x40 −
A
B

�
e4Bt þ A

B

�
1=4

: ð30Þ

The corresponding GW phase is given by

ΦðtÞ¼ 2π

Z
t

0

dt0fðt0Þ ¼−
4πκ

3B

2F1ð38 ;38 ; 118 ;−Ae
−4Bt0

Bx4
0
−A Þ

e3Bt
0=2ðx40−A=BÞ3=8

					
t

0

; ð31Þ

where κ≡ ð1þqÞ1=2α3
πM . If the orbit evolution is purely driven

by cloud depletion, this simplifies to

ΦðtÞ ¼ −
4πκ

3Bx3=20

ðe−3Bt=2 − 1Þ: ð32Þ

While for ordinary binary inspiral with B ¼ 0, the phase
is ΦGRðtÞ ¼ 4πκ½ð4Atþ x40Þ5=8 − x5=20 �=ð5AÞ.

1. Secular evolution

Once the companion outspirals, it will not return until a
sufficient depletion of the cloud. To track the long-term
orbit evolution, we must inspect on the full solution
Eq. (29). For outspiral, since xðtÞ < x0eBt, the cumulated
orbit radius change Δx < x0ðeBt − 1Þ. Since B ¼ β

τgwð1þqÞ,
this means roughly that the fractional orbit radius change
after time τgw cannot be larger than β. We find this is
actually a good estimation for the maximum value of

ðx − x0Þ=x0 attainable during the outspiral. For large orbit
radius Eq. (29) is well approximated by

xðtÞ ≈ ½−4Aðtþ τgwÞ þ e
4Bτgw
1þτgw=tð4Aτgw þ x40Þ�

1=4
; ð33Þ

i.e., without the exponential integrals, and for sufficiently
large x0 this indeed approaches to x0ð1þ βÞ. Also from this
approximation we can find a good estimation for the
maximum time of outspiral:

tmax ≈
h
−1 − 2Bτgw þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bð4τgw þ x40=AÞ

q i
τgw: ð34Þ

At large radius the time of outspiral can be much longer
than τgw, though it would still be a “transient” phase
comparing with the subsequent inspiral.
As a concrete example, we consider the orbit evolution

around GA in scalar 211 state; the results are shown in
Fig. 5. It is seen that for large radius the timescale of
outspiral can even be comparable with the timescale of the
growth of 322 state, which might bring the outspiral to an
early end since the 322 state decays much slower than the
211 state, though an accurate description of such processes
awaits for more detailed investigations.

2. Constraint on resonances

Since the binary orbit during outspiral undergoes little
frequency change, this also implies that resonance event is
unlikely to take place during the outspiral. For example, the
resonance between scalar 211 and 21-1 states, a hyperfine
transition, is at radius

x� ¼
�
144ð1þ qÞ

χ2

�
1=3

α−2: ð35Þ

For this transition to happen we require at least that
x� < xcrit, which translates into a maximum cloud mass
before the resonance

βmax ¼ 0.13χ4=3ð1þ qÞ1=3q1=2α8p−1=2: ð36Þ

FIG. 4. Critical radius of outspiral, in the presence (solid lines) or absence (dashed lines) of dynamical friction. The short horizontal
lines are the radii of fine and hyperfine resonances (for saturated BH spin a ¼ 4α=m in the m state): 211 to 21-1 (black), 322 to 300
(orange dashed) and to 320 (orange solid), 2122 to 2100 (gray dot-dashed), 2110 (gray dashed) and 2120 (gray solid).
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For q ¼ 10−3 and χ ¼ 4α, βmax ¼ 1.3 × 10−3 if α ¼ 0.1
while βmax ¼ 5 × 10−6 if α ¼ 0.01.
Similar constraints can be put on the other possible

transitions. The leading quadrupole transitions for the
scalar 322 state are the Bohr transitions (n0 ≠ n) to 200
and 100, fine transition (n0 ¼ n, l0 ≠ l) to 300, and the
hyperfine transition (n0 ¼ n, l0 ¼ l, j0 ¼ j, m0 ≠ m) to 320.
For vector 1011 state there are onlyBohr transitions to 321-1,
322-1, 323-1 and 3233 (and higher n states), similarly for
tensor 1022 state to 3200, 3210, 3220, 3230, 3240 and
3244; for vector 2122 state, the Bohr transitions to e.g.,
3100, 4320, 3110, 4330, 3120, 4340, and 4344, and (hyper)
fine transitions to 2100, 2110, and 2120 are possible.
As pointed out in [66], the resonant orbit frequency for
Bohr transition ∼Oðμα2Þ, corresponding to the orbit radius
x ∼Oðð1þ qÞ1=3Þ, which might invalidate the perturbative
model of GA, so we consider only the fine and hyperfine
transitions at larger radius, which are depicted in Fig. 4. We
find that βmax decreases with decreasing mass ratio q and for
hyperfine transitions also with decreasing α.
In this discussion we have neglected the companion-

induced corrections to ωI of the SR state. As noted by [45]
such corrections are negative. Hence for a given BH spin
there is a critical radius below which the effective value of
ωI turns negative and the cloud gets reabsorbed from
mixings with decaying modes. Actually for a saturated state
by definition ωI ¼ 0, the cloud reabsorption is unavoid-
able, the strength of such effect is proportional to the

perturbing potential V� so it is less important at large
radius, especially for SR ground state which does not mix
with the relatively fast-decaying lower-l states in the
leading quadrupole order.

IV. OBSERVABILITY

Weproceed to assess the detectability of the cloud-induced
DC and DF effects (namely P − Pgw) on the orbit phase
evolution.We focus on the direct observation of outspiral and
the detecting threshold in the case of BH-PSR binary. From
Eq. (22) it can be seen that for a BH with M > 104M⊙, the
signal for radius x > 10 and α ∼Oð0.1Þ is typically lower
than the observation window ð10−4; 10−1Þ Hz of the space-
borne gravitational-wave interferometers. If the host BH of
the cloud is lighter, however, the effect of DF andDCmay be
observed directly in the sensitive band ofGWdetectors, once
such an event is detected.
For a very small mass ratio, q ≪ 1, such as an intermediate

mass ratio (10−2 < q < 10−4) or extreme mass ratio
(q < 10−4) binary system,PDF=Pgw is insensitive to q, while
PDC is enhanced by q−1. For mass ratio as large as q ∼ 1, our
model is valid only for x ≫ 1, where DF is expected to be
unimportant. In an ordinary binary, the companion can be a
stellar mass object withM� ¼ 0.1–100M⊙. But we can also
consider the possibility of the companion being a very light
primordial black hole (PBH).Note that if themass of the PBH
is too small, its own mass loss through Hawking evaporation
may also need to be taken into account [67].
There are no fundamental restrictions on the values of α

and β except that β should be smaller than its initial saturated
value, but α cannot be too small if we require a finite
formation time of the cloud perhaps within the binary
lifetime, for that we shall impose τI < 106 yr. On the other
hand, themaximum value ofαwould be limited if we require
a sufficiently long cloud depletion time. τgw should be much
larger than τI; moreover, in [37] the bound τgwðMc ¼
Mc;0Þ > 108 yr was adopted to guarantee the stability of
the cloud in astrophysical timescale. But the mass depletion
could continue within a time much longer than τgw, just
leading to smaller existing cloud mass. In the following we
consider a relaxed bound with τgwðMc ¼ MβÞ > 104 yr,
demonstrating how the detectable parameter space is
squeezed by the requirement of a minimum depletion
timescale.

A. Observing the outspiral

By requiring that fðxcritÞ > 10−4 Hz we can estimate the
mass range of the bosonic particle for which the outspiral
can possibly be observed by the space-borne GW detectors
such as LISA and Taiji. The results are presented in Fig. 6,
where we can see that the mass range of μ for a given BH
mass shrinks for larger M, the lower bound corresponds
to fðxcritÞ ¼ 10−4 Hz and the upper bound comes from the

FIG. 5. Orbit evolution during outspiral around GA in the scalar
211 state for various initial radii. The solid line corresponds to the
full solution Eq. (29), the dashed line for the approximated
solution Eq. (33), and the dotted line for the vacuum solution
without mass depletion. The approximation Eq. (34) for the
maximum time of outspiral is shown in solid vertical line. The

two dashed vertical lines are t ¼ Δtþ τð322ÞI and Δtþ 2τð322ÞI ,

respectively. Here τð322ÞI is the instability time scale of 322 state
under saturated BH spin of 211 state, and Δt ¼ ð1 − α=βÞτgw is
approximately the time interval between the initial time of
outspiral and the onset of 211 saturation.
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constraints on xcrit and τgw, the latter being more stringent.
The parameter space of vector 1011 and tensor 1022 states
largely coincide, since they have a similar depletion rate.
As shown in the last section, the critical radius of outspiral
is typically given by Eq. (27):

x4crit ∝ α8τ2gwpðαÞ ¼ M2β−2p−1α8: ð37Þ

Assuming a fixed value for the BH mass, for given τgw and
α, the critical radius increases with p. But for given xcrit and
β, α decreases with p. Then since the depletion rate of
vector and tensor SR ground state for same α is larger than
that of scalar, the minimum mass of vector or tensor boson
supporting outspiral around the same host BH at given orbit
frequency is lighter. On the other hand, for fixed τgw and β,
the mass of vector or tensor boson is also lighter than the
scalar boson.

B. Pulsar-timing detection

If the companion is a pulsar, pulsar timing provides an
accurate way to measure the orbit evolution [45,53,66,68].
For definiteness, we choose the benchmark values
M� ¼ 1.6M⊙. The detection threshold is [68]

jΦðtÞ −ΦGRðtÞj > 4πσðtÞ; ð38Þ

with the uncertainty of phase measurement approximately
given by

σðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⌈t=1 day⌉

p Tp

min ðtobs; tÞ
; ð39Þ

where ⌈⌉ is the ceiling function, tobs the observation time
per day and Tp the pulse period of the pulsar. The time span
of observation t cannot exceed the duty time of the radio
telescope, and it would also be shorter than the merger time
if the companion undergoes an inspiral.
Assuming a large enough orbit evolution timescale, we

only expect to observe the quadratic phase change
ΔΦ ≈ 2π½f0tþ 1

2
ðḟÞ0t2�, where

ðḟÞ0 ¼ M−5=3
�
3ð1þ qÞ1=3

π2=3q

�
Pðx0Þf1=30 : ð40Þ

The detectable regions of ðM; μÞ for scalar 211 and vector
1011 states are presented in Figs. 7 and 8 for a fiducial set
of parameters, where we show the results with or without
DF; generally the upper bound comes from the constraint
on τgw. DF turns out to be also relevant in this low-
frequency regime and signifies inspiral, since for outspiral
the DF only reduces ΔΦ. The other part of the detectable
region does not depend on the DF and could be either
outspiral or inspiral. For P ≈ PDC þ Pgw, the condition of
detection is explicitly given by

β2p
Mð1þ qÞ >

8σ

3t2f0
: ð41Þ

FIG. 6. Region of BH mass and bosonic particle mass satisfying fðxcritÞ > 10−4 Hz and xcrit > 10 for given binary mass ratio q and
β=α. The regions with black boundary are the results after imposing the constraints τgw > 104 yr and τI < 106 yr. The blue dashed line
corresponds to α ¼ 0.2.
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Then for outspiral, again, the minimum detectable boson
mass in the vector case is lighter than the scalar case for
given β and BH mass, and a more massive BH can
probe lighter bosons. Also in the case, since σ ∼ t−1=2,
the minimum detectable boson mass for a given
binary is determined by ðt5=2β2f0Þ−1, but a higher
orbit frequency f0 will be more constrained by the
assumption x0 > 10.

V. CONCLUSIONS AND OUTLOOKS

We have investigated the orbit evolution of a binary
system containing a gravitational atom, based on a more
comprehensive model for the binary’s off-resonant orbit
dynamics taking into account both the dynamical friction
and the intrinsic mass depletion of the boson cloud. In this
modeling, GA of spin-0, -1 and -2 bosons are treated on
equal footing, which enable us to contrast the differences of

FIG. 7. Region of BH mass and bosonic particle mass (left, vector 1011; middle, scalar 211) where x0 > 10 and the deviation from
vacuum orbit evolution is detectable via pulsar timing for f0 ¼ 10−5 Hz, tobs ¼ 10 h and Tp ¼ 1 ms, the constraints τgw > 104 yr and

τI < 106 yr are also imposed. We have checked that throughout this parameter space, f0
ðḟÞ0 ≪ t, so the quadratic approximation to the

phase change is valid. The right figure is a close-up for the detectable parameter space of scalar 211 GA (with DF) with different cloud
mass, where the black solid line is the contour of τgw ¼ 105 yr (the upper one corresponds to smaller β) and the blue dashed (dotted)
lines correspond to α ¼ 0.2ð0.5Þ.

FIG. 8. Detectable region of bosonic particle mass and cloud mass ratio (left, scalar 211; right, vector 1011) for different host BH mass
(with DF); the constraints are the same as Fig. 7. Note for μ ∼ 10−n eV, α ∼ 1010−n ×M=M⊙; hence for BH massM ∼ 10nM⊙, only the
particle mass smaller than 10−ð10þnÞ eV is viable.

YAN CAO and YONG TANG PHYS. REV. D 108, 123017 (2023)

123017-10



the binary’s effective dissipative power for the different SR
states.
One of our main motivations is to quantify the impor-

tance of the cloud mass depletion at large radius, which are
relevant for early phase of binary evolution and also the
resonance events. We find that DF could typically dominate
at the small radius. But unless the GA is in the vector or
tensor SR ground state with large enough cloud mass, the
critical radius of outspiral is determined by the balance
between cloud mass depletion and binary GWemission. By
requiring the fine and hyperfine resonances to happen only
during inspiral, upper limits are imposed on the cloud mass
before the resonance, which for example can already be
small for typical model parameters of the scalar 211 to 21-1
transition. We present an exact solution for the circular orbit
evolution under PDC þ Pgw, showing that for binary system
with a small mass ratio, even a small cloud mass could
significantly slow down the inspiral process or for a large
enough cloud mass make the companion outspiral. This
implies that not only the cloud mass depletion itself, but
also the DC effects on the orbit evolution may need to be
considered for a reasonable estimation of the cloud mass.
Comparing with the scalar SR state, the depletion rates of

vector and tensor SR state are considerably larger for given
α, leading to a smaller critical radius for outspiral, but the
maximum value of α is also more severely constrained from
the depletion time consideration. We estimate the detect-
ability of outspiral in the sensitive band of space-borne GW
detectors and also the pulsar-timing detection threshold for
general process, finding that the minimum detectable boson
mass is lighter for a heavier host BH, and without DF the
detectable vector or tensor boson mass is lighter than
the scalar case. The inclusion of DF leads to additional
detectable parameter space corresponding to inspiral.
Our discussions are focused on circular orbit on the GA’s

equatorial plane, but as elaborated in Appendix C, this
model can be extended straightforwardly to more general
orbits. For larger orbit eccentricity both PDF and Pgw are
boosted relative to PDC; this has two implications: (i) the
critical orbit frequency of outspiral becomes lower, mainly
due to the increased Pgw, and (ii) DF becomes more
important at given orbit frequency—hence the observable
parameter space of DF would be enlarged (though DF is
still expected to be insignificant in the PDC-dominated
phase since it tends to decrease exponentially with the orbit
radius). Moreover, for elliptic orbit the cloud’s gravity leads
to additional effects of orbit precession. We have also
neglected the possible matter accretion of the cloud’s host
BH from the background environment [53], which would
compete with the mass loss due to cloud mass depletion but
may also lead to a larger cloud mass [69].
Besides the GW emitted by the binary orbit motion, the

GW emitted by the cloud, typically at higher frequency
and even larger amplitude (see Fig. 3) may also be
detectable [57,70]. A joint detection of the binary GW

and cloud GW would be a distinctive signature of such
systems and would help to break the degeneracy of the
mass change predicted by other scenarios. Finally, even for
the mass change within GA there are still other possibil-
ities; e.g., for complex bosonic fields the cloud may have
negligible GW emission [25], while self-interaction of the
bosonic fields may lead to additional mass loss [71], which
could enrich the phenomenology discussed above.
In view of these, we hope to return to this subject in the

future with a systematic investigation of the general orbits
taking into account the environmental accretion effects, the
cloud ionization and possibly other mass loss mechanisms,
and the effects on the GW waveforms [59,72–81].
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APPENDIX A: WAVE FUNCTION OF
GRAVITATIONAL ATOM

The orthonormalized wave functions of states jnljmi are
given by

Ψnljmðt; rÞ ¼ RnlðrÞYljmðθ;ϕÞe−iðωnljm−μÞt; ðA1Þ
where RnlðrÞ≡ r3=2c RnlðxÞ (with x≡ r=rc) is the hydro-
genic radial function:

RnlðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2

n

�
3 ðn − l − 1Þ!
2nðnþ lÞ!

s �
2x
n

�
l
e−

x
nL2lþ1

n−l−1

�
2x
n

�
:

ðA2Þ
For scalar fields, the angular function of mode jnlmi is
given by the spherical harmonics Ylmðθ;ϕÞ. For vector
field, the angular function of mode jnljmi is given by the
purely orbital vector spherical harmonics [82]:

Yi
ljm ¼

Xl

ml¼−l

X1
ms¼−1

hð1; msÞ; ðl; mlÞjj; miξms
i Ylml

ðθ;ϕÞ;

ðA3Þ
where ξ0 ¼ ez, ξ�1 ¼∓ 1ffiffi

2
p ðex � ieyÞ is a set of orthonor-

mal polarization basis and hð1; msÞ; ðl; mlÞjj; mi the
Clebsch-Gordan coefficients. For tensor fields, the angular
function of mode jnljmi is given by the purely orbital
spin-2 tensor spherical harmonics [54]:

Yik
ljm ¼

Xl

ml¼−l

X2
ms¼−2

hð2; msÞ; ðl; mlÞjj; mitms
ik Ylml

ðθ;ϕÞ;

ðA4Þ
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with tms
ik ¼ P

1
m1;m2¼−1hð1; m1Þ; ð1; m2Þj2; msiξm1

i ξm2

k . The
analytical results for the spectra ωnlðjÞm of spin-0, -1, and -2
GA (which are accurate for small α) can be found in
[36,54]. The velocity of a Schrödinger field Ψ ¼ jΨjeis is
given by u ¼ 1

μ∇s ¼ i
2μjΨj2 ðΨ∇Ψ� −Ψ�∇ΨÞ. For scalar

state, s ∝ mϕ, so u ¼ m
μr sin θ eϕ. For vector and tensor state

with azimuthal quantum number m, the field components
Ψi ∝ eimiϕ generally have distinct values of mi.
In the nonrelativistic Newtonian limit, the system can be

described by the Lagrangian (neglecting self-gravity)

L ¼ Mc

μ
Tr

��
1

2
iΨ†Ψ̇þ c:c:

�
−

1

2μ
∇Ψ† · ∇Ψþ α

r
jΨj2

�
;

ðA5Þ

which leads to the Schrödinger equation for each field
component. But the energy-momentum tensor should be
obtained from the relativistic Lagrangian. The equations of
motion for massive scalar, vector and spin-2 field read

□ϕ ¼ μ2ϕ;

□Ab − RcbAc ¼ μ2Ab;

□Hab þ 2RacbdHcd ¼ μ2Hab; ðA6Þ

with Ab
;b ¼ 0 and Hab

;a ¼ Ha
a ¼ 0, in the nonrelativistic

limit A0; H0b ≈ 0. For the scalar field, the nonrelativistic
ansatz corresponds to

ϕ ¼
ffiffiffiffiffiffiffi
Mc

μ

s
1ffiffiffiffiffi
2μ

p ðΨe−iμt þ c:c:Þ; ðA7Þ

for the Proca field,

Ai ¼
ffiffiffiffiffiffiffi
Mc

μ

s
1ffiffiffiffiffi
2μ

p ðΨie−iμt þ c:c:Þ; ðA8Þ

and for the massive spin-2 field,

Hij ¼
ffiffiffiffiffiffiffi
Mc

μ

s
2ffiffiffiffiffi
2μ

p ðΨije−iμt þ c:c:Þ ðA9Þ

[corresponding to the Fierz-Pauli Lagrangian with mass
term 1

8
μ2ðH2 −HabHabÞ]. In the nonrelativistic limit and

in a nearly flat spacetime background, the energy density
is then given by ρ ¼ T00 ¼ McTrðΨΨ�Þ ¼ Mc

r3c
g, with

g ¼ R2
nlðxÞTrðYljmY�

ljmÞ. Due to axisymmetry, the mass

quadrupole moment of the cloud is given by Īij ¼
diagð− 1

3
;− 1

3
; 2
3
ÞQc (choosing the z axis to be the symmetry

axis), with

Qc ¼
Z

d3rρðrÞr2P2ðcos θÞ: ðA10Þ

For scalar 211 state (same as vector 2122 and tensor 2133
state), g ¼ 1

64
x2e−xsin2θ and Qc ¼ −6Mcr2c. For scalar 322

state, g ¼ x4e−
2x
3 sin4θ

26244π and Qc ¼ −36Mcr2c. For the scalar

433 state, g ¼ e−
x
2x6sin6θ

37748736π and Qc ¼ −120Mcr2c. For vector
1011 state (same as tensor 1022 state), g ¼ 1

π e
−2x and

Qc ¼ 0. For tensor 2111 state, g ¼ 13−cos 2θ
1280π x2e−x and

Qc ¼ − 3
5
Mcr2c.

Since the spatial gradients of the field are nonrelativ-
istically suppressed, the other components of the energy-
momentum tensor are approximately given by Ti0 ¼ 0:

Tij ¼
δij
2
½ðϕ̇Þ2 − μ2ϕ2�;

Tij ¼
δij
2
½ðȦkÞ2 − μ2ðAkÞ2� − ½ȦiȦj − μ2AiAj�;

Tij ¼
δij
8
½ðḢklÞ2 − μ2ðHklÞ2� −

1

2
½ḢikḢkj − μ2HikHkj�;

ðA11Þ

for scalar, Proca and spin-2 field, respectively. These
components oscillate at frequency 2μ and would source
metric perturbations oscillating at the same frequency.
Note that the binary orbit frequency Ω ¼ nμ corresponds
to the orbit radius x ¼ ½ð1þ qÞα4=n2�1=3, which for
α ≪ 1 is much smaller than the Bohr radius; hence
the possible orbit resonance from these oscillating metric
perturbations is irrelevant in the perturbative regime
of GA.

APPENDIX B: CORRECTION TO Mc AND Pgw

The effect of mass depletion on the binary dynamics
originates from the cloud’s gravitational force on the
companion. As leading order approximation we consider
only the Newtonian potential of the cloud in a flat back-
ground (since the other linear metric perturbations are
already negligible for x≳ 10). Due to axisymmetry, the
Newtonian potential sourced by the cloud can be expanded
in terms of the Legendre polynomials:

Φðr; θÞ ¼
X∞
n¼0

ΦnðrÞPnðcos θÞ; ðB1Þ

where

ΦnðrÞ ¼ −
2π

ðnþ 1=2Þrnþ1

Z
r

0

ðr0Þnþ2ρnðr0Þdr0

−
2πrn

nþ 1=2

Z
∞

r
ðr0Þ1−nρnðr0Þdr0 ðB2Þ
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and

ρnðrÞ ¼ ðnþ 1=2Þ
Z

π

0

ρðr; θÞPnðcos θÞ sin θdθ: ðB3Þ

Including the cloud’s gravity, the binary potential energy is

Ep ¼ M�Φ −
M�M
r

; ðB4Þ

so we can define an effective cloud mass

M̃c ¼ −Φr: ðB5Þ

For θ ¼ π=2, Φðr; θÞ ¼ ΦðrÞ, the results for several states
are depicted in Fig. 9. It can be seen that the deviation of
M̃c fromMc is small. Interestingly, for a nonspherical state
M̃c=Mc is not a monotonic function of radius.

Since M̃c depends on radius, d
dt M̃c ¼ M̃c

Mc
Ṁc þ ðM̃c

Mc
Þ;xẋ,

but the second contribution is negligible since it is a
second-order effect due to orbit evolution. From the mass

change of the cloud, the binary GW radiation power Pgw ¼
1
5
⃛Īij
⃛Īij receives a correction via the change of binary mass

quadrupole6 Iij ¼ M�
1þq xixj with q ¼ M�

MþM̃c
, but we have

checked that it is completely negligible for any reasonable
parameters.
The gravity of the cloud could also affect the binary’s

GW emission; this is particularly relevant for an extreme-
mass-ratio system with sufficiently small orbit radius or
large cloud mass, which has been recently investigated in
[83] for a circular binary around a complex scalar cloud.

APPENDIX C: GENERAL ORBIT

In this appendix we outline the Newtonian analysis for a
general inclined elliptical orbit, neglecting the possible

precession of the orbit plane. In the untilted BH-centered
frame ðx; y; zÞ with the z axis parallel to the BH spin,
the companion’s coordinate position is ðr; θ;ϕÞ, and we
denote its position in the tilted BH-centered frame
ðX; Y; ZÞ with rotated X axis and Z axis parallel to the
orbit normal to be ðr; i;φþ φ0Þ, where i is the orbit
plane’s inclination angle (relative to the BH’s equatorial
plane), φ the true anomaly, and φ0 the longitude of
the periastron on the orbit plane. The two sets of
coordinates are related by cos θ ¼ sin i cosðφ0 þ φÞ,
sinθ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðφ0þφÞþcos2icos2ðφ0þφÞ

p
, and tanϕ ¼

sec i tanðφ0 þ φÞ. The cloud’s density distribution in the
orbit plane is then given by ρðr; θðφÞÞ.
For elliptical orbit, the convenient parametrization is

r ¼ að1 − e2Þ
1þ e cosφ

¼ að1 − e cos zÞ; z − e sin z ¼ Ωt;

ðC1Þ

where a is the semimajor axis, e the eccentricity, and
z∈ ½0; 2π� the eccentricity anomaly. The orbit velocity,
energy and angular momentum are given, respectively, by

v ¼ aΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e cos z
1 − e cos z

r
; ðC2Þ

E=μ ¼ −
Mtot

2a
; ðC3Þ

L=μ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mtotað1 − e2Þ

q
; ðC4Þ

withMtot ¼ M1 þM2, μ ¼ M1M2=Mtot (in this appendix μ
refers to the binary’s reduced mass, instead of the boson

mass), and the Kepler relation Ω ¼
ffiffiffiffiffiffi
Mtot
a3

q
. The radial and

azimuthal velocity are, respectively,

vr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mtot

að1 − e2Þ

s
e sinφ; vφ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mtotað1 − e2Þ

p
r

:

ðC5Þ

In the absence of mass variation, the orbit evolves
according to

−Ė ¼ Pgw þ PDF; L̇ ¼ ðL̇Þgw þ ðL̇ÞDF; ðC6Þ

leading to evolution of the osculating orbit elements a and e.
For a perturbing (relative) acceleration of the two-body F ¼
Fφeφ þ Frer þ Fzez (where ez is perpendicular to the orbit
plane) acted on the system, the orbit evolution is given by [84]

ȧ
a
¼ 2

Ω

�
e sinφ

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p Fr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

r
Fφ

�
; ðC7aÞ
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FIG. 9. Effective cloud mass experienced by the companion.

6The use of quadrupole formula even in the case of time-
varying mass is not strictly justified, but this problem is irrelevant
for the very slow mass depletion considered here.
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ė ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

aΩ
fðcosφþ cos zÞFφ þ sinφFrg; ðC7bÞ

φ̇0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

aeΩ

��
1þ r

að1 − e2Þ
�
sinφFφ − cosφFr

�
:

ðC7cÞ

1. Dynamical friction

For a general friction force parallel to the velocity,
μF ¼ Fv=v, the secular evolution is

ȧ
a

�
¼ 1

2π

Z
2π

0

dz
F
μ

ffiffiffiffiffiffiffiffiffi
a

Mtot

r
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2cos2z

p
; ðC8aÞ

hėi ¼ 1

2π

Z
2π

0

dz
F
μ

ffiffiffiffiffiffiffiffiffi
a

Mtot

r
2ð1 − e2Þðcos z − ecos2zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2cos2z
p ;

ðC8bÞ

while for F ðφÞ ¼ F ð−φÞ, hφ̇0i ¼ 0; hence the dynamical
friction does not contribute to the periastron shift if
ρðφÞ ¼ ρð−φÞ, e.g., for i ¼ 0. For elliptic orbit we define
the effective power by ẋa ¼ − 2

qMα2
PðxaÞx2a with

xa ¼ a=rc. The generalization of DF power (18) to ellip-
tical orbit is

PDFðe; iÞ
PDFðe ¼ 0; i ¼ 0Þ ¼

R
2π
0 dzxCΛðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2cos2z

p
gðx; θÞ

2πxaCΛðxaÞgðxa; π=2Þ
:

ðC9Þ

For PDF, orbit inclination relative to the equatorial plane
leads to reduced cloud mass density along the orbit for
nonspherical states; we consider in the following i ¼ 0. A
larger eccentricity, on the other hand, means that the
companion dives into a denser region of the cloud and
hence PDF increases. For high eccentricity or large orbit
radius, the ratio (C9) is significant and we find that PDFðeÞ

is mainly determined by gðxað1 − eÞÞ, i.e., the cloud
density at the periastron. Similarly, the accretion effect is
proportional to the cloud density and subject to the same
suppression as the circular case (note that accretion is
irrelevant if the companion is not a BH). Since the DF
decreases exponentially at large radius, it is still not
important for the outspiral phase; however, the binary
GW power Pgwðxa; eÞ ¼ Pgwðxa; e ¼ 0ÞfðeÞ is boosted

by the Peters-Mathews factor fðeÞ ¼ 37e4=96þ73e2=24þ1

ð1−e2Þ7=2 ,

pushing the outspiral phase to a lower orbit frequency.
At small radius, the DF could significantly modify the
eccentricity evolution; the same as the effective power we

find that hėiDFhėigw ∝ βα−5, where hėigw is the contribution from

binary GW emission. At large radius, hėi ¼ hėigw, which
could nevertheless give some corrections to the result of
secular evolution for circular orbit discussed in the main
text. As a concrete example we show the effective powers
together with the changing rate of eccentricity for the vector
1011 state in Fig. 10.

2. Cloud mass depletion

For a binary with time-varying mass, in the absence of
dissipation, μ̈r ¼ −M1ðtÞM2ðtÞ

r3 r; hence L=μ ¼ r2φ̇ is con-

served—for circular orbit this leads to ṙ ¼ − Ṁtot
Mtot

r. A more
careful treatment [85–87] assuming themass loss is isotropic
(i.e., the mass change itself does not carry away linear
momentum)would show that the mass changemanifests as a

perturbing acceleration FDC ¼ − 1
2
Ṁtot
Mtot

v, and its contribution

to the effective power reads PDC ¼ qα2

2ð1þqÞxa Ṁ1. For circular

orbit with Ṁ2 ¼ 0 this corresponds to the average loss rate of
orbital angular momentum:

ðL̇ÞDC ¼ M2
2

M3=2
tot

Ṁ1

ffiffiffi
r

p
; ðC10Þ

FIG. 10. Changing rate of eccentricity (left) and effective power (right) versus x ¼ a=rc, for saturated vector 1011 state with q ¼ 0.01,
α ¼ 0.03, and β ¼ 0.01, using the DF model (16). In the right figure, the dashed lines correspond to PDC − PDF and the solid lines
correspond to PDC. For PDC, we use for simplicity M̃c ¼ Mc; the relative difference is within Oð1Þ for x > 1.
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which is negligible only for q ≪ 1. In comparison, if L
remains constant during the process of mass change, the
resulted effective power is

PðxÞ ¼ qα2

2ð1þ qÞx ½Ṁ1ð1þ 2qÞ þ Ṁ2ð1þ 2q−1Þ�: ðC11Þ

As seen from Eq. (C7), the isotropic mass change
(averaged over time) affects neither the eccentricity evo-
lution nor the periastron precession. But for inclined
elliptical orbit, the gravity of the cloud can lead to both
periastron and orbit plane precession (for a nonspherical
state such as scalar 211), unrelated to the cloud mass
depletion.

3. Ionization and resonance

Finally we briefly discuss how to incorporate the mass
depletion in the ionization and resonance dynamics. If we
identify the DF with ionization, the orbit dynamics can be
set up using the ionization model of [40], but the orbit
eccentricity and inclination introduce additional complex-
ities [48]. For simplicity, we consider only the equatorial
plane circular orbit and the ionization of a single bound
mode. The cloud mass changes as Ṁc ¼ −Pgw;c − Ṁ�−
Mc

P
g ½μjηj

2

k Θðk2Þ�g, where η is the mixing matrix element
between the single bound state being ionized and the
continuum state with wave number kðgÞ and azimuthal

quantum number m0 ¼ mþ g satisfying ðkðgÞÞ2
2μ ¼ −μ α2

2n2 �
gΩ (� stands for corotating or counterrotating orbit;
here we adopt Ω > 0); the orbit angular momentum
changes due to ionization according to ðL̇Þion ¼
∓ Mc

P
gðmþ gÞ½jηj2k Θðk2Þ�g. Together with the cloud’s

angular momentum Sc ¼ mMc
μ , and using the angular

momentum balance L̇� ðṠc þ m
μ Pgw;cÞ ¼ − Pgw

Ω þ ðL̇Þion þ
ðL̇ÞDC (assuming the accretion process giving rise to Ṁ�
does not change the total angular momentum), the

contribution to the effective power from ionization and
Ṁ� is [40]

PionðxÞ ¼ McΩ
X
g

g

�jηj2
k

Θðk2Þ
�
g

þMΩ
α

Ṁ�

� ð2þ qÞ ffiffiffi
x

p
2ð1þ qÞ3=2 ∓ m

�
: ðC12Þ

The first term in the second line is same as Eq. (C11) for
Ṁ1 ¼ 0, while the second term comes from ionization. For
small mass ratio and large orbit radius, the second line is
nothing but Ṁ�v2; see also Sec. II B 2.
For the orbit evolution during resonance (again restrict-

ing to equatorial plane circular orbit and neglecting the
ionization and accretion), from angular momentum balance
the orbit evolution is given by

ẋ¼ðẋÞothers ∓ 2ð1þqÞ1=2q−1αx1=2M−2ð½Ṡc�eff þ J̇Þ ðC13Þ

(where the contribution of Ṁ to L has been neglected). Here
ðṙÞothers includes all effects other than the cloud-orbit angular
momentum exchange, J ¼ M2χ is the BH spin, the angular
momentum of the cloud Sc ¼ Mc

μ

P
i mijcij2 evolves accord-

ing to iċi ¼ Hijcj, with the mixing Hamiltonian
Hij ¼ hΨijV�jΨji þ ωðiÞδij. ½Ṡc�eff is Ṡc with the contribu-
tion from cloud depletion removed. The mass and angular

momentum conservation of the SR process imply that ṀþP
i2ω

ðiÞ
I Mcjcij2¼0 and J̇ þP

i2ω
ðiÞ
I

Mc
μ mijcij2¼0. For

hyperfine transitions the variation of BH mass and spin
can be important for themode evolution [48]. Due to its long
timescale, the cloud mass depletion is not expected to play
any roles in the “quantum dynamics” of ci which is mainly
driven by the oscillating gravitational perturbation, but its
orbit effect through PDC may still be relevant; e.g., for a
sufficiently large cloud mass, the orbit evolution before the
resonance would be modified.
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