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Gravitational-wave signals from compact binary coalescences are most effectively identified by matched
filter searches. These searches match the data against a pregenerated bank of gravitational-wave templates.
Currently, all modeled gravitational-wave searches use templates that restrict the component spins to be
aligned (or antialigned) with the orbital angular momentum. This means that they are less sensitive to
gravitational-wave signals from precessing binaries, implying that a significant fraction of signals may
remain undetected. In this work, we introduce a matched filter search that is sensitive to signals generated
from precessing binaries. We take advantage of the fact that a gravitational-wave signal from a precessing
binary can be decomposed into a power series of five harmonics. This allows us to create a generic-spin
template bank that is only ∼3 times larger than existing aligned-spin banks. Our new search shows a ∼100%
increase in sensitive volume for neutron star black hole binaries with total mass larger than 17.5M⊙ and in-
plane spins > 0.67, and improves sensitivity by ∼60% on average across the full generic spin neutron-star
black-hole parameter space. In addition, our generic spin search performs as well as existing aligned-spin
searches for neutron star black hole signals with insignificant in-plane spins. We anticipate that this
improved technique will identify significantly more gravitational-wave signals and help shed light on the
unknown spin distribution of binaries in the Universe.
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I. INTRODUCTION

In the last 10 years, gravitational-wave observatories such
as Advanced LIGO, Advanced Virgo, and KAGRA have
unlocked the gravitational-wave Universe [1–3]. At the time
of writing, roughly 100 compact binary coalescences have
been observed using data from these observatories by the
LIGO-Virgo-KAGRA (LVK) collaborations [4–7]. In addi-
tion, the public release of LVK data via the Gravitational
Wave Open Science Center [8] has enabled external groups
to analyze the data and identify additional events [9–14].
These many observations have been made possible by the

development of complex search algorithms to matched filter
the gravitational-wave data against a set of filter waveforms
representing our best knowledge of the gravitational-wave
signal emitted by compact binary mergers [10,15–27].
However, while these searches have been undeniably
successful, they are all limited in one important regard:
They are all restricted to performing modeled searches with
template banks that only contain aligned-spin templates,
where the spin angular momentum of the two compact

objects and the orbital angular momentum of the binary are
aligned.1 This is because the sky position and orientation of
aligned-spin binaries have a simple relationship with the
waveform observed by the gravitational wave detector,
which allows us to analytically maximize over these
extrinsic parameters [15,17].
In this work, we revisit the problem of searching for

compact binary coalescences where the spins are mis-
aligned with the orbital angular momentum. When the
spins are misaligned, spin-orbit coupling will cause the
orbital angular momentum and the spin angular momenta
to precess around the direction of the total angular
momentum [31]. This effect will modulate the phase and
amplitude of the observed gravitational waves, with the
exact form of the modulation depending on the orientation
and sky position of the binary. This dependence means that
we can no longer analytically maximize over the extrinsic
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1We note that in addition to matched-filter searches, unmod-
eled, or semimodeled, pipelines have been developed to target the
observation of sources that do not match well to our template
waveforms [28–30]. However, while these can match the sensi-
tivity of matched-filtering when searching for high-mass signals,
the performance of such searches does not match matched-
filtering when considering systems with relatively low chirp
mass, as we will do in this work.
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parameters, making the inclusion of precessional effects in
a modeled search challenging.
There are two main formation channels for the produc-

tion of compact binaries: through the isolated evolution of a
pair of massive stars, or through the dynamical formation of
binaries in dense stellar environments [32–35]. For com-
pact binary coalescences that evolved from a pair of
massive binary stars, we expect the spin angular momenta
of the components to be roughly aligned with the orbital
angular momentum, with some misalignment present
due to kicks caused during core collapse of either compo-
nent [36,37]. For binaries that are formed through dynamic
capture in dense stellar environments, we expect to see
isotropic spin distributions [38]. Observation of compact
binary coalescences with large misaligned spins, or lack
thereof, will therefore allow us to test the rate of binaries
produced by different formation channels [39,40] and is
therefore of great astrophysical interest. However, if current
search methods are missing strongly precessing signals
then this could introduce a bias to these measurements.
When using only aligned-spin templates it has been

demonstrated that reasonable sensitivity is retained to
templates with moderate effects due to precession [41,42],
losing ∼17–23% of our sensitivity in the neutron-
star–black-hole parameter space compared to an ideal
search [41]. Aligned-spin templates are particularly effec-
tive when the component masses are close to equal, the
magnitude of the spin angular momentum is small, or the
orbit of the binary is close to face-on (ι ¼ 0) or face-off
(ι ¼ π). In these cases the precession of the binary will only
weakly effect the waveform, making it difficult to infer
the presence or absence of precession in the observed
signal [43]. For most individual events observed so far
there are only weak constraints on the size of the misaligned
spin components [5,7]. Recently, strong evidence for
precession has been claimed in one observed compact
binary coalescence—GW200129_065458 [44]. However,
there may be some uncertainty in this measurement due
to non-Gaussian noise at the time of the event and the
uncertainty in the glitch model used to remove this
noise [45]. In short, most of the compact binary mergers
observed so far show no evidence for precession. While
this is likely reflective of the underlying population, it
is possible that precessing signals remain undetected in
our data because we are only looking with aligned-spin
waveforms.
Several methods have been proposed to search for

precessing signals [46–53]. However, none of these meth-
ods has been applied to Advanced LIGO, Advanced Virgo
and KAGRA data. This is because the methods either result
in an increased rate of noise events that outweighs an
increase in recovering precessing signals, or because they
are computationally unfeasible.
In this work we introduce a new method that is similar

in nature to [48] but uses the harmonic decomposition

proposed in [54]. We show that we can minimize the
unphysical freedom introduced by the maximization over
extrinsic parameters by using a subset of the available
harmonics, while still recovering the majority of signal
power from precessing events. We demonstrate that a
precessing bank containing only 355160 templates not only
increases the observed signal-to-noise ratio for precessing
injections compared to an aligned-spin bank, but also
increases the sensitive volume by ∼100% for binaries with
total mass larger than 17.5M⊙ and in-plane spins > 0.67.
We will begin by reviewing the effect of precession on

the evolution of compact binary coalescences and their
signals in Sec. II. We review previous attempts to search for
precessing compact binary mergers in Sec. III. We will then
review the harmonic decomposition in Sec. IVand its use in
modeling the precessing signal for different sky positions
and orientations. In Sec. V we motivate why the harmonic
decomposition offers a way to solve the precessing search
problem. In Sec. VI we introduce our new modeled search
using the harmonic decomposition to maximize over the set
of intrinsic parameters. Finally, in Sec. VII we demonstrate
that with an appropriate choice of detection statistic we can
improve the sensitivity of modeled searches to neutron-
star–black-hole signals by ∼60% on average across the full
generic spin parameter space.

II. GRAVITATIONAL-WAVE SIGNALS
OF PRECESSING BINARIES

In this sectionwe provide an overview of the gravitational-
wave signals produced by precessing binaries. For further
details, we refer the reader to Refs. [31,46,48,55].
A binary consisting of two compact objects will slowly

inspiral due to the emission of gravitational waves. The
emitted gravitational waves carry away angular momentum
from the binary along the direction of the orbital angular
momentum L. Assuming a quasicircular orbit, the binary’s
evolution can be fully described by 8 parameters: the
masses,m1 andm2, and the spin angular momentum vector,
S1 and S2, of each compact object.
If S1 and/or S2 are nonzero and aligned or antialigned

with Lwe refer to the system as an “aligned-spin binary.” In
an aligned-spin binary, spin-orbit, and spin-spin couplings
alter the rate of inspiral of the binary, adding a contribution
to the overall phase of the observed signal, as well as the
amplitude of the emitted gravitational waves [55,56]. If the
total spin angular momentum S ¼ S1 þ S2 is misaligned
with L the binary will additionally undergo spin-induced
orbital precession [31]. For the case when jLj ≪ jJj, L, S1,
and S2 precess around the approximately constant total
angular momentum J ¼ Lþ S [31], as illustrated in Fig. 1.
Although the emitted gravitational-waves continue to carry
away angular momentum along L, the precession of L
around J implies that on average the angular momentum is
emitted parallel to J, with any emission orthogonal to J
averaging to zero.
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To simplify the modeling of a precessing binary, we
utilize a source frame relative to the approximately constant
vector Ĵ. We define this frame such that the z axis is parallel
to the vector Ĵ and the x axis is parallel to Ĵ × N̂, where N̂ is
the direction to the observer. The angle between the vectors
Ĵ and N̂ will be given by

cos θJN ¼ Ĵ · N̂: ð1Þ

Following works such as [31] we then define two angles
to track the precession of L, the phase of the precession, α,
and the opening angle β, both illustrated in Fig. 1. The
opening angle is given by

tan β ¼ S⊥
jLj þ Sk

; ð2Þ

where Sk and S⊥ are the magnitudes of S parallel and
perpendicular to L respectively.
As the precessing binary inspirals, jLj decreases while

the magnitudes of the spin angular momenta jS1j and jS2j
remain constant. Since Sk and S⊥ also remain approxi-
mately constant throughout the inspiral, we see from
Eq. (2) that the opening angle increases as the binary
evolves. However, the rate of change of β will be small
compared to the precession frequency Ωp ¼ α̇ [57].
The orbital frequency Ωorb of the binary is typically

much larger than the precession frequency Ωp, meaning
that the binary can complete several orbits before L changes
significantly [31]. For this case, the dynamics of the binary
can be approximated as a set of quasicircular orbits within
an orbital plane that is precessing. This condition is called
the “adiabatic limit.”
We can gain some insight into the effect of precession

on the observed signal by defining an instantaneous orbital
plane that is perpendicular to L, and then modeling

the dynamics within this plane using an aligned-spin
waveform [48]. We can then examine how the observed
signal changes as L changes.
We can define the vectors x̂L and ŷL to form a basis for the

instantaneous orbital plane. Although x̂L and ŷL must be
perpendicular toL,we have the freedom to rotate themaround
L. This rotation is degenerate with a change of the orbital
phase, so we choose x̂L to be perpendicular to Ĵ, giving us

x̂L ¼ L̂ × Ĵ
sin β

; ŷL ¼ cos βL̂ − Ĵ
sin β

: ð3Þ

In the case that L̂ and Ĵ are aligned, wewill choose x̂L and ŷL
to be aligned with the x and y axes of the source frame. These
vectors are illustrated in Fig. 2.
For an aligned-spin binary inclined to the observer with

angle ι, where ι is defined by

cos ι ¼ L̂ · N̂; ð4Þ

the two polarizations of the emitted gravitational waves due
to the dominant quadrupole can be written as

hþðtÞ ¼
1þ cos2ι

2r
AðtÞ cos ð2ϕðtÞ þ 2ϕ0Þ ð5Þ

h×ðtÞ ¼
cos ι
r

AðtÞ sin ð2ϕðtÞ þ 2ϕ0Þ: ð6Þ

Here the amplitude, AðtÞ, and orbital phase, ϕðtÞ, can be
calculated using the post-Newtonian formalism [58]. The
orbital phase is defined as the angle between the orbital
separation vector, r̂, which points from m1 to m2, and the
x axis

r̂ ¼ x̂L cosϕðtÞ þ ŷL sinϕðtÞ: ð7Þ

FIG. 2. Illustration of a binary with spins aligned (left) and
misaligned (right) with the orbital angular momentum. The
vectors x̂L and ŷL are defined to be orthogonal to L and form
a basis for the instantaneous orbital plane of the binary. The solid
blue arrow represents the orbital angular moment, the solid red
arrow represents the combined spin angular momentum, and the
solid purple arrow represents the total angular momentum. The
dashed blue arrow illustrates the path of the orbital angular
momentum vector as the binary precesses. The solid green arrow
shows the direction to the observer.

FIG. 1. Illustration of a binary with spins misaligned with the
orbital angular momentum demonstrating the angles α, β, and θJN.
In both panels the z axis is aligned with the total angular
momentum. The solid blue arrow represents the orbital angular
moment, the solid red arrow represents the combined spin
angular momentum, and the solid purple arrow represents the
total angular momentum. The dashed blue arrow illustrates the
path of the orbital angular momentum vector as the binary
precesses. The solid green arrow shows the direction to the
observer.
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The detector observes a gravitational-wave, hðtÞ, which is
a combination of the two polarizations,

hðtÞ ¼ FþðΘ;Φ;ΨÞhþðtÞ þ F×ðΘ;Φ;ΨÞh×ðtÞ: ð8Þ

The detector’s response to each polarization depends on
the orientation of the detector, as defined by the angles Θ,
Φ, and Ψ. The functions FþðΘ;Φ;ΨÞ and F×ðΘ;Φ;ΨÞ
define the detector’s response to each polarization. We can
therefore write the observed gravitational-wave signal as

hðtÞ ¼ 1

Deff
AðtÞ cos ð2ϕðtÞ þ 2ϕ0Þ; ð9Þ

where

Deff ¼ r

�
F2þ

�
1þ cos2ι

2

�
2

þ F2
×cos2ι

�−1=2
ð10Þ

and

2ϕ0 ¼ 2ϕc − tan−1
�
2
F×

Fþ

cos ι
1þ cos2 ι

�
: ð11Þ

As L precesses around J, the instantaneous orbital plane
will rotate relative to the observer, and ι will become time-
dependent. The overall amplitudes of hþ and h× are both
dependent on ι, and are maximized when the binary is face-
on (ι ¼ 0) and minimized when it is edge-on (ι ¼ π=2). A
change in ι also changes the relative amplitudes of the two
polarizations; the observed gravitational waves will be
circularly polarized when face-on and linearly polarized
when edge-on. This time-dependent change in ι will
therefore produce a modulation effect on both the ampli-
tude and phase of the observed signal.
The rate of change of the inclination angle will depend

on the observer’s viewing angle. For example, if the
observer’s line-of-sight is parallel to J, the inclination
angle will remain constant as L precesses around J.
However, if the observer’s line-of-sight is initially parallel
to L, the inclination will oscillate between ι ¼ 0 and ι ¼ 2β
with a frequency of Ωp. If β is large this will produce a
strong modulation effect.
In the aligned-spin case, the gravitational wave phase is

given by twice the orbital phase ϕðtÞ, as shown in Eqs. (5)
and (6). This is simply the accumulated phase due to the
orbital frequency Ωorb. However, when the orbital plane is
precessing, x̂L will also rotate around L̂. This means that
the evolution of ϕðtÞ becomes dependent on both the
orbital and precession frequencies. This relationship is
given by [59]

ϕ̇ ¼ Ωorb − Ωp cos β; ð12Þ

which introduces another modification to the phase of the
observed signal.

III. PREVIOUS METHODS TO SEARCH
FOR PRECESSING SIGNALS

In the case of an aligned-spin system, the binary can be
parametrized by two component masses, m1 and m2, two
spin magnitudes, s1z and s2z, two angles describing the
orientation of the binary, ðι;ϕ0Þ, and three angles describ-
ing the orientation of the detector ðΘ;Φ;ΨÞ. The two
masses and spins determine the intrinsic evolution of the
observed signal, while the five angles shift the observed
waveform by constant amplitude, time and phase factors
given by Eqs. (10) and (11). This allows us to analytically
maximize over the five angles using a phase-maximized
matched filter [15], leaving only the two masses and spins
to maximize over. This is done using a large set of filter
waveforms chosen to sufficiently cover the full range of
masses and spins, which we refer to as a “template
bank” [60,61].
In the case of a precessing binary we have six spin

components, S1 and S2. We use three angles to define the
orientation of the binary: two angles to define the initial
orientation of the orbital plane, ðθJN; α0Þ, where α0 is the
initial precession phase, and one angle to define the initial
orbital phase, ϕ0.

2 We also require the three angles
describing the orientation of the detector ðΘ;Φ;ΨÞ. In
this case the two polarizations, hþ and h× have a more
complex dependence on θJN than just a phase and
amplitude shift. The polarizations themselves are no longer
related by a simple phase shift. Therefore, in addition to
the four extra spin components, one also needs to consider
the effect of θJN, Ψ, and ϕ0 when developing a search to
target precessing binaries.
Several methods have been proposed to tackle the

problem of searching for precessing compact binary merg-
ers. In [46,47] the authors introduce a small set of new
parameters that modulate the phase of a nonprecessing
waveform in order to mimic the effects caused by pre-
cession. However, adding these parameters to the template
bank is computationally expensive and the resulting tem-
plates do not provide adequate match with precessing
waveforms [62]. In [48] the authors extended this by adding
a set of parameters that modulate the amplitude and phase of
the waveform. The precessing signal is then expressed as a
combination of modulated waveforms, each with a different
amplitude and phase. The signal-to-noise ratio is then
maximized analytically for the amplitude and phase of
each modulated waveform, leaving only a few parameters to
be added to the template bank. However, this approach
allows for many unphysical combinations of amplitudes and
phases, and the improvement in the match with precessing

2We note that α0 is specified completely by S1 and S2 and the
masses and is not an additional degree of freedom.
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signals is outweighed by an increase in the observed noise
due to the increased parameter space [63].
Another method was proposed in [48] and developed

in [49,50]. This method models the binary and its preces-
sional dynamics using a single spin S1 and only considers
the l ¼ 2, jmj ¼ 2 harmonics in the instantaneous orbital
plane. The gravitational wave polarizations in the radiation
frame, hþ and h×, are reexpressed as a combination of five
waveforms, QI, using the l ¼ 2 spherical harmonics as a
basis. These five waveforms only depend on the intrinsic
parameters of the binary and a constant time and phase
offset. The observed signal is then expressed as a combi-
nation of the five waveforms, each multiplied by a
coefficient, PI , which is dependent on the sky position
and orientation of the binary.
The sky location and orientation of the binary can be

maximized over bymaximizing over the coefficientsPI. The
five components ofPI dependon sixparameters in the case of
a single detector, but the four parameters describing the
location and orientation of the detector ðΘ;Φ;Ψ; rÞ only
enter as two independent combinations. This means that the
five components of PI depend on only four independent
parameters and so they must be constrained somehow.
In [49] a method was developed to maximize the signal-
to-noise ratio over the constrained values of PI , but this is
computationally expensive. Instead, an unconstrained
signal-to-noise ratio maximization of PI is used, which
allows the components to take unphysical values and
increases the rate of noise triggers. The constraint problem
becomesmore difficult whenwe considermultiple detectors.
For the 2-detector example we have the five PI components
measured independently in two detectors, but these 10 PI
values still depend on only 6 physical parameters. This
means that if these values are not constrained considerable
unphysical freedom is allowed. Thismethodwas extended to
a targeted coherent search in [51]. The authors identified
areas of the parameter space where precession effects were
weak and restricted waveforms in these areas to only the
dominant Q component, reducing the rate of noise triggers.
This allowed an analysis to be targeted to specific areas of the
parameter space. However, this method still faced issues due
to the increase in the rate of noise triggers outweighing the
increase in potential discovered signals.
In a third distinct approach, in [52], the authors proposed

a search where templates are placed to cover all of the
required parameters, including the two masses, six spin
components and the inclination of the source.3 Using this
method for a single detector, the observed signal will always
be consistent with a set of physical parameters. However,
when we attempted to generate a template bank covering a

physically meaningful parameter space for neutron-
star–black-hole signals, 30 million templates were gener-
ated and the bank showed no sign of converging. Filtering
gravitational wave data with this many templates, and
constructing sets of filter waveforms of this size and larger,
is computationally infeasible.
A common issue among most of these methods to search

for precessing signals is that in order to properly model the
observed signal, additional parameters must be added to
our signal model in order to account for the effects of
precession. However, any additional degrees of freedom in
the signal model will not only increase the computational
cost of the search, but will also increase the rate of noise
triggers, even in the case of simple Gaussian noise. When
constructing a precessing search we must therefore ensure
that any increase in the sensitivity due to an improved
signal model is not outweighed by a relatively larger
increase in the noise rate.

IV. PRECESSING WAVEFORM HARMONIC
DECOMPOSITION

In this section we will review the harmonic decompo-
sition for precessing signals, as introduced in [54], before
discussing how this formulation can be useful in solving
many of the issues reducing the effectiveness of current
precessing searches in the next section.
The gravitational waves emitted by a binary can be

decomposed into a set of spin-weighted spherical harmon-
ics. This decomposition is given by

hþ − ih× ¼
X
l≥2

X
−l≤m≤l

hl;mðtÞYl;m
ð−2ÞðθJN;φ0Þ; ð13Þ

where Yl;m
ð−2ÞðθJN;φ0Þ are the spin-weighted spherical har-

monics with weight −2 [64], hl;mðtÞ are the harmonic
components for the binary and θJN, φ0 are angles giving the
direction to the observer in a source-centered coordinate
system with the its z-axis along J, as described earlier
in Sec. II.
To calculate the emitted gravitational waves, h0þðt;θJN;φ0Þ

and h0×ðt; θJN;φ0Þ for a binary rotated with respect to
the original by the Euler angles ðα; β; γÞ, we must calculate
the new harmonic components. We do this by performing a
rotation

h0l;mðtÞ ¼ eimα
X

−l≤m0≤l

eim
0γdlm0;mð−βÞhl;m0 ðtÞ; ð14Þ

where dlm;m0 is the Wigner d-matrix [65].
An important property of the spin-weighted spherical

harmonics is that, under rotation, the modes for a particular
value of lwill not couple with modes for other l values [66].
If we therefore start by restricting ourselves to the dominant
l ¼ 2, jmj ¼ 2 mode, after performing a rotation we will

3If only considering the l ¼ 2, jmj ¼ 2 harmonics in the
instantaneous orbital plane, the orbital phase can still be ana-
lytically maximized over. This is not the case if higher-order
modes are included.
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have a maximum of five nonzero harmonic components
with l ¼ 2, −2 ≤ m ≤ 2.
In the case of a precessing binary under the adiabatic

limit, we can therefore calculate the harmonic components,
hP2;mðtÞ, by performing a time-dependent rotation of
the harmonic components of a nonprecessing binary,
hNP2;mðtÞ [67]. The first two Euler angles of the rotation
are given by αðtÞ and βðtÞ as defined in Fig. 1. The third
Euler angle is γðtÞ which is defined by [54,68]

γ̇ ¼ Ωp cos β: ð15Þ

By combining Eqs. (13) and (14) and using the defi-
nitions of the spin-weighted spherical harmonics and
Wigner d-matrix, it is shown in [54] that the observed
signal for a precessing binary can then be written as

hðtÞ ¼ ℜ

�
A0ðtÞe2iðϕsðtÞþαðtÞÞ

ð1þ b2ðtÞÞ2
X4
k¼0

ðbe−iαðtÞÞk

× ðFþAþ
k − iF×A×

k Þ
�
; ð16Þ

where the amplitude A0ðtÞ is proportional to jhNP2;2ðtÞj. The
phase, ϕsðtÞ, is a combination of the nonprecessing wave-
form’s orbital phase and γ given by

ϕsðtÞ ¼ ϕðtÞ − γðtÞ; ð17Þ

the parameter bðtÞ is defined as

bðtÞ ¼ tanðβðtÞ=2Þ ð18Þ

and the constants Aþ
k and A×

k are defined as

Aþ
0 ¼ Aþ

4 ¼ 1

r

�
1þ cos2θJN

2

�

A×
0 ¼ −A×

4 ¼ 1

r
cos θJN

Aþ
1 ¼ −Aþ

3 ¼ 2

r
sin θJN cos θJN

A×
1 ¼ A×

3 ¼ 2

r
sin θJN

Aþ
2 ¼ 3

r
sin2θJN

A×
2 ¼ 0: ð19Þ

We can see from Eq. (16) that the observed signal has five
harmonic components forming a power series in bðtÞe−iαðtÞ.
For each value of k the amplitude is therefore scaled by an
extra factor of b and the frequency increases by the
precession frequency. Each individual harmonic’s amplitude
evolves proportionally to the aligned-spin waveform and
will therefore not show the characteristic modulation of a
precessing signal. The modulation effects are then generated
by the interference between the different harmonics. This
can be seen in Fig. 3, which shows a precessing signal and
the 5 harmonics generated for the same binary.
Following [54] we will factorize out the dependence on

the initial orbital phase and precession phase, defining

FIG. 3. An example of a precessing waveform for a binary with component masses m1 ¼ 10M⊙, m2 ¼ 1.5M⊙, and component spins
s1 ¼ ð0.5; 0.5; 0.5Þ, s2 ¼ ð0; 0; 0Þ. The top panel shows the observed waveform for a signal with ι ¼ π=4 defined at 20 Hz viewed
directly overhead. The bottom panel shows the 5 harmonics for this template. For both the top and bottom panels, the Left plot focuses
on the inspiral, and the Right plot focuses on the merger and ringdown.
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ϕ̂ðtÞ ¼ ϕsðtÞ − ϕ0 þ αðtÞ − α0: ð20Þ

We can then rewrite the observed signal in the form

hðtÞ ¼ ℜ
X4
k¼0

AkhkðtÞeiϕk ; ð21Þ

where

hkðtÞ ¼
A0ðtÞbkðtÞ
ð1þ b2ðtÞÞ2 e

ið2ϕ̂ðtÞ−kðαðtÞ−α0ÞÞ; ð22Þ

Ak ¼ ððFþAþ
k Þ2 þ ðF×A×

k Þ2Þ1=2 ð23Þ

and

ϕk ¼ 2ϕ0 þ ð2 − kÞα0 − tan−1
�
F×A×

k

FþAþ
k

�
: ð24Þ

We can see that the signals’ dependence on the extrinsic
parameters is contained within the ten constant components
of Ak and ϕk. Any change in the sky location or orientation
will therefore simply correspond to a change in the overall
amplitudes and phases of each harmonic, while the evo-
lution of the amplitude and phase is unchanged.
Using the stationary phase approximation we can express

the observed waveform in the frequency domain [54] as

h̃ðfÞ ¼ ℜ
X4
k¼0

Akh̃kðfÞeiϕk ; ð25Þ

where

h̃kðfÞ ¼
A0ðfÞbkðfÞ
ð1þ b2ðfÞÞ2 e

ið2ϕ̂ðfÞ−kðαðfÞ−α0ÞÞ: ð26Þ

V. APPLYING THE HARMONIC
DECOMPOSITION

We now focus on formulating a procedure to search for
precessing waveforms using the harmonic construction for
the template filter waveforms. For a given set of intrinsic
parameters (masses and spins), we can search using each
harmonic individually and maximize over the ten param-
eters, Dk and ϕk, effectively maximizing over the extrinsic
parameters of the binary. In order to generate the templates
for each harmonic we linearly combine waveforms gen-
erated with different values of the extrinsic parameters
ðΘ;Φ;Ψ; θJN; α0;ϕ0Þ. A method for achieving this is laid
out in [54].
However, using all 5 harmonics would be very similar to

the method of [49] and would suffer the same issues of
constraining the Ak and ϕk values to physically possible
combinations. Nevertheless, the nature of the harmonic

decomposition offers a way to solve this problem. As the
harmonics form a power-series in the parameter b, if we
have b < 1 then each subsequent harmonic in the series will
be weaker than the previous. Likewise, if b > 1 then this
will be reversed and the fifth harmonic will be the most
significant. In [54] the authors show that for the majority of
binaries in the sensitive range of current detectors the
average value of b is below 0.4; it was shown that even
for the most extreme population considered, the average
value of b was 0.15 with over 90% of binaries having an
average value of b below 0.3. In this case each subsequent
harmonic after the first will be less significant than the
previous when modeling the precessing signal. This pro-
vides a way to solve the problems faced in previous
precessing searches. If precessing signals can be reliably
modeled using fewer than five harmonics then we can use a
smaller number of harmonics in the search. This will in turn
reduce the freedom of the model to match with noise in the
data. In [54], it is suggested to perform a search using only
the k ¼ 0, 1 harmonics. Here, we will investigate the best
number of harmonics to be used in order to maximize the
sensitivity of the search to precessing signals.

VI. SEARCH SETUP

In this section wewill describe our implementation of the
harmonic decomposition from [54] to perform a search for
precessing binaries.
For the purpose of this work we will focus on the

observation of neutron-star–black-holes as these systems
are ones where the effects of precession are most
observable [41,43,69,70]. Specifically, we will search for
signals with black hole masses in the range ½5; 20�M⊙ and
neutron star masses in the range ½1.2; 1.7�M⊙, with maxi-
mum spin magnitudes on each component of 0.99.
As a starting point we will use a two detector network

consisting of the LIGO Hanford and LIGO Livingston
detectors [1], but this method could be extended to a larger
network in the future.

A. Waveform model

We use the IMRPhenomXP waveform model [71]
to model both the filter waveforms and the simulated
signals that we will add to the data. This two-spin model
constructs precessing signals by taking an underlying
aligned-spin waveform [72] and performing a time-
dependent rotation to model the precession effects [67].
We note that the harmonic decomposition does not
intrinsically rely on IMRPhenomXP and can be applied
to other waveforms models, e.g., [73–76].
Previously, it has been shown that the four in-plane spin

degrees of freedom can be mapped to a single parameter,
which captures the dominant precession effects. This
effective spin precession parameter, χp, is defined as [77],
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χp ¼ 1

A1m2
1

maxðA1S1⊥; A2S2⊥Þ; ð27Þ

where

A1 ¼ 2þ 3m2

2m1

; A2 ¼ 2þ 3m1

2m2

ð28Þ

and S1⊥, S2⊥ are the in-plane component spins
perpendicular to the orbital angular momentum. We note
that other metrics have also been proposed [54,78–80].
Given that we use the same waveform model for both the

filter waveforms and the simulated signals that we will add
to the data, our results will not include the systematic effect
of waveform inaccuracy [71,76]. This was chosen to
demonstrate that our new method can be used to observe
precessing signals, both now and in the future; as waveform
models improve, the systematic errors will decrease, and
hence the systematic uncertainty in current waveform
models would not be a fair indicator of performance of
this method in the future. Nevertheless, one should not
ignore such systematics if using this method to perform an
astrophysical search. The easiest way to approximately
account for that would be to use different waveform models
when generating simulated signals.

B. Matched filter

First let us consider a single detector and a signal with
known intrinsic parameters. The log likelihood-ratio for a
known signal, h in Gaussian noise, s, is given by

λðhÞ ¼ ðhjsÞ − 1

2
ðhjhÞ; ð29Þ

where ðajbÞ represents the commonly used noise-weighted
inner product

ðajbÞ ¼ 4Re
Z þ∞

0

ã�ðfÞb̃ðfÞ
SnðfÞ

df: ð30Þ

As shown in [15,17] for a signal with an unknown
amplitude and phase we can maximize the log likeli-
hood-ratio by using the phase-maximized matched-filter

ρ2 ¼ jðhjsÞj2
ðhjhÞ : ð31Þ

If the 5 harmonics are independent we can matched-filter
over each of them independently while maximizing over the
phase (ϕk) and amplitude (Ak). However, the harmonics are
not guaranteed to be orthogonal to one another. This will
introduce covariance between the matched-filter outputs
produced by each harmonic, making the maximization of
the log likelihood ratio, or signal-to-noise ratio, more
complicated to compute. In order to simplify this calculation

we will first ensure that the harmonics are orthogonal and
normalized such that

Mkl ¼ δkl where Mkl ¼ jhhkjhlij: ð32Þ

In order to diagonalize the matrix Mkl, while maintaining
the natural hierarchy of the harmonics we use the Gram-
Schmidt process, where the first orthogonal harmonic is
given by h̃0⊥ ¼ h̃0 and each orthogonal harmonic for k > 0
is given by

h̃k⊥ ¼ h̃k −
Xk−1
l¼0

hhljhkih̃l ð33Þ

Finally, the orthonormalized harmonics are given by

h̃k⊥ ¼ h̃k⊥
ðhk⊥jhk⊥Þ

ð34Þ

After completing this step we can maximize the log like-
lihood-ratio by summing the phase-maximized signal-to-
noise ratios for each harmonic in quadrature

ρ2h ¼ max
Ak;ϕk

½ρ2� ¼
XN
k¼1

ρ2k; ð35Þ

where ρh is the total signal-to-noise ratio and N is the
number of harmonics we choose to use, the choice of which
we will discuss shortly. This gives a simple method to
maximize the signal-to-noise ratio over the sky location and
orientation, capturing the full (if N ¼ 5) signal-to-noise
ratio of the precessing signal. The phase-maximized signal-
to-noise ratio for each harmonic, ρ2k, is the sum of two
independent Gaussian random variables, each with a mean
of 0 and variance of 1, in the absence of a signal [15]. The
value of ρ2h in the absence of a signal will therefore be
the sum of 2N Gaussian random variables following a
χ2-distribution with 2N degrees of freedom.

C. Template bank generation

In order to generate our set of filter waveforms (or
template bank) for this search we will use stochastic
template bank generation [81,82].
In the case of a search with aligned-spin filter waveforms,

stochastic template bank generation works as follows.
Starting with an empty template bank, a random point is
chosen from within the target parameter space and the
corresponding signal, hprop, is generated. For each template,
hi, within the current template bank, the match,mðhi; hpropÞ,
is calculated and the maximum match across the template
bank is defined as the fitting factor

FFðhpropÞ ≔ max
i
½mðhi; hpropÞ�: ð36Þ
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If the fitting factor is below a given threshold, usually 0.97,
then the proposed template hprop is not covered sufficiently
by the current template bank and hprop is added to the bank.
This process is repeated iteratively until a set limit for the
size or coverage of the template bank is reached.
In the case of aligned-spin filter waveforms the match is

calculated using the phase-maximized matched-filter. In that
case we do not need to maximize over the phase and time of
the proposal hprop, as the effect it would have on the match
would be equivalent to a phase or time shift in the template
hi. The match therefore does not depend on the sky position
or orientation.
In the case of a precessing signal, if we maximize over

the values of Ak and ϕk for the bank template, hi, the match
will still depend on the values of Ak and ϕk of the proposal
point, hprop. Therefore, when proposing a new point, we
choose a specific sky location and orientation, giving us
specific values of Ak and ϕk for hprop. We then calculate the
match as

mðhi; hpropÞ ¼ max
ti;tprop

"X5
k¼1

jhĥk⊥;ijhpropij2
ðhpropjhpropÞ

#
1=2

; ð37Þ

noting that we explicitly include all five components during
template bank generation. The match is then maximized
across the template bank to get the fitting factor. If the fitting
factor is less than the threshold, the point is then added to
the bank, discarding the sky location and orientation
parameters. We do note that this process may lead to a
high density of templates in some regions of parameter
space where for specific values of the binary orientation the
waveform can vary significantly with small changes in other
parameters.
We empirically evaluated the performance of the template

bank as templates were added and chose to stop the
stochastic generation at 358,866 templates. This was
because choices we will discuss a little later in Sec. VI E
regarding the number of harmonics we use for each template
limit the coverage of the bank far more than the loss in
coverage compared to creating a hypothetical fully-
converged 5-component bank, which would by definition
have a fitting factor ≥ 0.97 in all areas of parameter space.
This also balances computational cost against the margin-
ally increased sensitivity that is observed if we increase the
size of the bank. We do note, however, that if someone were
extending this method to use more harmonics than we allow,
the fitting factor of the 5-harmonic template bank will
become a limiting factor. In addition, we observed that a
significant number of templates included unphysical fea-
tures and did not follow the expected harmonic hierarchy.
We discuss this more in Appendix B but these issues
resulted in us removing 3706 templates from the template
bank, resulting in a final bank of 355,160. We evaluate the
performance of this template bank in detail in Sec. VI E.

D. How many components?

We now turn to the question of if we need to use all five
harmonics when searching for precessing systems, or, if we
can efficiently find precessing systems while using fewer
harmonics, as suggested in [54]. We start this discussing by
observing that the five amplitudes and phases recovered
when filtering five harmonics are not independent. The five
amplitudes, Ak, and five phases, ϕk, are dependent on a
total of seven parameters (r, Θ, Φ, Ψ, ϕ0, θJN, α0). When
considering a single detector, the three detector-response
angles and the distance r enter as two independent
quantities; an overall scaling factor and the ratio between
the response factors Fþ and F×. This means that the ten
components of Ak and ϕk are functions of five independent
parameters and one would ideally place constraints on the
allowed values of Ak and ϕk. Maximizing over all ten
components of Ak and ϕk independently will allow for
many unphysical combinations. This would in turn likely
increase the rate of noise events, without accruing any
additional signal power, reducing the sensitivity of such a
search.
The five harmonics have a natural hierarchy and when

b < 1 each harmonic after the first will be weaker by a
factor of b and will, on average, contribute less signal-to-
noise ratio to the observed signal. We do note though that
for different sky positions and orientations the relative
amplitudes of the harmonics will change as we can see in
Eq. (23). In some cases, even when b is small, harmonics
with larger k values will be able to contribute significantly
to the signal-to-noise ratio. However, for most binary
configurations this will be rare. We refer the reader to
[54] for details.
To illustrate this we choose a selection of points with

specific values of masses and spins. We then randomly
generate a large number of systems with those mass
and spins values, but isotropic sky positions and orienta-
tions. We calculate the match using a template with
matching intrinsic parameters using different numbers
of harmonics. In Fig. 4 we show the distribution of
matches for four binaries with the following properties:
m1 ¼ 10M⊙; m2 ¼ 1.5M⊙; component spins parallel to
the orbital angular momentum, s1k ¼ 0.3, s2k ¼ 0.3; and
perpendicular spin components of χp ¼ 0.1, χp ¼ 0.3,
χp ¼ 0.6, χp ¼ 0.9 respectively. We find that when
χp ¼ 0.1, a single harmonic is able to achieve a match
of at least 0.97 for ∼79% of the tested systems. When
using two harmonics, this threshold is passed for 100% of
the systems. In this case, using a third harmonic would not
make a significant difference to the match. However, as
χp increases, the match using the first two harmonics
decreases. In the most extreme case considered, χp ¼ 0.9,
using two harmonics only achieves a match of at least 0.97
for approximately 40% of the systems. However, using
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three harmonics results in matches larger than 0.97 for all
points tested.
In Fig. 5 we consider systems where we fixm2 ¼ 1.5M⊙

and component spins parallel to the orbital angular
momentum: s1k ¼ 0.3, s2k ¼ 0.3. However, we allow the
larger mass,m1 and the perpendicular spin χp to vary. As in
Fig. 4 we randomly generate a large set of points with an
isotropic distribution of sky location and orientation. We

then compute the fraction of signals with matches greater
than 0.97 when filtering with a varying number of har-
monics. We see that there is only a small region of the
parameter space—where χp ≈ 0—that a single harmonic is
able to reliably recover the majority of the signal-to-noise
ratio. A much larger region of the parameter space is
covered by increasing to two harmonics, while using three
harmonics has average matches above 0.97 for all but a
small region with high mass ratios and large χp. Extending
to four or five harmonics achieves an average match of
> 0.97 for all configurations considered in this example.
We release all of the code used to make these plots in [83]
so that an interested reader can easily generate these figures
of merit for different mass and/or spin configurations.

FIG. 5. The fraction of sky positions and orientations for which
the match is over 0.97, using (from top to bottom) one harmonic,
two harmonics, three harmonics, four harmonic and five harmon-
ics. Matches are calculated for binaries with a fixed secondary
mass, m2 ¼ 1.5M⊙, and component spins parallel to the orbital
angular momentum s1k ¼ 0.3, s2k ¼ 0.3, while the primary mass
m1 and in-plane spin, χp, are varied. Matches are calculated using
templates with matching intrinsic parameters.

FIG. 4. Cumulative distribution of matches for four binaries
with component masses m1 ¼ 10M⊙, m2 ¼ 1.5M⊙, component
spins parallel to the orbital angular momentum s1k ¼ 0.3,
s2k ¼ 0.3, and precessing spins (from top to bottom) of
χp ¼ 0.1, χp ¼ 0.3, χp ¼ 0.6, χp ¼ 0.9 when using a different
number of harmonics N. Each cumulative distribution is con-
structed by histogramming and summing the match based on 1
thousand randomly chosen systems. Each match is calculated by
comparing a template with fixed intrinsic parameters and a
randomly chosen sky position and orientation, with the waveform
generated by summing the templates first N harmonics. We see
that as the in-plane spin of the binary increases, a greater (lower)
fraction of systems have match less (greater) than 0.97 for a fixed
number of harmonics used.
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These results motivate a scenario where the number of
harmonics N we filter with for any template is dependent
on the importance of the subdominant harmonics for that
template. In the search we demonstrate here, we will
attempt to filter with the smallest number of harmonics for
any template while still maintaining a match above 0.97 for
the majority of binary configurations of that template. In
this case, we will still have examples where there is
unphysical freedom. Additionally, there may be some
combinations of Ak and ϕk that are physically possible
but statistically very unlikely. It would be best to impose
suitable priors on Ak and ϕk such that we could include
additional harmonics without penalizing the search. Doing
this in practice is complicated, but we discuss this in more
detail and present an approximate solution later in this
work. However, our approximate solution is only valid for
up to 3 harmonics, and therefore our method will lose
some sensitivity to signals where the 4th and 5th harmon-
ics are important.

E. Selecting the number of harmonics for each template

Now we describe our method to choose the optimal
number of harmonics, N, to use for each template. We note
that in practice our method is limited to no more than 3
harmonics. However, we describe here how we could
select an optimal number of harmonics up to and including
5. For each template we generate a set of n samples with
randomly drawn sky locations and orientations, Ω, and
matching masses and spins. We then calculate an effective
match [48]

meffðhiÞ ¼
�Pn

i¼0mðhi; hiðΩÞÞ3ρ3optðhiÞP
n
i¼0 ρ

3
optðhiÞ

�
1=3

; ð38Þ

where

ρ2optðhÞ ¼
�XN
k¼0

jhĥk⊥jhij2
�1=2

ð39Þ

The effective match is weighted by the observable volume
of each signal. As a figure of merit, the effective match
therefore favors the sky positions and orientations that we
are most likely to observe.
We start by computing the effective match using only

one harmonic in the match calculation and increase the
number of harmonics until the effective match is greater
than 0.97, recording the number of harmonics used asN for
that template. This process is repeated for the full bank to
identify the minimum number of harmonics that is required
for every template.

The top row of Fig. 6 shows the number of templates that
would ideally be filtered using 1, 2, 3, 4 or 5 harmonics.
There is a reasonably even split between the 5 possibilities,
with as many as 10% of the templates require 5 harmonics
to achieve our figure of merit. As expected, the average
number of harmonics selected increases as the in-plane spin
and mass (and therefore mass-ratio) increase, where the
effects of precession will be strongest (see, e.g., Ref. [43]).
The bottom row of Fig. 6 shows the effectiveness of our

precessing template bank by computing fitting factors
using a varying number of harmonics (either always using
N harmonics, or limiting templates to no more than N
harmonics). The simulated signals are drawn from a
uniform distribution of component masses and spins
within the parameter space considered. Spin, sky location
and orientation angles are drawn isotropically. This is also
compared to the performance with an aligned-spin tem-
plate bank, which contains 118,837 templates covering
aligned-spin signals with a minimum match of 0.97 within
the target region. The aligned-spin template bank was
generated with the IMRPhenomXAS [72] waveform
model. When using all five harmonics, the precessing
template bank performs very well, with the vast majority
of fitting factors larger than 0.95. When restricting to two
harmonics there is a noticeable tail of low fitting factors—
as low as 0.7—but it is a significant improvement over the
aligned-spin template bank, or only using one harmonic.
Three and four harmonics respectively all provide addi-
tional significant improvement. Allowing a dynamic
choice of the number of harmonics for each template
results in a template bank where over 99% of the points
have a fitting factor larger than 0.9. To see how the fitting
factor varies across the parameter space, see Appendix C.
The exact threshold used for meffðhiÞ when choosing N

could be tuned in the future in order to make the optimal
trade-off between an increase in the template banks’
sensitivity to precessing signals and the increase in noise
due to larger values of N. We note that the meffðhiÞ
threshold is distinct from the fitting factor of the template
bank itself. Therefore, we incur a loss in sensitivity both
due to the intrinsic fitting factor of the 5-harmonic template
bank, and from the desire to use fewer harmonics for each
template where possible.
We also considered choosing the value of N during the

construction of the template bank so that the choice of N is
taken into account when testing matches for templates with
different intrinsic parameters. This could be achieved by
calculating the effective match between each template and
the proposal within the template bank generation loop.
However, this would require some optimization to be
computationally feasible and we leave this for future work.
In the data release accompanying this paper we provide
some additional thoughts, and a partial implementation, of
how to achieve this.

SEARCH TECHNIQUE TO OBSERVE PRECESSING COMPACT … PHYS. REV. D 108, 123016 (2023)

123016-11



VII. COINCIDENT SEARCH

Wewill assess the sensitivity of our method to precessing
signals by applying it to a coincident modeled search. We
use a stretch of ∼8 days of data in the first half of the third
LIGO-Virgo observing run from 14∶42∶36 21=05=2019
UTC to 10∶38∶20 29=05=2019 UTC. This data is available
from GWOSC [8,84].
We search this data 3 times. First, using our aligned-spin

template bank, to set a baseline. Second, using the precess-
ing template bank, limited to a maximum of 2 harmonics.
Third, using the precessing template bank, limited to a
maximum of 3 harmonics. Using more than 3 harmonics
would be desirable to maximize the recovered signal power,
but there are two problems with this approach. First, the
computational cost increases with the number of harmonics.
Including both the increase in template bank size and the
cost of filtering additional components, we expect the
computational cost of our precessing search, compared to
an aligned-spin search over the same parameter space, to
increase by ∼5 times, ∼7 times, and ∼8 times if using a
maximum of 2, 3, and 5 harmonics respectively. Second, to
effectively use more than 2 harmonics, we will show that

one requires a ranking statistic that accounts for the
expected signal and noise distribution of amplitudes and
relative phases in the harmonics. This is a complex problem
to solve, and we will demonstrate a novel method to include
this information. However, it is only valid at present when
filtering up to 3 harmonics.
In order to evaluate the sensitivity of the search,

∼68; 000 simulated signals are added into the data and
recovered using our search methods. The masses are
drawn from a log-normal distribution over the target
parameter space and the spin magnitudes are drawn
uniformly with the larger body having spin magnitudes
up to 0.99 and the second body up to 0.05. The spin
orientations, sky location and orientation angles are drawn
isotropically. The signals are then generated using
IMRPhenomXP [71]. For all simulated signals the dis-
tance is drawn uniformly in chirp-mass weighted distance
with a distance chosen uniformly in [1, 100] Mpc and then
multiplied by M5=6=1.2187 (the chirp mass of a double
neutron star with both components having a mass of 1.4).
We consider the sensivitity to a highly precessing injection
set in Appendix A.

FIG. 6. Top row: the number of harmonics selected for the templates in the harmonic template bank. The left panel shows the
percentage of the template bank that use one, two, three, four, or five harmonics. The right panel shows the average number of harmonics
selected within a set of bins over the total mass and in-plane spin parameter. Bottom row: cumulative distribution of fitting factors when
using a varying number of harmonics (either always using N harmonics, dashed lines, or allowing templates to vary the number of
harmonics as required, but limiting them to use no more than N harmonics in total, solid lines) for a set of randomly chosen simulated
signals within the target parameter space. The black line shows the fitting factor when using the aligned-spin template bank. Each other
colour shows the fitting factor using a different number of harmonics. We see that a lower fraction of systems have fitting factor lower
than a given value as the number of harmonics included in the bank increases.
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A. Signal-consistency tests

There are many instances of non-Gaussian noise within
the detector data. In order to mitigate their effects, the
aligned-spin PyCBC search uses two χ2 tests to distinguish
between genuine astrophysical signals, and non-Gaussian
noise artefacts [26].
First we apply the χ2 test described in [85], which tests

the distribution of power in different frequency bins.
However, the power of the observed waveform as a
function of frequency will change with the sky location
and orientation due to the change in the relative amplitudes
of the different harmonics. Wewill therefore reconstruct the
combination of harmonics which maximized the signal-to-
noise ratio for a particular trigger and use this signal to
refilter the data and calculate the value of the χ2 test. This
method was previously used when developing a search for
compact binary coalescences with higher harmonics in [86]
and implemented in a search in [87].
In order to reconstruct the signal which maximized the

signal-to-noise ratio we multiply the orthogonalized har-
monics, hk⊥, for a particular trigger by their complex
signal-to-noise ratio and sum over the N harmonics

h ¼
XN
k¼0

hĥk⊥jsiĥk⊥: ð40Þ

This signal can then be used to calculate the boundaries of
the frequency bins such that the signal-to-noise ratio is
evenly distributed between them and the reduced χ2 value
calculated as

χ2r ¼
p

2p − 2

Xp
i¼1

�
ρ

p
− ρbin;i

�
2

: ð41Þ

Here p is the number of frequency bins to be used and ρbin;i
is the signal-to-noise ratio in bin i. The signal-to-noise ratio
is then down-weighted for large values of χ2r calculating a
new reweighted signal-to-noise ratio

ρ̃ ¼
�
ρ; if χ2r ≤ 1;

ρ½ð1þ ðχ2rÞ3Þ=2�−1
6; if χ2r > 1:

ð42Þ

If the waveform model used is not able to capture the full
power of the observed signal then there will be residual
power in the data due to this mismatch, increasing the value
of the χ2 test and reducing the significance of the signal. An
improvement in the match from an improved template bank
does not only increase the signal-to-noise ratio of the
observed signal, but increases the robustness of the χ2 test
to signals in the data.
Figure 7 shows the observed signal-to-noise ratios and χ2r

values for a number of the simulated precessing signals in

the data. We show results for the aligned-spin template
bank and the harmonic template bank with a maximum of
two and three harmonics. We see that the χ2r value is
reduced for simulated signals when using the harmonic
template bank, particularly in the case of large in-plane
spins. This is because the harmonic template bank provides
a better match to the simulated signals in these cases.
However, we do still observe increased values of χ2r for
large in-plane spins in the case of the harmonic template
banks. This is likely due to the fact that the harmonic
template banks do not have perfect coverage of the
parameter space. This could be improved by using a larger
template bank with better coverage of the parameter space
or by using more harmonics.
We then apply the sine-Gaussian χ2 test described in [88],

which tests for excess power at frequencies above the final
frequency of the search template. This step is performed
using the same method as described in [88], reweighting

FIG. 7. Distribution of a set of simulated precessing signals in
the signal-to-noise ratio-χ2r plane. The dashed lines illustrate
contours of constant reweighted signal-to-noise ratio. The top
panel shows results for the aligned-spin template bank. The
middle and bottom panels show results for the harmonic
template bank with a maximum of two and three harmonics
respectively.
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the signal-to-noise ratio again to produce the final
single-detector ranking statistic. This is given by

ρ̃sg ¼
(
ρ̃; if χ2r;sg ≤ 4;

ρ̃ðχr;sg=4Þ−1=2; if χ2r;sg > 4;
ð43Þ

where χr;sg is the output of the sine-Gaussian χ2 test.
Figure 8 shows the distribution of reweighted signal-to-

noise ratio for the three template banks. As expected, the
noise rate is increased when using the harmonic template
bank compare to the aligned-spin template bank. When
increasing to a maximum of three harmonics we see a
further increase in the noise rate. In order to achieve the
same false-alarm rate with a single detector, if we were
using this reweighted signal-to-noise ratio directly as the
ranking statistic, we would need to observe larger signal-
to-noise ratios. For example, in order to achieve the same
false-alarm rate as a signal-to-noise ratio 7 trigger in the
aligned-spin search, we would need to observe a signal-to-
noise ratio of ∼7.9 in the case of the two harmonic template
bank and a signal-to-noise ratio of ∼8.4 in the three
harmonic template bank.

B. Coincident triggers

After computing the reweighted signal-to-noise ratio for
each detector and identifying a set of single detector
triggers, those triggers are compared across the detector
network. Triggers are accepted as coincident triggers if they
are generated by the same template in the bank and fall
within a coincidence time window of each other. The
coincidence time window is equal to the light travel time
between the detectors, plus a small value to account for
timing errors.

After generating a set of coincident triggers, we must
evaluate the significance of each trigger. To assess the
significance we perform time-slides of the data in order to
generate a set of background coincidences [17]. Each
coincident trigger is then assigned a false-alarm rate based
on this background estimate.
We first compare the sensitivity of our three searches

using the quadrature sum of the single detector trigger’s
signal-to-noise ratios as the ranking statistic. We apply a
threshold on the false-alarm rate of 1 per 100 years to our
set of injections and compute the detection efficiency using
fifty distance bins. The volume contained in each distance
bin is then multiplied by its detection efficiency and the
results are summed across all bins to calculate the sensitive
volume.
The relative sensitive volume as a function of the total

mass and in-plane spin are shown in Fig. 9. When using a
maximum of two harmonics, we find ∼31; 000 injections
with a false-alarm rate of at least 1 per 100 years, and see a
large improvement in the sensitivity of the search for
signals with large in-plane spins, increasing the sensitive

FIG. 9. The change in sensitive volume of the search due to the
harmonic template bank when using the coincident signal-to-
noise ratio. The top left and top right panels show the change in
sensitive volume from the aligned-spin template bank to the
harmonic template bank with a maximum of two and three
harmonics respectively. The bottom panel shows the change in
the sensitive volume between the harmonic template bank with a
maximum of two and three harmonics respectively. The numbers
in each square give the percentage change in sensitive volume.

FIG. 8. Distribution of the single detector ranking statistic for
the LIGO Livingstone detector, showing the number of trigger
with reweighted signal-to-noise ratios above a given value. The
black line shows the distribution for the aligned-spin search,
while the orange and green lines show the distributions for the
harmonic search using a maximum of two and three harmonics
respectively.
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volume by more than ∼50% for signals with χp > 0.67. For
small values of the in-plane spin, we see almost no change
in the sensitive volume of the search with respect to the
aligned-spin search. This is because the region with small
in-plane spins is expected to show only weak precession
effects so we do not expect to see a large improvement in
the recovered signal-to-noise ratio. However, the increased
rate of noise triggers when compared to the aligned-spin
case will cause an increase in the false-alarm rate for a fixed
signal-to-noise ratio.
When using a maximum of three harmonics, we find

∼28; 000 injections, and still see an improvement compared
to the aligned-spin search for large in-plane spins. However,
we now see a decrease in the sensitivity for small in-plane
spins. This is due to the increase in the noise rate being more
significant than the signal-to-noise ratio gained in this
region of the parameter space. Across the full parameter
space, the harmonic search using a maximum of three
harmonics is less sensitive than the harmonic search using a
maximum of two. This is again due to the increase in the
rate of noise outweighing any increase in signal-to-noise
ratio. In order to include more than two harmonics, we will
therefore need to improve the ranking statistic being used to
reduce the rate of coincident noise triggers.

C. A ranking statistic for our new precessing search

The quadrature sum of reweighted signal-to-noise ratios
is not an optimal ranking statistic. It discards a lot of useful
information about the coincident triggers, which could be
used to differentiate between signals and noise, such as the
relative signal-to-noise ratios and phases of each harmonic
for each detector. For each coincident trigger we have a list
of properties

κ ¼ ð½ρk;d;ϕmax;k;d; ρ̂d; td�; ξÞ ð44Þ

containing the reweighted signal-to-noise ratio and phase
for each harmonic, the reweighted total signal-to-noise ratio,
the time-of-arrival, and the parameters of the template. The
parameters within the square brackets are recorded for each
detector, d, in the set of detectors, fdg, that observed the
trigger. In this work, the detector network is fH;Lg,
representing the LIGO Hanford and Livingston detectors
respectively. The parameters with a subscript k are recorded
for each harmonic used for the template that observed the
trigger.
In [26], a ranking statistic is discussed based on the log-

ratio of the signal event-rate density and the noise event-
rate density. While this statistic is not formally an
“optimal” statistic, it is more sensitive than just using
the reweighted signal-to-noise ratio, and it was used to
search for compact binary mergers with PyCBC in the O3
observing run [7,26,89]. We wish to develop a version of
that statistic that can be applied to our precessing search.

We do this using a slightly modified version of that
detection statistic given by

RðκÞ ¼ − logAfH;Lg −
X
d

log rn;dðρ̂; ξÞ

− logpðΩjNÞ þ logpðΩjSÞ; ð45Þ

where AfH;Lg is the allowed time window for coincident
triggers between the two detectors; rn;dðρ̂; ξÞ is the
expected noise-rate density for a trigger with reweighted
signal-to-noise ratio ρ̂, and template parameters ξ, in
detector d. Finally, pðΩjNÞ and pðΩjSÞ are the like-
lihoods of a trigger having a set of extrinsic parameters
Ω given that it is a noise trigger or signal, respectively. Ω
consists of the observed relative amplitudes, time delays
and phase differences of the signal observed in each
observatory.
For this work, we have not included the relative

sensitivity for the detector network and template included
in [26]. This term would need to be updated to take into
account the sensitivity of the different harmonics and the
relative amplitudes of each. This will be required if
extending to a larger network of detectors so that the
detection statistic is comparable across different combina-
tions of detectors. However, as we are limiting ourselves to
two detectors we do not consider this term.
The factor AfH;Lg can be calculated in the same way as

for the aligned-spin search [26], while the other terms will
require modification. Let us consider first the noise-rate
density for a single detector, rn;dðρ̂; ξÞ. This is estimated
using a decaying exponential function. The model is
parametrized by two parameters: the rate of triggers above
the threshold μn, and the slope of the exponential α. These
parameters are fit using a maximum likelihood method for
each template and then averaged for templates with similar
intrinsic parameters. Looking at Fig. 8, we see that the
distribution of single detector triggers can still be well
approximated by a decaying exponential in the case of the
harmonic search. However, the rate of noise triggers will
increase with the number of harmonics used. When
averaging the values of μn and α, we must therefore ensure
that we do not average over templates that use different
numbers of harmonics. By doing this, the factor rn;dðρ̂; ξÞ
will naturally be larger for templates with more harmonics
in order to account for the increased rate of noise triggers.
When extending from two to three harmonics, we saw a
decrease in the sensitivity across the full parameter space
due to the increase in the noise-rate when including an
additional harmonic. However, only a fraction of the
templates in the bank use all three harmonics. By averag-
ing the parameters of rn;dðρ̂; ξÞ separately for different
values of N, we should be able to increase the maximum
number of harmonics in use without increasing the noise-
rate for templates using fewer than the maximum number
of harmonics.
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The term pðΩjSÞ gives the likelihood of a signal having a
set of extrinsic parameters Ω. In the case of the aligned-spin
search, the extrinsic parameters include the estimated ampli-
tude, phase and time-of-arrival for each detector in the
network. The likelihood is estimated using a histogram of
the expected amplitude ratios, phase differences and time
differences with respect to a chosen reference detector. The
histogram is generated by drawing sky positions and ori-
entations isotropically, and then calculating the expected
amplitudes ratios, phase differences and time differences
across the network. These values are binned, and the
histogram is then smoothed using a Gaussian kernel in order
to account for the uncertainty in the measured parameters.
When using the harmonic template bank, the number of

extrinsic parameters is increased as we now have an
estimated amplitude and phase for each harmonic within
each detector. The ideal solution would be to calculate
pðΩjSÞ using the full set of these parameters. This would
also have the effect of removing or down-weighting much
of the unphysical parameter space introduced by maximiz-
ing independently over Ak and ϕk. However, this introduces
a number of technical difficulties.
First, for a template with N harmonics in D detectors, a

histogram including the full set of extrinsic parameters
would include ð2Dþ 1ÞðN − 1Þ dimensions. For three
harmonics in two detectors, this already gives a seven
dimensional parameter space. Increasing to a network of
three detectors would produce a fourteen dimensional
parameter space, making the use of these histograms
computationally impractical for use within a search.
Second, in the case of aligned-spin templates, the

amplitude ratios and phase difference between detectors
are only dependent on the extrinsic parameters of the
binary, ignoring differences in power spectral density
between detectors. This means that we can generate a
single histogram that can be used for all templates within
the bank. In the case of the harmonic template bank, this is
still the case when comparing a single harmonic across
multiple detectors. However, the relative amplitudes
between different harmonics will depend on the parameter
b. This means that we would therefore require a set of
histograms covering different values of b in order to
properly account for the uncertainty due to noise. This is
further complicated by the fact that b will change as the
binary evolves and the amplitude ratio will therefore
depend on the value of b averaged over the sensitive
window of the detector. As the frequency of each harmonic
is higher than the last, the average factor of b measured
between each subsequent harmonic may be different. In
order to compare amplitudes across different harmonics, it
will be important to study the size of this effect.
As a first step, we will compare the amplitudes and

phases for a single harmonic across the two detectors in our
network. In this case, the harmonics in the two detectors
will have the same value of bk, and the amplitude ratio will

not depend on the value of b. This removes the dependence
on the intrinsic parameters of the template. We choose the
harmonic with the highest signal-to-noise ratio to be used
as the reference, and compare the amplitude ratio, phase
difference, and time difference with respect to the same
harmonic in the second detector. This will require three
histograms to be generated when using a maximum of three
harmonics. The required histograms can be generated using
the same method as the aligned-spin case, using Eqs. (23)
and (24) to calculate the expected amplitude ratios and
phase differences. In this case, the likelihood pðΩjNÞ for
noise triggers will be assumed to be uniform, as in the
aligned-spin search.
We can then calculate the coincident ranking statistic

using Eq. (45) and produce updated false-alarm rates. We
apply this coincident ranking statistic using the same
template bank and simulated signals as the previous
sections. For comparison, we use the full ranking statistic
described in [26] when performing the search using the
aligned-spin template bank.

D. Results with improved statistic

Figure 10 shows the change in sensitivity when applying
this new ranking statistic. In the case of the two harmonic
template bank, we find ∼31; 000 injections with a false-
alarm rate of at least 1 per 100 years, and see a similar
improvement over the aligned-spin template bank as we did
before introducing the new ranking statistic.
However, when using the harmonic template bank with a

maximum of three harmonics, we now find ∼31; 000
injections, see an improved sensitivity over using a maxi-
mum of two harmonics, and do not see a sensitivity loss for
signals with small values of χp. For systems with χp > 0.67
and total mass larger than 17.5M⊙, we see an increase in
sensitivity of ∼100%. This demonstrates that with the
appropriate choice of ranking statistic, we can account for
the increased noise rate caused by introducing additional
harmonics while gaining sensitivity through the improved
match with signals in the data.
It will certainly be possible to improve upon this ranking

statistic by using a more complete treatment of pðΩjSÞ in
the future. We have restricted ourselves to comparing a
single harmonic across each detector. It would be beneficial
to extend this to a larger set of harmonics in order to remove
some of the unphysical freedom introduced by the maxi-
mization of Ak and ϕk. One possibility is to first compute
pðΩjSÞ in each detector separately and include it as a
signal-consistency test in order to reduce the rate of single
detector triggers, before subsequently testing a reduced set
of harmonics across the detector network. This would
require a maximum of four phase differences and four
amplitude ratios for the single detector case if using all five
harmonics, making the dimensionality more manageable.
However, this will still require careful treatment of the
averaged value of b between different harmonics.
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No significant signals were observed in the stretch of data
analysed during this test, with the most significant fore-
ground trigger producing a false-alarm rate of ∼200 yr−1,
which is consistent with the values we expect from noise
triggers for this amount of data.

VIII. CONCLUSION AND OUTLOOK

In this work, we have demonstrated a method for
searching for precessing binaries using a template bank
utilizing a harmonic decomposition of precessing signals.
We have shown that, given the natural hierarchy of the
harmonics, we can often use fewer than the full set of five
harmonics, and we have demonstrated a method for
selecting the appropriate number of harmonics to be used
for each template within a bank.
By introducing extra parameters to our template model,

we not only increase the observed signal-to-noise ratio for
signals, but we also increase the rate of noise triggers. We
have shown that, by using an appropriate ranking statistic,
this can be mitigated, and an effective search can be run

using the first three harmonics. We have also shown that
this results in a ∼100% increase in the sensitive volume
compared to the aligned-spin search when considering
binaries with χp > 0.67 and total mass larger than 17.5M⊙.
There are two main improvements can be made to the

current methods presented in this paper. First, we could
construct a larger template bank in order to achieve a more
complete coverage of the targeted parameter space, improv-
ing the signal-to-noise ratio of the observed signals.
Second, and perhaps more importantly, we could extend
the estimation of pðΩjSÞ to use more than one harmonic,
allowing us to reduce the unphysical freedom caused by the
maximization of Ak and ϕk and allowing us to employ more
than 3 harmonics for templates that need it.
However, the results we present here demonstrate for the

first time how a search on Advanced LIGO, Virgo, and
KAGRA data can be performed using precessing compact
binary mergers as waveform filter templates. This
method will achieve a significant sensitivity improvement
for such signals, ans with scope for further improvement,
we believe that this method can be the key to uncovering a
potential population of binaries with strong precessional
effects.
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FIG. 10. The change in sensitive volume of the search due to
the harmonic template bank when using the log signal-rate noise-
rate ratio statistic. The top left and top right panels show the
change in sensitive volume from the aligned-spin template bank
to the harmonic template bank with a maximum of two and three
harmonics, respectively. The bottom panel shows the change in
the sensitive volume between the harmonic template bank with a
maximum of two and three harmonics, respectively. The numbers
in each square give the percentage change in sensitive volume.
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APPENDIX A: HIGHLY PRECESSING
INJECTION SET

In Sec. VII, we added a set of simulated signals into real
gravitational-wave strain data to evaluate the sensitivity of
our search. It was demonstrated that the sensitive volume
improved by ∼50%, and ∼60% on average when using a
precessing template bank limited to 2 and 3 harmonics
respectively.
In Fig. 11, we show the improvement in sensitive

volume for a set of simulated signals that are highly
precessing: spins almost entirely within the plane of the
binary. In comparison to the previous set, the new set of
simulated signals modified only the primary spin distri-
bution: the spin magnitudes were drawn uniformly
between 0.7 and 0.99 and spin orientations drawn isotropi-
cally between jŜ1 · L̂j < 0.3.
We see that, when using our new ranking statistic

introduced in Sec. VII C, the sensitive volume improves
by ∼80%, and ∼90% on average when using a precessing
template bank limited to 2 and 3 harmonics respectively,
compared to an aligned-spin search. We also see that the 3
harmonic search out performs the 2 harmonic search for all
χp and M.

FIG. 11. Same as Fig. 10 but using a set of highly precessing
simulated signals to estimate the sensitive volume.

FIG. 12. Comparison of the gravitational-waves produced using different waveform models for a binary with masses 13.4M⊙ and
1.3M⊙, and component spins s1 ¼ ð0.0003;−0.0002;−0.5Þ, s2 ¼ ð−0.02;−0.1;−0.2Þ, viewed at an inclination angle of 1.5 radians.
The top two panels show the gravitational-wave in the time-domain (Left: focusing on inspiral, Right: focusing on the merger and
ringdown), the middle panel shows the gravitational-wave in the frequency-domain, and the bottom panel shows the harmonic
decomposition of the gravitational-wave. The vertical black dotted line in the middle and bottom panels corresponds to 47 Hz.

CONNOR MCISAAC, CHARLIE HOY, and IAN HARRY PHYS. REV. D 108, 123016 (2023)

123016-18



APPENDIX B: WAVEFORM INCONSISTENCIES
REDUCING THE BANK SIZE

After constructing the template bank through stochastic
bank generation techniques (see Sec. VI C for details), we
removed 1% of filter waveforms due to inconsistencies
with the IMRPhenomXP waveform model. In our testing,
we found that a several filter waveforms had nonphysical
artifacts, particularly at low frequencies. This caused issues
when deconstructing the waveform into the harmonic
decomposition (see Sec. IV for details), and consequently,
caused a background of large SNR events which biased our
results.
We found that most of the inconsistent waveforms

had low in-plane spins. In Fig. 12 we specifically show
one of filter waveforms that caused issues; this waveform
was generated for a binary with masses 13.4M⊙ and 1.3M⊙,
with component spins s1 ¼ ð0.0003;−0.0002;−0.5Þ, s2 ¼
ð−0.02;−0.1;−0.2Þ, viewed at an inclination angle of
4.8 radians. For comparison we also show the gravitational-
waves produced for the same binary configuration but
with alternative models: SEOBNRv4P [74], which con-
structs precessing signals through the effective one-body
approach [91], and the IMRPhenomXAS model, which
constructs aligned-spin signals through the phenomeno-
logical approach. When generating the gravitational-wave
with the IMRPhenomXAS model, we consider the aligned-
spin projection of the binary (all in-plane spins reduced to
exactly 0). From the frequency-domain, we can clearly
see that the gravitational wave produced from the
IMRPhenomXP waveform model has a nonphysical artifact
at 47 Hz. Since this specific binary has χp ¼ 0.008 ≪ 1, it
should closely resemble an aligned-spin signal. As expected,
wee see excellent agreement between the IMRPhenomXAS
and SEOBNRv4P waveform models, suggesting that the
issue is specific to the IMRPhenomXP model.
When deconstructing this specific binary into the har-

monic decomposition, the nonphysical artifact at 47 Hz
caused the leading harmonic to drop in amplitude from
Oð10−21Þ to Oð10−29Þ, and the 5th harmonic to increase in
amplitude from ð10−27Þ to Oð10−21Þ to compensate. This
means that when using only the leading two, or leading
three harmonics, in the search analysis presented in
Sec. VII, the reconstructed precessing waveform termi-
nated at 47 Hz.
In order to construct a bank that neglected these

inconsistent filter waveforms, we removed the waveforms
that had either: (a) χp < 0.05 (meaning that they closely
resemble aligned-spin binaries) and a match between the
IMRPhenomXP and IMRPhenomXAS < 0.85, or (b) a
leading harmonic that was initially larger than the 5th
harmonic, and then switching to having the 5th larger than
the leading harmonic. These constraints removed ∼3700
filter waveforms from a total of 360, 000.

APPENDIX C: FITTING FACTOR ACROSS
THE PARAMETER SPACE

After constructing our precessing template bank, we
showed its effectiveness by computing fitting factors using
a varying number of harmonics for a set of randomly
chosen simulated signals, see Sec. VI E and Fig. 6 for
details. We demonstrated that when using a dynamic choice
for the number of harmonics, each template results in a
template bank where over 99% of the points have fitting
factor larger than 0.9.
In Fig. 13 we show how the fitting factor varies across

the larger mass,m1, and in-plane spin parameter space. We
see that when using only one harmonic, the fitting factors
are low for most of the parameter space. In fact, we find
that ∼27% of points have fitting factors > 0.97. As the
maximum number of harmonics increases, we see that a
better overall performance with ∼54%, ∼64%, ∼74%, and
∼76% of points having fitting factors > 0.97 when using a

FIG. 13. The variation of fitting factor across the parameter
space for the harmonic template bank with (top to bottom) one
harmonic, a maximum of two, three and four harmonics
respectively.
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maximum of two, three, four, and five harmonics respec-
tively. We see that in general, points with larger in-plane
spins and larger primary mass have a lower fitting factor.
Given that the precession modulations are more signifi-
cant for high mass ratio and high in-plane spin configu-
rations [43,54], this is understandable as more harmonics
will be needed to fully describe the signal. Since we fail to
obtain fitting factors > 0.97 in this extreme region of the
parameter space when using a maximum of 5 harmonics,
this shows that our bank is not fully converged. This

arises from us stopping the template generation early at
358,866 templates. We note that for high masses, the
lowest in-plane spin bin has a lower fitting factor than the
adjacent bin for all searches with a maximum number of
harmonics ≥ 2. This is unlike the rest of the parameter
space, where the fitting factor decreases as the in-plane
spin increases. We suspect this is because a lot of
templates were removed in this region of parameter space
due to the issues described in Appendix B, decreasing the
overall sensitivity.
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