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We have attempted to mitigate the challenge of connecting the neutron star (NS) properties with the
nuclear matter parameters that describe equations of state (EOSs). The efforts to correlate various neutron
star properties with individual nuclear matter parameters have been inconclusive. A principal component
analysis is employed as a tool to uncover the connection between multiple nuclear matter parameters and
the tidal deformability as well as the radius of neutron stars within the mass range of 1.2–1.8M⊙. The
essential EOSs for neutron star matter at low densities have been derived using both uncorrelated uniform
distributions and minimally constrained joint-posterior distributions of nuclear matter parameters. For
higher densities (ρ > 0.32 fm−3), the EOSs have been established through a suitable parametrization of the
speed of sound, which consistently maintains causality and gradually approaches the conformal limit. Our
analysis reveals that in order to account for over 90% of the variability in NS properties, it is crucial to
consider two or more principal components, emphasizing the significance of employing multivariate
analysis. To explain the variability in tidal deformability needs a greater number of principal components
compared to those for the radius at a given NS mass. The contributions from isovector nuclear matter
parameters to the tidal deformability and radius of NS decrease by ∼25% with the increase in mass of NS
from 1.2M⊙ to 1.8M⊙.
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I. INTRODUCTION

The physics governing the dense matter within neutron
stars (NSs) remains in mystery to this day [1]. These
celestial objects contain matter up to a very high density at
the center which are up to many times the nuclear saturation
density (ρ0 ≈ 0.16 fm−3). The nuclear equation of state
(EOS) plays a critical role in determining the structure of
NSs. However, a large number of speculative EOS models
have been developed as a result of the lack of precise
information about nuclear interactions at the densities
found within the interior of neutron stars. The challenge
lies in accessing matter at supranuclear densities, a realm
beyond the reach of terrestrial experiments. Astrophysical
observations provide essential knowledge for understand-
ing the EOS of dense matter. The observation of neutron
stars with mass ∼2M⊙ [2,3] established a lower limit on the
maximum mass that an EOS must predict.

Significant progress has been achieved, especially since
GW170817, in better understanding the nuclear matter
equation of state by utilizing Bayesian statistical tools and
various nuclear EOS models to analyze data from both
astrophysical observations and terrestrial nuclear experi-
ments [4–19]. The behavior of dense matter in the neutron
stars has a significant impact on the characteristic GW
signals that come from the merging of binary neutron
stars [20–23]. Consequently, discovering these gravita-
tional waves offers a rare chance to limit the nuclear
matter parameters (NMPs) that define the equation of
state. The tidal deformability of the NS is an intriguing
property inferred by GWs, and this trait has been inves-
tigated for a variety ofmodels for EOSs [24–27]. The precise
x-ray observations of hot spots on pulsars by Neutron star
Interior Composition Explorer (NICER) [28–31] and obser-
vations of gravitational waves from NS mergers by LIGO/
VIRGO [32,33] are expected to put constraints on the tidal
deformability and radius.
Numerous initiatives have been made in the field of

neutron star study to investigate the fascinating relation-
ships between the star’s tidal deformability, radius, and the
crucial nuclear matter parameters driving the density-
dependent symmetry energy [4,34–44]. Recent studies
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explore the impact of constraining the low-density
equation of state using more than 400 mean-field models
arising from the nonrelativistic Skyrme interactions and
relativistic Lagrangians governing nucleon interactions
through σ, ω, and ρ mesons [45]. A strong correlation
between the tidal deformability of canonical 1.4M⊙ mass
neutron stars and the slope of the symmetry energy at the
saturation density (ρ0) has been revealed by this group of
models, which are adept at capturing the characteristics of
symmetric and asymmetric finite nuclei. Although earlier
approaches frequently relied on extracting these nuclear
matter parameters from uncorrelated uniform or Gaussian
distributions, their relationships to the characteristics of
neutron stars were generally weak/moderate. Thus, deter-
mining the key nuclear matter parameters that have the
greatest impact on the neutron star’s properties, such as
tidal deformability and radius at canonical mass 1.4M⊙ is
still inconclusive [4,35,36,38–43,46].
The current observational lower limit on the maximum

mass of neutron stars, around 2M⊙, suggests that the
central density of a neutron star with a canonical mass
of 1.4M⊙ could be within the range ∼2–3ρ0 [27,47,48].
Understanding the behavior of equations of state around
this nuclear saturation density is crucial for determining the
characteristics of these neutron stars. The existence of a
strong connection between the radius of neutron stars in the
mass range of 1 − 1.4M⊙ and the pressure of β-equilibrated
matter at densities 1 − 2ρ0 has been shown [49]. Similarly,
studies have extended to the tidal deformability, revealing a
strong correlation with pressure at 2ρ0 [27,36,39,50].
Despite variations in neutron star properties, their depend-
ence on the pressure of β-equilibrated matter at twice the
saturation density remains consistent. This robustness
might stem from the dependence of pressure on several
nuclear matter parameters that describe symmetric nuclear
matter and the density-dependent symmetry energy. Recent
works have established empirical relationships between the
radius and tidal deformability with multiple nuclear matter
parameters [50,51]. Therefore, a multivariate analysis could
prove essential in understanding the contributions of differ-
ent nuclear matter parameters across a wide range of
neutron star masses.
In the present work, we perform a principal component

analysis (PCA) to investigate the connection between
multiple nuclear matter parameters and the tidal deform-
ability as well as the radius of neutron stars across a wide
range of masses. The analysis is carried out using two
different sets of EOSs. The EOSs at low densities have been
derived using the uncorrelated uniform and joint posterior
distributions of nuclear matter parameters. The joint pos-
terior distributions of nuclear matter parameters are
obtained by imposing the constraints on the low-order
nuclear matter parameters determined by the experimental
data on the bulk properties of finite nuclei together
with the pure neutron matter (PNM) EOS from a precise

next-to-next-to-next-to-leading-order (N3LO) calculation
in chiral effective field theory [47,52] within the
Bayesian inference. The EOSs at high density (ρ > 2ρ0)
are constructed by imposing the causality condition on the
speed of sound and are independent of compositions of NS
matter. Our analysis reveals that more than one principal
component is necessary to appropriately describe the NS
properties, such as tidal deformability and radius. The role
of isoscalar nuclear matter parameters becomes increas-
ingly important with neutron star mass.
The paper is organized as follows. We briefly outline our

methodology in Sec. II. The results for multivariate analysis
of the neutron key properties are discussed in detail in
Sec. III. The summary and outlook are presented in Sec. IV.

II. METHODOLOGY

We discuss the construction of equations of state at low
and high densities, using Taylor expansion for the low-
density EOS below 2ρ0, and the high-density EOS is
constructed by adjusting the speed of sound to maintain
causality.

A. Equation of state at low and high densities

The energy per nucleon at a given density ρ and
asymmetry δ is expressed as follows, using a parabolic
approximation:

Eðρ; δÞ ¼ Eðρ; 0Þ þ EsymðρÞδ2 þ � � � ; ð1Þ

where δ ¼ ρn−ρp
ρ is calculated using β-equilibrium and the

charge neutrality criteria. Using individual nuclear matter
parameters, symmetric nuclear matter energy Eðρ; 0Þ and
density-dependent symmetry energy EsymðρÞ are expanded
around ρ0 as [53–57],

Eðρ; 0Þ ¼ e0 þ
1

2
K0

�
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�
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In Eqs. (2) and (3), e0 is the binding energy per nucleon,K0

is the incompressibility coefficient, J0 is the symmetry
energy coefficient, its slope parameter L0, Ksym;0 is the
symmetry energy curvature parameter, Q0 (Qsym;0) are the
skewness parameter of Eðρ; 0Þ ½EsymðρÞ�.
In order to build the EOS beyond the density 2ρ0, we use

the causality condition on the speed of sound. The
low-density component of the EOS (ρ < 2ρ0) links to
the high-density part, ensuring that the sound velocity
asymptotically approaches the conformal limit (c2s ¼ 1

3
c2)
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and never surpasses the speed of light. The sound velocity
for ρ > 2ρ0 is given as [58]

c2s
c2

¼ 1

3
− c1 exp

�
−
ðρ − c2Þ2

n2b

�
þ hp exp

�
−
ðρ − npÞ2

w2
p

�

×

�
1þ erf

�
sp

ρ − np
wp

��
; ð4Þ

where the peak height hp defines the maximum speed of
sound, the position np determines the density in the area
where it occurs, the width of the curve is controlled by the
wp and nb variables, and the shape or skewness parameter
sp. The continuity of the speed of sound and its derivative
at the transition density ρtr determines the parameters c1
and c2 for a given value of nb. The values of nb, hp, wp, and
np are taken from a uniform distribution with ranges of
0.01–3.0 fm−3, 0.0 − 0.9 × fm−3, 0.1–5.0 fm−3, and
ðρtr þ 0.08Þ − 5.0 fm−3, respectively [58]. Since sp barely
affects the stiffness of the EOS, we set it equal to zero for all
of our calculations.
We start with the transition density (ρtr), where the

energy density [ϵðρtrÞ], the pressure [PðρtrÞ], and the
derivative of the energy density [ϵ0ðρtrÞ] are known.
Assuming a step size of (Δρ ¼ 0.001 fm−3), the following
formula is used to produce consecutive values of ϵ and P:

ρiþ1 ¼ ρi þ Δρ; ð5Þ

ϵiþ1 ¼ ϵi þ Δϵ

¼ ϵi þ Δρ
ϵi þ Pi

ρi
; ð6Þ

Piþ1 ¼ Pi þ c2sðρiÞΔϵ; ð7Þ

where i ¼ 0 is the transition density ρtr. In Eq. (6), Δϵ was
assessed using the thermodynamic relation P ¼ ρ∂ϵ=∂ρ − ϵ
valid at zero temperature. After generating the EOS, the
Tolman-Oppenheimer-Volkoff (TOV) equations are solved
to determine the NS properties, including tidal deform-
ability and radius as a function of mass.

B. Principal component analysis

Principal component analysis is an important statistical
technique for analyzing multivariate data [59–65]. The
PCA method analyzes the data of multiple dependent
correlated variables to capture shared variation. The
objectives of PCA [66] are (i) extract the most crucial
information from the data, (ii) reduce the dimensionality of
the data by only maintaining the essential information, and
(iii) examine the composition of the observations and
variables, as encountered in literature. In the present work,
we considered K0, Q0, J0, L0, Ksym0 and Qsym0 as our
variables often referred to as features and the neutron stars

properties such as tidal deformability and radius as our
target variables. PCA can verify our earlier hypothesis of
selecting considered variables and prove the significance of
these variables. In the process of PCA, the method
computes principal components (PCs) that can be consid-
ered as new variables in other dimensions. PCs are the
composition of linear combinations of original variables to
capture the shared variation patterns. These PCs account for
the amount of variation captured in data and return relative
scores as eigenvalues in a sorted manner. So, the largest
eigenvalue associated with the first PC captures the largest
variance, and so on.
The methodology of PCA analysis is composed of the

given steps: (1) The covariance matrix is calculated from
the given data. The covariance matrix measures the
relationships between pairs of variables. (2) Eigenvalue
decomposition on the covariance matrix is carried out to
obtain the eigenvectors and eigenvalues. (3) The eigenvec-
tors represent the principal components, and the corre-
sponding eigenvalues indicate the principal components’
proportional variance captured.
To calculate the covariance matrix, we prepare our data

X as a I × J matrix. We have “I” samples that are
represented by “J” variables. We must standardize the
data set by removing the mean and dividing by the standard
deviation of eachX column. This yields a standardized data
matrix, such as Ẋ. The elements of the covariance matrix
are determined as

Cij ¼
1

n

Xn
k¼1

ẊikẊjk; ð8Þ

where i, j denotes the variables/features, and n runs over all
the samples. The correlation matrix is used to determine the
eigenvalues and eigenvectors. The order of eigenvalues
provides the importance of the eigenvector. The most
important principal component (PC1) is the eigenvector
with the greatest corresponding eigenvalue. PC1 captures
the highest variance among the data. The second compo-
nent (PC2) must be orthogonal to the first component and
capture the second-highest variance. In PC space, factor
scores indicate observations (samples), which is the pro-
jection of data along with the PC components. The factor
score matrix F is defined as,

F ¼ ẊV: ð9Þ

The matrix V ¼ ẊA is called a factor loading matrix, and
matrix A contains eigenvectors. Matrix F gives the pro-
jections of observations on primary components, making it
a projection matrix. Each PC’s contribution to each original
variable shows the captured variance. The importance of
PC is decided based on the corresponding order of
eigenvalue; hence, the contribution of the original variable
also depends on the order of PC priority.
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III. MULTIVARIATE ANALYSIS OF THE NS
PROPERTIES

A multivariate analysis is performed to investigate the
connection of the NS properties with multiple nuclear
matter parameters. The required EOSs for a given set of
nuclear matter parameters are obtained as outlined in the
previous section. These EOSs satisfy the thermodynamic
stability and causality condition and yield the maximum
mass larger than 2M⊙. Two different sets of EOSs are
obtained, which correspond to different distributions of
nuclear matter parameters as described below. The tidal
deformability and radius over a wide range of NS masses
are calculated from the solutions of TOV equations. These
exact values of NS properties are then fitted to the linear
functions of nuclear matter parameters and employed for
the PCA. The PCA allows us to appropriately identify the
important nuclear matter parameters required to explain the
variations of a given NS property.

A. Distributions of nuclear matter parameters

We have generated two distinct sets of EOSs that
correspond to different distributions of nuclear matter
parameters. One of these sets is based on uncorrelated
uniform distributions of nuclear matter parameters, and the
other one is obtained from their joint posterior distribution.
The joint posterior distribution of the nuclear matter
parameters is taken from Ref. [67], which was obtained
by imposing minimal constraints that include some selected
basic nuclear matter properties at the saturation density and
the EOS for the pure neutron matter at low densities from
N3LO calculation in the chiral effective field theory
[47,52]. The conditions of thermodynamic stability, cau-
sality speed of sound on the EOS, and the resulting
maximum mass of neutron star larger than 2M⊙ were also
imposed. Some of the nuclear matter parameters are
correlated due to minimal constraints from the chiral
effective field theory applied within the Bayesian stat-
istical method [68–70]. The marginalized distributions of
each nuclear matter parameter are derived from the joint
posterior distribution in order to put the bounds on their
uniform distributions. The bounds on uniform distribu-
tions of nuclear matter parameters roughly the 90% con-
fidence intervals of the corresponding marginalized
distributions. In Table I, we have listed the lower and
upper bounds of the uniform distributions, as well as the
means and variances of the marginalized distributions for
each nuclear matter parameter. The is-scalar nuclear
matter parameters, the binding energy per nucleon e0,
and the saturation density ρ0 for symmetric nuclear matter
remain fixed at −16.0 MeV and 0.16 fm−3, respectively.
References [46,67] have shown that the dependence of
neutron star properties on individual nuclear matter
parameters are sensitive to the choice of the distributions
of nuclear matter parameters. We would like to explore

how multivariate analysis is sensitive to different distri-
butions of these nuclear matter parameters.
We generated 10,000 samples of nuclear matter param-

eters for each of the uniform uncorrelated and joint
posterior distributions, hereafter referred to as D1 and
D2, respectively. For each set of nuclear matter parameters,
the equations of the state beyond 2ρ0 are obtained for a
random set of the speed of sound parameters nb, hp, wp,
and np as discussed in Sec. II A. Out of these, around 2,500
samples from both distributions have been selected after
applying the filters mentioned earlier. In Fig. 1, we have
illustrated the correlations among nuclear matter parame-
ters for both D1 and D2. The distribution D1 displays
poor correlations among the nuclear matter parameters,
whereas D2 reveals stronger correlations among some of
the parameters due to the minimal constraints, such as the
notable correlation coefficient rðL0; Ksym;0Þ ¼ 0.80: The
significant correlations between L0 and Ksym;0 have been
previously documented as well [27,67].

B. Fit of NS properties to nuclear matter parameters

The EOSs for β-equilibrated charge neutral matter in the
density range 0.5ρ0 to 2ρ0 are constructed using Taylor
expansion with the D1 and D2 distributions of nuclear
matter parameters. Each of these low-density EOS is
smoothly joined by the EOSs that satisfy causality con-
ditions as given by Eqs. (4)–(7). The EOS for outer and
inner crusts for density ranges ρ < 0.5ρ0 is used as follows.
The inner crust EOS is polytropic [71],

pðεÞ ¼ αþ βε
4
3: ð10Þ

The inner crust EOS is matched with the outer crust at one
end and the outer core at the end by appropriately adjusting
the values of the coefficients α and β. The inner crust’s EOS
affects the Love number k2 and compactness parameter, but
not the tidal deformability parameter [13]. After determin-
ing the core and crust EOSs, the neutron star mass, radius,
and tidal deformability for a given central pressure can be

TABLE I. The lower (Min) and upper (Max) bounds of the
uniform distributions (D1) along with the means (μ) and
uncertainties (2σ) of marginalized distributions (D2) for each
nuclear matter parameter except for e0, which is kept fixed to
−16.0 MeV are listed.

NMPs (in MeV)

D1 D2

Min Max μ 2σ

K0 200 290 242 45
Q0 −500 450 −25 466
J0 30 35 32.2 2
L0 30 80 54.2 24
Ksym;0 −300 100 −89 180
Qsym;0 0 1000 772 700
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computed using TOVequations. In order to demonstrate our
approach, we use a linear fit function of nuclear matter
parameters as listed in Table I to calculate the tidal deform-
ability (ΛM) and radius (RM) for a given NS mass as,

ΛM ¼
X
i

WiPi þ b ¼
X
i

Λi þ b ð11Þ

RM ¼
X
i

W0
iP

0
i þ b0 ¼

X
i

Ri þ b0; ð12Þ

where Wi and W0
i are the weight factors of given nuclear

matter parameters. The b and b0 are the biases. The
fP∈K0; Q0; J0; L0; Ksym;0; Qsym;0g and M stands for the
neutron star masses. The Λi and Ri in the right-hand side of
above Eqs. (11) and (12) correspond to theWiPi andW0

iP
0
i,

respectively. We assess the quality of fit for our regression
model using the R2 value as a measure [72]. The R2 value
ranges from 0 to 1, where 0 signifies no variability in the
dependent variable, and 1 represents complete variance.
TheR2 close to unity indicates that the NS properties from
the solutions of TOVequations are almost equal to the ones
obtained by their linear fit to the nuclear matter parameters.
In Fig. 2, we present theR2 values obtained from fitting the
tidal deformability and radius of neutron stars within the
mass range of M ¼ 1.2–2.0M⊙. As the neutron star mass
increases, the associated R2 value tends to decrease.
Specifically, the R2 values for the fitted properties of
neutron stars with a mass of 2M⊙ fall below 0.9.
Consequently, in what follows, we focus on the multivariate
analysis of neutron stars within the mass range of
1.2–1.8M⊙, guided by the R2 value considerations.
In Fig. 3, we display the correlation coefficient values

obtained for exact values of tidal deformability and radius
with individual nuclear matter parameters for the masses

1.2M⊙ and 1.8M⊙ by green and red bars, respectively. We
also juxtapose similar results obtained from the fitted values
of tidal deformability and radius through Eqs. (11) and (12)
for the masses 1.2M⊙ and 1.8M⊙ by purple and blue bars,
respectively. The results are presented for two different
distributions of NMPs as indicated by labels D1 (Upper) and
D2 (Lower). This visual representation demonstrates that all
the correlation coefficient values remain consistent even
after the fitting process. The application of the fit does not
alter these correlation trends. The correlations of the tidal
deformabilitywithNMPs are qualitatively similar for theD1

FIG. 1. The correlation among various nuclear matter parameters is shown. The results for the left and right panels are for uncorrelated
(D1) and correlated (D2) distributions of nuclear matter parameters, respectively. Color codes indicate the values of Pearson’s
correlation coefficients among the various NMPs.

FIG. 2. The R2 values of the neutron star properties, such as
tidal deformability and radius in the mass range of 1.2–2M⊙, are
shown. The different color symbols correspond to different NS
properties and the data.
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and D2 cases. In general, the D2 distributions of NMPs
result in stronger correlations. The correlations of the radius
with the NMPs appear to be sensitive to the choice of their
distributions. In particular, the radius is very weakly
correlated withKsym;0 for the D1 case and shows reasonably
strong correlations for the D2 case. It is also interesting to
note that the correlations of tidal deformability and radius
with Q0 increase somewhat with an increase in NS mass.

C. Principal component analysis of NS properties

The method of PCA is implemented by following
the Sec. II B and the Appendix. It is comprised of the
following steps: (1) Construction of covariance matrix;
(2) Diagonalization of the covariance matrix; and (3) The
principal components’ proportionate variance captured by
the eigenvectors and eigenvalues. First, we calculate the
values of weightsWis andW0

is appear in Eqs. (11) and (12).
The PCA is performed using Λis and Ris as features
corresponding to the target variables Λ and R, respectively.
Then, 6 × 6 covariance matrices for the tidal deformability
and radius of NS are constructed for a given mass. The
eigenvalues and the corresponding eigenvectors obtained
by diagonalizing the covariance matrices are arranged in
descending order. The most important principal compo-
nent, PC1 corresponds to the eigenvector with the highest

eigenvalue. The succeeding eigenvalues and the eigenvec-
tors are labeled as PC2, PC3, etc. The nuclear matter
parameter having the largest contribution to the eigenvector
for PC1 is the most dominant one in determining the NS
property in consideration. Likewise, the eigenvectors asso-
ciated with remaining PCs together with eigenvalues, can
be used to identify other important nuclear matter param-
eters for the NS properties.
In Table II, we provide a list of eigenvalues that were

obtained by diagonalizing the covariance matrix for a
specific property and mass of a neutron star. The highest
eigenvalues are normalized to unity, representing PC1. The
principal component with a normalized eigenvalue less
than 0.1 does not contribute significantly. It is evident that a
larger number of principal components contribute to tidal
deformability for most of the cases than those for the
corresponding radius. For instance, consider a neutron star
with a mass of 1.2M⊙; there are four significant principal
components with normalized eigenvalues higher than 0.1
for tidal deformability, while only three for the radius.
In Fig. 4, we display the percentage of variation in

neutron star properties explained by the first four principal
components. The upper and lower panels illustrate the
outcomes for uncorrelated (D1) and joint posterior (D2)
distributions of nuclear matter parameters. The bars in
green correspond to properties at a neutron star mass of

FIG. 3. The bar plot shows correlation coefficient values of NS properties with nuclear matter parameters only for mass 1.2 and
1.8M⊙. For the comparison, the values of correlation coefficients from the fitted model are shown with different color bars. The upper
and lower panels correspond to uncorrelated (D1) and correlated (D2) NMPs distributions.
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1.2M⊙, while the red bars represent 1.8M⊙. This figure
depicts how much each PC contributes to capturing the
variance. From PC1 to PC4, the portion of variance
decreases. The total number of PCs needed to account
for over 90% of the variance is smaller for the radius than
for the tidal deformability. As an example, consider Λ1.2 in
cases D1 and D2: to achieve over 94% and 97% variance,

respectively, at least four PCs are necessary. On the other
hand, for R1.2, only three PCs are sufficient to achieve more
than 94% and 98% variance in the respective cases.
The squared amplitude components of eigenvectors for a

specific principal component provide insights into the
contributions from different nuclear matter parameters.
This is illustrated in Figs. 5 and 6, corresponding to D1

FIG. 4. The variance (in %) of different principal components corresponding to the NS properties is displayed. The results in the upper
and lower panels represent the uncorrelated (D1) and correlated (D2) nuclear matter parameter distributions, respectively.

TABLE II. The normalized eigenvalues associated with the principal components are listed for the NS properties with masses range
1.2 − 1.8M⊙. D1 and D2 correspond to the uncorrelated and correlated distributions of the nuclear matter parameters.

NS M
M⊙

D1 D2

PC1 PC2 PC3 PC4 PC5 PC6 PC1 PC2 PC3 PC4 PC5 PC6

ΛM

1.2 1.00 0.62 0.32 0.17 0.13 0.01 1.00 0.35 0.23 0.13 0.04 0.00
1.4 1.00 0.40 0.35 0.20 0.14 0.00 1.00 0.52 0.27 0.16 0.04 0.00
1.6 1.00 0.53 0.25 0.22 0.15 0.00 1.00 0.67 0.33 0.20 0.03 0.00
1.8 1.00 0.70 0.31 0.16 0.13 0.00 1.00 0.71 0.36 0.21 0.01 0.00

RM

1.2 1.00 0.12 0.10 0.07 0.01 0.00 1.00 0.18 0.09 0.02 0.00 0.00
1.4 1.00 0.19 0.12 0.03 0.00 0.00 1.00 0.29 0.13 0.01 0.00 0.00
1.6 1.00 0.31 0.18 0.01 0.00 0.00 1.00 0.46 0.20 0.01 0.00 0.00
1.8 1.00 0.54 0.29 0.03 0.02 0.00 1.00 0.70 0.32 0.04 0.00 0.00
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FIG. 5. The square of the amplitude values of various nuclear matter parameters for each principal component. The results are
presented for the uncorrelated nuclear matter parameter distributions (D1). The different PCs are indicated by different color bars.

FIG. 6. Same as Fig. 5 but for correlated nuclear matter parameters distributions (D2).
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and D2 distributions, respectively. The upper panels pertain
to tidal deformability, while the lower panels relate to radii.
Various nuclear matter parameters contribute differently to
the principal components, and this sensitivity depends on
the chosen distribution of nuclear matter parameters. In the
case of D1 distribution (Fig. 5), PC1 is primarily composed
of a single parameter, Ksym;0, for both Λ1.2 and Λ1.8. The
PC2 is dominated by L0 for Λ1.2 and by Q0 for Λ1.8. The
contribution to PC3 for Λ1.2 is mainly from Q0, while for
Λ1.8, it is primarily Qsym;0. In PC4, Qsym;0 has the most
significant contribution for Λ1.2, while for Λ1.8, it is from
K0. Combining the outcomes of Figs. 4–6, we can infer that
the behavior of Λ1.2 can be primarily explained by the
linear combination of Ksym;0, L0, and Q0 in the D1
distribution. However, in the case of the D2 distribution,
the influence of K0 becomes evident as an additional factor.
Shifting the focus to Λ1.8, the impact of L0 diminishes,

while the contributions from isoscalar parameters
like K0 and Q0, along with the isovector parameter Qsym;0,
increase. This suggests that Λ1.8 is influenced by a
simultaneous interplay of various nuclear matter parame-
ters. For radii (R1.2 and R1.8), PC1 is dominated by L0,
while PC2 by Q0. In PC3 for R1.2, contributions from Ksym;0

and Qsym;0 are notable, whereas for R1.8, it’s mainly Qsym;0.
In Fig. 6, similar outcomes are depicted, but for D2
distributions, which are notably different from those in
Fig. 5. Multiple nuclear matter parameters contribute to
most PCs due to correlations in the D2 distribution. Strong
correlations, such as between L0 and Ksym;0, lead to their
combined contributions. For instance, in PC1, both Λ1.2
and R1.2 are influenced by L0 and Ksym;0, while Λ1.8 is
influenced by Q0, Ksym;0, Qsym;0 and R1.8 by Q0, L0, and
Qsym;0. The PC2’s contributions include Q0 and Qsym;0 for
Λ1.2 and R1.2, Q0, Ksym;0, and Qsym;0 for Λ1.8, and Q0, L0,

FIG. 7. The values of the percentage contributions of nuclear matter parameters to the NS properties with masses range 1.2 − 1.8M⊙.
The results in the upper panels and lower panels correspond to the D1 and D2 distributions of nuclear matter parameters, respectively.
The colors of the bar are related to the nuclear matter parameters.
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and Qsym;0 for R1.8. The PC3 encompasses all NMPs except
J0 forΛ1.2, Q0 and Qsym;0 forΛ1.8, Q0, Ksym;0, and Qsym;0 for
R1.2, and Q0, Qsym;0 for R1.8. Similarly, PC4 involves K0,
Q0, and Qsym;0 for Λ1.2, while K0 dominates PC4 for Λ1.8.
The contributions of PC4 for radii are negligible.
We computed the total contributions for each of the

nuclear matter parameters by summing their contributions
to each of the PCs. The weights for this calculation are
derived from the product of the square of amplitude for
each nuclear matter parameter and the corresponding
eigenvalues of the PCs listed in Table II. These weights
are then normalized so that the total sum of contributions
from all nuclear matter parameters equals unity. The
percentages representing the contributions of individual
nuclear matter parameters to neutron star properties within
the mass range of 1.2 − 1.8M⊙ are shown in Fig. 7. The
upper and lower panels show the results for D1 and D2
distributions, respectively. Different colors are used to
depict the percentage contributions of each nuclear matter
parameter. It is important to note that the contributions of
different nuclear matter parameters to neutron star proper-
ties are influenced by the choice of nuclear matter param-
eter distributions. For both D1 and D2 distributions, the
contributions of specific nuclear matter parameters to tidal
deformability and radius can differ by up to 20%. However,
when categorized broadly into isoscalar and isovector
parameters, these differences diminish. Isoscalar parame-
ters, K0 and Q0, contribute together, while the remaining
parameters contribute to the isovector category. The total
contributions from isoscalar parameters increase, while it
decreases accordingly for the isovector parameters with the
increase in NS mass. For instance, the contribution from
isoscalar parameters in the case of D1 (D2) distributions
increases from 15% to 40% (24% to 44%) for tidal
deformability with the increase in NS mass from 1.2M⊙
to 1.8M⊙. Concerning radius, isoscalar parameter contri-
butions increase from approximately 10% to 30% as the
neutron star mass increases from 1.2M⊙ to 1.8M⊙.
Finally, it may be emphasized that the present work

highlights the necessity of multivariate analysis of neutron
star properties through PCA as one of the tools. A more
comprehensive investigation addressing improved treat-
ment of crust EOSs and high-density EOSs is warranted
for a more realistic assessment [73].

IV. SUMMARY AND OUTLOOK

We have addressed an unresolved issue of connecting the
nuclear matter parameters to the key neutron star proper-
ties, such as tidal deformability and radius. The outcomes
of the majority of the investigations exploring the corre-
lations between properties of neutron stars and individual
nuclear matter parameters, which describe the equations of
state, are at variance. We have exploited the efficacy of
principal component analysis, a sophisticated analytical
tool, in order to establish a comprehensive connection

between multiple nuclear matter parameters and the key
properties of neutron stars, with the ultimate aim of
shedding some light on the existing issue. The EOSs
essential for describing neutron star matter within the core
region up to a density of 2ρ0 have been derived. This was
accomplished by utilizing both uncorrelated uniform and
joint posterior distributions of nuclear matter parameters.
To ensure continuity and consistency, each of these distinct
EOSs is joined smoothly at 2ρ0 by a diverse set of the
EOSs obtained by parametrizing the speed of sound such
that it remains causal and approaches the conformal limit
gradually.
We have found that the variability in the considered

neutron star properties requires the incorporation of more
than one principal component. These observations empha-
size that the neutron star properties depend on multiple
nuclear matter parameters. In particular, tidal deformability
demands the inclusion of three or more principal compo-
nents to account for over 90% of its variations, while for the
radius, two principal components suffice to explain similar
variations. The dominance of nuclear matter parameters
contributing to the principal components depends on the
specific NS properties and their mass. For instance, in the
case of the tidal deformability of a neutron star with a mass
of 1.2M⊙, the symmetry energy curvature parameter Ksym;0
emerges as the primary contributor to the first principal
component. The second and third principal components are
significantly influenced by the symmetry energy slope
parameter L0 and the skewness parameterQ0 for symmetric
nuclear matter, respectively. The significance of isoscalar
nuclear matter parameters, specifically the incompressibil-
ity coefficient K0 and the skewness parameter Q0 of
symmetric nuclear matter, becomes more pronounced with
an increase in the mass of the neutron star. When the NS
mass reaches 1.8M⊙, the incompressibility coefficient K0

surpasses the importance of the symmetry energy slope
parameter L0. When considering the radius of a neutron star
at lower masses, the symmetry energy slope parameter L0

stands out as the primary driver behind the observed
variations. Overall, when analyzing the collective impact
of isoscalar parameters (K0 and Q0), these contributions
exhibit an approximately 25% increase with the increase in
neutron star mass from 1.2M⊙ to 1.8M⊙.
The properties of neutron stars are the composite

functions of the nuclear matter parameters, primarily
governing the equation of state within the density range
of approximately 0.5 to 2 times the nuclear saturation
density. Recent studies [50,51] indicate that the tidal
deformability and radii of neutron stars are sensitive to
not only individual nuclear matter parameters but also to
fractional and higher integral powers of these parameters,
as well as their products. Consequently, there exists an
intricate correlation between neutron star properties and
nuclear matter parameters, characterized by their complex-
ity. These complex correlations can be further explored by
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extending the current investigation to incorporate nonlinear
contributions derived from individual parameters or from
their combinations.
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APPENDIX: COMPUTATIONAL DETAILS
OF PCA ANALYSIS

The technique of PCA is commonly used in data science
for feature extraction and dimensionality reduction for a
given target variable. Here are the steps to implement the
PCA to identify key features associated with a given target
variable.
(1) Data preprocessing: The initial step involves the

preparation of the dataset. The dataset should con-
tain both the target variable and the features.

(2) Standardization: The data should be standardized by
adjusting it to have a mean of zero and a variance of
unity. This stage is crucial for ensuring that all
features are standardized to a similar scale, prevent-
ing any particular feature from exerting undue
influence on the PCA process due to its greater
magnitudes.

(3) The covariance matrix: Calculate the covariance
matrix for the standardized dataset. The covariance
matrix is a mathematical representation that captures

both the variances and connections among different
features. The computational complexity of the
covariance matrix is OðND × minðN;DÞÞ, which
results by multiplying two matrices of size D × N
and N ×D, respectively. Here, N is the number of
samples, and D is the dimensionality or simply the
number of features.

(4) Eigenvalue decomposition: Determine the eigenvec-
tors and eigenvalues of the covariance matrix. The
eigenvectors represent the PCs, while the eigenvalues
indicate the amount of variance explained by each
PC. Arrange the eigenvalues in descending order to
assign higher priority to the principal components
that account for the greatest amount of variance.

(5) Selection of PCs: Determine the number of main
components that will be kept. The selection of this
option depends upon our target to reduce dimen-
sionality. We can either select a certain number of
top PCs or opt to keep a given proportion of the total
variance (e.g., 95%).

(6) Amplitude: An analysis is conducted to evaluate the
square of the amplitude values of the feature on each
PC. Features that have larger absolute loadings on a
specific PC are regarded as having a greater con-
tribution to that component.

(7) Percentage contribution: The final step is to find the
percentage contributions of all features to the target
variable. The total contributions of a given feature
are obtained by summing their contributions from
each of the PCs weighted by the corresponding
normalized eigenvalue.

The overall complexity of the PCA analysis is
OðND × minðN;DÞÞ. By following the above steps, One
can identify the importance of PCs by reducing the
dimensionality of the data and can extract the key param-
eters from the dataset for a specific target.
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