
Posterior predictive checking for gravitational-wave detection with pulsar
timing arrays. I. The optimal statistic

Michele Vallisneri,1,2,* Patrick M. Meyers ,2,† Katerina Chatziioannou ,3,2,‡ and Alvin J. K. Chua 4,5,§

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
2Department of Physics, California Institute of Technology, Pasadena, California 91125, USA

3LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA
4Department of Physics, National University of Singapore, Singapore 117551

5Department of Mathematics, National University of Singapore, Singapore 119076

(Received 11 July 2023; accepted 4 October 2023; published 6 December 2023)

A gravitational-wave background can be detected in pulsar-timing-array data as Hellings-Downs
correlations among the timing residuals measured for different pulsars. The optimal statistic implements
this concept as a classical null-hypothesis statistical test: a null model with no correlations can be rejected
if the observed value of the statistic is very unlikely under that model. To address the dependence of the
statistic on the uncertain pulsar noise parameters, the pulsar-timing-array community has adopted a
hybrid classical-Bayesian scheme [S. J. Vigeland et al., Phys. Rev. D 98, 044003 (2018).] in which the
posterior distribution of the noise parameters induces a posterior distribution for the statistic. In this
article we propose a rigorous interpretation of the hybrid scheme as an instance of posterior predictive
checking, and we introduce a new summary statistic (the Bayesian signal-to-noise ratio) that should be
used to accurately quantify the statistical significance of an observation instead of the mean posterior
signal-to-noise ratio, which does not support such a direct interpretation. In addition to falsifying the
no-correlation hypothesis, the Bayesian signal-to-noise ratio can also provide evidence supporting the
presence of Hellings-Downs correlations. We demonstrate our proposal with simulated datasets based on
NANOGrav’s 12.5-yr data release. We also establish a relation between the posterior distribution of the
statistic and the Bayes factor in favor of correlations, thus calibrating the Bayes factor in terms of
hypothesis-testing significance.
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I. INTRODUCTION AND SUMMARY

In June 2023, four international pulsar-timing-array
(PTA) efforts (NANOGrav, EPTA, PPTA, and CPTA)
reported compelling evidence [1–4] for the existence of
a low-frequency gravitational-wave background (GWB), as
expected from the binaries of supermassive black holes at
galactic centers [5–8], although more exotic sources are
also possible [6,9]. These results had been prefigured by
findings of excess timing noise [10–13] with spectra that
were consistent across pulsars and plausible with respect to
astronomical expectations [14]. These findings were sug-
gestive but by no means conclusive, since the excess noise
may have arisen from sources other than the GWB, such as
intrinsic pulsar spin noise [15,16].
Indeed, in Refs. [1–4] evidence for the GWB was

established using a different criterion: the presence of

specific correlations between the time series of residuals
of different pulsars. For an isotropic GWB, these correla-
tions follow a geometric relation (a function of the angle ζ
between the pulsars) first derived by Hellings and
Downs [17]. While other systematic effects (such as clock
and ephemeris errors [18,19]) may generate different
angular patterns, it is difficult to imagine an explanation
other than the GWB for a manifest Hellings-Downs pattern
in the data.
The problem of GWB detection with PTAs data then

turns into the probabilistic characterization of observed
inter-pulsar correlations. Bayesian approaches have been
the tool of choice, since they allow for a principled
treatment of all unknown variables needed to fully
describe the data, such as the geometric and kinematic
parameters of the pulsars, the levels and spectral shapes of
radiometric noise, intrinsic spin noise, and dispersion-
measure noise from the interstellar medium, and of course
the GWB parameters (see Refs. [20,21] and references
therein). In the dominant Bayesian approach, the statis-
tical evidence in favor of Hellings-Downs correlations is
quantified as the Bayes factor between two data models
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that include all the elements listed above, and that are
identical except for the inter-pulsar correlation coeffi-
cients of the shared common-spectrum process, which are
set to zero for the null model (common-spectrum uncor-
related red noise, or CURN) and to the Hellings-Downs
pattern for the isotropic-GWB model (HD). Thus, this
model comparison begins with the well-established find-
ing of excess timing-residual power, and attempts to
attribute its origin to either independent processes in each
pulsar, or to the phase-coherent delays induced by the
GWB. See Refs. [10,22] for examples of this analysis.
A complementary Bayesian strategy based on posterior
predictive model checking [23] is discussed in a
companion to this paper [24].
By contrast, classical frequentist statistics offers an

attractive formulation of GWB detection based on null
hypothesis statistical testing [25], as used in LIGO’s
historical black-hole binary detection [26]. For GWB
searches with PTAs, null hypothesis testing is imple-
mented with the optimal statistic [27–29], which was
devised as a direct measure of Hellings-Downs correla-
tions. The basic idea is that if we observe a value of the
optimal statistic much larger than expected under the null
hypothesis of no inter-pulsar correlations, we can reject
that scenario and conclude that correlations are present.
The p-value (the probability of obtaining the observed
value of the optimal statistic, or larger, under the null
hypothesis) quantifies the statistical significance of this
conclusion.
Unfortunately, this simple test cannot be implemented

in practice because the optimal statistic depends para-
metrically on the unknown pulsar noise parameters.
Vigeland et al. [29] introduced a hybrid scheme in which
the posterior distribution of pulsar noise parameters
(obtained from Bayesian inference) induces a distribution
of the observed optimal statistic, and proposed that the
posterior mean of the signal-to-noise ratio (SNR)—i.e.,
of the optimal statistic divided by its standard deviation
across noise realizations—could be used as a measure
of statistical significance. However, the mean posterior
SNR does not correspond to a p-value for the optimal
statistic, so its hypothesis-testing interpretation is ques-
tionable. Partly because of this, and because of the
perception that Bayesian model comparison accounts
more fully for the uncertainties in the data model, the
optimal statistic has been relegated to a secondary role in
PTA searches for the GWB.
In this article we submit that the optimal statistic should

remain a tool of first choice in these searches, on par
with Bayesian model comparison. Specifically, in Sec. II
we show that the hybrid optimal statistic can be interpreted
rigorously in the framework of posterior predictive model
checking [23], leading to a self-consistent Bayesian
generalization of statistical testing that can falsify the
no-correlation hypothesis while accounting for the

uncertainty in pulsar noise parameters. We introduce a
new detection statistic (the Bayesian SNR, henceforth
BSNR) that maps to a single well-defined p-value and
provides a direct measure of statistical significance. In
Sec. III we demonstrate this scheme by examining the
distribution of hybrid SNRs and BSNR in two sets of
simulated datasets (with and without a loud GWB injec-
tion). In Sec. IV we discuss the role that the BSNR can play
in discriminating a true Hellings-Downs-correlated signal
from spurious processes with other spatial correlations. In
Sec. V we exploit the fact that the (squared) optimal
statistic approximates the log ratio of the HD and
CURN likelihoods to formulate detection statements
based on the distribution of the posterior log likelihood
ratio (PLLR, [30,31]). We show that the PLLR is related to
the HD-vs.-CURN Bayes factor, providing a frequentist
calibration for its value, and confirming that the commonly
used expðSNR2=2Þ heuristic for the Bayes factor can
overpredict its value. In Sec. VI we present our
conclusions.

II. NULL HYPOTHESIS TESTS AND THE
BAYESIAN p-VALUE

Classical null hypothesis testing [25] proceeds by
assigning a function D of the data y to serve as a test
statistic, and then rejecting the null hypothesisH0 when the
observed value Dobs ¼ DðyobsÞ is in the extreme tail of its
background distribution

pðDjH0Þ ¼
Z

pðDjyÞpðyjH0Þdy; ð1Þ

that is, when it is very unlikely that H0 could produce
data that result in Dobs. The tail area PðD > DobsjH0Þ (or
PðD < DobsjH0Þ as appropriate) is known as the one-sided
p-value. Just how small a p-value should justify the
rejection of the null hypothesis depends on extra-statistical
considerations, and has been the subject of considerable
debate. Crucially, the p-value quantifies the probability that
H0 would generate the observed data, and not the prob-
ability that H0 is true given the data, which depends on the
base rate of H0 in “similar” experiments.
In the PTA context, the optimal statistic is used as

follows to implement null hypothesis testing:
(i) we construct the optimal statistic (which we will

again denote as D) specifically to quantify the
strength of Hellings-Downs correlations in the data;
by design, the optimal statistic embodies a fiducial
GWB spectral shape (but not its overall amplitude),
as well as a fiducial noise model for each pulsar;

(ii) we compute the background distribution pðDjH0Þ
under the null hypothesis H0 (≡CURN) that
the GWB is not present (i.e., a CURN signal
appears with the same spectrum across the array,
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but its realizations in different pulsars are spatially
uncorrelated);

(iii) we obtain the observed optimal statistic Dobs ¼
DðyobsÞ, and reject H0 if the p-value

R
PðD >

DobsjH0ÞdD is sufficiently small.
As anticipated above, moving beyond the rejection of
CURN and claiming GWB detection would require addi-
tional lines of evidence to conclude that HD is indeed the
best explanation for the data.
The “classic” optimal statistic is formulated as

DðyÞ ¼
P

i≠jy
T
i C

−1
i Γ̃ijC−1

j yjP
i≠jtr½C−1

i Γ̃ijC−1
j Γ̃ji�

; ð2Þ

where the sum is over all pairs of pulsars in the array; yk is
the vector of residuals for pulsar k; Ck is the covariance
matrix for those residuals, including measurement noise,
intrinsic noise, timing-model errors, and common red
noise; and Γ̃ij ¼ Σðti; tjÞ × fHDðζijÞ is the correlation
matrix for GWB-induced residuals in pulsars i and j.
Here Σðti; tjÞ is set by the spectral content of the GWB and
it is normalized so that in ensemble average hyi;gwyTj;gwi ¼
A2
gwΓ̃ij for a GWB of amplitude Agw; while fHDðζijÞ is the

Hellings-Downs function of the pulsar-pair angle ζij [17].
See Ref. [32] for details about the Gaussian-process
formulation of the PTA likelihood.
Under H0, DðyÞ follows a generalized χ2 distribution

[33] with an expectation value of zero. In the presence
of the GWB, DðyÞ follows a noncentral generalized
χ2 distribution [34,35], and its expectation value is
hDðyÞi ¼ A2

gw. Thus, DðyÞ may serve as an estimator of
Agw. Both distributions have been approximated as normal
in the optimal-statistic literature:

pðDðyÞjH0Þ ≃N ð0; σ20Þ;

σ20 ¼
�X

i≠j
tr½C−1

i Γ̃ijC−1
j Γ̃jk�

�
−1
; ð3Þ

and

pðDðyÞjAgwÞ ≃N ðA2
gw; σ20Þ: ð4Þ

For simplicity, we will use these approximations
throughout this article, but we caution that their exact
distributions [33–35] should be used to interpret optimal-
statistic results with real data: this is especially important
because pðDðyÞjH0Þ has more substantial tails than the
normal distribution, and pðDðyÞjAgwÞ has variance larger
than σ20 because of GWB-induced correlations between the
summands of Eq. (2).
The p-value for Dobs ≡DðyobsÞ is 1 − CDFðDobsjH0Þ≡R
PðD > DobsjH0ÞdD. If the normal approximation is

taken at face value, it follows from Eq. (3) that the

combination SNR≡DðyÞ=σ0 can be interpreted as a
signal-to-noise ratio for null hypothesis testing, so the
p-value is erfcðSNR= ffiffiffi

2
p Þ=2, where erfc is the comple-

mentary error function (e.g., p ¼ 0.02; 1.3 × 10−3;
3.2 × 10−5; 2.9 × 10−7 for SNR ¼ 2, 3, 4, 5 respectively).
While this definition of SNR is used broadly in the optimal-
statistic literature, it is important to remember that because
of the normal approximation an observed SNR of X does
not actually imply “Xσ” significance.
This optimal-statistic p-value refers to the assumed

population pðyjθ0; H0Þ of datasets that are generated under
the null hypothesis H0 with the assumed pulsar noise
parameters θ0, which enter DðyÞ through the Ck. We will
write Dðy; θ0Þ to emphasize this dependence. When ana-
lyzing real data, we face the problem that the noise
parameters θ must themselves be estimated from the data.
The simplest approach is setting θ to their maximum-
likelihood or maximum a posteriori values θ̂ðyobsÞ.
Unfortunately, the optimal statistic is very sensitive to
pulsar noise assumptions, so fixing them in this way can
distort hypothesis-testing conclusions. (It can also lead to
biased Agw estimates, but that is less of a concern for this
article.) To address this problem, Vigeland et al. [29]
suggested that we consider the distributions of Dðyobs; θÞ
and SNR induced by the Bayesian posterior pðθjyobs; H0Þ.
In this approach the SNR gains a notion of Bayesian
uncertainty. hypothesis-testing “significance” is quoted as
the mean posterior SNR:

SNR ¼
Z

Dðyobs; θÞ
σ0ðθÞ

pðθjyobs; H0Þdθ: ð5Þ

Because the p-value is a nonlinear function of the SNR, this
average cannot be mapped to the p-value of the optimal
statistic with respect to any background population. In
other words, in performing this marginalization we lose
relevant information about the distribution of the optimal
statistic, so SNR is not a direct measure of hypothesis-
testing significance.
There is however a straightforward way to build a

statistically meaningful statistic from the posterior distri-
bution of Dðyobs; θÞ: instead of marginalizing the SNR,
we marginalize the p-value itself. In addition to making
sense intuitively, this procedure admits a principled null-
hypothesis-testing interpretation in terms of Bayesian
model checking [36,37]. In this framework, the Bayesian
p-value of the observed data is computed over the
population of conditional data replications generated under
H0 with noise parameters θ ∼ pðθjyobs; H0Þ:

pBðyobsÞ≡
Z

P
h
D
�
yðθÞrep; θ

�
> Dðyobs; θÞ

i

× pðθjyobs; H0Þdθ: ð6Þ
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where yðθÞrep ∼ pðyðθÞrepjθ; H0Þ. If we assume that Dðyobs; θÞ is
normally distributed, as in Eq. (3), we obtain

pBðyobsÞ ≃
Z

1

2
erfcðSNRðyobs; θÞ=

ffiffiffi
2

p
Þpðθjyobs; H0Þdθ:

ð7Þ

The Bayesian p-value characterizes how often the null
model, conditioned on the data, would result in the values
of the statistic that we observe—concretely, how often
intrinsic pulsar noise with parameter distributions inferred
from yobs would yield the spatial correlations that we
measure. We propose that pBðyobsÞ should be used to
establish the presence of spatial correlations in PTA data by
rejecting the null model in hypothesis testing. We may also
map pBðyobsÞ to an effective Bayesian SNR,

BSNR≡ ffiffiffi
2

p
erfc−1ð2pBayesÞ; ð8Þ

thus associating a Gaussian σ level with the rejection ofH0.
Note that the erfc appears by definition in Eq. (8), but is
only justified under the normal approximation in Eq. (7).
The BSNR is skewed toward the lower tail of the

posterior Dðyobs; θÞ distribution, because smaller SNRs
yield much greater p-values, which dominate Eq. (6) and
therefore Eq. (8). Qualitatively, we are averaging a risk (that
CURN should yield extreme data), so we pay the most
attention to the riskiest pulsar-noise configurations (those
that minimize observed correlations). By contrast, SNR is a
direct average of SNR, so it overemphasizes the highest
SNRs, which however provide little probability mass to the
p-value. Thus, BSNR should be quoted instead of SNR as
the measure of null-hypothesis-testing significance.
If we do want to use SNR, we need to turn to a different

scheme. As for any statistic, the significance of an observed
SNR can be obtained empirically by sampling its distri-
bution over a relevant population, such as simulations or
“bootstrapped” data models in which inter-pulsar correla-
tions are masked by randomizing the phases of red-noise
Fourier components (phase shifts, [38]) or by randomly
assigning pulsar positions when computing the Hellings-
Downs function (sky scrambles, [38,39]).
These options are correct both formally and substan-

tially, but they answer different questions about the data
(because they reference different background populations),
so they provide information complementary, but not
equivalent, to the BSNR. Specifically, with simulations
we ask how often we would observe a given SNR (or a
larger value) over the simulated H0 population, which
could have θ fixed to argmaxθpðθjyobs; H0Þ, or distributed
with that posterior. This option is very costly because a
new posterior pðθjysim; H0Þ must be obtained for every
simulation. For sky scrambles [38,39], we randomize
pulsar sky positions and ask how often the observed

pulsar-pair correlations would happen to conform to the
resulting Hellings-Downs patterns (i.e., we explore whether
the observed SNR is the product of a lucky sky configu-
ration). For phase shifts [38], we ask how
often intrinsic red noise with the observed spectral ampli-
tudes, but with random phases, would produce the
observed SNR.

III. SIMULATIONS: SNR DISTRIBUTIONS
AND BAYESIAN P-VALUES

In this section we obtain the posterior SNR distri-
bution and compute the BSNR for a set of simulated
datasets created to resemble the 12.5-yr NANOGrav data
release [40], to get a sense of what we should expect for
undetectable and detectable GWBs, and to understand
how the BSNR summarizes the distributions. All simu-
lations comprise the 47 pulsars in the release, “observed”
at the same TOAs, but with residuals drawn randomly
according to maximum-a-posteriori noise hyperpara-
meters θsim determined from the real dataset. See the
Appendix for technical details about our simulations and
Bayesian inference.
Figure 1 shows the posterior distribution of SNRðyobs; θÞ

induced by pðθjyobs;CURNÞ in two representative simu-
lations: the first (top) with no injection of a GWB or
any other common noise, and the second (bottom) with a
loud power-law GWB with amplitude Agw ¼ 10−14 and
spectral slope γ ¼ 13=3 (quoted according to the conven-
tions of [10]). The optimal statistic is also built under
the assumption of a γ ¼ 13=3 GWB spectrum. The vertical
bars show SNR, BSNR, the maximum-likelihood
SNRðyobs; θ̂Þ, and the true SNRðyobs; θsimÞ, which of course
is not accessible for real data.
The no-injection dataset (top panel) produces a posterior

SNR distribution consistent with the null hypothesis,
as expected. The four SNR statistics cluster closely. By
contrast, the loud-injection dataset (bottom panel) produces
a posterior SNR distribution that is inconsistent with the
null hypothesis, with mean and mode approximately 3.5σ
from zero, close to the true SNR. The maximum-likelihood
SNR is significantly higher at 4.6, and the Bayesian SNR is
lower at 2.9. In other words, given the uncertainty in the
determination of the noise parameters, we only reach a
p-value ≃10−3 (≃3σ) rather than the more significant
p-values incorrectly implied by SNR and SNRðyobs; θ̂Þ.
Figure 2 shows posterior optimal-statistic SNR distri-

butions for 66 12.5-yr-like datasets with no GWB or
common noise (left, blue), and 69 12.5-yr-like datasets
with loud Agw ¼ 10−14 GWB injections (right, orange).
(The peculiar numbers of datasets resulted from a fraction
of simulations failing on our computing cluster because of
out-of-memory errors.) The dots mark BSNR values, which
are used to sort the simulations. Figure 3 shows histograms
of SNR and BSNR across the simulations.
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In the no-injection datasets, SNRs cluster around zero as
expected, with a few tails extending to SNRs ≃ 4. BSNRs
are usually close to SNRs. The blue histograms in Fig. 3
show the ensemble distributions of SNR and BSNR across
simulations, which are concentrated around zero. There is
no expectation that BSNRs (or SNRs) would be distributed
normally [41].
In the loud-injection datasets, SNRs are broadly distributed

between 0 and 15, with many very convincing detections but
also a few false dismissals straddling zero. (These may occur
when intrinsic red noise and the GWB pulsar terms, which
contribute half of the GWB variance for each pulsar, conspire
to obscure the GWB correlations.) As anticipated in the
discussion of Eq. (6), the BSNR sits on the lower tail of the
SNR distributions (except for the false negatives, in which
the tails do not represent extreme p-values).
Across simulations (Fig. 3, orange histograms on the

right), BSNRs cluster around 4, while SNRs cluster around

5 with similar tails. Thus, our admittedly small sample
suggests that in approximately half of the realizations of a
12.5-yr-like dataset, the null CURN hypothesis could be
falsified with 4-σ Bayesian p-value significance, but that
the test would be inconclusive (< 3-σ) in a quarter of

FIG. 2. Posterior distributions of optimal-statistic SNR for 66
simulated datasets with no GWB (left, blue) and 69 datasets with
loud GWB injections (right, orange). The dots show Bayesian
SNRs [Eqs. (6) and (8)]. Simulations are sorted according to
optimal-statistic SNR.

FIG. 3. Distributions of optimal-statistic BSNR (solid) and
SNR (dashed) over 66 simulated datasets with no GWB (left,
blue) and 69 datasets with loud GWB injections (right, orange).

FIG. 1. Optimal-statistic SNR posterior distributions for two
simulated datasets with no common-process injection (top) and
with an Agw ¼ 10−14 GWB injection (bottom). The no-injection
SNR distribution is consistent with the null hypothesis, and the
four SNR statistics are close in value. The loud-injection SNR
distribution is inconsistent with the null hypothesis, with
BSNR ≃ 3 and therefore average p-value ≃10−3, significantly
lower than implied by the SNR and (especially so) by
SNRðyobs; θ̂Þ.
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realizations. Incorrectly taking SNRs at face value would
have overstated significance obviously, if not dramatically,
since SNR > 4 in 70% of realizations, and < 3 in 17% of
realizations.
Comparing these significance levels with those measured

on “bootstrapped” background populations is computation-
ally difficult for many of our loud-injection simulations,
which have very high significance levels and thereforewould
require very large backgrounds. Taking as example one
simulation that results in moderate BSNR of 1.9 and SNR of
2.13, we perform 10,000 sky scrambles [38,39] and 10,000
phase shifts [38], and find a sky-scramble (phase-shift)
significance of 1.9-σ (2.4-σ) for SNR. Thus in this case
BSNR and sky-scrambled SNR agree. Phase-shifted back-
grounds embody less variation, because they effectively fix
the amplitudes of red-noise Fourier components and vary
only their relative phases, it is reasonable that the phase-shift
significance would skew higher.

IV. INTERPRETING THE OPTIMAL STATISTIC
FORALTERNATIVECORRELATION FUNCTIONS

GWB searches in PTA data must account for systematic
error sources such as long-term oscillations in the time
standard [42] and errors in the Solar System ephemerides
[19], both of which are used to refer telescope observations
to an inertial frame at rest with respect to the Solar System
barycenter. These errors create timing residuals that are
correlated across pulsars, albeit with non-Hellings–Downs
geometry: hδyiδyTj i ∝ Γ̃clk

ij ¼ 1 × Σðti; tjÞ for clock errors

and ∝ Γ̃ephem
ij ¼ cos ζij × Σðti; tjÞ for ephemeris errors

[cf. the definition of ζij below Eq. (2)]. PTA analysts refer
to these systematic errors as monopole and dipole, respec-
tively, with reference to the angular dependence of the
interpulsar correlations that they embody. By replacing Γ̃ij

with Γ̃clk
ij or Γ̃ephem

ij in Eqs. (2) and (3), we obtain optimal-
statistic variants Dclk and Dephem that target monopolar and
dipolar correlations, and that have been used to diagnose the
presence of correlated systematics in PTA datasets, e.g., [10].
In this section we focus on the monopole optimal statistic,
examine its distribution in our simulated datasets, and
discuss how Hellings-Downs and monopole signals could
be distinguished using the optimal statistic.
Figure 4 shows posterior SNR distributions (curves) and

Bayesian SNRs (dots) for the monopole optimal statistic in
the same no-injection and loud-GWB-injection simulations
as Sec. III. Datasets are still sorted according to the
Hellings-Downs BSNR, and Hellings-Downs SNR distri-
butions are overdrawn more faintly for comparison.
Like the standard optimal statistic, the monopole optimal
statistic is built under the assumption of a γ ¼ 13=3
power law.
In the no-injection datasets, monopole SNRs cluster

around zero in a manner similar to the Hellings-Downs

optimal statistic; their distributions across simulations are
shown in Fig. 5. The monopole and Hellings-Downs SNRs
are largely uncorrelated, with Pearson r coefficients ≃0.25
for both SNRs and BSNRs. Overall, the monopole optimal
statistic fails (correctly) to reject the null hypothesis.
In the loud-injection datasets (right) monopole SNRs are

distributed broadly, although not as much as the Hellings-
Downs SNRs, and they extend from −2 to 10. Across
simulations, monopole BSNRs average to 1.2 and monop-
ole SNRs to 1.5; only 4% of the former and 13% of the
latter are greater than 4 (see Fig. 5). Monopole and
Hellings-Downs SNRs are significantly correlated, with
Pearson r coefficients ≃0.5 for both SNRs and Bayesian
SNRs. Overall, the monopole optimal statistic is much less
effective than the Hellings-Downs optimal statistic at
rejecting the null hypothesis when a Hellings-Downs-
correlated signal is present. Clearly that must be because
the statistic encodes the wrong correlation pattern. Even so,
the Hellings-Downs signal can excite the monopole

FIG. 4. Posterior distributions of monopole optimal-statistic
SNR for 66 simulated datasets with no GWB (left, green) and 69
datasets with loud GWB injections (right, red). Black dots show
Bayesian SNRs. The fainter blue and orange curves show the
corresponding Hellings-Downs SNR distributions, identical to
Fig. 2. Simulations are sorted according to the Hellings-Downs
optimal-statistic SNR, with plus-shaped markers showing the
Hellings-Downs optimal-statistic BSNR.
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statistic, and in some cases (four simulations, or about 6%)
it can even produce SNR and BSNR greater than their
Hellings-Downs counterparts. However, none of these four
simulations lead to convincing CURN rejections.
In other words, a Hellings-Downs signal can still be

picked up by the monopole optimal statistic, typically
(but not always) with suboptimal SNR. The converse is
also true. Thus, a large monopole SNR does not by itself
indicate that systematic residuals with clock-like corre-
lations are present in the data. More generally, while it is
tempting to compare the Hellings-Downs and monopole
SNRs to determine which alternative hypothesis is
favored by the data, that is not something we can do
within null hypothesis testing or its Bayesian extension,
in which p-values are always computed for the null
hypothesis, and therefore carry no quantitative informa-
tion about the alternatives.
In fact, that is the very restriction that we need to address

in order to test alternative hypotheses within the optimal-
statistic framework. For instance, having falsified CURN
because we observed a high Hellings-Downs BSNR,
we may now check the HD model by computing the
Bayesian p-value of Dðyobs; θÞ under the HD hypothesis.
That is, we consider the distribution of the optimal
statistic over HD data replications, modifying Eq. (6) by
replacing pðθjyobs;CURNÞ with pðθjyobs;HDÞ and having

yðθÞrep ∼ pðyðθÞrepjθ;HDÞ. The resultingDðyrep; θÞ is centered on
A2
gw, so we should see that DðyÞ tracks the estimated GWB

amplitude across the posterior pðAgwjyobs;HDÞ. If HD is
the correct hypothesis, we expect to find an unremarkable
p-value, neither too small nor too close to 1. A very low
p-value would instead point to mismodeling.
In Fig. 6 we perform this check on our loud-injection

simulations and find p-values that are distributed approx-
imately uniformly between 0 and 1, as expected. A perfect
uniform distribution would only obtain in the limit of exact

noise-parameter determination, because we would be

evaluating the p-value of each simulation yðkÞsim against

the true distribution Dðysim; θðkÞsimÞ. Because the approxima-
tion of Eq. (4) is inadequate for such strong GWB signals,
to build Fig. 6 we evaluate Eq. (6) empirically as

1

NM

XN
k

XM
l

Θ½Dðyobs; θkÞ −Dðyk;l; θkÞ�; ð9Þ

where yk;l ∼ pðyjθk;HDÞ and θk ∼ pðθjyobs;HDÞ.
To check whether we can exclude that the optimal

statistic is excited by clock error, we would instead
compute the Bayesian p-value of Dðyobs; θÞ under a
monopole hypothesis, using pðθjyobs;CLKÞ and

pðyðθÞrepjθ;CLKÞ for Eq. (6). A small p-value would falsify
the clock-noise hypothesis, while an unremarkable pwould
suggest that the model is viable. Performing this check on
our loud-injection simulations yields p-values too small too
be measured using Eq. (9), but all indeed ≲0.01.
Sardesai and Vigeland [43] propose an extension of the

optimal-statistic framework (the multicomponent optimal
statistic), in which the pulsar-pair correlations

ρij ¼
yTi C

−1
i Γ̃ijC−1

j yj
trðC−1

i Γ̃ijC−1
j Γ̃jiÞ

; ð10Þ

are fit to a linear model with components corresponding
to different correlation patterns, with errors δρij derived
under the null hypothesis and assumed to be Gaussian
and independent. (In fact, if spatially correlated proc-
esses with variance A2

α are present in the data, they
will induce correlations of order OðA2

αÞ and OðA4
αÞ

FIG. 5. Distributions of monopole optimal-statistic BSNR
(solid) and SNR (dashed) over 66 simulated datasets with no
GWB (leftmost, green) and 69 datasets with loud GWB injections
(rightmost, red). The fainter blue and orange areas show the
corresponding Hellings-Downs BSNR distributions from Fig. 3. FIG. 6. Cumulative distribution of Bayesian p-values for

Dðyobs; θÞ under the HD hypothesis across 69 loud-injection
simulations. As expected, the distribution is approximately uni-
form. The sampling error of each p-value is ≃0.01.
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among the ρij, which will bias regression unless taken
into account iteratively.)
SNRs for each component are defined as the z-score of

the corresponding linear coefficient. For a single compo-
nent, this reproduces the formal SNR of the standard
optimal statistic [cf. the discussion below Eq. (4)]. In the
general case, the multicomponent optimal statistic attempts
to disentangle the cross-sensitivities of the individual
optimal-statistic variants, but it can only do so in the
context of regression rather than detection. That is, if we
assume that a certain set of spatially correlated processes
are present in the data, the multicomponent optimal
statistic will produce estimates or their relative amplitudes.
When augmented with procedures such as the Akaike
information criterion [44], the multicomponent optimal
statistic will also select a best-fitting model among multiple
options [43]. Neither result can be interpreted easily as
rejecting the null hypothesis, or providing quantifiable
evidence of an alternative.

V. THE OPTIMAL STATISTIC AS AN
APPROXIMATE LIKELIHOOD RATIO

So far we have focused on computing optimal-statistic
p-values for null hypothesis testing and its Bayesian
extension. The p-values can falsify the null CURN
hypothesis, thus confirming the presence of correlations,
and they can also verify that the data are consistent with
HD, by failing to falsify that hypothesis. Moving beyond
this strictly falsificationist viewpoint, the optimal statistic is
also related (at least approximately) to the ratio of the
CURN and HD likelihoods [45]. In this section we describe
how the likelihood ratio can be used directly to discriminate
between the two models, and how it provides a link
between the posterior distribution of the SNR and the
CURN-vs.-HD Bayes factor.
To see how the optimal statistic is related to the like-

lihood ratio, we begin with the PTA likelihood in its
marginalized form [see, e.g., [32]]:

logpðyjθÞ ¼ −
1

2
yTK−1y −

1

2
log j2πKj

with K ¼ Bþ A2Γ̃; ð11Þ

here y is the concatenation of residuals for all array pulsars;
BðθÞ is a block-diagonal covariance matrix in which each
block Bi describes the noise processes that are individual to
a pulsar, including measurement noise, intrinsic spin noise,
and timing-model errors, but not common red noise; and
A2Γ̃ðθÞ represents the covariance of the common red-noise
process. For CURN, Γ̃ðθÞ is block-diagonal, with blocks
given by Σii; for HD, Γ̃ðθÞ has the same diagonal blocks,
plus off-diagonal blocks given by ΣijfHDðζijÞ.
Expanding logpðyjθ;HDÞ to linear order with respect to

the fHDðζijÞ coefficients yields [45]

logpðyjθ;HDÞ ≃ −
1

2

X
i

yTi C
−1
i yi −

1

2

X
i

log j2πCij

þ 1

2
A2

X
i≠j

yTi C
−1
i Γ̃ijC−1

j yj; ð12Þ

whereCi ¼ Bi þ A2Σii. Given that the first two terms in the
sum add up to logpðyjθ;CURNÞ and that the third term
is proportional to the unnormalized optimal statistic
[cf. Eq. (2)], it follows that

pðyjθ;HDÞ
pðyjθ;CURNÞ ≃ exp

�
1

2
A2Dðy; θÞ=σ20ðθÞ

�
; ð13Þ

where of course A is itself a component of θ.
Likelihood ratios are broadly used as detection statistics

to discriminate between pairs of models. Indeed, under
broad conditions they are Neyman–Pearson-optimal [46],
yielding the lowest rate of false dismissals for a chosen rate
of false alarms. In our context, however, for any given
dataset y there is no single value of Dðy; θÞ and σðθÞ, but
rather posterior distributions induced by pðθjyÞ. Likewise,
pðθjyÞ induces a posterior distribution of the log likelihood
ratio (PLLR). Dempster [30,31] has suggested that the
PLLR can be used directly to make detection statements
such as “under X% of the CURN posterior, HD is Y times
more likely than CURN.” For instance, one may require
Y ¼ 100 and X ¼ 95% to claim a detection.
Figure 7 shows PLLR distributions for the loud-injection

simulations discussed above. Our example criterion is
satisfied in 48% of the simulations. PLLR statements
can be seen as posterior-predictive extensions of classical
detection theory. Furthermore, they provide an interesting
complement to Bayes factors: instead of “integrating, then

FIG. 7. Distribution of the posterior log likelihood ratio
(PLLR), as approximated with the optimal statistic using
Eq. (13), in the 69 loud-injection simulations. If we set our
detection criterion as PLLR > 100 over 95% of the posterior, we
conclude that HD is “detected” over CURN in 48% of our
simulations: those that cross the 95%-percentile vertical line with
values above the PLLR ¼ 100 horizontal line, shown in blue
here, while those that do not are shown in orange.
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comparing,” as we do with the Bayesian evidence, with
PLLRs we “compare, then integrate” [31].
Finally, we demonstrate how the PLLR links the

posterior distribution of the optimal-statistic SNR to the
HD-vs.-CURN Bayes factor. This relationship was exam-
ined empirically by Pol and colleagues [49, Fig. 1], who
find that, for small SNR, logBFHDCURN ≃ SNR2=2. Because
the HD and CURN models share the same parameters and
priors, the marginalized PLLR yields

Z
log

pðyjθ;HDÞ
pðyjθ;CURNÞpðθjy;CURNÞdθ

¼
Z

log

�
pðyjHDÞ

pðyjCURNÞ
pðθjy;HDÞ

pðθjy;CURNÞ
�
pðθjy;CURNÞdθ

¼ log
pðyjHDÞ

pðyjCURNÞ
Z

pðθjy;HDÞdθ

þ
Z

log
pðθjy;HDÞ

pðθjy;CURNÞpðθjy;CURNÞdθ

¼ logBFHDCURN−DKLðCURNjjHDÞ: ð14Þ

In the second line we have used the Bayes theorem plus the
fact that pðθjHDÞ ¼ pðθjCURNÞ to rewrite the likelihood
ratio as the Bayes factor times the ratio of posteriors.
The DKLðCURNjjHDÞ at the tail end of Eq. (14) is the
Kullback–Leibler divergence [47] from HD to CURN, a
non-negative measure of the discrepancy between the two
distributions.
Now, if we approximate the PLLR using the optimal

statistic [Eq. (13)] and replace the amplitude parameter A2

with its optimal-statistic estimator Dðy; θÞ, we obtain a
heuristic relation between the HD-vs.-CURN Bayes factor
and the optimal-statistic SNR,

logBFHDCURN −DKLðCURNjjHDÞ ¼ SNR2=2; ð15Þ

which calibrates the Bayes factor by linking it to a
frequentist scheme. For instance, we may say that 3-σ
optimal statistic corresponds very roughly to BF ≃ 90,
while 4-σ optimal statistic maps to BF ≃ 3; 000. Figure 8
shows that Eq. (15) is approximately realized in our loud-
injection simulations, in agreement with Ref. [48].

However, SNR2=2 values consistently overestimate Bayes
factors, especially for larger SNRs. Kullback–Leibler
corrections are small. For this figure, Bayes factors and
divergences were computed by reweighting a moderate
number of posterior samples [49]; thus, they are somewhat
noisy, but not nearly enough to explain the spread observed
in Fig. 8, which must instead originate in the approxima-
tions made to obtain Eq. (15).
Thinking back to the optimal statistic as a detection

statistic, the integral over the noise-parameter posterior
that defines the Bayesian p-value is dominated by the
parameters that yield lower SNRs and larger p-values, and

therefore higher risk; by contrast, Eq. (15) contains
SNR2=2, emphasizing higher SNRs, and therefore greater
confidence. After all, even if the hypothesis-testing and
model-comparison approaches can be related, they answer
fundamentally different questions about detection.

VI. CONCLUSION

In this article we examine the role of the optimal
statistic [27–29], and especially of its hybrid variant [29]
in establishing the presence of inter-pulsar correlations in
pulsar-timing-array data. The logic is that of null-hypothesis
statistical testing: by observing an extreme value of the
optimal statistic, we are able to reject a null model that
contains a common-spectrum signal but no inter-pulsar
correlations. The strength of this conclusion is encapsulated
by the p-value—the probability that the null model
could have produced data that results in an equally
extreme statistic.
The fact that we must simultaneously fit for the unknown

pulsar noise parameters leads to the hybrid frequentist–
Bayesian approach, in which we obtain a posterior distribu-
tion for the optimal statistic from the noise-parameter
posteriors. We show that the hybrid optimal statistic can
be understood in the framework of Bayesian model
checking [23], in which the p-value is evaluated with respect
to data replications generated from the null model by drawing
model parameters from their posteriors. This Bayesian
p-value maps to a new summary statistic, the Bayesian
SNR, which should be used to characterize the statistical

FIG. 8. Posterior mean of SNR2=2 vs log HD-vs.-CURN Bayes
factors, with and without the correction of Eq. (15), in our loud-
injection simulations. Bayes factors and Kullback–Leibler diver-
gences are computed using the reweighting scheme of Hourihane
et al. [49]; errors are ∼1, and not shown for clarity. Note the large

range of SNR2 and Bayes factors, obtained even if all simulations
have the same pulsar-noise and GWB parameters. Equation (15) is
realized approximately, with a large vertical spread. Bayes factors

appear to saturate toward the high end of the SNR2=2 distribution.
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significance of the observed correlations. Computed against
different posteriors, the Bayesian SNR can also provide
principled evidence for Hellings-Downs correlations, by
failing to reject the HD model, and by rejecting models with
alternative correlation patterns such as CLK.
By contrast, the posterior SNR of the hybrid SNR (i.e., the

SNR) cannot be mapped to a p-value for the optimal
statistic. Instead, a p-value for the SNR can be established
empirically with respect to a population of simulations or of
“bootstrapped” datasets [38,39] for which certain model
details are altered to effectively erase interpulsar correlations.
These are different tests that answer different detection
questions with narrower definitions of the null hypothesis,
so they should be used in complement to the BSNR.
We also consider the optimal statistic as an approxima-

tion to the HD–CURN log likelihood ratio. We suggest that
the posterior SNR can be used to formulate detection
statements based on Dempster’s posterior distribution of
the likelihood ratio [30]. However these statements may be
biased by the approximation of the log likelihood as linear
in the Hellings-Downs coefficient, especially so for loud
correlated signals at the edge of detection.
Last, we show that the mean HD–CURN log likelihood

ratio is related to the HD-vs.-CURN Bayes factor by way of
the Kullback–Leibler divergence between the two posteri-

ors. Since the ratio is approximately SNR2=2, this relation
provides a qualitative calibration of Bayes factors in terms
of the hypothesis-testing SNRs that may be expected for
similar datasets. The relation also justifies the commonly
used heuristic logBF ≃ SNR2=2, but our experiments (as
displayed in Fig. 8) suggest that the heuristic is realized
only very approximately.
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APPENDIX: INFERENCE AND SIMULATION

Throughout this article, we computed CURN, HD, and
CLK posteriors by evaluating the marginalized PTA like-
lihood [Eq. (11)] with ENTERPRISE [50], and sampling it
with PTMCMCSAMPLER [51], following all prescriptions
adopted in the NANOGrav 12.5-yr GWB analysis [10].

Pulsar noise parameters were set to the maximum a pos-
teriori values obtained in single-pulsar “noise runs” on
NANOGrav 12.5-yr data [52], except for intrinsic–red-
noise (log) amplitudes and spectral indices, which were
MCMC-sampled alongside log10 Acurn (or log10 Ahd or
log10 Aclk, as appropriate). We used uniform priors of
½−18;−11� for the log10 amplitude quantities, and of [0, 7]
for red-noise spectral indices. The spectral index of the
common process was fixed to 13=3. The optimal statistic
was evaluated with ENTERPRISE using the matrix compo-
nents of these likelihoods, drawing intrinsic–red-noise
parameters from the appropriate posterior chains, and
keeping the other pulsar-noise parameters fixed.
Simulated datasets were obtained under the HD model

by fixing all noise parameters to 12.5-yr single-pulsar
maximum a posteriori values, augmented by full-array
maximum a posteriori values for the intrinsic–red-noise
amplitudes and spectral indices. To draw random realiza-
tions of all noise processes, we decomposed the matrices Bi
that appear in Eq. (11) as

Bi ¼ Ni þ FiΦiF
†
i ; ðA1Þ

where Ni is an nobsi × nobsi diagonal matrix (with nobsi the
number of measured residuals for pulsar i),Φ is a ngpi × ngpi
diagonal matrix (with ngpi the total number of Gaussian-
process basis components for matrix i), and Fi is a
nobsi × ngpi the rectangular matrix of Gaussian-process basis
vectors. For each simulated dataset and each pulsar we then
obtained

ynoisei ¼
ffiffiffiffiffi
Ni

p
ϵþ F†

ffiffiffiffiffi
Φi

p
ζ; ðA2Þ

with ϵ (ζ) an nobsi -dimensional (ngpi -dimensional) vector of
independent unit Gaussian deviates. The components of Φi
were set to the appropriate power laws for noise processes,
and to 10−14 × nobs s2 for timing-model errors, so that
each timing-model parameter could contribute the same
variance of 10−14 s2 (on average) to each residual. For
each simulated dataset the Hellings-Downs process was
sampled jointly for all pulsars as

yhd ¼ AGLξ; ðA3Þ
where G is a block-diagonal matrix in which each
nobsi × nhd-dimensional block Gi encodes the Hellings-
Downs basis vectors for pulsar i; LL† is the Cholesky
decomposition of the Hellings-Downs covariance matrix Γ̃;
and ξ is an ðnpsr × nhdÞ-dimensional vector of independent
unit Gaussian deviates. We set log10 Ahd to −18 for the no-
injection datasets and to−14 for the loud-injection datasets.
Although we ran 100 simulations for each case, only 66 and
69 respectively were completed due to memory limitations
on the Bridges-2 computing cluster.
See Refs. [10,22,32] for details on the Gaussian-process

formulation of the PTA likelihood.
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