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Goodness-of-fit tests are often used in data analysis to test the agreement of a distribution to a set of data.
These tests can be used to detect an unknown signal against a known background or to set limits on a
proposed signal distribution in experiments contaminated by poorly understood backgrounds. Out-of-the-
box nonparametric tests that can target any proposed distribution are only available in the univariate case. In
this paper, we discuss how to build goodness-of-fit tests for arbitrary multivariate distributions or
multivariate data generation models.
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I. INTRODUCTION

Goodness-of-fit tests are often used in data analysis to
test the agreement of a distribution to a set of data. These
tests can be used to detect an unknown signal against a
known background or to set limits on a proposed signal
distribution in experiments contaminated by poorly under-
stood backgrounds. Out-of-the-box nonparametric tests
that can target any proposed distribution are only available
in the univariate case: the Kolmogorov-Smirnov (KS) test
[1], the Anderson-Darling test [2] or the recursive product
of spacings (RPS) test [3]. In this paper, we discuss how to
build goodness-of-fit tests for arbitrary multivariate distri-
butions or multivariate data generation models. The result-
ing tests perform an unbinned analysis and do not need any
trials factor or look-elsewhere correction since the multi-
variate data can be analyzed all at once. The proposed
distribution or generative model is used to transform the
data to an uncorrelated space where the tests are developed.
Depending on the complexity of the model, it is possible to
perform the transformation analytically or numerically with
the help of a normalizing flow algorithm.
The flexibility of targeting vastly different univariate

distributions is made possible by the probability integral
transformation [4,5]. We start by reviewing this transforma-
tion in the univariate case and then extend it to the
multivariate case.We then discuss differentways of perform-
ing amultivariate uniformity test and how to adapt this tool in
the case of signal discovery or setting upper limits.

Finally, we consider examples for each application,
using either real or artificial data, in order to test the
sensitivity of our methods.

A. Univariate probability integral transformation

Given m univariate samples fxig assumed to be inde-
pendent and identically distributed (IID) according to a
known distribution, fðxÞ, we can perform quantitative
tests based on the probability integral transformation.
Considering only continuous distributions fðxÞ with cumu-
lative FðxÞ, we first transform the samples onto the unit
interval [0, 1] via ui ¼ FðxiÞ. This reduces the task at hand
to test transformed samples fuig being distributed accord-
ing to the standard uniform distribution Uð0; 1Þ. Many tests
have been developed for this univariate distribution. The
take-away message from the univariate case is that, in order
to develop a test statistic, it is easier to do so in a
standardized space, such as the uniform interval [0, 1].

II. MULTIVARIATE PROBABILITY
INTEGRAL TRANSFORMATION

Much like the univariate case, the goal in multivariate
cases (in n dimensions) is to develop uniformity tests in the
unit hypercube ½0; 1�n. In order to target any given
multivariate distribution M, we need to transform the
probability space described by M into ½0; 1�n. This trans-
formation can be easy or difficult depending on the
distribution M, specifically depending on the correlation
among the dimensions ofM. In the following we show how
to perform the transformation into the unit hypercube in
three main cases: first, distributions comprised of uncorre-
lated dimensions are considered, moving then to distribu-
tions with correlated dimensions or sample generating
processes for which a probabilistic model is not available.
Finally hierarchical models are discussed.
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A. Independent dimensions

If the dimensions of the proposed distribution M are all
independent of each other, thenM is just a composition of n
independent univariate distributions:

M ¼ ½M1;M2;…;Mn�; ð1Þ

where Mj is the distribution of the jth dimension. Much
like the univariate case, it is possible to transform the jth
component of each sample using the corresponding cumu-
lative distribution function FMj

. Thus, the transformation of
sample xi ¼ ðxi;1; xi;2;…; xi;nÞ in ½0; 1�n is simply

ui ¼ ½ui;1; ui;2;…; ui;n� ¼ ½FM1
ðxi;1Þ;…; FMn

ðxi;nÞ�: ð2Þ

B. Correlated dimensions and generative models

If the dimensions of the distribution to be compared to
the data are not mutually independent, then it might be
difficult to write down a transformation to the hypercube.
This is still possible when dealing with nicely behaved
distributions, such as a multivariate normal distribution
whose covariance matrix is not diagonal, but that might not
be the case for a more complex distribution, such as a
weighted sum of distributions. In such cases, it is possible
to learn the transformation to the unit hypercube by using a
normalizing flow (NF) which can perform a whitening of
the distribution; i.e., transform the distribution so that it
becomes a diagonal multivariate normal distribution in the
new coordinates. Once the original distribution is trans-
formed in this way, it is then possible to further transform it
to the unit hypercube one component at a time as shown
earlier.
The normalizing flow (NF) is made up of a neural

network which is trained using samples from the proposed
distribution M. The samples needed for training can be
obtained from an associated generative model or by
sampling M using a Markov chain Monte Carlo. The
use of the generative model is particularly interesting
because it allows to train the NF without having a
normalized distribution or any model at all. In such cases,
the NF is learning the associated distribution and the
transformation all at once. References [6,7] offer a nice
review of the theory and some of the many applications of
normalizing flows. In order to show the feasibility of this
approach, a proof of principle example is presented where a
normalizing flow is used to whiten data sampled from a
sum of three two-dimensional normal distributions. A
sampled distribution is depicted in Fig. 1 and the resulting
marginal distributions of the whitened samples are shown
in Fig. 2. The normalizing flow used for this example was
adapted from [7].

C. Hierarchical models

Given a hierarchical model, the distribution of some
components of the data is dependent of the values of other
components, which are referred to as hyperparameters of
the model. If the hyperparameters are mutually independent
or if a transformation to the unit hypercube is available
for their distribution and if the same is true for all
the dependent parameters at each layer of depth of the
hierarchical model, then it is possible to transform the
whole distribution into the unit hypercube in stages.
Consider for example a two-layer hierarchical model

producing distributions M ¼ ½M1;M2ðM1Þ�. M1 models
the distribution of the hyperparameters xhigh of the model
and these components can be transformed to the correspond-
ing uniform unit hyperspace using the associated function
TM1

. The distribution of the dependent parameters xlow is
affected by the observed value of the hyperparameters xhigh:

xlowi ∼M2ðxhighi Þ: ð3Þ
For any given sample xi, the value of the hyperpara-

meters xhighi is fixed, so the distribution M2ðxhighi Þ is fully

FIG. 1. Sample distribution of the sum of three two-dimensional
Gauss distributions.

FIG. 2. Whitened marginal distributions after transforming with
the normalizing flow.
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defined and it is possible to compute the corresponding
transformation to the unit hyperspace. While TM1

is sample
independent, TM2

is sample dependent. In case of hierar-
chical models with more layers, this staged transformation
approach is to be repeated for each layer.

III. UNIFORMITY TESTS IN THE
UNIT HYPERCUBE

In the following we discuss various methods that allow to
perform a multivariate uniformity test by reducing this task
to a series of univariate uniformity tests. These tests are
sensitive to nonuniformities in a transformed dataset and
their application is twofold: (1) detection of clustering of
events against a uniform background, in a discovery
scenario, and (2) upper limit on the rate of events
corresponding to the uniform component of the data,
representative of a proposed signal, against unknown
backgrounds. For the latter, a desired confidence level is
set in advance.

A. Projection—Discovery

Assume we have m samples within a unit hypercube
fuig∈ ½0; 1�n. The n components of each sample are
assumed independent of one another after the necessary
transformations. The projections of the samples along each
axis of the hypercube therefore yield n univariate uniformly
distributed sets of data: fui;jg for the jth dimension. For
each one of these projected datasets fui;jg it is possible to
perform a uniformity test using a test statistic of choice and
condense the information for the jth dimension in one
scalar p value pj. Given our assumptions, the expected
distribution of each p value pj is uniform, and moreover,
the p values will be independent of one another.
On this resulting dataset, fpjg, it is possible to perform a

uniformity test using a test statistic of choice in order to
check whether there are any significant deviations from
uniformity. The result of this last uniformity check results
in one last p value pfinal which is the overall p value of the
multivariate goodness-of-fit test.
As pointed out in the discussion above, in order to obtain

the intermediate p values, fpjg, and then the final one,
pfinal, it is possible to use any test statistic of choice, as long
as the chosen statistics preserve the noncorrelation among
dimensions (results from tests that have a Poisson depen-
dent factor, for example, will be correlated, since the same
number of samples is projected on all dimensions). What is
important is that the distribution of the resulting p values is
uniform. This implies that the test statistic used for the
evaluation of the intermediate p values, fpjg, does not have
to be the same as the one used to evaluate pfinal; as a matter
of fact, one could also use different tests for different
dimensions in the evaluation of fpjg, but it might be a more
consistent approach to consider all dimensions equally and
use the same test for all projections.

In the previous discussion, we considered a dataset of m
samples fuig∈ ½0; 1�n. In such a case, if the number of
events m is large, it might be appropriate to use a test such
as RPS or KS in order to pick up on a signal in any of the
projections. Afterwards, when considering the n p values
fpjg, it could be better to look for outliers, since already
one of a few small pj could be indicative of the presence of
a signal in our data. In this case, especially when dealing
with low-dimensionality spaces (n small), instead of using
RPS or KS on the set fpjg it might be more informative to
look at the smallest p value or rather their product in case
we want to improve the sensitivity in the presence of
multiple small p values.

1. Minimum p value

As discussed, observing one small p value might already
be enough to point to a possible signal in the data. Under
the assumption of a uniform distribution of fpjg, the
distribution of pmin ¼ minfpjg is simply the first order
statistic, and it follows a Beta distribution [8]:

pmin ¼ min
j
fpjg ∼ Betað1; nÞ; ð4Þ

where n is the dimensionality of the original data. Thus the
final p value is

pfinal ¼ FBetaðpmin; 1; nÞ; ð5Þ

where FBetaðx; a; bÞ is the cumulative distribution function
of the Beta distribution with parameters ða; bÞ.

2. Product of p values

Given more than one small p value pj, looking only at
the smallest one might be reductive and we could gain in
sensitivity by combining the small p values together. One
way of doing so is to consider the product of all p values:

pprod ¼
Yn
j¼1

pj: ð6Þ

Once again, we expect all fpjg to be uniformly
distributed, and the distribution of pprod is known [9]:

Pðpprod ¼ x; nÞ ¼ ð−1Þn−1
ðn − 1Þ! ½lnðxÞ�

n−1 ð7Þ

thus the final p value pfinal is

pfinal ¼Fðpprod;nÞ¼pprod ·
Xn
j¼1

ð−1Þj−1
ðj−1Þ! ½lnðpprodÞ�j−1: ð8Þ
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B. Projection—Limit setting

Several spacings-based tests have been developed for
this task in one dimension, such as the maximum-gap
or optimum-interval (OI) methods [10], as well as the
sum-of-largest-sorted spacings (SLSS) or the product-of-
complementary spacings (PCS) [11].
When setting limits in the univariate case, given a test T

with cumulative distribution FT , its Poisson-averaged p
value is calculated as

1 − p ¼ FT;PoisðtobsjμÞ ¼
X∞
n¼0

FTðtobsjnÞ ·
μne−μ

n!
; ð9Þ

where tobs is the observed value of the test statistic. Given
Eq. (9) it is possible to find the event rate μlim with a
confidence level (C.L.) such that

FT;PoisðtobsjμlimÞ ¼ C:L: ð10Þ

For a more complete discussion regarding how to set
upper limits, see Ref. [11].
For the multivariate case, as discussed before, given m

uniformly distributed samples fuig∈ ½0; 1�n, we consider
the projection of the samples on the n axes, knowing these
will be uniformly distributed as well. For each one of these
projected datasets fui;jg it is possible to estimate an upper
limit μj on the event rate with confidence level C1.
Out of the upper limits fμjg; j ¼ 1;…; n obtained from

each projection, we can use a best of the bunch approach
and select the smallest one as the final limit:

μfinal ¼ min
j
fμjg: ð11Þ

At this point we must consider the confidence level Cn
associated with this estimate. If the projected limits fμjg
were completely independent of one another, then we
might consider that selecting the smallest limit amounts
to a resulting confidence level Cn equal to the product of n
Bernoulli variables with rate C1, thus:

Cn ¼ ðC1Þn: ð12Þ

Under this assumption, we could easily select the con-
fidence levelC1 of the individual projection limit estimations
in order to ensure that Cn is equal to the desired value.
This assumption is however not correct. Although the

distribution of the projected events on each axis is inde-
pendent, the number of samples projected on each axis is
not: if there are m samples in the multidimensional space
then there will be m samples on each projected dataset
fui;jg; j ¼ 1;…; m. In order to set a limit we consider both
the distribution of events and the total number of events,
merging a goodness-of-fit test with a Poisson test. Since all
projected datasets fui;jg share the same number of events,

this introduces a correlation in the Poisson statistic part of
each limit-setting estimation, rendering all resulting limits
correlated.
Although the projection-independence assumption is not

valid if applied after the Poisson averaging, it is possible to
calculate the corrections necessary to ensure the desired
final confidence level Cn. We assume that Cn is a function
of the projection specific confidence level C1 and that it is
dependent on the value of the reconstructed limit μfinal, for a
given number of dimensions n: Cnðμfinal; C1jnÞ. If we seek
a specific confidence level (C.L.), then we need to find the
value of C1 that for the resulting best limit μfinal yields

CnðμfinalðC1Þ; C1jnÞ ¼ C:L: ð13Þ

This equation is just a one-dimensional root finding
problem in C1 which can be solved iteratively (for example
using a bisection algorithm) by estimating the error at
μfinalðC1Þ for a proposed value of C1. The estimation of the
error rate can be done via Monte Carlo simulations,
producing data according to a uniform distribution in the
n-dimensional hypercube, since Eq. (13) only needs to hold
in this nominal case.
Although this procedure might seem complicated, it is

easy to devise and can be performed well before any real
analysis has to be run, during the method validation phase,
allowing for the tabulation, interpolation, and sharing of
Cnðμfinal; C1jnÞ. We have calculated the exact correction for
the SLSS method and an approximate correction for the OI
method up to 5 dimensions.

C. Product of complementary
spacings—Limit setting

1. Best projection

As discussed above, if one calculates the Poisson-
averaged p value on each projected dataset and then
chooses the most significant value, a correction needs to
be calculated to account for the correlation of these values
due to the fixed number of samples on each axis. In order to
avoid this problem, if the definition of the test statistic
chosen allows it, it is possible to perform the selection of
the best p value before averaging with a Poisson distribu-
tion. In such a case it would be trivial to calculate the
correct confidence level without having to resort to
numerical corrections.
The product-of-complementary spacings, PCS, is

defined as [11]

TðfuigÞ ¼ −
Xnþ1

i¼1

logð1 − ui þ ui−1Þ ð14Þ

for a univariate ordered set of data fuig where u0 ¼ 0 and
unþ1 ¼ 1. For each of the projected datasets, one can
compute the corresponding value of the test Tj and its p
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value [here pj ¼ FTðTjÞ]. The n projected p values pj form
an order statistic with uniform distribution. If we were to
select the largest FTðTjÞ, its distribution would be simply

f

�
max

j
ðFTðTjÞÞ

�
¼ Betaðn; 1Þ: ð15Þ

Given the test-statistic values Tj for each projection,
the Poisson-averaged p value of the largest one, Tmax ¼
maxjðTjÞ, is

FT;PoisðTmaxjμÞ¼
X∞
m¼1

FBeta½FTðTmaxjmÞjn� ·μ
me−μ

m!
: ð16Þ

It follows that the upper limit μlim, with a C.L., is such
that

FT;PoisðTmaxjμlimÞ ¼ C:L: ð17Þ

2. Sum of projections

Given the PCS test-statistic values Tj on each projection,
instead of selecting the largest, we can consider their sum:

Tsum ¼
Xn
j¼1

Tj ð18Þ

which can be interpreted as a product of the product of
complementary spacings. Assuming we know the distri-
bution of Tsum for a fixed number of events m, FðTsumjmÞ,
then we can compute the Poisson-averaged p value of this
test for a given event rate μ:

FPoisðTsumjμÞ ¼
X∞
m¼1

FðTsumjmÞ · μ
me−μ

m!
: ð19Þ

Given this definition, it is possible to invert the formula
and find the upper limit on the event rate up to a desired
confidence level. For example, the 90% confidence level
upper limit μlim is such that

FPoisðTsumjμlimÞ ¼ 0.9: ð20Þ

If FðTjjmÞ is known, it is rather easy to compute
FðTsumjmÞ. Since Tj are all IID, the distribution of Tsum

is just fT;m convolved n − 1 times with itself:

fðTsumjmÞ ¼ fðTjmÞ � fðTjmÞ � :: � fðTjmÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n times

: ð21Þ

Since FðTjmÞ has been tabulated in the Julia package
SPACINGSTATISTICS.JL [12] and is available as a monotonic
cubic spline polynomial function, it is possible to easily
obtain its derivative fðTjmÞ, transform it to the Fourier

space using an FFT, raise it to the power of n and transform
back to the real space to obtain fðTsumjmÞ:

fðTsumjmÞ ¼ FFT−1f½FFTðfðTjmÞÞ�ng: ð22Þ

This procedure is used for the tabulated FPCS;m

(m ≤ 104). For values of m larger than 104 we use the
asymptotic distribution of FPCS;m, which is a Gaussian
distribution, thus rendering the calculation of the convo-
lution much easier.
These two approaches show how to adapt the PCS test to

a multivariate limit-setting scenario, similarly to how the
minimum p value and product of p values were used in
the multivariate discovery case. Although we discussed the
PCS test specifically, these corrections apply in general to
any test statistic T calculated where the Poisson averaging
can be calculated as a final step.

D. Volume transformation method

Finally, we consider a different dimensionality reduction
strategy. Given m samples fuig∈ ½0; 1�n, instead of pro-
jecting them onto the axes and obtaining n independent sets
of univariate data, we can use a dimension-reducing
transformation to map them all at once onto a single
univariate dataset. To achieve this, we calculate the volume
contained in the hyper-rectangle defined by its projections
simply by taking the product of its coordinates:

vi ¼ VðuiÞ ¼
Yn
j¼1

ui;j: ð23Þ

Calculating the volume in this way for each multivariate

sample we obtain a simple univariate dataset: fuig→V fvig.
Since the fuig were IID samples, so are the fvig (although
not uniformly distributed). Since vi is the product of n
independent uniform variables, whose distribution is given
by Eq. (7), its probability distribution is known. Using the
probability integral transformation, Eq. (8), we can there-
fore transform fvig into a set of uniform IID samples fzig.
We can use these to then perform a univariate uniformity
test using a test statistic of choice; standard discovery and
limit-setting tests can then be used in order to analyze
the data.

IV. EXAMPLE—nD DISCOVERY

Here we illustrate how the proposed goodness-of-fit tests
can be used in a scenario where a possible “new physics”
model is searched for but it is not wished to specify how the
new physics might populate the data space. It is then to be
tested whether the data follows a known distribution, which
is a “background” to a possible new signal. After having
collected some data, one wants to quantify the goodness of
fit of the background-only distribution to the data and a
resulting low p value could indicate the presence of events
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distributed according to an additional, previously unknown,
signal distribution.

A. Multivariate Gaussian signal

In this example the background is modeled by a simple
uniform distribution in the five-dimensional hypercube
½0; 1�5 and in order to illustrate how the presence of an
actual signal (alternative hypothesis) would affect the
outcome, additional events are injected, following a multi-
variate normal distribution randomly positioned within the
hypercube with isotropic variance of either 0.01 or 0.1. The
number of events is Poisson fluctuated for both background
and signal populations, with expected values of hnbi ¼ 104

and expected values of hnsi ranging up to 103.
The p-value distributions under the assumption of H0

(i.e., only background is present) are shown in Fig. 3: the
results corresponding to the narrow signal (Σ ¼ I5 · 0.01)
are on the left (first column) and those corresponding to the
broad signal (Σ ¼ I5 · 0.1) are on the right (second col-
umn); the first two rows present p-value distributions
calculated using projection methods while the third row
presents p-value distributions obtained with the volume
transformation method; the fourth row presents the sensi-
tivity of each scenario quantified as the median p value for
each distribution. Regarding the results of the projection
method, the evaluation of the intermediate p values was
performed using the KS test, given the large count rates,
while the evaluation of the final p value, since there are only
five dimensions, was performed using the two tests
previously described, namely the minimum and the product
of intermediate p values, corresponding to the first and
second row, respectively. Similarly, the KS test statistic was
used in the final uniformity test after performing the
volume transformation.
Distributions with no signal (hnsi ¼ 0) show a flat

p-value distribution, as expected, while the distributions
of trials with injected signals are trending towards smaller p
values, indicating the worsened goodness of fit for the
background-only model. The distributions of trials where
the signal has smaller variance (left) are much more skewed
towards small p value compared to those where a larger
variance signal was injected (right). This shows how the
sensitivity of the tests varies when targeting clusters of
varying width and strength relative to the background.
In this example, since the signal can be spotted in the

projection of multiple dimensions, the product of the
p-values test (second row) offers the largest rejection
probability of the null hypothesis compared to the vol-
ume-transformed p value (third row) or the minimum
p-value test (first row).

B. Multivariate Gaussian-shell signal

Instead of injecting a clustered signal, we assess the
sensitivity of our methods in the case of a Gaussian-shell

signal. Our signal is five dimensional and characterized by
a radius r ¼ 0.25, a radial standard deviation of either
σr ¼ 0.02 or σr ¼ 0.1, and the center of the distribution μ
chosen at random within the hypercube ½0.25; 0.75�5. The
results are shown in Fig. 4. In this case, we notice that the
sensitivity to either signal thickness, σr, is very similar,
which shows that all methods are mostly sensitive to the
shell-like structure and its radial extension. Of the three
tested methods, the product of p values shows the highest
sensitivity, followed by the minimum p value and then the
volume transformed p value.
Note that the data in the previous examples were

analyzed all in one pass for each trial, meaning that the

FIG. 3. Distributions of p values for background-only samples
(hnsi ¼ 0) and background plus randomized signal injections
from a 5D Gaussian distribution: “narrow” signal with random
μ∈ ½0.2; 0.8�, Σ ¼ 0.01 · I5 (left) and “wide” signal with random
μ∈ ½0.2; 0.8�, Σ ¼ 0.1 · I5 (right) of varying strength; comparison
to the background model for either the minimum p-value statistic
(first row), the product of p-values statistic (second row) or the
volume-transformed p value (third row); median p value (sensi-
tivity) both in linear and logarithmic scale (fourth row).
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extracted p values do not need any corrections for a
“trials effect” or “look-elsewhere effect.” Of course, if
one analyzes many separate sets of data, the resulting
p value will need to be corrected as is usually done in the
univariate case.

C. Extragalactic cosmic rays

In the previous examples, we demonstrate the sensitivity
and flexibility of our methods using synthetic data pro-
duced by known signal distributions. Here, we present the
analysis of real multivariate data; specifically the arrival
coordinates and energies of cosmic rays of extragalactic

origin, as measured by the Pierre Auger Observatory [13].
Here, we consider the latest public dataset [14], consisting
of 2,635 ultrahigh energy cosmic rays above 32 EeV. The
arrival directions of each event are expressed in equatorial
coordinates, (α, δ), the right ascension (R.A.) and decli-
nation (Dec.) respectively, as described in [15]. The
expected distribution of the measured right ascension is
uniform, whereas the distribution of the declination
depends on the maximum zenith angle of arrival, θm, as
described in [16]. Finally, the expected distribution of the
energy of cosmic rays (E) is estimated in [17].
The measured coordinates and reconstructed energies all

suffer from uncertainties, as described in the respective
publications. In order to account for these in the predicted
distributions, we convolve the predicted spectra with a
Gaussian distribution with σ ¼ 1° for the angular coordi-
nates and σ ¼ 0.074 · E for the energy (meaning that the
uncertainty increases for more energetic events). Given
these distributions, and given that the two angular coor-
dinates (R.A. and Dec.) and energy are all independent, we
can transform the data to the unit hypercube and analyze
them using a test statistic of choice and one of the methods
described above. Examining the dataset, we notice that the
data is reported up to a precision of 0.1° and 0.1 EeV for the
angular coordinates and energies, respectively. This implies
multiple events with identical coordinates in one of the
dimensions, which skews the results of many test statistics.
In order to avoid these biases, we produce replicas of the
original data with added noise, modeled as a uniform
distribution U½−Δ=2;þΔ=2�, where Δ is the precision of
each dimension. A p value derived from such a data
manipulation will be affected by statistical fluctuations.
In order to remove this effect, we produce 104 replicas of
the original dataset and analyze them, deriving a distribu-
tion of p values and select the median as representative of
the original dataset.
As previously seen, the product of p values offers the

highest sensitivity for signal discovery, so we adopt this
method in this analysis. The intermediate p values, one per
data projection, are obtained with either the Kolmogorov-
Smirnov (KS) [1] or best-sum-of-spacings (BSS) [18] test
statistics. Through the KS test it is possible to determine the
position of the signal by identifying where the value of
Dsup, the KS statistic, is observed. The description of the
BSS test is reported briefly in the Appendix below and in
Ref. [18], but differently from the KS test, it allows to
identify an interval where the putative signal might be
located.
In Fig. 5, we show the original data [14] as a scatter plot

in galactic coordinates, scaling the size of the points with
the square of the respective energy (purely for pictorial
clarity). We also show the median location for the largest
value of the KS statistic (in blue), as well as the median
region producing the smallest value of the BSS statistic (in
red). The median p values obtained from analyzing the data

FIG. 4. Distributions of p values for background-only samples
(hnsi ¼ 0) and background plus randomized signal injections
from a 5D Gaussian-shell distribution: narrow signal with
random μ∈ ½0.25; 0.75�, r ¼ 0.25, σr ¼ 0.02 (left) and wide
signal with random μ∈ ½0.25; 0.75�, r ¼ 0.25, σr ¼ 0.1 (right)
of varying strength; comparison to the background model for
either the minimum p-value statistic (first row), the product of
p-values statistic (second row) or the volume-transformed p value
(third row); median p-value (sensitivity) distribution both in
linear and logarithmic scale (fourth row).
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are 0.82 × 10−3 and 0.84 × 10−1 for the KS and BSS tests,
respectively. Comparing these results with the search for
angular correlation between cosmic rays of extragalactic
origin and their sources conducted in [15], we notice
that the region highlighted by the BSS test agrees with
the region of highest significance identified by the
Pierre Auger collaboration. The median energy range
corresponding with the smallest values of the BSS statistic
is [58, 93] EeV, whereas the median value corresponding to
the largest KS statistic is ∼54 EeV. The median angular
location determined with the KS test sits at a corner of
the BSS region, and does not coincide with the point
location of highest local significance found by the Auger
collaboration. The latter had Galactic coordinates ðl; bÞ ¼
ð305.4°; 16.2°Þ in [15] (reported in green in Fig. 5), and was
found above an energy threshold of 41 EeV using a top-hat
window analysis with angular range 24° and comparing
the number of recorded events with the expected number.
We note that the results of our tests rely primarily on the
distribution of events and consider the whole dataset at
once, such that our result does not need a trial factor
correction.

V. EXAMPLE—nD LIMIT SETTING

The performance of our proposed methods for limit
setting is explored in a series of simulated experiments for
multivariate sample distributions. We consider the case
where a background model is not present, and only a
distribution of counts according to a signal model is
available. In this case, the task is to set a limit on the
signal strength of the signal model.

A. Background-free experiment

We start by considering the case in which no background
contaminates the experiment, in order to estimate the
baseline of the different methods. Figure 6 shows the
median of the C:L: ¼ 0.90 upper limits on the event rate

normalized to the median limit of the Poisson test. We
notice that in this baseline scenario the Poisson test is the
best of the bunch, as expected, but it does not drastically
outperform the others.

B. Background-only experiment

Next we investigate the case in which a background is
present in our simulations and the signal strength is
negligible in comparison: this mimics a rare process search
in which the signal is absent.

1. Exponential distribution

We first consider a background resulting from the
product of n independent exponential distributions of rate
0.1 in each dimension.
Figure 7 reports the median C:L: ¼ 0.90 upper limits of

the measured event rate normalized to the smallest median
result for a specific background event rate μbkg. Analyzing
these results, we notice that the volume transformation
method provides the best limits, regardless of the test used.
All other projection-based methods perform similarly: in
the two-dimensional scenario, the limits are a factor 1.5–2
worse than the volume transformation results, and in

FIG. 5. Scatter plot of the Pierre Auger Observatory data [14],
in galactic coordinates, where the size scales with the square of
the reconstructed energy; in blue the median location of the
largest KS statistic; in red the median region identified by the
BSS test; in green the highest local significance estimated by
the Auger collaboration [15].

FIG. 6. Median C:L: ¼ 0.90 upper limit for the Poisson test,
upper panels, and for tests discussed in the text normalized to the
limit from a standard Poisson probability test, lower panels, for
2D (top) and 3D (bottom) uniform signal distributions and no
background.
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the case of a three-dimensional distribution a factor
2–3 worse.

2. Gaussian distribution

Next we consider a background distributed according to
a multivariate Gaussian centered at the middle of the
hypercube and with covariance matrix Σ ¼ I · 0.01.
Figure 8 reports the median C:L: ¼ 0.90 upper limits of

the measured event rate normalized to the smallest median
result for a specific background event rate μbkg. Once
again, the volume transformation method provides the best
limits, regardless of the test used. Out of these, the SLSS
test is the best of the bunch, since it is better suited to
analyze datasets that present multiple disconnected low
density regions.
The projection-based methods provide weaker limits: the

SLSS and PCS version being up to a factor 1.25(1.5) larger
in the 2D (3D) case, respectively; the OI test limits are
weaker by a factor 1.5(1.75) in the 2D (3D) case,
respectively. This is understandable since this test relies
only on one low density region to estimate its limit.

3. Concave distribution

Finally, we consider a bowl shaped background,
obtained by reversing the roles of signal and background
distribution of the previous example: assuming a uniform
background and a Gaussian signal in the real space
(truncated to the unit interval [0, 1] with μ ¼ 0.5 and
σ ¼ 0.1), we perform the probability integral transforma-
tion with respect to the latter, obtaining a bowl shaped
background distribution in the cumulative space.
Figure 9 reports the median C:L: ¼ 0.90 upper limits of

the measured event rate normalized to the smallest median
result for a specific background event rate μbkg. In this case
we show results for four- and five-dimensional distributions
of events. We notice that the best results in this case are
set by the OI test with volume transformation. This is
reasonable since there is only one fully connected region
of low event density, namely the basin of the bowl, thus
being the best-suited case for the OI test. The next best
results are obtained by the SLSS and PCS volume trans-
formations, which yield no more than 25% larger limits.
Finally, the projection-based methods yield the most
conservative limits, with the OI test being the best of this
subset.

FIG. 7. Median C:L: ¼ 0.90 signal upper limit for the best
available test, normalized to the background strength, upper
panels, and for tests discussed in the text normalized to the limit
from the best test, lower panels, for 2D (top) and 3D (bottom)
distributions containing only an exponentially distributed back-
ground.

FIG. 8. C:L: ¼ 0.90 upper limit normalized to minimum
median result respectively for 2D (top) and 3D (bottom)
multivariate normal distributions with Σ ¼ I · 0.01 centered in
the middle of the hypercube. The upper panels in each case show
the best limit result normalized to the background expectation.
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VI. CONCLUSIONS

We have provided novel nonparametric statistics to
perform goodness-of-fit tests targeting any given multi-
variate distribution or multivariate generative model by
means of a transformation to the uniform unit hypercube.
Our approaches allow for unbiased tests, either by consid-
ering the volumes identified by each sample or by taking
into account their projections. The tests developed with
these methods perform an unbinned analysis of the data and
do not need any trials factor or look-elsewhere correction
since the multivariate data is analyzed all at once. These
novel methods allow to test for the presence of a signal
beyond the known background expectation, or to set a limit
on a signal’s event rate in cases where the background is not

well modeled. The sensitivity of our proposals was tested in
the context of mock signal searches as well as using real
data released by the Pierre Auger collaboration. We have
also compared the limit setting capabilities of our methods
in simulated rare process searches under a variety of
background behaviors.
The test statistics described in this paper are simple to

use and the code is available to interested users.
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APPENDIX: BEST-SUM-OF-SPACINGS

Here, we briefly describe the best-sum-of-spacings
statistic, but for a detailed discussion we refer to
Chapter 3.6.1 of [18]. Given a set of n univariate data,
we consider their distribution after the cumulative proba-
bility transformation, i.e., we consider them to be uniformly
distributed in the unit interval [0, 1], and we refer to their
ith order statistic as uðiÞ. We define the spacing of rank k
(containing k intervals) as Si;k ¼ uðiÞ − uði−kÞ for any i. For
any rank k, we can identify the smallest such spacing:
Smin
k ¼ mini Si;k. This represents the most likely candidate

for a cluster of k events out of n. We can quantify the
significance of such a possible cluster of events for any rank
k available in the given data by computing the p value for
each one, pk (assuming we know the distribution of Smin

k for
the given values of k and n). This leaves us with a list of n p
values, one for each rank, and we choose to construct the
BSS test statistic out of the smallest pk: BSS ¼ mink pk.
The spacing corresponding to the smallest pk is the most
likely cluster of events deviating from a uniform distribu-
tion. The definition of this test statistic is similar to the
optimum interval method, which relies on an analogous
construction, considering the largest pk instead of the
smallest. The distributions of Smin

k and BSS are tabulated
numerically, based on a large number of simulations and
interpolations, and are described in detail in [18].

FIG. 9. C:L: ¼ 0.90 upper limit normalized to minimum
median result, respectively, for 2D (top) and 3D (bottom)
multivariate normal distributions for the concave background
model. The upper panels in each case show the best limit result
normalized to the background expectation.
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