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Finding upper limits on the rate of events from a proposed process in the presence of unknown
backgrounds is an often encountered problem in the search for rare processes. Methods based on unusually
large “gaps,” or spacings, in the event distribution allow to set limits on the rate of the proposed signal
distribution. In this paper, we present two novel spacings-based methods: the “sum of sorted spacings” and
the “product of complementary spacings” as tests and compare these to existing tests on synthetic data as
well as on a published dataset.
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I. INTRODUCTION

Many experiments tasked with the discovery of theorized
rare processes might find themselves in a situation where
the collected data is insufficient to claim a positive
detection. In such cases, the data is used to set an upper
limit on the number of events resulting from the rare
process under consideration, which in turn can be used to
set an upper limit on physical quantities of the proposed
model. An example would be the determinations of upper
limits on the cross section of weakly interacting massive
particles (WIMPs) recoiling off atoms in a detector, such as
for the CRESST [1] or the CDMS [2] experiments. The
experiments in question are often contaminated by a poorly
understood background, in which case the signal strength
limit must be set from properties of the observed event
distribution without any background subtraction. Spacing
statistics are one method to go beyond pure event counting
in setting signal strength limits.
Since the expected shape of the event distribution

produced by the targeted process is known, it is possible
to estimate the number of events it accounts for, up to a
desired confidence level, leveraging the difference between
the observed event distribution and the expected one. Such
an analysis is carried out using goodness-of-fit tests
allowing for the assumption that the observed number of
events collected in the analysis window is just a realization
of a random variable following a Poisson distribution with
unknown rate μ. For a selected goodness-of-fit test, the goal

is to determine the event rate μ coinciding with the desired
confidence level.
In the following we give a brief review on how to use

goodness-of-fit tests for an arbitrary event distribution
assuming the targeted process and how to account for
the random number of observed events in the definition of
the p value.
We then discuss how to use spacings-based tests to

provide upper limits: we begin with a quick review of the
maximum gap and optimum interval methods [3] and then
introduce two new tests based respectively on the sorted list
of spacings and on the product of spacings.

II. SETTING UPPER LIMITS
WITH TEST STATISTICS

Several nonparametric goodness-of-fit tests exist to test a
univariate distribution. Targeting vastly different univariate
distributions is made possible by the probability integral
transformation [4,5], which basically reduces the goodness
of fit to a simple uniformity test.

A. Probability integral transformation

Suppose we have n samples fyig, and want to quanti-
tatively test the hypothesis of those samples being random
variates of a known distribution fðyÞ, independent and
identically distributed according to fðyÞ. Considering only
continuous distributions fðyÞ with cumulative FðyÞ, it is
possible to transform samples onto the unit interval [0, 1]
via xi ¼ FðyiÞ. This reduces the task at hand to test
transformed samples fxig being distributed according to
the standard uniform distribution Uð0; 1Þ.

B. Poisson distribution and p value

Given a dataset consisting of n uniformly distributed
samples fxig, a test statistic T, and a function of the data
t ¼ gðfxigÞ, the p value is directly calculable from FTðtjnÞ,
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where FT is the cumulative distribution function of the
test T for exactly n events. Here, the p value treats the
number of events in the analysis window as a fixed
parameter. If we consider that the observed number of
events is a random variable with an associated Poisson
distribution, then it is possible to correct the definition of
the p value by averaging over all possible numbers of
events. Considering a Poisson distribution with rate μ, and
an observed test statistic value tobs ¼ gðfxigÞ, the Poisson-
averaged p value is calculated as

1 − p ¼ FT;PoisðtobsjμÞ ¼
X∞
n¼1

FTðtobsjnÞ ·
μne−μ

n!
; ð1Þ

where the sum starts at n ¼ 1 since the test statistic often
is not defined for n ¼ 0. In case of no observed events,
n ¼ 0, no improvement upon the simple Poisson statistic is
possible, which becomes the extension of this approach in
the limit of empty datasets.

C. Setting upper limits

Given a test T and its distribution FT;Pois, we showed
above how to calculate the p value of a given dataset fxig
comprised of n events, for a selected value of the event rate
μ. Instead of performing a goodness-of-fit test, assessing
how well the event distribution fits that of a uniform
distribution for a given μ, we could determine which is the
rate μ that yields a desired p value, determining the event
rate representative of the uniformly distributed subset of
events up to a desired confidence level (C.L.).
As an example, for a given dataset fxig the upper limit

on the event rate, μU, at a C.L. is such that

1 − p ¼ FT;PoisðtobsjμUÞ ¼ C:L: ð2Þ

III. SPACING STATISTICS

Given a uniformly distributed and ordered set of n events
fxig (where xi < xj ∀ i < j), in the interval [0, 1], we can
define the nþ 1 spacings s as sj;1 ¼ xj − xj−1, with x0 ¼ 0

and xnþ1 ¼ 1. These spacings are the gaps between
consecutive events, but in general we could also consider
higher order spacings: a spacing of order k would be
sj;k ¼ xj − xj−k.
Based on these spacings it is possible to construct test

statistics capable of setting much more competitive upper
limits on the event rate than the simple counting (Poisson)
test, since they not only consider the total number of data
contained in the analysis window, but also their distribu-
tion, taking advantage of regions of relatively low event
density in order to estimate the underlying uniform com-
ponent of the event distribution.

A. Maximum gap method

This maximum gap test has been proposed in the physics
literature [3] (and earlier in the statistics literature [6]).
It considers the largest spacing present in order to deter-
mine the upper limit on the event rate. The test statistic is
defined as

TMGðfxigÞ ¼ smax;1 ¼ max
i
ðsi;1Þ: ð3Þ

The distribution of smax;1 for a given number of events is
known [3,6]. Under the assumption of a uniform distribu-
tion of events, a large proposed event rate, μ, will lead to a
small probability to observe large values of smax;1. If the
observed value of smax;1 is indeed large relative to our
expectations, this can be used to exclude values of μ at a
specified confidence level.
This definition of the test is particularly helpful since it is

little affected by possible clustering of events in the unit
interval, whose distribution deviates from the standard
uniform one. This case arises when an experiment is
afflicted by an unknown background and the probability
integral transformation is performed with respect to the
distribution of the signal under study: after the trans-
formation the events deriving from a possible signal source
will be uniformly distributed while events coming from
unknown background sources will not follow a uniform
distribution, producing regions in the unit interval with an
overdensity of events and regions with large spacings.
The Poisson averaged cumulative distribution, FMG;Pois,

can be easily computed analytically and has been given by
Yellin [3]:

FMG;PoisðxjμÞ ¼
Xm
t¼0

ðtx − μÞte−tx
t!

�
1þ t

μ − tx

�
; ð4Þ

where m is the greatest integer ≤ μ=x. The C.L. upper limit
on the event rate, μMG, is such that

FMG;Poisðsmax;1jμMGÞ ¼ C:L: ð5Þ

B. Optimum interval method

In addition to the maximum gap method, the optimum
interval method has been proposed by Yellin [3] which
instead of looking at the largest spacing, instead considers
sums of ordered spacings: i.e., higher order spacings.
The maximum gap method compares the size of the

largest first order spacing against the expectation of it
containing no events for a given event rate μ. Similarly,
given higher order spacings, for example k ¼ 2, we might
find the largest second order spacing smax;2 and compare its
size to the expectation of it containing only one event given
a proposed event rate μ. Such an investigation can be
performed for any order of spacings allowed by the data
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(k ≤ n, where n is the number of events) and would result
in n different Poisson-averaged p values, one for each order
of spacing, for a given event rate μ:

smax;k ¼ max
i
ðsi;kÞ ð6Þ

1 − pk ¼ FO;k;Poisðsmax;kjμÞ; ð7Þ

where FO;k is the cumulative distribution of the smax;k for a
given number of events. The analytic formula of FO;k

(k > 1) for n events is not known, but Yellin calculated
numerical approximations using a large Monte Carlo
campaign as well as an approximate asymptotic distribution
for large values of n [7].
In order to exclude the proposed event rate μ, one might

look at the smallest available p value:

pmin ¼ min
k
ðpkÞ: ð8Þ

Since pmin does not have a uniform distribution, one
needs to know its cumulative distribution for a given event
rate μ, FO;min, and the final p value is

pfin ¼ FO;minðpminjμÞ: ð9Þ

The analytic formula of FO;min is not known, and a
numerical approximation is derived using Monte Carlo
simulations. Inverting the formula, the upper limit μOI on
the event rate up to a given C.L. is such that

FO;minðpminjμOIÞ ¼ 1 − C:L: ð10Þ

C. Sum of sorted spacings method

The tests discussed so far were developed in order to be
sensitive to the presence of any abnormally large gaps
between the events. For relatively few events under
analysis, there might be only one such abnormally large
gap, in which case the maximum gap method might already
provide the most stringent upper limit. If more than one
such abnormally large gap is present, and if these gaps
happen to be located near one another, then they can be
integrated in one higher order spacing and the optimum
interval method provides more competitive limits.
However, if the abnormally large gaps are interspaced by

many small gaps, then the optimum interval method would
lose sensitivity and not offer significant improvements
compared to the maximum gap method: in these cases,
the sum of ordered spacings approach saturates and is
dominated by individual low order spacings.
Ideally, we would like to combine the abnormally large

gaps individually, without the gaps placed between them.
This approach would increase the sensitivity of the test and
potentially allow setting more competitive upper limits. We
now describe such an approach.

Given a set of n events fxig in the unit interval [0, 1], one
considers the set of first order spacings fsi;1g and then
proceeds to sort these from largest to smallest, constructing
the set of nþ 1 elements fgig (where g1>g2>���gn>gnþ1).
Given such a set of sorted spacings, fgig, it is possible to
consider higher order spacings summing over its elements.
The kth ordered sum of sorted spacings, Gk, is just the sum
of the k largest first order spacings:

Gk ¼
Xk
i¼1

gi: ð11Þ

In total there are up to n nontrivial Gk given n events, since
the sum over all nþ 1 first order spacings is constrained to
be equal to 1.
It is now possible to evaluate the p value of each order of

sum of sorted spacings for a given event rate μ:

1 − pk ¼ FS;k;PoisðGkjμÞ; ð12Þ

where FS;k is the cumulative distribution of the Gk for a
given number of events. The analytic formula of FS;k for n
events is known: it was first derived by Mauldon [8]. We
independently rederived it using an alternative approach
reported in Appendix A.
As with the optimum interval method, it is possible to

use the smallest p value, pmin, as a test statistic in order to
exclude a value of μ that is too large:

pmin ¼ min
k
ðpkÞ:

Since pmin is not a valid p value any more, one needs to
know its cumulative distribution for a given event rate μ,
FS;min, and the final p value is calculated in this case as

pfin ¼ FS;minðpminjμÞ: ð13Þ

The analytic formula of FS;min is not known, and a
numerical approximation is found from Monte Carlo sim-
ulations. Inverting the formula, one needs to find the C.L.
upper limit μS such that

FS;minðpminjμSÞ ¼ 1 − C:L: ð14Þ

Although the analytic formula of FS;k for n is available, it
is not well behaved, since it relies on the iterative difference
of extremely large numbers (as n increases), making it
susceptible to catastrophic numerical cancellation when
used on a computer. In order to avoid these problems, we
computed the values of the function with high numerical
precision on a suitable grid in order to construct a reliable
monotonic cubic-spline interpolation [9] that can be used
with default 64-bit floating-point arithmetic. Currently,
these interpolations have been tabulated up to n ¼ 700
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and allow the estimation of event rates up to μ≲ 580,
correspondingly limiting the number of events it is possible
to analyze. The speed-up tables and the code used to
compute the test statistic and the limits is available in the
SPACINGSTATISTICS.JL [10] package for JULIA.

D. Product of complementary spacings method

Finally, we propose another test statistic that combines
spacings between events regardless of their relative loca-
tion. The stepping stone of our proposal is a test first
proposed byMoran [11] which consists in the product of all
the spacings between consecutive events:

TðfxigÞ ¼ −
Xnþ1

i¼1

logðsi;1Þ; ð15Þ

where si;1 are the first order spacings and n is the number of
events in the unit interval. This test was proposed as a
goodness-of-fit test sensitive to clusters of data against the
null hypothesis of a uniform distribution: the presence of
small spacings will drive the whole product of spacings
towards more extreme values.
In order to make this test sensitive to the presence of

large spacings, we consider the complements of each first
order spacing and take their product:

CðfxigÞ ¼ −
Xnþ1

i¼1

logð1 − si;1Þ: ð16Þ

The distribution of this quantity for a fixed number of
events n,FCðCjnÞ, is not known analytically, but we derived
a numerical approximation based on Monte Carlo simu-
lations and tabulated them for n ≤ 104. Additionally, since
the definition of the test is of the form

P
gðsi;1Þ, it is in

general possible to derive its asymptotic distribution, as
described by Darling [12] and LeCam [13], whose methods
we used to find the limiting distribution ofC. The asymptotic
distribution of C as n → ∞ is

fCðCjn → ∞Þ ¼ N ðn · μ∞; n · σ∞Þ; ð17Þ

where the formulas of μ∞ and σ∞ are reported in
Appendix B. Given this result we can use it to estimate
the test statistic for any large value of n and effectively
extend the applicability of this test and its limit calculation
to large numbers of events.
The Poisson-averaged p value of this test for a given

event rate μ is simply

FC;PoisðCjμÞ ¼
X∞
n¼1

FCðCjnÞ ·
μne−μ

n!
: ð18Þ

Inverting this formula, one finds the C.L. upper limit μC
such that

FC;PoisðCjμCÞ ¼ C:L: ð19Þ

The tabulated distributions as well as the code used to
compute the test statistic and the limits are available in the
SPACINGSTATISTICS.JL [10] package for JULIA.

IV. PERFORMANCE COMPARISON

The performance of our proposed methods was exten-
sively studied using simulated examples. In our tests we
introduced backgrounds of varying shapes and strengths.
In the following we compare our methods against the

standard Poisson test and the optimum interval method,
which is considered the state of the art for setting limits in
experiments affected by an unknown background.

A. Background-free experiment

We start considering the case in which no added back-
ground contaminates the experiment, in order to estimate
the baseline of the different methods. For simplicity we
chose a uniform distribution for the generation of the
events, which coincides with the null hypothesis of all tests,
and we vary the event rate used in the data generation.
Figure 1 shows the median of the C:L: ¼ 0.90 upper limits
on the event rate set using different methods. In order to
better discern differences between the efficiency of each
method, we can look at the results normalized to the
Poisson limit, as shown in Fig. 2. We notice that in this
baseline scenario the Poisson test is the best of the bunch,
as expected. Nevertheless, the results of the Poisson test do
not drastically outperform any other.

B. Exponential background-only experiment

Next we investigate the case in which a background is
present in our simulations and the signal strength is
negligible in comparison: this mimics a rare process search
in which the signal might be absent. In our experiments we
produce data directly in the cumulative space (hence the

FIG. 1. Median C:L: ¼ 0.90 upper limit normalized to the
event rate used in the simulations; data generated according to a
uniform distribution (background free).
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signal distribution is always assumed to be flat, i.e. the null
hypothesis) and we start by considering an exponential
background with rate 0.1 truncated on the unit interval
[0, 1]. In dark matter search experiments it is often the case
that the distribution of events, after transforming to the
cumulative space, is peaked at one end of the analysis
window with rapidly decaying tails. Figure 3 reports the
median C:L: ¼ 0.90 upper limits of the measured event rate
normalized to the injected background event rate (bottom)
as well as the ratio of the results of our methods against the
optimum interval test (top). We have omitted the Poisson
limit as it would simply scale with the total number of
events and is not competitive. Analyzing the results, we
notice that when dealing with relatively peaked event
distributions all methods perform similarly, just like the
background-free case. All methods are able to filter out
most of the background contribution and reconstruct small
overall event rates. For small injected background rates
(≤100), the nonlocal methods (sum of sorted spacings and

product of complementary spacings) are able to set up to
5%–10% more stringent limits. As the background rate
increases (≥200), the performance of the sum of the sorted
spacings’ test matches the optimum interval’s one, while the
product of the spacings’ results are up to 5%–10% worse.

C. Mixing background and signal

Now we investigate the case in which a detectable signal
distribution is contaminated by background. In our simu-
lationswewill consider a background to signal ratio of 5, i.e.
the rate of background events is 5 times larger than the rate of
signal events. Since we operate directly in the cumulative
space, we always assume a uniform signal distribution. The
support of the background event distribution spans a quarter
of the analysis window (meaning that the background events
occupy a quarter of the unit interval) and we consider
distributions of varying shape: specifically, the background
distribution is amixture of one ormore uniformdistributions
whose total width sums up to 0.25.
Figure 4 shows different choices of background distri-

butions in the left column, the resulting median C:L: ¼
0.90 limits for different methods, normalized to the
optimum interval’s result, in the central column.
If the background distribution if fully concentrated in one

region, localized at either end of the analysis window, as
shown in the first row of Fig. 4, this creates an uninterrupted
low density region of the resulting event distribution. This is
the best case scenario for the optimum interval method, as
previously discussed. This expectation is reflected in the
results, where the optimum interval method’s results are up
to 20% better than the other methods.
As we move the background distribution in the middle of

the analysis window, or even split it up in two or more
peaks, then we notice how our proposed tests are more
sensitive, being able to set more competitive limits. For a
bimodal background distribution it is possible to set limits
20% lower than the optimum interval method on average,
while the gain rises up to 40% for a pentamodal back-
ground distribution. The performance of our proposed tests
(middle column of Fig. 4) is due to their sensitivity to large
regions of low event density, regardless of their number or
location. With just two background peaks it is possible to
be able to produce limits up to 20% or even 40% better than
the optimum interval method as the low event density
regions are further split.
Considering the case of a very faint or absent signal, we

analyze the resulting limit if events were distributed only
according to the background distribution. The results of these
simulations are shown on the right column of Fig. 4, where
we notice that, regardless of the shape of the background
distributions, the 90% C.L. median results of the sum-of-
sorted spacings and product-of-complementary spacings are
always smaller than the optimum interval counterpart, with
limit gains increasing up to a factor of 3 as the number of
event-free regions increases.

FIG. 2. Median C:L: ¼ 0.90 upper limit normalized to the
Poisson-test’s result; data generated according to a purely uni-
form distribution (background free).

FIG. 3. Median C:L: ¼ 0.90 upper limit normalized to the
optimum interval result; data generated according to an expo-
nential distribution of rate 0.1 (only background).
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The case of multimodal background distributions, espe-
cially when it presents well-defined and relatively narrow
peaks, is interesting since it is similar to experimental
scenarios in which the event rate of a three or multibody
decay is sought after: the expected spectrum of such a decay
is relatively flat and could be contaminated by peaking
background distributions which are representative of proc-
esses with a Standard Model counterpart. Our proposed
methods would be well suited to tackle these problems since
they are able to filter out the contributions coming from these
“peaks” and estimate the underlying “flat” event rate,without
introducing additional parameters in the analysis (biasing the
result) to modify, limit or segment the region of interest in
order to exclude peaking backgrounds.

D. Comparison to a likelihood-ratio test

As a further example, we compare the efficiency
of the nonparametric tests discussed so far against a

likelihood-ratio (LR) test in the case of peaking back-
grounds. We consider a Gaussian background with an
associated event rate 10 times stronger than the signal’s
event rate. The original distribution family of the back-
ground was fed into the LR method while the position,
width, and the background to signal ratio were left as free
parameters. Figure 5 shows the background distribution
used and the median C:L: ¼ 0.90 upper limits obtained at
different signal event rates. Inspecting the results we notice
that the most stringent limits are set by the LR approach,
which is hardly surprising since partial information of the
background was folded into the analysis. The limits set by
the nonparametric spacings based tests, although more
conservative, are still close enough to the LR ones, with our
methods providing results no more than 20% larger than the
LR for low event rates and up to 10% larger limits for high
even rates. Furthermore, no assumption on the background
shape is needed in the nonparametric tests.

FIG. 4. Comparison of limit-setting methods depending on event distribution in the cumulative space: (left column) background and
signal event distribution; (middle column) median C:L: ¼ 0.90 upper limit normalized to the optimum interval’s result for simulated
event distributions with a background and signal mixing of μbkg=μsig ¼ 5; (right column) median 90% C.L. upper limit normalized to the
optimum interval’s result for purely background-like event distributions (μbkg=μsig ¼ ∞).
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V. CRESST DATA EXAMPLE

We now replicate the analysis of the CRESST collabo-
ration [1] to determine upper limits on the WIMP cross
section. We use the most recent public dataset [14] released
from the CRESST collaboration that is accompanied with
information regarding the energy resolution and efficien-
cies of their setup for CaWO4 targets. The data we analyze
are shown in Fig. 6 (top).
Given a specific WIMP mass and assuming a WIMP

velocity distribution it is possible to calculate the differ-
ential rate dN

dE across an energy range of interest ½Emin; Emax�.
Denoting the integral of the differential rate over the whole
energy range as Λ ¼ R Emax

Emin

dN
dE dE, for a given set of ordered

events fEig, the probability integral transformation is
simply

xi ¼
1

Λ
·
Z

Ei

Emin

dN
dE

dE ð20Þ

yielding a set of ordered events fxig in the unit interval
[0, 1].
Figure 6 (bottom) shows the distribution of events in the

cumulative space after transforming using the signal dis-
tributions calculated at two different WIMP masses. Apart
from small differences, the two datasets are very similar,
showing an extremely peaked distribution close to 1 and an
almost linear distribution of events in the rest of the unit
interval.
Figure 7 shows the C:L: ¼ 0.90 upper limits on the cross

section we calculated using our methods as well as those
computed with the optimum interval method, officially

used by the CRESST collaboration, which match the
officially published limits.
Comparing the results of our calculations we notice there

are no large deviations from one another. To better grasp the
differences across results, we normalize the limits we obtain
with our methods to the official ones (obtained with the
optimum interval method), as shown in Fig. 8. Here, we
notice that for the given data the product-of-complementary-
spacings method yields 25% to 50% higher limits on aver-
age, whereas the sum-of-sorted-spacings method presents
an oscillating behavior, being able to provide up to 30%
lower limits for low WIMP masses and up to 40% higher
limits for masses of the order of ∼5 GeV=c2.
Finally, for WIMP masses ≥20 GeV=c2, all methods

saturate and yield the same result, reconstructing a signal
event rate of ∼2.3 events, corresponding to the C:L: ¼ 0.90
limit of the Poisson test for an empty analysis window.
This example based on a published dataset, as well as the

results of our performance comparisons, shows that in
general there is no “best” test statistic when it comes to

FIG. 6. Top: histogram of CRESST data [14] consisting of
energy deposition from an interaction of a particle in the CaWO4

crystal. Bottom: histogram of data transformed using the signal
distribution for two proposed WIMP masses, 0.5 and 2 GeV=c2.

FIG. 5. Top: background distribution in the cumulative
space: Gaussian distribution with μ ¼ 0.5 and σ ¼ 0.01; Bottom:
median C:L: ¼ 0.90 upper limit normalized to the signal
event rate.

FIG. 7. C:L: ¼ 0.90 upper limit on the WIMP-nucleon cross
section as a function of the WIMP mass calculated with
different tests.
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setting upper limits in the presence of unknown back-
grounds, but the results are highly dependent on the actual
distribution of events.

VI. COMBINING UPPER LIMITS

When considering upper limits from experimental data, it
is important to consider that often more than one experiment
might produce a limit on the samequantity of interest, or even
in a single experiment, one might have multiple detectors or
multiple running periods. When a multitude of limits for
the same quantity are available, one might be interested in
estimating a combined limit. This issue has already been
studied by Yellin and discussed in [15], where six different
methods for combining limits have been presented. The
methods presented in [15] refer to the optimum interval and
maximum gap methods, but the behavior and distribution of
the limits derived by the sum-of-sorted spacings andproduct-
of-complementary spacings are the same, allowing the
methods presented by Yellin to be applied to limits obtained
with our tests. One additional improvement that can be taken
advantage of by using the new tests presented here is that of
analyzing the full range of data obtained in an experiment,
without having to identify only the low-density regions and
combining them via the serialization method: this is due to
the feature of our new tests to automatically filter out high-
density intervals and allows the total number of recorder
events to be considered, without introducing any bias in the
limit calculation.

VII. CONCLUSIONS

In this paper we present two new methods to set upper
limits in the presence of unknown backgrounds, namely the
sum-of-sorted spacings and product-of-complementary
spacings, and discuss their performance against the opti-
mum interval method. The proposed tests leverage the
presence of regions in the analysis window with low event
density, regardless of their number or location relative to
one another in order to estimate the underlying uniform

event distribution in the cumulative space. These features
allow our tests to be viable alternatives for the analysis of
rare process searches that aim to set competitive limits on
their parameters of interest, especially when faced with
peaked multimodal backgrounds.
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APPENDIX A: DISTRIBUTION - SUM OF
SORTED SPACINGS

Givenmþ 2 ordered samples fxðiÞg in the interval ½0; μ�,
where xð0Þ ¼ 0 and xðmþ1Þ ¼ μ, we can define the mþ 1

spacings fsjg as sj ¼ xðjÞ − xðj−1Þ and the ordered set of
spacings fsðjÞg such that sðjÞ < sðkÞ ∀ j < k.
The distribution of sð1Þ is known:

Pðsð1Þ ¼ xjm; μÞ ¼ mðmþ 1Þ
μ

�
1 −

xðmþ 1Þ
μ

�
m−1

: ðA1Þ

The joint distribution of sð1Þ and sð2Þ can be written as
follows:

Pðsð1Þ ¼ x; sð2Þ ¼ yjm; μÞ
¼ Pðsð1Þ ¼ xjm; μÞ · Pðsð2Þ ¼ yjm; μ; sð1Þ ¼ xÞ: ðA2Þ
Given the ordered set fsðjÞg, one can subtract sð1Þ from

all spacings and reduce the set to only m elements sð2Þ −
sð1Þ;…; sðmþ1Þ − sð1Þ which sum up to μ − ðmþ 1Þ · sð1Þ.
Given this reduced set, sð2Þ − sð1Þ is the new smallest
elements, whose distributions is given by Eq. (A1).
Thus, we can rewrite Pðsð1Þ ¼ x; sð2Þ ¼ yÞ as follows:

Pðsð1Þ ¼ x; sð2Þ ¼ yjm; μÞ
¼ Pðsð1Þ ¼ xjm; μÞ · Pðsð1Þ
¼ y − xjm − 1; μ − ðmþ 1ÞxÞ: ðA3Þ

Given Pðsð1Þ ¼ x; sð2Þ ¼ yÞ, we can integrate over its
support to marginalize Pðsð1Þ þ sð2Þ ¼ zÞ.
We define the sum of the k smallest spacings as Sk:

Sk¼
P

k
j¼1sðjÞ. The joint distribution of Pðsð1Þ ¼ x; gk ¼ yÞ

can be expressed as

Pðsð1Þ ¼ x;Sk¼ yjm;μÞ
¼Pðsð1Þ ¼ xjm;μÞ ·PðSk¼ yjm;μ;sð1Þ ¼ xÞ
¼Pðsð1Þ ¼ xjm;μÞ ·PðSk−1¼ y−kxjm−1;μ− ðmþ1ÞxÞ:

ðA4Þ
Assuming we know Pðsk−1 ¼ xÞ we can marginalize

over sð1Þ in order to obtain the distribution of gk. This shows

FIG. 8. C:L: ¼ 0.90 upper limit on the WIMP-nucleon cross
section normalized to the optimum interval’s result as a function
of the WIMP mass calculated with our proposed methods.
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a recursion between the distributions of Sk−1 and Sk, which
allows us to formulate a hypothesis on the distribution of Sk
which can be proven by induction. The distribution of Sk
we find is

PðSk ¼ xjn;1Þ

¼Aðk;nÞ ·
Xk
j¼1

aðj;kÞ
�
1−

�
nþ2− j
kþ1− j

�
x

�
n−1

hðx;j;k;nÞ

ðA5Þ

with

Aðk; nÞ ¼ nðnþ 1Þ!
ðnþ 1 − kÞk−1ðnþ 1 − kÞ! ðA6Þ

aðj; kÞ ¼ ð−1Þj−1ðkþ 1 − jÞk−2
ðk − jÞ!ðj − 1Þ! ðA7Þ

hðx; j; k; nÞ ¼ HðxÞ −H

�
x −

kþ 1 − j
nþ 2 − j

�
; ðA8Þ

where HðxÞ is the Heaviside step function.
Finally, since all spacings sðjÞ sum up to one in the

unit interval, the sum of the mþ 1 − k smallest spacings
is the complement of the sum of k largest spacings
Gk ¼

Pmþ1
j¼mþ2−k sðjÞ. Thus, the distribution of gk is simply

PðGk ¼ xjm; 1Þ ¼ PðSmþ1−k ¼ 1 − xjm; 1Þ: ðA9Þ

APPENDIX B: ASYMPTOTIC DISTRIBUTION -
PRODUCT OF COMPLEMENTARY SPACINGS

Using LeCam’s theorem [13], we are able to derive the
asymptotic distribution of the “product of complementary
spacings” test statistic. As the number of samples n → ∞,
the asymptotic distribution is

fCðCjn → ∞Þ ¼ N ðn · μ∞; n · σ∞Þ; ðB1Þ

where the parameters are given by

μ∞ðxÞ ¼ e−x½E1ð−xÞ − 2iπ� ðB2Þ

σ2∞ðxÞ ¼ e−x½2AðxÞ − 4iπBðxÞ − 2xe−xE1ð−xÞ�
− 1 − ðx2 þ 1Þe−2xCðxÞ; ðB3Þ

where

AðxÞ ¼ xF

�½1; 1; 1�
½2; 2; 2� ; x

�
þ ln2ð−xÞ

2
þ γ lnð−xÞ

þ π2

12
þ γ2

2
ðB4Þ

BðxÞ ¼ γ þ lnðxÞ þ x ðB5Þ

CðxÞ ¼ ½e−xE1ð−xÞ�2 þ 4iπe−xE1ð−xÞ − 4π ðB6Þ

with F being the hypergeometric function and γ the Euler-
Mascheroni constant.
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