
Rotating Bose-Einstein condensate stars at finite temperature

P. S. Aswathi, P. S. Keerthi, O. P. Jyothilakshmi , Lakshmi J. Naik , and V. Sreekanth *

Department of Sciences, Amrita School of Physical Sciences,
Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

(Received 30 August 2023; accepted 1 November 2023; published 1 December 2023)

We study the effect of temperature on the global properties of static and slowly rotating self-gravitating
Bose-Einstein condensate (BEC) stars within general relativity. We employ a recently developed
temperature-dependent BEC equation of state (EOS) to describe the stellar matter by assuming that
the condensate can be described by a nonrelativistic EOS. Stellar profiles are obtained using general
relativistic Hartle-Thorne slow rotation approximation equations. We find that with increasing temperatures
mass-radius values are found to be decreasing for the static and rotating cases, though the presence of
temperature supports high mass values at lower central densities. Countering effects of rotation and
temperature on the BEC stellar structure are analyzed and quantified. We report that the inclusion of
temperature has a significant effect on the rotating stellar profiles but a negligible effect on the maximum
mass, as in the case of a static system. We also study the effect of EOS parameters—boson mass and
strength of the self-interaction on global properties of static and rotating BEC stars—in the presence of
temperature.
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I. INTRODUCTION

The assumption that fundamental scalar fields exist in
nature is supported by the detection of the scalar particle
Higgs’ boson at the Large Hadron Collider, CERN [1,2].
Such scalar fields bound together by their self-generated
gravitational interaction can form compact astrophysical
objects known as boson stars (see Refs. [3–6] for compre-
hensive reviews on this topic). It is well known that
the scalar fields represent identical bosonic particles that
can occupy the same quantum ground state at very low
temperatures, forming a Bose-Einstein condensate (BEC).
The BEC state, which was predicted by Bose and Einstein,
was first experimentally realized by confining ultracold gas
of rubidium atoms in a magnetic trap (see Refs. [7,8] for
reviews on BECs). Experiments on such trapped dilute
Bose gases suggest a phase transition of atoms to the Bose
condensed phase, with the particles occupying a coherent
state [9–11]. Similarly, a coherent massive object such as
boson star can also be realized within astrophysical scales
formed of BECs, confined by the self-generated gravita-
tional interaction of bosonic particles. Further, the analysis
of Ref. [12] with intense off-resonant laser beams also
suggests the possibility of mimicking such BECs bound by
gravity in the laboratory.
The self-gravitating compact objects formed with BECs,

called BEC stars, have attracted a lot of interest from the
research community recently [13–21]. Gravitationally

bounded BECs are also considered to be possible candi-
dates of dark matter, which represents a significant amount
of the total matter in the Universe and several astrophysical
and cosmological studies in this direction have been carried
out [22–32]. Bose condensates are also proposed to exist in
the interior of neutron stars amidst fermions and these
possibilities are studied in detail [33]. Neutron stars with
BEC matter are viable because of the fact that neutrons in
the star can exist in the superfluid phase, with the particles
being treated as composite bosons through Cooper pair
formation [34]. In the present work, we concentrate on
BEC stars for the analysis.
The dynamics of a self-gravitating BEC at zero

temperature is described by the Gross-Pitaevskii (GP)
equation [35,36] coupled with the Poisson equation in
Newtonian approximation. There are several studies of
astrophysical implications of BECs using Newtonian
analysis [13–20]. For example, in Ref. [14], the authors
study the structure and stability of a self-gravitating BEC
system with short-range interactions, and obtained an
approximate analytical expression for the mass-radius
relation. These analytical relations were compared with
the exact mass-radius relations obtained numerically by
solving the equation of hydrostatic equilibrium and a good
agreement between the two were found [15]. The analyses
conducted in Refs. [14,15] are motivated by the idea that
dark matter could be a self-gravitating BEC. In Ref. [22],
dark matter is being described as a nonrelativistic Bose-
Einstein condensate gas with a polytropic equation of state
(EOS). There are also studies involving semirelativistic*v_sreekanth@cb.amrita.edu

PHYSICAL REVIEW D 108, 123001 (2023)

2470-0010=2023=108(12)=123001(12) 123001-1 © 2023 American Physical Society

https://orcid.org/0000-0002-8814-3676
https://orcid.org/0000-0001-5934-1676
https://orcid.org/0000-0003-4373-1834
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.108.123001&domain=pdf&date_stamp=2023-12-01
https://doi.org/10.1103/PhysRevD.108.123001
https://doi.org/10.1103/PhysRevD.108.123001
https://doi.org/10.1103/PhysRevD.108.123001
https://doi.org/10.1103/PhysRevD.108.123001


formalisms, in which the stellar matter is described using a
nonrelativistic EOS, while the general relativistic approach
is used to obtain the stellar structure configurations [16,17].
The possibility of the existence of rotating BEC stars has

also been considered in several works. Rotating boson stars
have been studied in Ref. [37] within the Newtonian
approximation and their analysis suggests that the non-
relativistic rotation can be applied only to smaller bosonic
objects. Reference [38] studies cold Bose stars comprised
of a dilute BEC using the nonrelativistic GP equation
(together with the Poisson equation) and perturbative
solutions of such slowly rotating stars were obtained.
Slowly rotating BEC stars in the Newtonian limit obeying
a polytropic EOS have also been studied by solving the
Lane-Emden equation [16]. The impact of slow rotation on
the astrophysical properties of BEC dark matter halos were
also determined using the nonrelativistic approach [39]. It
was noted that the general relativistic effects impose strong
constraints on the global parameters of the BEC stars and
the obtained values within the nonrelativistic formalism
may exceed this stability limit [14,40]. Relativistic BEC
stars obeying the Colpi-Shapiro-Wasserman (CSW) EOS
introduced in Ref. [41] were studied in Ref. [16] and it was
speculated that the observed massive neutron stars [42,43]
are composed of BECs. Further, the analysis of Ref. [16]
was generalized to include spin and focused on studying
the observational constraints on the structural properties of
spinning relativistic BEC stars obeying the CSW EOS [44]
by employing the rapidly rotating neutron star (RNS)
code [45] based on general relativistic treatment. The
electromagnetic and thermodynamic properties of thin
accretion disks around rotating pure BEC stars with a
polytropic EOS have been investigated in Ref. [40] by
using the RNS code to obtain the rotating configurations of
the star. In the present work, we intend to study the static
and slowly rotating BEC stars by considering the general
relativistic effects.
Further, BEC has been generalized to finite temperatures

and has been studied in the contexts of cosmological dark
matter [46,47] and static compact objects [48–50] recently.
There are attempts to study boson stars with inclusion of
chemical potential and temperatures [51–54]. The theory of
condensate dynamics at finite temperature has been dis-
cussed in Refs. [55–57]. A finite temperature BEC has been
considered in Ref. [47], which is composed of two fluids,
the pure condensate and thermal fluctuations. An EOS at
finite temperature describing such a BEC system has been
obtained analytically. Further, they apply this description of
the BEC to study the cosmological evolution of a finite
temperature dark matter filled universe in a flat Friedmann-
Robertson-Walker geometry. Pure BEC stars described by a
thermodynamically consistent finite temperature EOS were
considered and the global properties of a static BEC star
were studied [48]. Recently, the astrophysical properties of
relativistic BECs at finite temperature with the inclusion of

magnetic field were also investigated [50]. Further,
Ref. [49] considers a BEC with repulsive contact and
attractive gravitational interactions in the interior of neutron
stars by the formation of Cooper pairs and macroscopic
properties of the star have been evaluated at finite temper-
ature. They describe the BEC stellar matter at the core to be
composed of pure condensate together with a nonconden-
sate cloud of excitations due to the presence of temperature.
Analysis of pure BEC stellar equilibrium at finite temper-
ature employing this EOS will be of interest. We note that,
this finite temperature EOS is different from the one
derived in Ref. [48] based on a thermodynamical method.
Moreover, the study of macroscopic properties of rotating
BEC stars at finite temperature has not been attempted
before. This sets the motivation for the present analysis.
In the current work, we intend to analyze the effect of

temperature on the global properties of static and rotating
BEC stars. We employ the recently developed finite
temperature BEC equation of state for the stellar matter
obtained using the generalized GP equation with repulsive
contact and attractive gravitational interactions with
approximations based on the semiclassical Hartree-Fock
theory [49]. The stellar matter now is considered to be
composed of a Bose condensed state together with a small
fraction of excitations of a BEC due to the presence of
temperature. In our analysis, we treat gravity within the
framework of general relativity. The properties of static
BEC stars are analyzed for different temperatures by solving
the Tolman-Oppenheimer-Volkoff equations [58,59]. We
include rotation in the analysis through the Hartle-Thorne
slow rotation approximation [60,61], which is a well-known
perturbative approach and has beenwidely used in studies of
compact objects [62–64]. To the best of our knowledge, this
appropriate relativistic slow rotation approximation has not
been employed so far to study BEC stars.
The paper is organized as follows. In Sec. II, we review

the BEC equation of state at finite temperature used for the
analysis. Then, we discuss the general relativistic stellar
structure equations for static and slowly rotating stars in
Sec. III. Next, we present the results in Sec. IV. Finally, we
summarize our results and conclusions in the last section.

II. EQUATION OF STATE FOR A FINITE
TEMPERATURE BEC

In this section, we briefly review the formalism to
estimate the equation of state for a nonrotating BEC
subjected to repulsive contact and attractive gravitational
interactions at finite temperature as derived in Ref. [49]. The
formalism to describe such a nonrotating BEC system is
based on the studies in Refs. [55–57]. At zero temperature, a
BEC is described by a macroscopic wave function Ψðr; tÞ,
whose evolution is given by the GP equation [10,11]. A
finite temperature BEC system consists of condensate
particles together with a noncondensate cloud of thermal
fluctuations [47,49,56]. The thermal cloud comprises
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excitations from the condensate due to the presence of
temperature and these excitations vanish with the decrease
in temperature resulting in a system with pure condensate.
Thedescriptionof such a systembeginsbyconsidering aBEC
at zero temperature and extending it to finite temperature.
The dynamics of a Bose-Einstein condensate is

described by the Heisenberg equation of motion for the
Bose field operator ψ̂ðr; tÞ and is given by [11,55,56]

iℏ
∂ψ̂ðr; tÞ

∂t
¼

�
−
ℏ2

2m
∇2 þΦðr; tÞ

þ gψ̂†ðr; tÞψ̂ðr; tÞ
�
ψ̂ðr; tÞ; ð1Þ

where Φðr; tÞ is the Newtonian gravitational potential. The
quantity g ¼ 4πaℏ2=m represents the strength of the
repulsive contact interaction with a being the s-wave
scattering length of bosons in the system; m denotes the
mass of condensate particles and G is Newton’s gravita-
tional constant. The Heisenberg equation is extended to
finite temperature by considering the effects of noncon-
densate atoms, referred to as the thermal cloud, along with
the condensate particles. Now, by assuming Bose broken
symmetry, the field operator can be decomposed as [55]

ψ̂ðr; tÞ ¼ Ψðr; tÞ þ Ψ̂thðr; tÞ; ð2Þ

where, the expectation value of the Bose field operator
denotes the condensate wave function Ψðr; tÞ≡ hψ̂ðr; tÞi
and Ψ̂thðr; tÞ is the noncondensate field operator with
hΨ̂thðr; tÞi ¼ 0. By taking the average of Eq. (1) with
respect to a broken symmetry nonequilibrium ensemble, we
obtain an exact equation of motion for the condensate wave
function Ψðr; tÞ given by [55]

iℏ
∂Ψðr; tÞ

∂t
¼

�
−
ℏ2

2m
∇2 þΦðr; tÞ

�
Ψðr; tÞ

þ g
D
ψ̂†ðr; tÞψ̂ðr; tÞψ̂ðr; tÞ

E
: ð3Þ

Considering the expansion of the term,

ψ̂†ðr; tÞψ̂ðr; tÞψ̂ðr; tÞ ¼ jΨj2Ψþ 2jΨj2Ψ̂th þ Ψ2Ψ̂†
th

þ 2ΨΨ̂†
thΨ̂th þ Ψ†Ψ̂thΨ̂th

þ Ψ̂†
thΨ̂thΨ̂th; ð4Þ

we proceed to find its expectation value by noting the
number densities of the condensate and the thermal cloud
respectively as

nðr; tÞ ¼ hΨ†ðr; tÞΨðr; tÞi; ð5Þ

nthðr; tÞ ¼ hΨ̂†
thðr; tÞΨ̂thðr; tÞi: ð6Þ

The second and third terms on the right-hand side of Eq. (4)
vanish, since the average value of thermal fluctuations is
zero because of the assumed broken symmetry. Further, by
denoting the mass densities of condensate and nonconden-
sate parts as ρðr; tÞ ¼ mnðr; tÞ and ρthðr; tÞ ¼ mnthðr; tÞ
respectively, and the off-diagonal (anomalous) mass den-
sity as ρaðr; tÞ ¼ mnaðr; tÞ ¼ mhΨ̂thðr; tÞΨ̂thðr; tÞi, we get
the following expression:

D
ψ̂†ðr; tÞψ̂ðr; tÞψ̂ðr; tÞ

E
¼ 1

m
ρΨþ 2

1

m
ρthΨ

þ 1

m
ρaΨ† þ

D
Ψ̂†

thΨ̂thΨ̂th

E
: ð7Þ

Substituting Eq. (7) in Eq. (3) yields the equation of motion
for Ψ—the generalized GP equation [56]:

iℏ
∂Ψðr; tÞ

∂t
¼

�
−
ℏ2

2m
∇2 þΦðr; tÞ þ gnðr; tÞ

þ 2gnthðr; tÞ
�
Ψðr; tÞ þ gnaðr; tÞΨ†ðr; tÞ

þ g
D
Ψ̂†

thðr; tÞΨ̂thðr; tÞΨ̂thðr; tÞ
E
: ð8Þ

We now assume a Madelung representation of the con-
densate wave function with the phase term Sðr; tÞ having
dimension of action [11],

Ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
nðr; tÞ

p
eði=ℏÞSðr;tÞ: ð9Þ

Here, the phase factor is related to the velocity of the
condensate as vðr; tÞ ¼ ∇S=m. Substitution of the above
form of the wave function in the generalized GP equation,
Eq. (8), results in two equations corresponding to real and
imaginary parts as [56]

∂n
∂t

þ ∇ · ðnvÞ ¼ 2g
ℏ
Im

h
ðΨ†Þ2na þ Ψ†

D
Ψ̂†

thΨ̂thΨ̂th

Ei

∂S
∂t

¼ ℏ2

2m
ffiffiffi
n

p ∇2
ffiffiffi
n

p
−Φðr; tÞ − gnðr; tÞ

− 2gnthðr; tÞ −
g
n
Re

h
ðΨ†Þ2na

þ Ψ†
D
Ψ̂†

thΨ̂thΨ̂th

Ei
−
1

2
mv2: ð10Þ

Now, using the several approximation schemes, as dis-
cussed in Ref. [49] and references therein, we simplify the
above obtained equations. We can utilize the Hartree-
Fock-Bogoliubov approximation to ignore the three-field
correlation function hΨ̂†

thΨ̂thΨ̂thi. The dynamic Popov
approximation can be used to ignore both hΨ̂†

thΨ̂thΨ̂thi
and anomalous mass density ρaðr; tÞ. With the static
Popov approximation, the fluctuations of the density of
the thermal cloud are ignored by assuming that the
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noncondensate is always in static thermal equilibrium, so
that nthðr; tÞ ≃ nthðrÞ. Further, the time dependence in all
other terms is neglected [49]. Now, using these approx-
imations, Eq. (10) take the form of hydrodynamic con-
tinuity and Euler equations [56]

∂n
∂t

þ ∇ · ðnvÞ ¼ 0; ð11Þ

mn

�
∂v
∂t

þ ∇
�
v2

2

��
¼ ℏ2

2m
ffiffiffi
n

p ∇2
ffiffiffi
n

p
− n∇ΦðrÞ

− gn∇ðnþ 2nthÞ; ð12Þ

respectively. Further, we adopt the Thomas-Fermi approxi-
mation [46], which neglects the kinetic energy term of the
condensate i.e., −ℏ2∇2=2m. Therefore, the quantum cor-
rection stress tensor term proportional to ∇2

ffiffiffi
n

p
in Eq. (12)

also gets neglected. Equation (12) is compared with the
general Euler equation to obtain the gradient of condensate
pressure as [49]

∇p ¼ gn∇ðnþ 2nthÞ: ð13Þ

The expression for noncondensate density can be obtained
by integrating the Bose-Einstein distribution over the
momentum space in spherical polar coordinates
ðrk; θk;ϕkÞ,

nthðrkÞ ¼
Z

d3k
ð2πÞ3

1

eβ½ϵkðrkÞ−μ� − 1
; ð14Þ

where, ϵkðrkÞ represents the energy of the thermal excita-
tions and μ denotes the chemical potential of the con-
densate. Here, β ¼ ðkBTÞ−1, with T as the temperature of
the system and kB as the Boltzmann constant. Now, to
evaluate Eq. (14), we employ the semiclassical Hartree-
Fock equations of motion for a system with contact and
gravitational interactions [49],

ϵkðrkÞ ¼
ℏ2k2

2m
þ 2g½nðrkÞ þ nthðrkÞ� þΦðrkÞ; ð15Þ

μ ¼ g½nðrkÞ þ 2nthðrkÞ� þΦðrkÞ; ð16Þ

where ΦðrkÞ is now given by

ΦðrkÞ ¼ −
Z

d3r0k
Gm2

jrk − r0kj
½nðr0kÞ þ nthðr0kÞ�: ð17Þ

Using the above relations in the expression for thermal
density and solving with the help of standard integrals,
we get

nthðrkÞ ¼
1

λ3
ζ3=2

h
e−βgnðrkÞ

i
; ð18Þ

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πβℏ2Þ=m

p
is the thermal de Broglie wave-

length and ζ represents the polylogarithmic function

ζν½z� ¼
X∞
n¼1

zn

nν
; ð19Þ

with index ν. Substituting Eq. (18), we integrate out
Eq. (13) to obtain the pressure of the condensate including
the effects of the thermal cloud [49]:

p ¼ gρ2

2m2
þ 2gρ
mλ3

ζ3=2½e−βgρ=m�

þ 2

βλ3
ζ5=2½e−βgρ=m� −

2

βλ3
ζ5=2½1�: ð20Þ

Here, the first term denotes the pressure of the pure
condensate in the absence of thermal fluctuations. The
second and third terms represent the contribution of thermal
excitations to the pressure of the condensate. Further, the
constant term ensures that the condensate pressure vanishes
in the limit ρ → 0.
We plot the above obtained BEC EOS for different

temperatures in Fig. 1. Here, we take the mass of the
condensate particle to be m ¼ 2mn, where mn is the mass
of a nucleon, considering the possibility of two of them
forming an equivalent Cooper pair and act as a boson [16].
The scattering length is taken to be a ¼ 1 fm [49]. Also,
following Ref. [49], in our studies, we focus on relevant
temperatures of ð1–4Þ × 1011 K.
In Fig. 1, the curve plotted for T ¼ 0 K represents the

pressure of pure condensate. Note that this corresponds to
the polytropic EOS used in Ref. [16]. We observe that the
presence of temperature in the system decreases the
condensate pressure. This is due to the fact that temperature

FIG. 1. BEC equation of state with the effect of thermal
fluctuations for different temperatures. Inset highlights the effect
of temperature in lower densities.
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in the system results in thermal excitations of a few
fractions of condensate particles. It can also be seen that
the pressure becomes negative for small densities. This is a
consequence of the Thomas-Fermi approximation, which
neglected the quantum pressure term of the condensate in
the calculations. This term becomes important at the edge
of the star, where the density of the condensate is low. The
addition of this quantum pressure term would presumably
correct the unphysical negative pressure observed for small
densities [49]. Moreover, we note that a zero-temperature
treatment would be sufficient for temperatures below
1011 K, since the thermal fluctuations are negligible within
that temperature range. Furthermore, Fig. 1 shows that
although the presence of temperature decreases the pressure
of the condensate for a fixed density, this decrement is
observed to be very small implying a small deviation of the
pressure from the T ¼ 0 K case for the range of ρ values
considered. For example, at ρ ¼ 2 × 1016 g=cm3, the
deviation of the condensate pressure from the zero-
temperature case is ∼0.27% when T ¼ 4 × 1011 K, while
the deviation is only ∼0.008% for T ¼ 1 × 1011 K. The
zero-temperature polytropic EOS has been employed to
study rotating BEC stars within Newtonian [22] and
general relativistic [40] treatments. In the present work,
we introduce the effect of slow rotation to the finite
temperature BEC system described by Eq. (20) via general
relativistic treatment.
We now proceed to calculate the stellar configuration

dynamic equations within the general theory of relativity to
utilize the above-obtained temperature-dependent EOS to
study BEC star profiles.

III. STELLAR STRUCTURE EQUATIONS

We employ a general relativistic treatment to study the
stellar structure equations. We first calculate the nonrotat-
ing configurations of the star and then use them to obtain
the slowly rotating configurations. In this section, we
follow the metric convention gμν ¼ diagð−1; 1; 1; 1Þ and
use velocity of light c ¼ 1. The metric for a spherically
symmetric static relativistic star can be expressed as

ds2 ¼ −eνdt2 þ eΛdr2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð21Þ

Here, νðrÞ and ΛðrÞ are the metric functions. Assuming the
stellar matter to be described by perfect fluid with energy
density ρ and pressure p, the Einstein field equations result
in the Tolman-Oppenheimer-Volkoff (TOV) equations,
which are given as [58,59]

dp
dr

¼ −
Gðρþ pÞðM þ 4πr3pÞ

r2ð1 − 2GM=rÞ ; ð22aÞ

dM
dr

¼ 4πr2ρ: ð22bÞ

The above coupled differential equations are solved from
the center to the surface of the star by providing an equation
of state for the stellar matter. We employ the EOS given by
Eq. (20) with the assumption that the condensate can be
described by a nonrelativistic EOS. The pressure and mass
at the center of the star are pc ¼ pðρcÞ and Mc ¼ 0
respectively. The pressure p vanishes as it approaches
the surface (r ¼ R) of the star. The mass of the star is then
obtained as Mðr ¼ RÞ. By varying the central density ρc,
we can get the maximummass (radius) stellar configuration
possible for the given EOS.
The solutions pðrÞ andMðrÞ obtained for a given central

density are then used to solve for a slowly rotating BEC
star. For this we make use of the Hartle-Thorne approxi-
mation [60,61] in which rotation is treated as a small
perturbation on the metric of the nonrotating star:

ds2 ¼ −eν½1þ 2ðh0 þ h2P2Þ�dt2

þ 1þ 2Gðm0 þm2P2Þðr − 2GMÞ−1
1 − 2GM=r

dr2

þ r2½1þ 2ðv2 − h2ÞP2�½dθ2 þ sin2 θðdϕ − ωdtÞ2�
þOðΩ3Þ: ð23Þ

Here, P2 ¼ P2ðcos θÞ is the second order Legendre poly-
nomial, ω is the frame dragging frequency which is
proportional to Ω and is a function of r, while h0, m0,
h2,m2, p2, and v2 are functions of r that are proportional to
Ω2. The angular velocity relative to the local inertial frame
ω̄ (¼ Ω − ω) is obtained by solving the second order
differential equation

1

r4
d
dr

�
r4j

dω̄
dr

�
þ 4

r
dj
dr

ω̄ ¼ 0; ð24Þ

where

j ¼ e−ν=2ð1 − 2GM=rÞ1=2: ð25Þ

Equation (24) is integrated from the center to the surface of
the star with the boundary conditions: ω̄ ¼ ωc and
dω̄=dr ¼ 0. The angular momentum J and the angular
velocity Ω corresponding to ωc are

J¼ 1

6
R4

�
dω̄
dr

�
r¼R

; Ω¼ ω̄ðRÞþ 2J
R3

: ð26Þ

In order to obtain a different value of angular velocity, the
function ω̄ðrÞ is rescaled as

ω̄ðrÞnew ¼ ω̄ðrÞold
�
Ωnew

Ωold

�
: ð27Þ

The deformation of stellar structure as a result of rotation
can be obtained in terms of ξðr; θÞ [60,61]:
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ξðr; θÞ ¼ ξ0ðrÞ þ ξ2ðrÞP2: ð28Þ

Here, the first term corresponds to the spherical (l ¼ 0)
deformation and the second term corresponds to the quadru-
pole (l ¼ 2) deformation. In our study, we focus only on the
spherical deformation ξ0ðrÞ, which can be obtained by
solving the mass perturbation factor (m0) and the pressure
perturbation factor (p�

0) equations given as [60,61]

dm0

dr
¼ 4πr2

dρ
dp

ðρþ pÞp�
0 þ

1

12G
j2r4

�
dω̄
dr

�
2

−
1

3G
r3

dj2

dr
ω̄2; ð29aÞ

dp�
0

dr
¼ −

Gm0ð1þ 8πGr2pÞ
r2ð1 − 2GM=rÞ2 −

4πGðρþ pÞr
ð1 − 2GM=rÞp

�
0

þ 1

12

r3j2

ð1 − 2GM=rÞ
�
dω̄
dr

�
2

þ 1

3

d
dr

�
r2j2ω̄2

1 − 2GM=r

�
:

ð29bÞ

The above differential equations are to be integrated
from the center to the surface of the star, with the boundary
conditions that at the center of the star m0 ¼ p�

0 ¼ 0. The
density profile of the slowly rotating star is then obtained as

ρrotðrÞ ¼ ρstatðrÞ −
dρstatðrÞ

dr
ξ0ðrÞ; ð30Þ

where

ξ0ðrÞ ¼ −p�
0ðrÞ

ρðrÞ þ pðrÞ
dpðrÞ=dr : ð31Þ

The gravitational mass (M�) and the radius (R�) of the
slowly rotating star are given by

M� ¼ MðRÞ þm0ðRÞ þ
J2

R3
; ð32aÞ

R� ¼ Rþ ξ0ðrÞ: ð32bÞ

Here, MðRÞ and R are the mass and radius of a static star
obtained from TOV equations for a given central density.
Once we prescribe the equation of state by solving the

above obtained set of equations for static and rotating cases,
the corresponding stellar structure configurations can be
obtained.

IV. RESULTS AND DISCUSSION

We numerically integrate the coupled stellar structure
differential equations given by Eqs. (22a), (22b) and
Eqs. (29a), (29b) using the temperature-dependent BEC
EOS, Eq. (20), to obtain the static and rotating stellar

configurations respectively. For brevity, we have used M
and R to denote the maximum mass and corresponding
radius in both static and rotating cases. We are ignoring the
possibility of formation of vortices in this analysis [39,40].
We study the global properties of these configurations for
different temperature values as taken in Sec. II, ranging from
1T11 to 4T11, where T11¼ 1011 K. As noted before [49],
a zero-temperature treatment would be sufficient for temper-
atures below 1011 K as the effect of temperature on the EOS
is negligible in that range. Initially we keep m ¼ 2mn,
where mn ¼ 1.675 × 10−24 g is the mass of a nucleon and
scattering length as a ¼ 1 fm in our analysis.
In Fig. 2, we plot the mass of both the static and slowly

rotating BEC stars as a function of the radius corresponding
to different temperatures. For the static case, at T ¼ 0 K,
we obtain a maximum mass M ¼ 0.71M⊙, with M⊙ being
the mass of the Sun, with radius R ¼ 3.97 km correspond-
ing to the central density ρc ¼ 2.03 × 1016 g=cm3. Our
results are in agreement with the zero-temperature static
general relativistic BEC stars studied in Ref. [16]. While
coming to the finite temperature case, we see that static
stellar equilibria are achieved at reduced radii and masses,
though the form of the mass-radius curve does not change
appreciably. For example, the radii corresponding to a
0.65M⊙ star are 4.71, 4.56, 4.40, and 4.24 km respectively
for the temperatures T ¼ ð1; 2; 3; 4ÞT11. This is due to the
fact that an increase in temperature results in a lower value
of pressure for a given energy density (see inset of Fig. 1),
implying a softer equation of state. Softening of the EOS is
a consequence of the presence of thermal fluctuations in the
star. A softer EOS is known to result in lower maximum
mass-radius models [33]. Interestingly, the maximum mass

FIG. 2. Mass of the BEC star as a function of the radius for
different temperatures (T11 ¼ 1011 K). The dashed curves cor-
respond to the static stellar configurations. Solid curves corre-
spond to the BEC star configurations rotating slowly with their
Keplerian angular velocity ΩK. Inset shows the maximum masses
in each case.
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and corresponding radius of the static BEC star does not
vary significantly for the different temperatures considered
in our analysis from the zero-temperature case, as seen
from the inset of the figure. The maximum mass values
corresponding to the temperatures ð1; 2; 3; 4ÞT11 are 0.71,
0.71, 0.71, and 0.70M⊙ respectively. We note that this
particular behavior was observed in the study conducted on
static BEC stars at finite temperature employing a different
EOS in Ref. [48].
Further, in Fig. 2, we have expanded our analysis to

incorporate rotation into the system. We allow the stellar
equilibria to rotate in their Keplerian angular velocity
ΩK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=R3

p
, where M and R denote the maximum

mass and maximum radius of the static configurations.
Incorporating rotation into a system is likely to result in
an additional centrifugal force. As a consequence of this, in
order tomaintain gravitational equilibrium, an increase in the
maximum mass is anticipated and it is numerically obtained
as M ¼ 0.85M⊙ for the zero-temperature case. This value
corresponds to the central density ρc ¼ 1.6 × 1016 g=cm3

and radius R ¼ 4.47 km. Mere rotation increases the mass-
radius profiles and maximum mass and radius of the star
compared to the static case. However, as seen in the static
case, increasing the system temperature results in a reduction
of mass-radius curves (due to softening of the EOS) in
rotational case too. The radii corresponding to a 0.8M⊙ star
are 5.28, 5.08, 4.87, and 4.66 km respectively for the
temperatures T ¼ ð1; 2; 3; 4ÞT11. In the rotating case too,
we report that the maximum mass and radius for the stellar
equilibria are not much altered by the presence of the
temperature considered. As seen from the inset of Fig. 2,
the maximum masses corresponding to the temperature
considered ð1; 2; 3; 4ÞT11 are 0.85, 0.84, 0.84, and
0.84M⊙ respectively. We note that ΩK corresponding to
the BEC stars with temperature T ¼ ð0; 1; 2; 3; 4ÞT11 is

ð3.89;3.96;4.07;4.19;4.37Þ×104 s−1 respectively for their
maximum mass configurations.
Next, we plot the variation of mass with central density

for the static and rotating BEC stars in Figs. 3(a) and 3(b)
respectively. For both the static and rotating cases, the
mass values obtained for the temperatures do not vary
significantly at higher densities, whereas in the lower
density region a significant difference is seen. The masses
of rotating stars corresponding to T ¼ 0 K and T ¼ 4 ×
1011 K are obtained as M ¼ 0.39M⊙ and M ¼ 0.18M⊙
respectively, for ρc ¼ 2 × 1015 g=cm3. While for the static
case, the masses corresponding to T ¼ 0 K and T ¼ 4 ×
1011 K are obtained as M ¼ 0.28M⊙ and M ¼ 0.15M⊙
respectively, with the same value of central density. The
maximum mass value configurations for T ¼ 0 K in the
static and rotating cases correspond to central densities
2.03×1016 and 1.6×1016 g=cm3 respectively. Introduction
of temperature results in an increase in the central density
value corresponding to maximummasses. In the static case,
the central density values corresponding to the maximum
mass for the temperatures ð1; 2; 3; 4Þ × 1011 K are
ð2.05; 2.06; 2.09; 2.20Þ × 1016 g=cm3 respectively. And
for the rotating case the maximum mass for the temper-
atures ð1; 2; 3; 4Þ × 1011 K corresponds to the central
densities ð1.61; 1.65; 1.71; 1.79Þ × 1016 g=cm3 respec-
tively. We also note that, with the increment in central
densities, mass of the configurations also increases, while
the corresponding radii decrease.
As we study the relationship between angular velocity

and mass in rotating systems, we notice that the difference
between static star and rotational mass grows with increas-
ing angular velocity as illustrated in Fig. 4. This can be
attributed to the fact that the increase in mass caused by
rotation is directly proportional to the angular velocity. As
the angular velocity increases, it results in a corresponding

FIG. 3. Mass of the (a) static and (b) slowly rotating stellar configurations as a function of the central density for different temperatures
(T11 ¼ 1011 K).
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increase in the centrifugal force experienced within the
system. To counterbalance this augmented centrifugal
force, a larger mass is required. We can read out from
Fig. 4 that as we increase the angular velocity from zero to
0.5ΩK and 0.75ΩK , the maximum mass correspondingly
increases to M ¼ 0.75M⊙ and M ¼ 0.79M⊙ respectively.
The radius values obtained for the same are R ¼ 4.09 km
and R ¼ 4.25 km respectively. A similar trend is observed
for finite temperatures. As the star starts rotating and when
the angular velocities increase from Ω ¼ 0.5ΩK to
Ω ¼ 0.75ΩK , the maximummass and corresponding radius
values increase from M ¼ 0.74M⊙ to M ¼ 0.78M⊙ and
R ¼ 3.76 km to R ¼ 3.89 km respectively, for T ¼ 4T11.
We also note that due to the presence of temperature the star
attains a larger mass at lower densities compared to the
zero-temperature case for all values of angular velocities
considered. It must be highlighted that the relativistic
treatment is quite important while considering the global
properties of BEC stellar models. The mass of the static
BEC star obtained by solving the Newtonian Lane-Emden
equation for ρc ¼ 4 × 1015 g=cm3 is 0.74M⊙ and the
corresponding slow rotation (with ΩK ¼ 1.84 × 104 s−1)
gives the value 1.11M⊙ [65], whereas, within our general
relativistic treatment, correspondingly, we get the mass
values as 0.45 and 0.60M⊙ for static and slow rotation,
respectively.
Further, we study the effect of condensate massm on the

static and rotating stellar configurations at finite temper-
ature. First, we plot the BEC EOS for different values of
boson mass:m ¼ 2mn andm ¼ 1.5mn, with zero and finite
temperatures in Fig. 5. We can see that, the lower the value
of m, pressure increases for a given value of density
resulting in a stiffer EOS. With T ¼ 4T11 and for
m ¼ 1.5mn, the EOS remains stiffer even compared to
the zero-temperature m ¼ 2mn case. However, as observed

in Fig. 1, the presence of temperature has a relative
softening effect.
In Fig. 6, we present the mass-radius relation by varying

the value of m, for the T ¼ 0 and T ¼ 4T11 cases.
Evidently the mass and radius of the star depend quite
sensitively on the condensate mass m considered. At zero
temperature, on decreasing the mass of the condensate from
m ¼ 1.5mn to m ¼ 1.25mn, the maximum mass and
corresponding radius increased from 1.10 to 1.44M⊙
and 6.12 to 8.04 km, for the static system and 1.31 to
1.72M⊙ and 6.93 to 9.06 km, for the rotating case,
respectively. Also plotted for reference are the previously
considered m ¼ 2mn cases. A similar trend is observed for
the finite temperature case. For the T ¼ 4T11 case, the
maximum mass and radius increased from 1.08 to 1.42M⊙
and 5.58 to 7.24 km, for the static case, and 1.29 to 1.70M⊙
and 6.10 to 7.89 km, for the rotating case. The central

FIG. 4. Mass of the slowly rotating BEC star as a function of the radius by varying the angular velocities, for (a) T ¼ 0 K and
(b) T ¼ 4T11 ¼ 4 × 1011 K.

FIG. 5. BEC equation of state with different values of mass m
for T ¼ 0 K and T ¼ 4 × 1011 K.
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density at which the maximum mass achieved for m ¼
1.5mn is ρc ¼ 8.55 × 1015 g=cm3 and ρc ¼ 6.79 ×
1015 g=cm3 for the static and rotating systems respectively
at zero temperature. At T ¼ 4T11, the central density at
which the maximum mass obtained is ρc ¼ 9.17 ×
1015 g=cm3 and ρc ¼ 7.78 × 1015 g=cm3 for the static
and rotating systems respectively. The central density
at which the maximum mass achieved for m ¼ 1.25mn

is ρc ¼ 4.95 × 1015ð5.43 × 1015Þ g=cm3 and ρc ¼
4 × 1015ð4.60 × 1015Þ g=cm3 for the static and rotating
systems respectively at T ¼ 0ð4T11Þ. The zero-temperature
results obtained above are in agreement with that of
Ref. [16]. As observed earlier, when the m value decreases,
the EOS becomes more and more stiffer, and a stiffer EOS
is known to exhibit higher mass and radius. When temper-
ature is included a relative softening of the EOS happens
resulting in a corresponding small decrease in the maxi-
mum mass. We also observe that, as the value of m gets
decreased, although the difference between maximum
masses obtained at each temperatures does not vary
significantly for both the static and rotating cases, the
difference between the corresponding radii keeps on
increasing.
Finally, we proceed to study the effect of interaction

between the bosons on the stellar profiles. We change the
coupling constant of interaction g ∝ a=m in the EOS and
solve the stellar structure equations for both static and
rotating cases at finite temperature. By varying the value of
the interaction strength from g ¼ 4.17 × 10−43 g cm5=s2 to
0.5g, 0.1g, and 0.01g, the maximum mass is observed to be
decreasing from 0.71M⊙ to 0.50, 0.23, and 0.07M⊙
(0.85M⊙ to 0.60, 0.27, and 0.08M⊙) respectively for the
static (rotating) case at T ¼ 4T11. This gradual decrease in
maximummass is depicted in Fig. 7. We note that the mass-
radius curves are highly sensitive to the interaction strength

and reduction of the same results in smaller maximum
masses. As shown before, the inclusion of rotation
increases the mass of the system relatively for any given
value of g. The self-interaction arising due to the repulsive
interaction between the individual particles within the
condensate creates an effective outward pressure that
counterbalances the gravitational collapse. If the self-
interaction strength decreases, the effective pressure dimin-
ishes, and the force of gravity becomes dominant. As a
result, the maximum mass that the BEC star can sustain
decreases, as expected. This inference can be drawn from
Eq. (20), when self-interaction is turned off the total
outward pressure of the system against gravity vanishes,
leading to an unstable configuration. This expected obser-
vation is in agreement with Ref. [49]. Moreover, as we
decrease the strength of self-interaction, the difference

FIG. 6. Mass-radius relations of (a) static and (b) rotating BEC stars for different values of the condensate mass m (in terms of the
nucleon mass mn) at zero and finite temperature. Scattering length is kept as a ¼ 1 fm.

FIG. 7. Mass of the static and rotating BEC stars as a function
of the radius for T ¼ 4 × 1011 K by varying the interaction
strength g.
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between maximum masses attained for the static and
rotating cases diminishes for any temperature.

V. SUMMARY AND CONCLUSIONS

We have investigated the global properties of static and
slowly rotating Bose-Einstein condensate stars at finite
temperature. To incorporate the effect of temperature into
the analysis, we have used the recently developed finite
temperature BEC EOS for the stellar matter derived from
the generalized Gross-Pitaevskii equation for the conden-
sate and thermal fluctuations. Gravity is treated in the
framework of general relativity by using the Hartle-Thorne
approximation for rotation.
Our numerical analysis shows that, although the impact

of temperature considered is minimal on the EOS of a BEC
star, it is observed that the mass and radius of static and
rotating BEC stellar configurations are highly sensitive to
the temperature of the system. The effect of an increment of
temperature is to reduce the mass and radius of the system;
however at lower central densities finite temperature sup-
ports higher values of mass. Further, the introduction of
rotation results in higher mass-radius stellar systems. Our
analysis has indicated that ignoring the general relativistic
treatment of rotation results in an erroneous estimation of
global properties of BEC stars.
Interestingly, we have found that the presence of thermal

fluctuations has negligible impact on maximum masses of
the static as well as rotating BEC stars, although consid-
erable change in maximum radii are seen. We have also
studied the effect of different rotational frequencies on the

system. Further, together with the interplay of temperature
and rotation, we have analyzed the effect of various EOS
parameters, namely condensate mass and self-interaction
strength, on the BEC star and quantified the results.
The agreement between our results and that of a non-

rotating general relativistic BEC star at finite temperature
considered in Ref. [48] suggests that the maximum mass of
the star remains unaffected by changes in temperature even
in the rotating case. On the other hand, their utilization of a
different EOS leads them to anticipate a distinct trend in the
mass-radius behavior. Considering the difference in their
theoretical approach, leading to a stiffer EOS with the
increasing temperatures, a close comparison with our
present work is irrelevant. Furthermore, inclusion of the
effect of magnetic field in the static finite temperature BEC
star also reports minimal effect on the maximum mass [50].
In the future, we would like to extend our studies by
incorporating magnetic field into the finite temperature
BEC star system. Also, the possibility of rotating neutron
stars with different exotic matter with such a BEC at its core
will be of interest.
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