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The Laser Interferometer Space Antenna (LISA), space-based gravitational wave observatory involves a
complex multidimensional closed-loop dynamical system. Its instrument performance is expected to be less
efficiently isolated from platform motion than was its simpler technological demonstrator, LISA Pathfinder.
It is of crucial importance to understand and model LISA dynamical behavior accurately to understand the
propagation of dynamical excitations through the response of the instrument down to the interferometer
data streams. More generally, simulation of the system allows for the preparation of the processing
and interpretation of in-flight metrology data. In this work, we present a comprehensive mathematical
modeling of the closed-loop system dynamics and its numerical implementation within the LISA
Consortium simulation suite. We provide, for the first time, a full time-domain numerical demonstration
of postprocessing time delay interferometer techniques combining multiple position measurements with
realistic control loops to create a synthetic Michelson interferometer. We show that in the absence of
physical coupling to spacecraft and telescope motion (through tilt-to-length, stiffness, and actuation cross-
talk) the effect of noisy spacecraft motion is efficiently suppressed to a level below the noise originating in
the rest of the instrument.

DOI: 10.1103/PhysRevD.108.122007

I. SPACE-BASED GRAVITATIONAL WAVES
ASTRONOMY AND LISA DETECTOR

The Laser Interferometer Space Antenna (LISA) is a
space-based, gravitational wave (GW) observatory planned
to launch in 2035 [1]. It aims to open a new window on
the Universe in the milliHertz bandwidth of the GW sky,
which is expected to harbor a rich and diverse collection of
astrophysical and cosmological sources, including the
merger events of supermassive black hole binaries [2,3],
believed as among the most energetic events in the observ-
able Universe.
The mission, led by the European Space Agency, con-

sists of three spacecraft arranged in a nearly equilateral
triangular constellation, whose barycenter follows the Earth
in a heliocentric orbit. Interferometric measurements of the
spacecraft separation will be used to measure GW as they

pass through the constellation. The scale of the detector and
its space environment allow for operation in the millihertz
bandwidth. The 2.5 million km arm lengths result in
picometer optical path length variations due to GW, and
antenna nulls in the 40 mHz regime. Operation in space
eliminates acoustic, seismic, and Newtonian noise disturb-
ances which limit the sensitivity of ground-based detectors
below 1 Hz [4].

A. Picometer laser interferometry in space

To observe GW with strain amplitudes of order 10−20,
the LISA instrument must overcome two major challenges.
First, the satellites are poor references of inertia, being
subjected to force noise from solar wind, solar radiation
pressure, and their own micropropulsion system [5]. To
overcome this obstacle, cubic Au-Pt alloy 1.92 kg test
masses within the spacecraft are used as the end mirrors of
the interferometer. Protected from environmental force
noise, they constitute a very good approximation to local*Corresponding author: inchauspe@tphys.uni-heidelberg.de
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inertial reference frames onboard the spacecraft. They are
housed in vacuum chambers and surrounded by electrodes
which allow for position sensing and actuation [6].
Interferometric sensing is preferred to probe the test-mass
displacement relative to their housings along the directions
of the arm lengths [7,8] (cf. constellation and spacecraft
geometry in Figs. 1 and 2). These test-mass interferometers
(TMIs) are exploited to monitor and suppress the spacecraft

acceleration in the long-range science interferometers—
called inter-spacecraft interferometers (ISIs) [9]. The ability
to fly 1.92 kg cubic references of inertia with stability perfor-
mance compatiblewithGWastronomyhas been successfully
demonstrated by the LISA Pathfinder mission [10–12].
Second, a Michelson-type interferometer with million-

km arm lengths cannot be realized in space without
postprocessing techniques. Reflected laser round trips
along the arms are prohibited by the available laser power
onboard, and frequency noise suppression by optical path
length matching is made impossible as the spacecraft
orbital mechanics result in arm lengths that are mismatched
and changing over time. Instead, a collection of heterodyne
interferometric measurements between local laser beams
and propagated distant laser beams is performed across the
constellation [9], and the resulting beat notes are time
synchronized onground accounting for light propagation
time delays, and linearly combined so that the laser noise is
suppressed: this postprocessing technique is called time
delay interferometry (TDI) [13,14].
Tackling these two technological challenges renders the

measurement complex and composite, relying strongly on
multiple postprocessing steps to produce data exploitable
for astronomy. Preparing for the successful operation of the
mission, it is therefore crucial to understand, model, and
simulate the instrument response and data generation in
order to test with a high degree of representativity data
interpretation and analysis strategies and methods.

B. Metrology onboard

To guarantee the best stability of the apparatus, and
precise centering and alignment of the test masses in their
housings, the spacecraft embed high-precision sensor and
actuation systems. Local optical interferometry systems
(IFOs) provide picometer-stable test-mass displacement
sensing along the telescope axes (see Fig. 2 for the space-
craft geometry). These optical readouts are used as TMI in
the overall TDI and contribute to the final interferometer
data streams. An alternative combination of the interfer-
ometer quadrant photodiode readout signals allows for a
high-precision sensing of test-mass angular motion in two
degrees of freedom using a method known as differential
wave front sensing (DWS) [8]. The gravitational reference
system (GRS) provides ∼nm and ∼100 nRad electrostatic
sensing of all test-mass longitudinal and angular displace-
ments, through the measurement of differential capacitance
changes on a set of electrodes surrounding the test mass [6].
This set of capacitors is also used to exert correction forces
and torques on the test masses through audio frequency
voltages applied to the electrodes [15]. Control forces on
the test masses are triggered only by their differential
motion [16]. The DWS technique is exploited again to
sense the angle of the long-range interspacecraft laser beam
with respect to the telescope axes. The magnification of the
telescope allows for subnanoradian sensing of spacecraft

FIG. 1. Figure cut of constellation geometry in the triangle
plane. The geometrical construction of the O1 is illustrated. The
satellite positions considered in order to build the O frames are
computed from the macroscopic orbital motions only, that is,
neglecting the (dynamical state-dependent) stray forces inducing
spacecraft jitter. However, state-independent dc forces deviating
the spacecraft from pure free fall can be accounted for in the
definition of O frames.

FIG. 2. Figure cut of spacecraft geometry on the xOy plane of
the spacecraft body frame B. The reference frames attached to the
spacecraft, the housings and the test masses, respectively, B, H,
and T , are drawn. Short notation has been preferred for read-
ability to label the axes and coordinates associated to these
frames, as explained in Sec. II C, Eqs. (28), (29), (32), and (33).
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attitude and telescopes: this measurement is referred to as
the long-arm differential wave front sensing (LDWS). The
assembly of the telescope, the optical bench, and the GRS
housing the test masses is named the moving optical
subassembly (MOSA). It will rotate about the test-mass
axis to allow for the variation in the opening angle of the
constellation due to orbital variations known as breathing.
Spacecraft longitudinal and attitude control are performed

using a system of micronewton thrusters [5], which allows
the satellite to track the test masses in their freefall (drag-
free control), and to lock its attitude on the laser beam
received from the distant spacecraft (attitude control). A
rotation mechanism is used for slow actuation of the
MOSA ensuring the pointing direction tracks the incoming
laser beam direction and nulls the LDWS output. The
sensing, actuation, and control systems are summarized in
Table I. Noise performance values, which will be consid-
ered in the simulation, will be discussed in Sec. V and
summarized in Table II. Performance estimates are based
on the current LISA design and measurements from the
LISA Pathfinder mission [8,10,12].

C. Operating without a direct optical
differential channel

A key difference LISA Pathfinder and LISA is that no
direct, differential optical measurements between test
masses will be available for LISA, neither locally within
the spacecraft, nor at the constellation scale between distant
test masses. Indeed, as will be discussed in more detail in
the final section of this work (cf. Fig. 7), the long-range
optical measurement is split into three pieces: one local test
mass to spacecraft TMI measurement, one long-range ISI
measurement, and a second TMI measurement at the other
end of the interferometer arm. The necessary decomposi-
tion of the long-range interferometers makes the detector
performance more liable to spacecraft and telescope
dynamical stability than in the LISA Pathfinder case, where
test-mass-to-test-mass measurements were by construction
efficiently isolated from noisy spacecraft motion. [10,12].
In particular, optical geometrical misalignment and off-
centering will introduce tilt-to-length (TTL) coupling to the
spacecraft and telescope noisy angular motion [17,18]. This
effect is expected to be one of the leading noise contributors

TABLE II. Table of sensing and actuation noise settings in the simulations. All noises are still assumed to be white
in the simulation (apart from test-mass acceleration noise along x1 and x2), but will account for low-frequency roll-
up in upcoming upgrades, as already considered and detailed in [16].

No. Sensing channel Noise floor Actuation channel Noise floor

1 xifo1 =xifo2 1.0 × 10−12 mHz−1=2 Thrust X 2.2 × 10−7 NHz−1=2

2 ηifo1 =ηifo2 2.0 × 10−9 radHz−1=2 Thrust Y 1.3 × 10−7 NHz−1=2

3 ϕifo
1 =ϕifo

2
2.0 × 10−9 radHz−1=2 Thrust Z 3.6 × 10−7 NHz−1=2

4 xgrs1 =xgrs2
1.8 × 10−9 mHz−1=2 Thrust Θ 7.7 × 10−8 NmHz−1=2

5 ygrs1 =ygrs2
1.8 × 10−9 mHz−1=2 Thrust H 6.9 × 10−8 NmHz−1=2

6 zgrs1 =zgrs2
3.0 × 10−9 mHz−1=2 Thrust Φ 1.3 × 10−7 NmHz−1=2

7 θgrs1 =θgrs2 120.0 × 10−9 radHz−1=2 fgrsy 6.0 × 10−15 NHz−1=2

8 ηldws1 =ηldws2
0.2 × 10−9 radHz−1=2 fgrsz 10.0 × 10−15 NHz−1=2

9 ϕldws
1 =ϕldws

2
0.2 × 10−9 radHz−1=2 tgrsx 1.0 × 10−15 NmHz−1=2

10 tgrsy 1.0 × 10−15 NmHz−1=2

11 tgrsz 1.0 × 10−15 NmHz−1=2

TABLE I. For each control coordinate, the table lists the
respective control type and actuator used, as well as the
subsystem they are sensed with. Capital letters are used for
spacecraft coordinates, while lower case and indices are used for
test-mass coordinates. The table is adapted from Table I of [16],
to which the control of the telescopes’ opening angle ϕ̂m has been
added in row 7.

No. Coordinates Sensor Control mode Actuator Command

1 x̂1 IFO Drag free μ thrust fdrag-freeX
2 x̂2 IFO Drag free μ thrust fdrag-freeY
3 ẑ1 GRS Drag free μ thrust fdrag-freeZ
4 Θ̂ LDWS Attitude μ thrust tattX
5 Ĥ LDWS Attitude μ thrust tattY
6 Φ̂ LDWS Attitude μ thrust tattZ
7 ϕ̂m LDWS Telescopes

pointing
MOSA

mechanism
ttelz1 =t

tel
z2

8 ŷ1 GRS Suspension GRS fsusy1
9 ŷ2 GRS Suspension GRS fsusy2
10 ẑ2 GRS Suspension GRS fsusz1 =f

sus
z2

11 θ̂1 GRS Suspension GRS tsusx1

12 η̂1 IFO Suspension GRS tsusy1
13 ϕ̂1

IFO Suspension GRS tsusz1

14 θ̂2 GRS Suspension GRS tsusx2

15 η̂2 IFO Suspension GRS tsusy2
16 ϕ̂2

IFO Suspension GRS tsusz2
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to the overall noise budget of the instrument. In addition,
electrostatic and gravitational fields create a force gradient
at the test mass—referred to as stiffnesses—that couples to
spacecraft motion and generates acceleration noise.
Dynamical stability plays a driving role in both of these

disturbances and is a key property for LISA performance.
It is of crucial importance to model the closed-loop
dynamics of the spacecraft-telescopes-test-masses system
to assess accurately such dynamical noise, and demon-
strate our ability to mitigate the impact of dynamical
artifacts on LISA data analysis. LISA dynamics modeling
has been already addressed in recent literature [19], in the
scope of drag-free and attitude control system (DFACS)
design, and implemented in a proprietary software Matlab/
Simscape. Here we present an implementation of a full
closed-loop dynamics simulation integrated into the Python

based consortium end-to-end (E2E) simulation suite and
dedicated to LISA data processing and analysis. We
provide the modeling framework and the equations of
motion (EOM) at play in comprehensive detail, as we
believe it deserves an elaborated and formalized reference
in the scope of future LISA in-flight data diagnostics and
interpretation.

D. Simulating LISA dynamics

Among the simulation tools developed by the LISA
consortium, the LISANode software [20] is particularly well-
suited for spacecraft dynamics and control simulation. Its
graph-based, modular framework naturally lends itself to
control system implementation (in a similar way to com-
monly used Matlab-Simulink tools) and its generation and
management of time series data, operating on quantities as
they flow between graphs, enables long simulations with
efficient use of memory [21].
In this paper, the full derivation of the EOM of the LISA

dynamical system is developed and its implementation in
the LISANode simulation tool is described. This includes
implementation of the EOM, simulations of the sensing
systems, and implementation of the feedback loop, inter-
face with the interferometer measurements, and postpro-
cessing the resulting beat notes with TDI. For the first time,
the impact of spacecraft and test-mass dynamics, and
control on LISA data at the level of heterodyne beat notes
fluctuations and the TDI channels can be studied.
This article is organized as follows: We introduce the

LISA dynamical system, describing the relevant reference
frames in Sec. II. Simulation of the EOM for the test masses
and spacecraft are detailed in Sec. III. These equations
are simplified in Sec. IV by linearizing around a stable
working point, which is maintained by the controllers
detailed in Sec. V. Numerical solving methods used for
the linear system approximation, as well as the full non-
linear dynamical system, are detailed in Sec. VI. Results of
the dynamics simulations are shown in Sec. VII, and in
particular a demonstration of jitter suppression in Sec. VIII.

II. DYNAMICAL SYSTEM
AND REFERENCE FRAMES

This section is dedicated to the full derivation of LISA
EOMs and their insertion into the closed-loop system,
including sensors and actuators. The EOM are indeed a
core piece of the simulation and deserve thorough attention.
A preliminary step is the definition of the dynamical
coordinates and reference frames necessary to describe
fully the dynamical state of the system. We based our
mathematical modeling on a rigid-body approximation in
which the dynamical state of a body is described by the
motion of its c.m. and its angular velocity with respect to an
inertial frame: f⃗rbody; ω⃗body=galg. Each LISA spacecraft is a
20 degree of freedom (d.o.f.) system, six for the transla-
tional and rotational dynamics of the spacecraft, six for
each test mass, and an additional two for the MOSAs that
will rotate along with the constellation orbital breathing.
The remaining MOSA d.o.f.s are assumed rigidly fixed to
the spacecraft. We note that in nominal operations, MOSA
angle actuation is designed to be symmetric, hence sup-
pressing one d.o.f. However, other modes of operation
where this rotation is asymmetric are possible, so it is
preferable at this stage to maintain generality.
The LISA dynamics will be operated in closed-loop

control by the onboard DFACS, locking the test mass and
spacecraft d.o.f.s onto specific target points as described in
Sec. V. To simulate the system, it is therefore required to
express the dynamics of the system in the frame of reference
from which they are observed. For example, the test-mass
dynamics need to be expressed in the frame attached to
its housing they are lodged in, since it is, to first approxi-
mation, the reference for the GRS and IFO sensing. This
requirement results in the presence of several imbricated,
noninertial reference frames, which, when coupled with the
multidimensionality of the system increases the complexity
of its description. As a first step, we list and define the set of
reference framesweuse in the simulation, afterwhichwewill
select a state representation of the dynamics which facilitates
mapping of sensing and actuation.

A. Frames of reference

The dynamical model invokes six different types of
reference frame—each with its own system of coordinates.
One reference frame per rotating, rigid body (spacecraft,
test mass, MOSA) will be used to describe relative
orientation between bodies. Two frames associated with
the fiducial rotation of the spacecraft and MOSA about
their operation point, that facilitate linearization (as dis-
cussed in Sec. IV) and one inertial reference frame. These
frames are defined as follows:
(1) Galilean (inertial) J frame, fixed with respect to

distant stars, and with orientation defined according
to the International Celestial Reference System
convention [22].
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(2) The O frames (or B� frames) which set the target
attitude for the spacecraft. It is built following the
diagram in Fig. 1:
(a) x axis êx;Oi

is constructed as the bisector of
constellation, through local summit spacecraft.

(b) z axis êz;Oi
is the unit vector normal to the

constellation plane.
(c) y axis êy;Oi

is built from the cross product of the
two above.

(d) The origin Oi of the frame Oi follows the ideal
orbit of the spacecraft.

(3) The B frames rigidly attached to the spacecraft and
describing its attitude, whether with respect to to O
frame or J frame:
(a) x axis êx;Bi

is constructed as the bisector to
the angle between the two MOSAs axes of
spacecraft i.

(b) z axis êz;Bi
is the unit vector normal to the solar

panel plane (defining the x-y plane).
(c) y axis êy;Bi

is deduced from the two above.
(d) The origin Bi of the frame Bi are the centers of

mass of the spacecraft.
(4) The H� frames define the target attitude of the

MOSAs with respect to J frame.
(a) x axis êx;H�

j
is the unit vector aligned to the axis

normal to the incoming wave front as inter-
cepted by the telescope j ¼ ð1; 2Þ of the local
spacecraft i. It can be deduced from a rotation
of the unit vector êx;Oi

around êz;Oi
of an angle

½−1�jþ1 ϕ�
m
2

equal to half the constellation’s
opening angle at local spacecraft i location.

(b) z axis êz;H�
j
is the unit vector normal to LISA

constellation plane. It is equal to êz;Oi
.

(c) y axis êy;H�
j
is deduced from the two above.

(d) The origin Hj of the frame Hj is the geomet-
rical center of the housing j of the spacecraft i.

(5) TheH frames are rigidly attached to their respective
MOSA and define their actual attitude, whether with
respect to H� frame, B frame, O frame, or J frame.
(a) x axis êx;Hj

is the axis along which local
OMS measurement of spacecraft to test mass
j ¼ ð1; 2Þ is performed. It is a drag-free axis.
It can be deduced from a rotation of the unit
vector êx;Bi

around êz;Bi
of an angle ½−1�jþ1 ϕm

2

equal to half the MOSA’s opening angle of the
spacecraft i.

(b) z axis êz;Hj
is the unit vector normal to the solar

panel plane [defining the ðx-yÞ plane]. It is equal
to êz;Bi

in the simulator.
(c) y axis êy;Hj

is deduced from the two above.
(d) The origin Hj of the frameHj is the geometrical

center of the housing j of the spacecraft i.
(e) The pivot points Pj denote the center of rotation

of theMOSA j in the satellite i, and coincidewith
Hj in the nominal, geometrical configuration.

(6) The T frames are rigidly attached to the correspond-
ing test masses and describe their attitude, whether
with respect to H frame, B frame, O frame, or
J frame:
(a) x axis êx;T j

is constructed as the unit vector
normal the x faces of the test mass (TM) j and
aligned with êx;Hj

when nominally oriented.
(b) z axis êz;T j

is constructed as a unit vector normal
to the z faces of the TMj and aligned with êz;Hj

when nominally oriented.
(c) y axis êy;T j

is deduced from the two above.
(d) The origin Tj of the frame T j is the center of

mass of the test mass j.
We finally mention the important mathematical relation-

ship in Eq. (1), which will be used throughout the docu-
ment: the so-called transport equation, sometimes called
the Varignon formula, named after the late 17th century
French mathematician Pierre Varignon. It relates time
derivatives of a given vector with respect to different
reference frames (here B and J )

d
dt

����
J
½−� ¼ d

dt

����
B
½−� þ ω⃗B=J × ½−�: ð1Þ

B. Geometrical construction of target frames

While J , B,H, and T reference frames are self-defining
as each of them rely on existing bodies (distant stars,
spacecraft, MOSAs, and test masses), the targeted framesO
and H� required a physical definition to be utilized as
coordinate systems in LISA EOM. Their objective is to
encode the nominal orientation of the spacecraft and the
MOSAs with respect to the Galilean frame J . They are
formed using idealized bodies, that is, from the trajectory
the spacecraft would follow if they were subject to Solar
System gravitational field only, hence freely following their
respective geodesics. Indeed, given the dimension of the
LISA constellation compared to spacecraft dimension and
noisy deviation from geodesics, target frames can reliably
be constructed from orbits in a very solid approximation
(hence neglecting in their definition the microscopic local
jittering from geodesics).
As stated in Sec. II A, O frame X axis is defined as the

bisector of the constellation from the spacecraft i at study.

The bisector vector, OiIi
��!

, for spacecraft i is then

OiIi
��! ¼ ⃗rij þ

�
rij

rij þ rik

�⃗
rjk ¼ ⃗rij þ ui ⃗rjk; ð2Þ

using the angle bisector theorem, and where ⃗rij is the
relative position between two of the three spacecraft [see
Eq. (3)], which are labeled with fi; j; kg letters triplet, i
denoting the local spacecraft, j the distant spacecraft facing
TM1 of spacecraft i, and k facing its TM2 (cf. Fig. 1).
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⃗rij ¼ ⃗rj − ⃗ri ¼ ⃗rOj=J − ⃗rOi=J: ð3Þ

Therefore, the êx;Oi
basis vector is defined as

êx;Oi
¼ OiIi

��!
kOiIi
��!k

: ð4Þ

Finally, the êy;Oi
and êz;Oi

basis vectors are determined by

êz;Oi
¼ OiIi

��!
× r⃗jk

kOiIi
��!

× r⃗jkk
; ð5Þ

êy;Oi
¼ êz;Oi

× êx;Oi
: ð6Þ

The basis vectors of the O frame are now completely
defined from orbital position data ⃗ri, ⃗rj, and ⃗rk. The
dynamics of this frame—that is, angular velocity and
acceleration—relatively to the Galilean frame J will come
into play when deriving LISA EOM. To avoid numerical
difficulties arising from the differentiation of orbits neces-
sary to compute these angular quantities, we should derive
them purely symbolically from orbital positions, velocities,
and accelerations with respect to J frame.
Indeed, angular velocity can be related to the rate of

changes of basis vector (mathematical proof in Appendix A)
from the following expression

ω⃗Oi=J ¼ 1

2
êx;Oi

×
d
dt

����
J
½êx;Oi

� þ 1

2
êy;Oi

×
d
dt

����
J
½êy;Oi

�

þ 1

2
êz;Oi

×
d
dt

����
J
½êz;Oi

�; ð7Þ

which then implies an analytical differentiation of expres-
sions (4)–(6) with respect to time. These basis vectors

being functions f⃗ of orbital elements only—that is êx;Oi
¼

f⃗ex ð⃗ri; ⃗rj; ⃗rkÞ taking the X axis ofO frame as example—it is
clear that the angular velocity and acceleration can also be

written asmere functions f⃗ of orbital positions, velocities and

accelerations, respectively, ω⃗Oi=J ¼ f⃗ωð⃗ri;j;k; v⃗i;j;kÞ and
d
dt jJ ½ω⃗Oi=J �;¼ f⃗ω̇ð⃗ri;j;k; v⃗i;j;k; w⃗i;j;kÞ. Starting with differen-
tiation of Eq. (4), we have

d
dt

����
J
½êx;Oi

� ¼ OiIi
dOiIi
��!
dt − dOiIi

dt OiIi
��!

OiI2i
ð8Þ

from which one can find its contribution to f⃗ωð⃗ri;j;k; v⃗i;j;kÞ in
expanding Eq. (8) using

OiIi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð⃗rij þ ui ⃗rjkÞ · ð⃗rij þ ui ⃗rjkÞ

q
; ð9Þ

dOiIi
��!
dt

¼ v⃗ij þ u̇i ⃗rjk þ uiv⃗jk; ð10Þ

dOiIi
dt

¼ dOiIi
��!
dt

· êx;Oi
; ð11Þ

u̇i ¼
ðrik þ rijÞṙij − rijðṙij þ ṙikÞ

ðrij þ rikÞ2
; ð12Þ

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
⃗rij · ⃗rij

q
; ṙij ¼

v⃗ij · ⃗rij
rij

: ð13Þ

Now treating the Z axis, we define the following
intermediate vectorial and scalar terms

w⃗i ¼ OiIi
��!

× ⃗rjk; wi ¼ kw⃗ik ð14Þ

dw⃗i

dt
¼ dOiIi

��!
dt

× ⃗rjk þOiIi
��!

× v⃗jk; ẇi ¼
dw⃗i
dt · w⃗i

wi
ð15Þ

and the time derivative of the basis vector êz;Oi
is simply

written as

d
dt

����
J
½êz;Oi

� ¼ wi
dw⃗i
dt − ẇiw⃗i

w2
i

; ð16Þ

from which the deduction of the derivative of the third axis
is straightforward

d
dt

����
J
½êy;Oi

� ¼ d
dt

����
J
½êz;Oi

�;×êx;Oi
þ êz;Oi

×
d
dt

����
J
½êx;Oi

�:

ð17Þ

We now have derived all the terms necessary to expand
the O-frame angular velocity in Eq. (7) as an analytical

function f⃗ωð⃗ri;j;k; v⃗i;j;kÞ of the constellation’s orbital posi-
tions and velocities only.
The angular accelerations require further expansion

of Eq. (7). Without giving full details, one can find an
expression of the angular acceleration vector as a function
of the second-order time derivatives of the basis vectors

d
dt

����
J
½ω⃗Oi=J � ¼ 1

2
êx;Oi

×
d2

dt2

����
J
½êx;Oi

�

þ 1

2
êy;Oi

×
d2

dt2

����
J
½êy;Oi

�

þ 1

2
êz;Oi

×
d2

dt2

����
J
½êz;Oi

�: ð18Þ

Treating the X axis first, Eq. (8) is differentiated again,
which gives
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d2

dt2

����
J
½êx;Oi

� ¼
d2OiIi
��!
dt2

OiIi
−

�
2 dOiIi

dt
dOiIi
��!
dt þ d2OiIi

dt2 OiIi
��!�

OiI2i

þ 2ðdOiIi
dt Þ2OiIi

��!
OiI3i

; ð19Þ

where

d2OiIi
��!
dt2

¼ a⃗ij þ üi ⃗rjk þ 2u̇iv⃗jk þ uia⃗jk; ð20Þ

d2OiIi
dt2

¼ dOiIi
��!
dt

·
d
dt

����
J
½êx;Oi

� þ d2OiIi
��!
dt2

· êx;Oi
; ð21Þ

üi ¼
̈rijrik − ̈rikrij
ðrij þ rikÞ2

−
2ðṙijrik − ṙikrijÞðṙij þ ṙikÞ

ðrij þ rikÞ3
; ð22Þ

̈rij ¼
½ða⃗ij · ⃗rijÞ þ ðv⃗ij · v⃗ijÞ�rij − ðv⃗ij · ⃗rijÞṙij

r2ij
: ð23Þ

The derivatives of the variables in Eq. (15) are
evaluated as

d2w⃗i

dt2
¼ d2OiIi

��!
dt2

× ⃗rjk þ 2
dOiIi
��!
dt

× v⃗jk þOiIi
��!

× a⃗jk; ð24Þ

ẅi ¼
�
d2w⃗i

dt2 · w⃗i þ dw⃗i
dt ·

dw⃗i
dt

�
wi −

�
dw⃗i
dt · w⃗i

�
ẇi

w2
i

: ð25Þ

The second-order rate of change of the êz;Oi
basis can

now be calculated with

d2

dt2

����
J
½êz;Oi

� ¼
d2w⃗i

dt2

wi
−
w⃗iẅi

w2
i

−
2 dw⃗i

dt ẇi

w2
i

þ 2w⃗iẇi
2

w3
i

: ð26Þ

Additionally, the second-order rate of change of the êy;Oi

basis is given by

d2

dt2

����
J
½êy;Oi

� ¼ d2

dt2

����
J
½êz;Oi

� × êx;Oi

þ 2
d
dt

����
J
½êz;Oi

� × d
dt

����
J
½êx;Oi

�

þ êz;Oi
×

d2

dt2

����
J
½êx;Oi

�: ð27Þ

Finally, we have all the materials needed to build the
function f⃗ω̇ð⃗ri;j;k; v⃗i;j;k; a⃗i;j;kÞ giving the target angular
acceleration of the spacecraft as a function of orbital
positions, velocities, and accelerations. This is an interest-
ing result, as now, target attitude, angular velocity and

acceleration are derivable purely analytically from the orbit
information. It fully solves the question of numerical
treatment of orbits regarding attitude in LISA dynamics
simulations.
We will not treat the case of the target MOSA framesH�

1

and H�
2 in this article, as the procedure would be math-

ematically identical. Starting from the O frame, the
derivation would consist in adding another rotation to
the O frame corresponding to �1=2 the constellation
opening angle ϕ�

m.

C. Dynamical state vector

In the previous sections, we have listed and discussed all
the reference frames used in the dynamics modeling, which
were introduced to account for any actual or targets entities
being nonrigid with respect to each other. It also defines
the set of coordinates with which we describe longitudinal
or angular displacement of the bodies involved. For each
quantity, a system of coordinates will be preferred, mainly
driven by the reference frame in which those dynamical
d.o.f.s are observed.
(1) Position and orientation of test masses are sensed

either through IFO or GRS which can be to first
approximation assumed to be attached rigidly to
the housing frames H1 and H2. The nominal
position for the test masses are the centers of the
housings H1 and H2, and their nominal attitude is to
be aligned with the respective H frame. Conse-
quently, test-mass 1 dynamics are described by the
vector quantity ½⃗rT1=H1

; α⃗T 1=H1
� (respectively, for test

mass 2), where ⃗rT1=H1
denotes a position vector from

point H1 to T1 (H1T1

���!
) and α⃗T 1=H1

is an attitude
pseudovector complying with the Cardan represen-
tation for a rotation (ZYX convention) [23]. The
position vectors are to be expressed in the corre-
sponding housing frames, which gives six scalar
quantities per test mass

rH1

T1=H1
¼

2
64
⃗rT1=H1

· êx;H1

⃗rT1=H1
· êy;H1

⃗rT1=H1
· êz;H1

3
75 ¼

2
6664
xH1

T1=H1

yH1

T1=H1

zH1

T1=H1
;

3
7775 ¼

2
64
x1
y1
z1

3
75;

ð28Þ

α⃗T 1=H1
¼

2
64
θT 1=H1

ηT 1=H1

ϕT 1=H1

3
75 ¼

2
64
θ1

η1

ϕ1

3
75; ð29Þ

identically for test mass 2 as well. Our convention
uses θ, η, and ϕ as rotations around x, y, and z axes
of a given frame. Test-mass velocities are repre-
sented as time derivatives of the position vector with
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respect to their expression (observation) frame, that
is, with respect to the housing frames

v⃗T1=H1
¼ d

dt

����
H
½⃗rT1=H1

�; ð30Þ

vH1

T1=H1
¼ ṙH1

T1=H1
¼

2
6664
ẋH1

T1=H1

ẏH1

T1=H1

żH1

T1=H1

3
7775 ¼

2
64
ẋ1
ẏ1
ż1

3
75; ð31Þ

and, respectively, for test mass 2. We stress again
that, throughout this article, the dot symbols over a
quantity refer only to time derivative with respect to
its reference frame of expression.

(2) Spacecraft attitude will refer to rotation with respect
to the O frame in the final form of the EOM, that is,
to the quantity α⃗B=O, since its working point is zero.
However, intermediate steps will involve angular
velocity with respect to J frame. It follows the
Cardan angles of the spacecraft, written as

α⃗B=O ¼

2
64
θB=O

ηB=O

ϕB=O

3
75 ¼

2
64
Θ
H

Φ

3
75: ð32Þ

(3) Angular velocities of all the objects—either fiducial
or actual—can appear in the EOM either with
respect to the Galilean frame, target, or actual other
body frames. They must ultimately be expressed in
the reference frame attached to the rotating body
itself, since it will greatly simplify the rotational
equation of motion, as inertial tensors are static in
such frames. They can be expressed as

ωB
B=O ¼

2
64
ω⃗B=O · êx;B

ω⃗B=O · êy;B

ω⃗B=O · êz;B

3
75 ¼

2
664
ωB
x;B=O

ωB
y;B=O

ωB
z;B=O

3
775 ¼

2
64
ωX

ωY

ωZ

3
75;
ð33Þ

ωT 1

T 1=H1
¼

2
64
ω⃗T 1=H1

· êx;T 1

ω⃗T 1=H1
· êy;T 1

ω⃗T 1=H1
· êz;T 1

3
75 ¼

2
6664
ωT 1

x;T 1=H1

ωT 1

y;T 1=H1

ωT 1

z;T 1=H1

3
7775: ð34Þ

(4) Finally, the attitude and angular velocity of the
MOSAs (labeled as telescopes in the equations)
deserve a dedicated attention. They can be defined
with respect to their target reference frames H�
similarly to the spacecraft attitude—i.e. the frames
with respect to which MOSAs orientation are

observed based on the incoming wave fronts (see
Sec. I B). However, it is also relevant to use angular
coordinates in the spacecraft body frame B, since
this is the natural frame of the actuation mechanism,
which only leaves a single degree of freedom per
MOSA (rotations around êz;H1

and êz;H2
) while

approximating the other four fixed. Following this
MOSA mechanism property in the simulation, we
are using the following angular coordinates for the
MOSAs in the EOM

α⃗H1=B ¼

2
64
θH1=B

ηH1=B

ϕH1=B

3
75 ¼

2
64

0.0

0.0

π=6þ δϕtel;1

3
75; ð35Þ

ωH1

H1=B
¼

2
64
ω⃗H1=B · êx;H1

ω⃗H1=B · êy;H1

ω⃗H1=B · êz;H1

3
75¼

2
6664
ωH1

x;H1=B

ωH1

y;H1=B

ωH1

z;H1=B

3
7775¼

2
64

0.0

0.0

δϕ̇tel;1

3
75;

ð36Þ

where it is made clear that only 1 d.o.f. per MOSA
remains dynamical. On the other hand, DWS will
project MOSA dynamics into a different system of
coordinates—implicitly containing the spacecraft
angular motion—which can be denoted by

α⃗H1=H�
1
¼

2
64
θH1=H�

1

ηH1=H�
1

ϕH1=H�
1

3
75; ð37Þ

ωH1

H1=H�
1
¼

2
64
ω⃗H1=H�

1
· êx;H1

ω⃗H1=H�
1
· êy;H1

ω⃗H1=H�
1
· êz;H1

3
75 ¼

2
6664
ωH1

x;H1=H�
1

ωH1

y;H1=H�
1

ωH1

z;H1=H�
1

3
7775; ð38Þ

and again identically for test mass 2. This is an important
clarification as the reference frames in which the MOSA
orientation is considered can be the source of confusion,
when actual (H, B) or fiducial bodies (H�,O) are mistaken.
We opt here for the convention of referring to actual bodies
for writing the dynamics EOMs, and referring to targeted
frames when considering DWS sensing.
Finally, we note that the absolute position of the space-

craft in the Solar System ⃗rB=J is not part of the state vector,
since this quantity is completely decoupled from the system
dynamics, aside from setting the level of Solar System
gravity gradient onboard the spacecraft, which one can
nevertheless approximate precisely enough using orbital,
fiducial positions only (⃗rO=J).
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Gathering all these dynamical d.o.f.s within a single state
vector, one can fully represent the dynamical state of the
system with

X⃗ ¼
½ α⃗B=O ωB

B=O rH1

T1=H1
α⃗T 1=H1

rH2

T2=H2

α⃗T 2=H2
ṙH1

T1=H1
ωT 1

T 1=H1
ṙH2

T2=H2
ωT 2

T 2=H2

δϕtel;1 δϕ̇tel;1 δϕtel;2 δϕ̇tel;2 �:
ð39Þ

III. LISA EQUATIONS OF MOTION

Equation (39) shows a state vector which fully describes
the dynamical state of the spacecraft-telescopes-test-masses
system of a given LISA satellite. This state vector is the
solution of a second-order differential system—the equa-
tions of motion—relating the longitudinal and angular
displacement of the spacecraft, telescopes, and test masses
to the environmental and command forces and torques they
are exposed to. It is important to stress that the dynamics of
the three LISA satellites are treated independently, being
2.5 million kilometers apart. The incoming spherical wave
front are indeed quasi-independent of distant spacecraft
rotation, and the dynamics of the three spacecraft can
interact with each other through wave front defects only.
Such defects could in principle impact attitude control
locked on the DWS channels, hence contribute to space-
craft attitude jitter. Their effect is however, considerably
outweighed by other contributors, especially micropropul-
sion noise.
We can distinguish four types of EOM in LISA dynamics,

among which one requires scrutiny and consequently a
detailed derivation: the longitudinal dynamics of the test
masses. This EOM regarding the TM motion is particularly
complex as it introduces several nested frames and has the
most stringent performance requirements in terms of residual
motion. The three other types will be angular EOM, towhich
angular velocities of the spacecraft, the MOSAs, and the test
masses will be solutions, provide critical information in the
scope of tilt-to-length effects analysis.

A. Test-mass longitudinal motion

Starting with test-mass longitudinal motion—a treatment
applicable to both test masses by symmetry—the first
equation of motion is derived from Newton’s third law

d2

dt2

����
J
½⃗rT=J� ¼

X f⃗ T
mT

; ð40Þ

which is valid only with respect to a Galilean frame, here

chosen to be J , and where f⃗ T is the net force vector applied
to the test mass and mT is its mass. The next steps will then
merely consist in expanding Eq. (40) in order to express

quantities in the correct frames of observation, or in other
words, involving elements of the state vector (39) only. The
vector ⃗rT=J is first decomposed as

⃗rT=J ¼ ⃗rT=H þ ⃗rH=B þ ⃗rB=J: ð41Þ

We recognize the double time derivative of ⃗rB=J to be
related to the spacecraft dynamics, and again Newton’s
third law gives

d2

dt2

����
J
½⃗rB=J� ¼

X f⃗B
mB

; ð42Þ

where mB is the mass of the spacecraft. While the norm of
the vectors ⃗rH=B is constant—the MOSA pivot points P are
assumed to be coincident with the center of the housing
H—their orientation is dynamical and will impact the
frame of observations of test-mass displacement. Using the
transport theorem from Eq. (1), we find

d2

dt2

����
J
½⃗rH=B� ¼

d2

dt2

����
B
½⃗rH=B� þ 2ω⃗B=J ×

d
dt

����
B
½⃗rH=B�

þ d
dt

����
J
½ω⃗B=J � × ⃗rH=B

þ ω⃗B=J × ðω⃗B=J × ⃗rH=BÞ: ð43Þ

This can be simplified by remarking that for a static
spacecraft c.m. B, the norm of the position vector
k⃗rP=Bk is static in the body frame B. Only a non-nominal
offset of the point H with respect to the pivot point P may
render ⃗rH=B dynamical in the spacecraft body frame. It is
however important to enable such imperfection in the
model and to introduce the position offset ⃗rH=P between
the pivot point P and the housing center H of a given
MOSA in Eq. (44). Lever arm effects coupling the
noisy MOSA attitude to the highly stable test-mass
longitudinal d.o.f. are critical dynamical features to account
for [12]. Thus,

d
dt

����
B
½⃗rH=B� ¼ d

dt

����
B
½⃗rH=P� þ d

dt

����
B
½⃗rP=B�;

¼ d
dt

����
B
½⃗rH=P� ¼ ω⃗H=B × ⃗rH=P: ð44Þ

At this stage, the model still neglects the time variations
of the distribution of mass in the satellite due to MOSA
rotations, as well as, for instance, due to gas depletion for
μN thruster system. Examining the contribution of MOSA
dynamics, one can argue that the MOSA represents a
substantial fraction of the mass of the spacecraft, and that a
�1° yearly modulation of the opening angle changes the
c.m. and the inertia tensor of the spacecraft enough to
impact significantly the longitudinal dynamics of the test
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mass (through levers) as well as the rotational dynamics of
the spacecraft.
However, we expect such contributions to test-mass

dynamics to be second-order terms, and therefore they
are not currently included in the simulation. We decided not
to introduce an additional layer of complexity in the body
of this document, although the full EOM are provided in
Appendix B and future works will investigate the order of
magnitude of such contributions, which are, to our knowl-
edge, still untreated in the literature.
The last position term of Eq. (41) to be treated is ⃗rT=H

which has to be differentiated with respect to the housing
frame H. From the transport equation, we simply have

d2

dt2

����
J
½⃗rT=H� ¼

d2

dt2

����
H
½⃗rT=H� þ 2ω⃗H=J ×

d
dt

����
H
½⃗rT=H�

þ d
dt

����
J
½ω⃗H=J � × ⃗rT=H

þ ω⃗H=J × ðω⃗H=J × ⃗rT=HÞ; ð45Þ

where the classical inertial terms, namely Coriolis, Euler,
and centrifugal forces, show up. Decomposing the housing
angular velocity as ω⃗H=J ¼ ω⃗H=B þ ω⃗B=J , and simplify-
ing cross-product terms thanks to the Jacobi identity,

a × ðb × cÞ þ b × ðc × aÞ þ c × ða × bÞ ¼ 0; ð46Þ

we get

d2

dt2

����
J
½r⃗T=H�¼

d2

dt2

����
H
½r⃗T=H�þ2ω⃗H=B×

d
dt

����
H
½r⃗T=H�

þ2ω⃗B=J ×
d
dt

����
H
½r⃗T=H� þ d

dt

����
B
½ω⃗H=B�× r⃗T=H

þ d
dt

����
J
½ω⃗B=J � × r⃗T=Hþω⃗H=B×ðω⃗H=B× r⃗T=HÞ

þω⃗B=J ×ðω⃗B=J × r⃗T=HÞ
þ2ω⃗B=J ×ðω⃗H=B× r⃗T=HÞ: ð47Þ

Hence, putting back all the terms of (40) and (42) together,
one writes finally the vectorial test-mass equation of motion
(48), where dynamics of bodies are considered with respect
to their frame of observations, hence progressing towards a
constraint of the state vector in Eq. (39). The missing steps,
that is, the introduction of fiducial frames and expression in
specific coordinate systems, will be addressed in Sec. IV.
This gives

d2

dt2

����
H
½⃗rT=H� þ 2ω⃗H=B ×

d
dt

����
H
½⃗rT=H� þ 2ω⃗B=J ×

d
dt

����
H
½⃗rT=H� þ

d
dt

����
B
½ω⃗H=B� × ⃗rT=H þ d

dt

����
J
½ω⃗B=J � × ⃗rT=H

þ 2ω⃗B=J × ðω⃗H=B × ⃗rT=HÞ þ ω⃗H=B × ðω⃗H=B × ⃗rT=HÞ þ ω⃗B=J × ðω⃗B=J × ⃗rT=HÞ þ
d
dt

����
B
½ω⃗H=B� × ⃗rH=P

þ ω⃗H=B × ðω⃗H=B × ⃗rH=PÞ þ 2ω⃗B=J × ðω⃗H=B × ⃗rH=PÞ þ
d
dt

����
J
½ω⃗B=J � × ⃗rH=B þ ω⃗B=J × ðω⃗B=J × ⃗rH=BÞ

¼
X f⃗ T

mT
−
X f⃗B

mB
: ð48Þ

B. Angular equations of motion of spacecraft
and test masses

Analogously to Sec. III A, we start from Euler’s equa-
tion, derivable from Newtonian mechanics of a rigid body
and related to the conservation of angular momentum h⃗ of
an isolated body with respect to a Galilean frame. Treating
the spacecraft dynamics first, we have

d
dt

����
J
½h⃗sc=J � ¼ d

dt

����
J
½Isc=Bω⃗B=J � ¼

X
⃗tB; ð49Þ

where Isc=B is the inertia tensor matrix of the spacecraft

computed at its c.m., B, and ⃗tB are the external torques

applied to the spacecraft body. Again, Eq. (49) will be
expanded so that quantities appear from the viewpoint of
the frames in which they are observed. First, angular
dynamics is most conveniently treated from the body
frame, where the inertia tensor is by definition static.
Using the transport theorem (1) leads to

d
dt

����
B
½Isc=Bω⃗B=J � þ ω⃗B=J × ðIsc=Bω⃗B=J Þ ¼

X
⃗tB: ð50Þ

Here we encounter a similar difficulty as in Sec. III A,
that is the mass distribution in the spacecraft is not
strictly static, for the MOSA rotating along with con-
stellation orbital breathing. However, accounting for this
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nonstatic mass distribution will introduce a large amount of
second-order terms, expected to be of little impact on
spacecraft jitter dynamics. As before, we derive the model
as currently implemented, and consequently, we will ignore
this additional layer of complexity in this section. The
interested reader will find more information about a
proposed treatment in the Appendix B 2.
Hence, assuming Isc=B is time invariant in the B frame,

Eq. (50) leads to the vectorial equation of motion con-
straining the spacecraft attitude

Isc=B
d
dt

����
B
½ω⃗B=J � þ ω⃗B=J × ðIsc=B ω⃗B=J Þ ¼

X
⃗tB: ð51Þ

Examining the test-mass case, we derive an identical
relationship from similar arguments

Itm=T
d
dt

����
H
½ω⃗T =J � − Itm=Tðω⃗T =H × ω⃗T =J Þ

þ ω⃗T =J × ðItm=Tω⃗T =J Þ ¼
X

⃗tT; ð52Þ

However, further decomposition is needed since ω⃗T =J still
contains the spacecraft and MOSA rotational d.o.f. as
ω⃗T =J ¼ ω⃗T =H þ ω⃗H=B þ ω⃗B=J , which leads to

Itm=T
d
dt

����
H
½ω⃗T =H� þ Itm=T

d
dt

����
B
½ω⃗H=B�

þ Itm=T
d
dt

����
J
½ω⃗B=J � − Itm=Tðω⃗H=B × ω⃗B=J Þ

− Itm=Tðω⃗T =H × ω⃗H=BÞ − Itm=Tðω⃗T =H × ω⃗B=J Þ
¼

X
⃗tT: ð53Þ

where we have used additional geometrical properties of the
cubic test masses, which have scalar inertia matrices ITtm=T ¼
λ13 in their body frames T .

C. Angular equations of motion of MOSAs

Finally, addressing the MOSA angular dynamics, we
again start from the Euler equation

d
dt

����
J
½Imo=Q ω⃗H=J � ¼

X
⃗tH; ð54Þ

which we expand to consider the angular acceleration with
respect to the MOSA frame—in which its inertia tensor is
static—and in breaking down the angular velocity ω⃗H=J ¼
ω⃗H=B þ ω⃗B=J to bring out the dynamics components that
belong to the spacecraft and the MOSA independently

Imo=Q
d
dt

����
B
½ω⃗H=B� þ Imo=Q

d
dt

����
J
½ω⃗B=J �

− Imo=Qðω⃗H=B × ω⃗B=J Þ þ ω⃗H=B × ðImo=Q ω⃗H=BÞ
þ ω⃗H=B × ðImo=Q ω⃗B=J Þ þ ω⃗B=J × ðImo=Q ω⃗H=BÞ
þ ω⃗B=J × ðImo=Q ω⃗B=J Þ ¼

X
⃗tH: ð55Þ

At this point, we have to examine the sum of applied
torques, as for this EOM we want to focus on the telescope
dynamics induced by the pointing mechanism. Indeed, if
the spacecraft rotates through the thrust system, structure
torque will be applied on the telescope such that they
follow the spacecraft motion. The pointing mechanism only
concerns relative motion between the MOSA and the
spacecraft. We have accordinglyX

⃗tH ¼
X

⃗trelH þ ⃗tstructH : ð56Þ

We can define ⃗tstructH as the torque necessary for the MOSA
to rigidly follow the spacecraft in its rotation with respect to
J frame

⃗tstructH ¼ d
dt

����
J
½Imo=Q ω⃗B=J �

¼ Imo=Q
d
dt

����
J
½ω⃗B=J � − Imo=Qðω⃗H=B × ω⃗B=J Þ

þ ω⃗H=B × ðImo=Q ω⃗B=J Þ
þ ω⃗B=J × ðImo=Q ω⃗B=J Þ: ð57Þ

Then it follows that

Imo=Q
d
dt

����
B
½ω⃗H=B� þ ω⃗H=B × ðImo=Q ω⃗H=BÞ

þ ω⃗B=J × ðImo=Q ω⃗H=BÞ ¼
X

⃗trelH : ð58Þ

Alternatively, we could have found an identical expres-
sion in observing that

d
dt

����
J
½Imo=Q ω⃗H=B� ¼

X
⃗trelH ; ð59Þ

where only torques that cause relative rotation between the
MOSA and the spacecraft are considered.

IV. WORKING POINT, LINEARIZATION, AND
STATE EQUATIONS OF DYNAMICS

A. Introduction of target attitude frames

The equations of motion (48), (51), (53), and (58) are
obviously nonlinear. They involve several quadratic terms
caused by various inertial forces/torques and projections
to the reference frame of observations. As previously
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discussed in Sec. II C a convenient and yet reliable way to
simplify system dynamics is to choose a state-space
representation where dynamical quantities at play are
deviations from their target values—or working point. It
is particularly relevant in the presence of feedback systems,
whose objective precisely is to lock the observables to
target values. In LISA, the DFACS action will guarantee
that the position and orientation of the four dynamical
bodies stay locked to their working point, meaning that
the nominal value for the deviation from the working point
will be 0.0.
Such parametrization eases and justifies the lineariza-

tion of the system, while preventing possible numerical
issues arising when different scales of motion are to be
compared—since it decouples small-scale and large-scale
motion by construction. It requires the introduction of the
three target frames described in Secs. II A and II B which
allow us to break down the spacecraft and MOSA rotations
into low-frequency angular motion and in-band jittering

ω⃗B=J ¼ ω⃗B=O þ ω⃗O=J ; ð60Þ

ω⃗H=B ¼ ω⃗H=H� þ ω⃗H�=O þ ω⃗O=J : ð61Þ

The decomposition of MOSA rotation is not used in the
EOM, as for angular dynamical state the relative velocity
between spacecraft and telescope is used (see Sec. III C).
However, the decomposition of spacecraft angular velocity
[Eq. (60)] is more critical for this section. In particular,
derivatives such as Eqs. (62) and (63) have to be broken
down in order for the dynamical state of interest to
show up—a general rule being that the angular velocities
and accelerations must be computed relative to the same
frame. Thus,

d
dt

����
J
½ω⃗B=O� ¼

d
dt

����
O
½ω⃗B=O� þ ω⃗O=J × ω⃗B=O; ð62Þ

d
dt

����
B
½ω⃗O=J � ¼

d
dt

����
J
½ω⃗O=J � þ ω⃗O=J × ω⃗B=O: ð63Þ

This decomposition of rotating frames increases the num-
ber of inertial force and torque terms to address, although
several of them compensate for each other and can be
simplified through the Jacobi identity [Eq. (46)] such as for
instance, the following inertial terms

ω⃗O=J × ðω⃗B=O× r⃗T=HÞ
¼ ðω⃗O=J × ω⃗B=OÞ× r⃗T=H þ ω⃗B=O× ðω⃗O=J × r⃗T=HÞ: ð64Þ

We apply these composition rules to all the equations of
motion (48), (51), (53), and (58) derived in Sec. III. These
are tedious but straightforward expansion steps, and we
will not detail them in this document for readability. They
have been, however, documented and cross-checked with

Mathematica. A dedicated GITLAB PROJECT containing
these Mathematica validation notebooks is accessible to
LISA consortium members on demand.

B. Expression in a common system of coordinates

In addition to these further expansions, it is now
necessary to express the vectorial quantities into a specific
system of coordinates. As discussed and motivated in
details in Sec. II C, we are using the following rules:
(1) Translational dynamics of the test masses are ex-

pressed in the housing frame coordinates systems,
respectively, H1 and H2.

(2) Spacecraft angular EOMs are expressed in the
spacecraft body frame B.

(3) Test-mass angular EOMs are expressed in their
respective body frames T 1 and T 2.

(4) Telescope opening motion is expressed in the
MOSA body frames H1 and H2.

It means consequently that rotation matrices need to be
introduced whenever an EOM expressed in a specific frame
involves physical quantities that are preferably expressed in a
different system of coordinates. For example, spacecraft
angular velocities in Eq. (48) require rotations intoH frames

ω⃗B=O ¼H ωH
B=O ¼ TH

Bω
B
B=O; ð65Þ

ω⃗O=J ¼H ωH
O=J ¼ TH

B T
B
OT

O
Jω

J
O=J ; ð66Þ

where rotation matrices are functions of the relative orien-
tation of reference frames TB

O ¼ TB
Oðα⃗B=OÞ as following

Tðα⃗Þ ¼

2
64
1 0 0

0 cθ sθ
0 −sθ cθ

3
75
2
64
cη 0 −sη
0 1 0

sη 0 cη

3
75
2
64

cϕ sϕ 0

−sϕ cϕ 0

0 0 1

3
75;

¼

2
64

cηcϕ cηsϕ −sη
sθsηcϕ − cθsϕ sθsηsϕ þ cθcϕ sθcη
cθsηcϕ þ sθsϕ cθsηsϕ − sθcϕ cθcη

3
75; ð67Þ

adopting a short notation for sine and cosine functions (e.g.
− sin θ ¼ −sθ), and again, comply with the ZYX Cardan
sequence convention [23]. The matrices Tðα⃗Þ and their
respective rotation angles α⃗ ¼ ½θ; η;ϕ� encode for a trans-
formation of the system of coordinates with respect to which
the vectors are expressed: they correspond to passive
rotations of vectors. We will be using the convention
throughout this work.
Expressing vectors with respect to a specific basis now

transforms tensors to matrices of 3K components where K
is the tensor order. Consequently, and as already introduced
in paragraphs above, vectors become triplets of scalars
encoding coordinates in a given frame. Similarly, cross
products a × b can be written in a specific coordinate
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system as a matrix product between a skew-symmetric
matrix ½a�× made out of the vector a and the target vector b

a × b¼H ½aH�×bH ¼

2
64

0 −aHz aHy

aHz 0 −aHx
−aHy aHx 0

3
75
2
64
bHx
bHy

bHz

3
75: ð68Þ

We have now all the required material to assemble the
test-mass equation of motion expressed in their reference
frames of observation. Equation (48) shows such an EOM,
generically written so that it holds for both test mass 1 and
2—indexing T, H bodies and indexing T ,H frames with a
specific test-mass label. The vectorial test-mass equation
is then

̈rHT=H þ 2½ωH
H=B�×ṙHT=H þ 2½TH

Bω
B
B=O�×ṙHT=H þ 2½TH

B T
B
OT

O
Jω

J
O=J �×ṙHT=H þ ½ω̇H

H=B�×rHT=H
þ ½TH

B ω̇
B
B=O�×rHT=H þ ½TH

B T
B
OT

O
J ω̇

J
O=J �×rHT=H þ 2½TH

Bω
B
B=O�×½ωH

H=B�×rHT=H
þ 2½TH

B T
B
OT

O
Jω

J
O=J �×½ωH

H=B�×rHT=H þ ½ωH
H=B�×½ωH

H=B�×rHT=H
þ ½TH

Bω
B
B=O�×½TH

Bω
B
B=O�×rHT=H þ 2½TH

B T
B
OT

O
Jω

J
O=J �×½TH

Bω
B
B=O�×rHT=H þ ½TH

B T
B
OT

O
Jω

J
O=J �×½TH

B T
B
OT

O
Jω

J
O=J �×rHT=H

− ½rHH=P�×ω̇H
H=B þ ½ωH

H=B�×½ωH
H=B�×rHH=P þ 2½½rHH=P�×ωH

H=B�×TH
Bω

B
B=O − 2½TH

B T
B
OT

O
Jω

J
O=J �×½rHH=P�×ωH

H=B

− ½TH
B r

B
H=B�×TH

B ω̇
B
B=O þ ½½TH

B r
B
H=B�×TH

Bω
B
B=O�×TH

Bω
B
B=O − 2½TH

B T
B
OT

O
Jω

J
O=J �×½TH

B r
B
H=B�×TH

Bω
B
B=O

¼
X fHT

mT
−
XTH

B f
B
B

mB
− ½TH

B T
B
OT

O
J ω̇

J
O=J �×TH

B r
B
H=B − ½TH

B T
B
OT

O
Jω

J
O=J �×½TH

B T
B
OT

O
Jω

J
O=J �×TH

B r
B
H=B: ð69Þ

We apply the same procedure to the angular EOM of the
spacecraft, the test mass, and the MOSA, and we get the
following projected EOM:
(1) For the spacecraft attitude

IBsc=Bω̇
B
B=O þ IBsc=B½TB

OT
O
Jω

J
O=J �×ωB

B=O

þ ½ωB
B=O�×IBsc=BωB

B=O − ½IBsc=BTB
OT

O
Jω

J
O=J �×ωB

B=O

þ ½TB
OT

O
Jω

J
O=J �×IBsc=BωB

B=O

¼
X

tBB − IBsc=BT
B
OT

O
J ω̇

J
O=J

− ½TB
OT

O
Jω

J
O=J �×IBsc=BTB

OT
O
Jω

J
O=J : ð70Þ

(2) For the test-mass attitude

ITtm=Tω̇
T
T =HþITtm=TT

T
Hω̇

H
H=BþITtm=TT

T
HT

H
B ω̇

B
B=O

þITtm=TT
T
HT

H
B ½TB

OT
O
Jω

J
O=J �×ωB

B=O

þITtm=TT
T
HT

H
B T

B
OT

O
J ω̇

J
O=J−I

T
tm=TT

T
H½ωH

H=B�×TH
Bω

B
B=O

−ITtm=TT
T
H½ωH

H=B�×TH
B T

B
OT

O
Jω

J
O=J

−ITtm=T ½ωT
T =H�×TT

Hω
H
H=B−I

T
tm=T ½ωT

T =H�×TT
HT

H
Bω

B
B=O

−ITtm=T ½ωT
T =H�×TT

HT
H
B T

B
OT

O
Jω

J
O=J¼

X
tTT : ð71Þ

(3) For the MOSA attitude

IHmo=Qω̇
H
H=B þ ½ωH

H=B�×IHmo=Qω
H
H=B

þ ½TH
Bω

B
B=O�×IHmo=Qω

H
H=B

þ ½TH
B T

B
OT

O
Jω

J
O=J �×IHmo=Qω

H
H=B

¼
X

trel;HH : ð72Þ

C. State-space representation

Equations (69)–(72) brought together provide a second-
order 17 differential system fully describing the dynamics
of a single LISA spacecraft. To facilitate its implementation
and integration, it is convenient to split these 17 second-
order equations into 34 first-order equations using a state-
space representation, introducing explicitly velocity terms
in the differential equation as an intermediate step, as can
be illustrated by

a ¼ d2x
dt2

⇔

(
v ¼ dx

dt

a ¼ dv
dt

: ð73Þ

The velocity part of the state equations acts as identification
relationships or mapping system between the second
components of the state vector X⃗ ¼ ½x; v� and the first

components of its derivative ˙X⃗ ¼ ½v; a�. In our case, most
of these relationships are straightforward—filled with 1s
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and 0s, aside from the mapping between angular velocity
and Cardan angle rates (reckoning that our angular state
representation is made of ½α⃗; ω⃗� pairs) which relate each
other nontrivially

ωB
B=O ¼ Eðα⃗B=OÞ

dα⃗B=O

dt
;

¼

0
B@

1 0 −sη
0 cθ cηsθ
0 −sθ cηcθ

1
CA
2
64
θ̇B=O

η̇B=O

ϕ̇B=O

3
75; ð74Þ

(for a Cardan ZYX rotation convention [23]). The matrix E
in the Eq. (74) provides the mapping between the angular
state and its derivative, and is not merely the identity matrix
13 in the general case.
In this representation, the dynamical state is fully

represented by the state vector X⃗ in Eq. (39) gathering
all the dynamical longitudinal and angular states and their
respective derivatives—hence 34 elements in total. The
equations of dynamics can now be written

dX⃗
dt

¼ f⃗ðX⃗; u⃗; tÞ ¼ AðX⃗; tÞX⃗ðtÞ þ BðX⃗; tÞu⃗ðtÞ ð75Þ

in the general case, and where we have introduced the so-
called state matrices A and B and the source terms vector
u⃗ðtÞ—here forces and torques, that is, right-hand terms of
EOM (69)–(72). This matrix form is particularly useful and
powerful when the system is linear and time invariant, as in
such case A and B are constant matrices and most questions
are then reducible to problems of matrix algebra (solving,
controllability and observability, stabilization, and control
design…).
At this stage, the EOM are not yet linearized. Although

the introduction of the target frames at Sec. IVA has
greatly facilitated the process, as large-scale motion is
already well separate from small-scale jittering of bodies.
We treat the terms of the EOM that are quadratic in the
dynamical state—that is, involving products of elements of
X—writing the element with the largest fluctuation as the
rightmost factor in each term. The variations of the other
elements of X are averaged around their target point and
enter into the constant A matrix. Because most elements xi
of the state vector X⃗ have as target point 0.0, these terms
either vanish or have a trivial treatment, for instance:
½TB

Oðα⃗B=OÞ�target¼TO
O¼13. State-independent, time-varying

terms are treated as source terms and incorporated in u⃗ðtÞ
and have been moved consequently on right-hand side of
the EOMs. The only dynamical state which is nonvanishing
when set at target are the orientation and angular velocities
of the MOSA ½α⃗H=Bω

H
H=B�, since its dynamics have been

described with respect to spacecraft body frame and not its
target frames. Nevertheless, these angular parameters are
being treated similarly during the linearization process

h
α⃗H=B ωH

H=B

i
target

¼
h
α⃗H�=O ωH�

H�=O

i
: ð76Þ

In addition, to get a linear, time-invariant system that has
constant A and B matrices with minimal approximation,
time-varying multipliers of the states have to be treated and
approximated. Thanks to our expansion using target frames
discussed in Sec. IVA, these time-varying factors are well
out of band. They involve slow varying terms such as ωJ

O=J

or ωH�
H�=O driven by orbital motion. A fair treatment consists

in averaging those terms out and considering them constant
over the course of a simulation run.
The final system of differential equations of motion of

LISA can then be approximated by the following linear,
time-invariant differential system

dX⃗
dt

¼ hAðX⃗targetÞitX⃗ðtÞ þ hBðX⃗targetÞitu⃗ðtÞ; ð77Þ

where matrices A and B are evaluated at the target state
vector X⃗target and averaged over simulation time

X⃗target ¼
½ 0 0 0 0 0

0 0 0 0 0

δϕ�
tel;1 δϕ̇�

tel;1 δϕ�
tel;2 δϕ̇�

tel;2 �
: ð78Þ

Note that in the simulation we use an implicit formu-
lation of the state-space model, involving the mass matrix

Mim
dX⃗
dt

¼ AimX⃗ðtÞ þ BimX⃗ðtÞu⃗ðtÞ; ð79Þ

but this does not impact the generality of the discussion in
this section, as we can—and eventually do—map the
implicit and explicit matrix formulations

Aex ¼ M−1
imAim; Bex ¼ M−1

imBim: ð80Þ

In addition to the linearized system, we also implement
and solve the full nonlinear system of equations for
comparison, and will test and discuss their differences
with simulation experiments in Sec. VII. The two models
are important and will have their own scope, as the
linearized version is faster, more flexible, and required
for control design, whereas the nonlinear simulation
provides more realistic simulated data, and can resolve
nonlinearities and time variability, which is especially
interesting for system identification, diagnostics, and data
analysis.

V. CLOSING THE LOOP: DFACS, SENSORS,
AND ACTUATORS

The dynamics of LISA is a multiple-input multiple-
output (MIMO) feedback controlled system to ensure that
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all dynamical d.o.f.s stay as close as possible to working
points. To realize this, the control loop will cancel any stray
forces and torques deviating the bodies from their set points,
hence, commanding forces and torques that are exactly
opposed to the disturbances—in the limit case where control
authority is infinite. The strategyof control—theDFACS—is
designed to fulfil the three following, main objectives:
(1) The satellite motion must be locked on the test-mass

average trajectories, as monitored by the local, test-
mass interferometer, to compensate for the otherwise
noisy spacecraft jitter, mainly driven by its own
thrust noise [5]. This is called drag-free control. At
frequencies where control gain is high, in the lower
part of the LISA band, it can successfully force the
spacecraft to be nearly as quiet as the test masses.

(2) Any relative displacement drift between the two
test masses inside the spacecraft must—and can only
be—corrected by applying direct, electrostatic
forces, and torques on the test masses (x1 and x2
axes excluded). These are inevitable actuations for
the test masses to stay within their housings over the
course of the mission, mainly compensating for
spacecraft self-gravity gradients. This is called
suspension control, and its use must stay minimal.

(3) The MOSAs must point constantly towards their
respective distant spacecraft, and so it must be
ensured that the incoming wave fronts are normal
to the lines of sight of the telescopes at any time. To
that end, both spacecraft rotation andMOSA opening
angle actuation will be commanded. In a nominal
science mode, we expect the spacecraft attitude
control to ensure that the êX is aligned along the
constellation bisector (common-mode angle), whereas
the MOSA angle mechanism control will actuate the
opening angle ϕm (differential-mode angle).

A dedicated publication [16] has already thoroughly
addressed the question of LISA DFACS and its optimiza-
tion regarding the isolation of test-mass actuation from
spacecraft jitter. Hence, here we will discuss more suc-
cinctly the question of DFACS modeling, and we will refer
the reader to this past publication for further details.
The simulation we present in this article involves a

detailed modeling of the closed-loop system, including
models for the DFACS, the sensor and actuator systems,
noise models for these systems as well as for the test-
mass acceleration noise based on LISA Pathfinder output
[10,11]. Figure 3 shows a diagram of such a loop and of the
way it is modeled in the simulation, emphasizing in-loop
and out-of-loop physical quantities. It breaks down as
(1) The EOM block, core of the loop and described

thoroughly in Sec. III, is the passive dynamical
system to be controlled and stabilized. As previously
discussed, it includes longitudinal and rotational
dynamics of spacecraft and test masses. It yields
the time series of 17 dynamical states per spacecraft
which feed in the measurement system.

(2) The measurement block then models the observa-
tions of the dynamical states from optical interfer-
ometer read-out [7,8] (longitudinal: x1, x2, rotational:
η1, ϕ1, η2, ϕ2), electrostatic capacitive sensing [6] (all
test masses longitudinal and rotational d.o.f.s), and
LDWS informing about spacecraft and MOSA rota-
tional d.o.f.s. Noise is added to each of these
measurement outputs, and its spectral characteristics
are detailed in Table II. Geometrical imperfections
are introduced with sensing cross-talk matrices for
IFO and GRS sensors. The DWS measurement
geometry is modeled in more details. At each instant,
t the incident angles (ηldws1 , ϕldws

1 , ηldws2 , ϕldws
2 ) of the

incoming beam are computed with respect to the
telescope axes of the local spacecraft. The Cardan
angles describing the spacecraft attitude are then
recovered from an attitude determination matrix
[cf. Eq. (81)].

2
64
Θldws

Hldws

Φldws

3
75¼

0
B@

0.0 −1.0 0.0 1.0

0.0 − 1ffiffi
3

p 0.0 − 1ffiffi
3

p

−0.5 0.0 −0.5 0.0

1
CA
2
666664
ϕldws
1

ηldws1

ϕldws
2

ηldws2

3
777775:

ð81Þ

(3) The control block is fed in with 16 error signals,
made from the difference between sensor outputs
and reference values to be tracked (all 0.0 due to our

FIG. 3. Block diagram of LISA closed-loop dynamics. The
system EOM, intrinsically unstable, get stabilized by the appli-
cation of compensation forces and torques, based on the
information from in-loop sensors, and exerted by the actuation
system on board. External disturbances and noise perturb the
system, and require the continuous compensation of the control to
maintain the d.o.f. at target points. While the current LISANode
dynamics simulation includes white noise only, noise models will
be inserted, as depicted in this diagram.
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representation of the dynamical states, as deviation
from working points). It includes the transfer func-
tions corresponding to the four control strategies:
drag-free, suspension, attitude, and telescope point-
ing control. We refer the reader to [16] for a detailed
discussion of these control strategies, and especially
to Table III of [16], which summarizes the control
mapping and bandwidth.

(4) The actuation block receives commands from the
control block and delivers compensation forces and
torques to the EOM block. Noise time series with
spectral characteristics listed in Table II are added to
these actuation outputs. Presently, the actuation
models consist merely in gains, cross-talks or time
constants transfer functions.

VI. NUMERICAL SOLVING
AND LISANode SIMULATIONS

A. LISANode software

LISANode is a graph-based prototype simulator created
and used by the LISA collaboration [20,21]. The graph
encoding computations is assembled in Python either from
existing graphs or from atomic nodes implemented in C++.
The provided Python transcriber is then able to translate
the graph into a C++ file encoding the simulation. This
ensures the ease of use of Python while keeping the
performance of C++.
In this work, the library of existing nodes was extended

consistently to allow not only scalars to be passed between
nodes, but also vectors and 3 × 3matrices. This allows for a
much more convenient implementation of the dynamics
described here, as well as providing faster execution
speeds. Additionally, this enables an easy implementation
of differential equation solvers.

B. Linearized simulation

The linear differential system to be solved can be
represented in the continuous state-space formalism,
cf. Eq. (79). Solving the system in Eq. (79) amounts to
translating it into a discrete state space, i.e., the continuous
equation of the form

dX⃗
dt

¼ AX⃗ðtÞ þ Bu⃗ðtÞ; ð82Þ

with constant A and B into the discrete

X⃗ðtðnþ1ÞÞ ¼ AdiscX⃗ðtðnÞÞ þ Bdiscu⃗ðtðnÞÞ: ð83Þ

For completeness, a derivation of the solution can be found
in the Appendix C. The relevant relations are given by

Adisc ¼ eAdt; ð84Þ

Bdisc ¼ A−1ðeAdt − 1ÞB; ð85Þ

where dt gives the discretization of the time domain, which
in this case is given as the inverse of the LISA simulation
sampling frequency. With the equations in this form,
getting the state vector X⃗ at the next time point amounts
to a simple matrix multiplication. As the matrices A and B
are known beforehand, the transition to the discrete system
can be handled in Python without LISANode. We use an off-
the-shelf algorithm for the transformation [24]. In LISANode,
the matrix multiplication in each time step is handled
within one atomic node to make it more efficient. Finally,
discretization of the input vector u⃗ðtÞ is of importance. The
simplest version would be of zero-order hold, i.e. approxi-
mating the function with step functions. A second option
would be a first-order hold, i.e. a linear interpolation. We
have verified empirically that both methods yield results of
equal accuracy, which is likely explained by the high
sampling rate used in our simulations (fs ¼ 16 Hz) rela-
tively to the typical timescale of our experiments
(< 0.1 Hz). Hence, we have opted for the simple zero-
order interpolation scheme, as given in Eqs. (84) and (85).

C. Nonlinear simulation

In the nonlinear case, the ordinary differential equation
system must be solved for each time step. There are many
algorithms available, which usually require the problem to
be stated in the form

dX⃗
dt

¼ f⃗ðt; X⃗Þ: ð86Þ

The EOM derived here can easily be brought into this form,
and the full set can be found in the Appendix D. For
discretization, we use dt for the step-size again. We chose
to implement three algorithms into LISANode, as the graph-
based computations made it almost impossible to use an
off-the-shelf code. There are different ways to characterize
these algorithms, most important is the order of the method
in terms of the local truncation error (LTE), i.e. the error
done in one time step, or the global truncation error (GTE),
i.e. the error accumulated over multiple time steps until a
final time. Another important aspect is the computational
complexity, which here amounts to how many function

evaluations of f⃗ are needed to predict the next time step. We
will use the shorthand

X⃗n ¼ X⃗ðtðnÞÞ ð87Þ

for the discretized state vector. The three algorithms
considered are
(1) Euler method: The simplest method, which approx-

imates the derivative as a difference quotient
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X⃗nþ1 − X⃗n

dt
¼ f⃗ðt; X⃗nÞ; ð88Þ

X⃗nþ1 ¼ dt · f⃗ðt; X⃗nÞ þ X⃗n: ð89Þ

The method is nevertheless interesting because it is
quick (only requires 1 evaluation of f⃗) and gives
good results for a small step size. The LTE is of order
dt2, the GTE of order dt.

(2) Runge-Kutta 4 (RK4): A commonly used algorithm
when it comes to ordinary differential equations. It
can be formulated as

X⃗nþ1 ¼ X⃗n þ
dt
6
ðk⃗1 þ 2k⃗2 þ 2k⃗3 þ k⃗4Þ; ð90Þ

where the k⃗i depend successively on each other and
are given by

k⃗1 ¼ f⃗ðtðnÞ; X⃗nÞ;

k⃗2 ¼ f⃗

	
tðnÞ þ dt

2
; X⃗n þ

dt
2
k⃗1



;

k⃗3 ¼ f⃗

	
tðnÞ þ dt

2
; X⃗n þ

dt
2
k⃗2



;

k⃗4 ¼ f⃗ðtðnÞ þ dt; X⃗n þ dt · k⃗3Þ: ð91Þ

It requires four function evaluations of f⃗, the LTE is
of order dt5, and the GTE of order dt4.

(3) Runge-Kutta-Fehlberg 4 (5) (RKF45): This is an
interesting extension to RK4. The LTE and GTE are
the same for RK4 and RKF45, but by using six
function evaluations of f⃗ the algorithm can also
estimate the local error itself. The estimator is
of order dt5, hence the name. The constants of
the algorithm were chosen in accordance with [25],
the scheme is conceptually the same as for RK4, the
interdependence of the k⃗i is more complicated.

Note that due to the LISANode framework, the functions f⃗ are
represented by graphs. In the RK4 and RKF45 algorithms,
this leads to four and six copies of this “function graph” due
to the interdependence of the k⃗i.
The estimated truncation error of the RKF45 algorithm

can be useful to provide an upper bound for the local error,
providing an indication of a diverging solution. Its reli-
ability is reduced in the presence of strongly nonlinear
solutions.

D. Efficiency analysis

In Table III there is a comparison of run times for the
linear and nonlinear models with different solving algo-
rithms. We chose a simulated time of 105 seconds, but each
time step should take the same amount of time as they each

have the same complexity. Thus, the results are presented as
speedups of simulated time over computation time.
The code has not been fully optimized for runtime yet, and

we expect further improvements. Several performance opti-
mizations are possible, e.g. using multiple threads during
computation. Thus, the nonlinear Euler solver is currently
slightly faster than the linear one. We understand this as due
to their different implementation: the linear simulation uses a
matrix formulation, which requires numerous matrix-vector
multiplications. The matrices are quite sparse (∼5% nonzero
elements), which results in some overhead compared to the
nonlinear Euler implementation.

VII. SIMULATION EXPERIMENTS

Solving the 17-dimensional differential systems, the
simulation yields the time evolution of all the system
dynamical d.o.f.s, as well as the in-loop sensor outputs,
the commanded and applied forces on each dynamical
body. In addition, the possibility of injecting (sinusoidal)
excitation signals is implemented, such as disturbance
signals d⃗ (“direct forces & torques” in Fig. 3) or guidance
signals g⃗ (biasing the in-loop sensors, see Fig. 3). These
input ports are useful to probe the closed-loop transfer
functions of the system and perform experiments to check
the dynamical model. This is the purpose of this section.
Wepresent a series of eight simulated experiments realized

onboard a single spacecraft, where excitation signals are
injected in the closed loop to stimulate the dynamics and
probe its response to disturbances. We inject three guidance
signal injections simultaneously at three distinct frequencies,
and for eight different injection amplitudes:
(1) On spacecraft control angle H:

at fgH ¼ 1 mHz, amplitude:
AgH ¼ ½105; 104; 103; 100; 10; 1; 0.1; 10−2� μrad.

(2) On test-mass longitudinal x displacement x1:
at fgx1 ¼ 5 mHz, amplitude:

Agx1
¼ ½105; 104; 103; 100; 10; 1; 0.1; 10−2� μm.

(3) On test-mass longitudinal x displacement x2:
at fgx2 ¼ 10 mHz, amplitude:

Agx2
¼ ½105;104;103;100;10;1;0.1;10−2� μm.

TABLE III. Table comparing computation time of the linear
and nonlinear implementations with different solving algorithms.
The results are given as dimensionless ratios of simulated time
and computation time, i.e. how much speedup is gained in the
simulation. For a factor 100 this means that it takes 0.01 seconds
on a computer to simulate 1 second in the model. All numbers are
generated using an Apple M1 Pro processor (single-thread
execution) with the native clang compiler with optimization
level 1.

Simulation Linear NL (Euler) NL (RK4) NL (RKF45)

Single S/C 513 635 373 296
Full LISA 65.6 84.4 64.8 52.3
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We refer the reader to the Fig. 2 helping the visualization
of the d.o.f.s and of the geometry of these experiments.
These five injection experiments are realized with both
linear and nonlinear models for comparison. The simu-
lations have a duration of 3 × 104 s and are sampled to 4 Hz
each, from which the first 1 × 104 s have been truncated,
ensuring the slow MOSA control has stabilized fully and
the steady-state regime has been reached. The residual
time series (between linear and nonlinear simulations) are

computed for each experiment. Figures 4 and 5 show the
simulation results for the largest amplitude experiments
(AgH ¼ 10.0 μrad, Agx1

¼ Agx2
¼ 10.0 μm).

A. Testing spacecraft dynamics

Figure 4 shows the spacecraft angular d.o.f.s time series
½ΘðtÞ; HðtÞ;ΦðtÞ� for the linear (blue) and the nonlinear
(orange) simulations. The green traces give the residuals.

FIG. 5. Time evolution of the test mass six d.o.f.s (longitudinal ½x1; y1; z1� on the top subplots, angular ½θ1; η1;ϕ1� on the bottom
subplots) during the largest amplitude injection experiment. Guidance signals are injected on spacecraft angleH, and test masses x1 and
x2 controlled d.o.f.s, respectively, of amplitude 10 μrad, 10 μm and 10 μm at f ¼ 1, 5, and 10 mHz. Simulations using the linear (in
blue) and nonlinear (orange) closed-loop system model are shown, together with the modeling residual (in green).

FIG. 4. Time evolution of the spacecraft three d.o.f.s (angular ½Θ; H;Φ�) during the largest amplitude injection experiment. Guidance
signals are injected on the spacecraft angleH, and test masses x1 and x2 controlled d.o.f.s, respectively, of amplitude 10 μrad, 10 μm and
10 μm at f ¼ 1, 5, and 10 mHz. Simulations using the linear (in blue) and nonlinear (orange) closed-loop system model are shown,
together with the modeling residual (in green).
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We observe the 10.0 μradH injections around the Y axis as
expected. Θ and Φ are compatible with simulated noise
(sensing and actuation noise). The linear and nonlinear
simulations use different realizations of the noise, explain-
ing the shape of the observed residual, which yields the sum
of the uncorrelated noise. The H time series at the center
shows an excellent agreement between linear and nonlinear
simulations. This will be investigated more quantitatively
with the test-mass longitudinal motion.

B. Testing test-mass dynamics

Test-mass motion has more complex dynamics proper-
ties to probe since it is impacted by both spacecraft (lever
arms, inertial forces, rotations in housing) and test-mass
disturbances. Hence, in the Fig. 5 one sees the imprint of
the three injections altogether. While drag-free control
suppresses (lever-arm) spacecraft-rotation-driven longi-
tudinal motion of the test masses, the stimulated rotation
of spacecraft is observable on both θ and ϕ rotational d.o.f.s
of the test masses, since the Y axis of the spacecraft B
frame, around which the spacecraft rotation is performed,
has nonzero components along the x and y axes of the
housing frames H1 and H2. The excitation signal is
amplified compared to the stimulation signal, exceeding
10 μrad for η1. This is coincidentally due to the injection
frequency fgH ¼ 1 mHz sitting at the end of the suspension
control bandwidth (see Table III of [16] for more details),
where the suspension struggles to compensate for external
disturbances, amplifying them in a narrow bandwidth
around the millihertz. We have verified that, when injecting
at the lower frequency of fgH ¼ 0.1 mHz, where suspen-
sion control is still efficient, the imprint of the injection on
θ1 and η1 is mitigated down to below 0.1 μrad, and the test
masses are well forced to rotate together with the spacecraft
guidance at low frequency [16].
The top subplots of Fig. 5 show the longitudinal motion

time series, where the x1 and x2 guidance injections are
visible. The left-hand plot shows the x1 d.o.f. time series,
which indicates that the drag-free control is doing well
to force this dynamical d.o.f. to track the guidance
sinusoidal injection. The middle plot shows the y1 d.o.f.
which exhibits a composition of the two injection fre-
quencies, as an imprint of both x1 and x2 time evolution.
Indeed, drag-free control here has the task to force x1 and
x2 variables to track down two different frequencies,
despite êx1 and êx2 being not perpendicular. In practice,
the command will then have to request compensation of
spacecraft motion along x2 in order to correct fx1 injected
motion along x2 originating from the x1 control, which
has necessarily leaked to the x2 direction due to the
nonorthogonality between êx1 and êx2 . This explains
why one sees traces of both frequencies in the y1 plot
of Fig. 5. All the dynamics take place in the X-Y plane
here; the z1 dynamical d.o.f. time series are compatible
with noise in this case. Again, Fig. 5 is presenting the

largest amplitude injection experiment, showing excellent
agreement between the linear and nonlinear simulation.
There are, however, observable discrepancies when the
quantities—and in particular the residuals—are represented
in the frequency domain. In the next section, we show
that the observed discrepancies indicate the presence of
dynamical time-varying and nonlinear features the linear
time-invariant (LTI) model is failing to capture by
construction.

C. Resolution of nonlinearities

Computing the frequency spectra of the time series in
Fig. 5, discrepancies between linear and nonlinear simu-
lations become visible. This is quantified using the relative
error of spectrum amplitudes at injection frequencies

δres ¼
���� jX̃nlðfinjÞj − jX̃lðfinjÞj

jX̃lðfinjÞj

����: ð92Þ

Figure 6 shows the behavior of the relative error δres as a
function of the injection amplitudes. Specific simulations
with sensing and actuation noise turned off have been
realized for this analysis, to better resolve small discrep-
ancies between the linear and nonlinear models. Figure 6
focuses on the dynamical behavior of the d.o.f. x1,
inspected at two different injection frequencies: fgx1 and
2fgH . The top subplot shows agreement between the linear
and nonlinear model of the response to the x1 guidance
signals at fgx1 ¼ 5 mHz. The residual scales linearly with
respect to the injection amplitude: it is the signature of the
contribution of an extra linear component the linear model
is missing. Indeed, the linear model discussed is also time
invariant (see Sec. IV C). Hence, it cannot account for time
variability of the dynamical system such as the MOSA
rotation, which can have an important impact on geomet-
rical projections and inertial response to external input
forces and torques. In the particular case of Fig. 6, the
discrepancy comes from the MOSA opening angle depart-
ing from 60° in the nonlinear model, since only the latter
accounts for telescope pointing constrained by the satel-
lite’s orbital motion. The linear simulation stays ignorant of
such feature, hence inducing a small projection error.
On the other hand, thebottom subplot of Fig. 6 presents the

nonlinear behavior of the x1 d.o.f. dynamics, in particular its
response to spacecraft rotational excitation. It shows that
when the spacecraft is forced to rotate around itsY axis above
an amplitude of AgH ¼ 0.1 mrad, a quadratic component
dominates the response to the rotational excitation, as we
observe a trend in the δx1 residual proportional to A2

gH . Note
that, here, the frequency inspected is twice of the angular
injection frequency, since the nonlinear response manifests
as additional signal harmonics. Since the linear response
cannot create a 2fgH signal, the relative error at 2fgH is δx1 ≈
1.0 for AgH ≤ 10 μrad.
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Figure 6 hence verifies that the LTI modeling is indeed
not, by construction, capable of capturing nonlinear or
time-varying dynamical terms, since all quadratic terms
have been truncated when the state-space matrices have
been evaluated at working points (cf. Sec. IV C), and the
time-varying components averaged out over the simulation
duration. The residuals observed in Fig. 6 are the residuals
of this truncation, and this motivates the introduction of the

nonlinear modeling, for instance, in the context of system
identification experiments involving large probing signals.

VIII. TDI AND S=C JITTER SUPPRESSION:
A NUMERICAL DEMONSTRATION

A variety of noise sources, in particular the spacecraft
thrusters, are expected to create random motion, or “jitter,”
between the test masses and spacecraft. In addition to
suppressing the laser frequency noise, one of the goals of
TDI is to suppress the influence of the spacecraft jitter, by
canceling equal and opposite effects in the long and short-
arm IFOs. With an ideal instrument, e.g., in the absence of
tilt-to-length couplings, the test-mass interferometer will
capture all the spacecraft noisy accelerations along the
long-range interferometer. Hence, combining the signals
within the TDI scheme will result in the cancellation of this
contribution. Again, the situation just described is ideal-
ized, and misalignment between test-mass and long-range
interferometer axes, as well as reference points mismatch
(see Sec. VIII B), will let jitter residuals through that one
can interpret as geometrical tilt-to-length effects. In this
work, however, we will restrict our analysis to the ideal, no-
TTL case, and utilize the jitter suppression expectation as a
figure of merit for demonstrating the correct interfacing
between the dynamical model and optical interferences
onboard and across the constellation.

A. Interferometer observables

The simulator delivers time series of themetrology sensors
onboard each spacecraft. It also yields mother-nature quan-
tities such as the actual velocity vH1

T1=H1
and vH2

T2=H2
of the test

masses with respect to the housing framesH1 andH2, or the

true acceleration a⃗B ¼ f⃗B
mB

of the spacecraft c.m. with respect
to its local inertial frame, which can be projected along the
interferometer long-arm axes

FIG. 6. Measured relative errors of the δx1 d.o.f. between linear
and nonlinear simulations, for the range of eight excitation
amplitudes covered. The blue crosses × show the measurements
of the error at f ¼ 10 mHz corresponding to the gx1 longitudinal
injection frequency (top subplot), and f ¼ 2 mHz corresponding
to twice the gH angular injection frequency (bottom subplot). The
orange curves represent linear reference trends in log-log scale,
facilitating the reading of the order of dependence of the
dynamical response to the injection amplitude scale. On the
top subplot, the relative error δx1 stays constant with respect to
the scale of the excitation, and is the consequence of a time-
varying component the LTI model cannot capture, such as the
time-varying opening angle between MOSAs. On the bottom
plot, we observe a relative error that scales quadratically with the
excitation signal gH after AgH ¼ 0.1 mrad. It reflects the linear
nature of the LTI model, unable to capture nonlinear dynamical
contributions such as the inertial forces exerting on test mass
along x1 and induced by the spacecraft angular jitter.

FIG. 7. The overall test-mass-to-test-mass optical measurement
is split into three pieces: one ISI and two TMIs per arm.
Nominally, local spacecraft (1) accelerations towards the distant
spacecraft (2) shorten the ISI optical path, but increase the local
TMI optical path length by the same amount, thus TDI outputs
remain unaffected. In this nominal case, the geometrical point of
the spacecraft probed by the ISI is matching the one probed by the
TMI. We denoted such a geometrical point by the letter C.
Illustration from [16].
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a1 ¼
f⃗B
mB

· e⃗H�
1
;x; a2 ¼

f⃗B
mB

· e⃗H�
2
;x: ð93Þ

These physical quantities are measured by the local
interferometers (TMI) and the interspacecraft, long-arm
interferometers (ISI), respectively. They provide the dynam-
ics contributions to the phase modulation of the heterodyne
interferometers beat notes, once postprocessed and rescaled
into equivalent frequency fluctuation unitswith respect to the
laser carrier frequency as

νtmi
12 ≈

vH1

T1=H1

c
; νtmi

13 ≈
vH2

T2=H2

c
; ð94Þ

νisi12 ≈
1

c

Z
t

t0

a1dt0; νisi13 ≈
1

c

Z
t

t0

a2dt0: ð95Þ

B. What does spacecraft jitter mean?

Particular attention must be set on the definition of the
spacecraft acceleration used in Eq. (93). Indeed, one still
needs to identify the geometrical point of the spacecraft
whose noisy dynamical motion contributes to the ISI beat
note in Eq. (95)—a geometrical point that we will denote
with the letter C from now on. That is, not only does the
c.m. longitudinal noisy motion contribute to νisi, but so
does the spacecraft rotational motion around its c.m. which
translates into a translational acceleration of the point C
relative to its local inertial frame. Accounting for such a
lever-arm effect, Eq. (95) now becomes

νisi12 ≈
1

c

�Z
t

t0

a1dt0 − ðω⃗B=O × ⃗rC1=BÞ · e⃗H�
1
;x

�
; ð96Þ

νisi13 ≈
1

c

�Z
t

t0

a2dt0 − ðω⃗B=O × ⃗rC2=BÞ · e⃗H�
2
;x

�
: ð97Þ

As confirmed by simulations, the nominal location for C1

andC2 are actually the housing centersH1 andH2, in order to
suppress large geometrical tilt to length, deteriorating detec-
tor sensitivity significantly beyond requirements. In such a
nominal case, the geometrical point of any local spacecraft
imaged to the distant spacecraft corresponds to the nominal
position of the test masses, and the test mass to test mass
optical measurement can be reconstituted independently of
the spacecraft dynamics.

C. Simulating spacecraft jitter suppression

We performed a series of simulation runs using LISANode

to demonstrate this suppression. We use the PyTDI software
[26] to build the TDI data streams out of the interferometer
beat notes generated by LISANode, while LISAOrbits Python

software [27] is utilized to compute the light travel times
between spacecraft required for PyTDI computations.
Figure 8 shows the TDI-X spectrum for four simulations:
A run using default, expected values for all noise (orange),

disabling noise on the micropropulsion system (green),
disabling dynamics entirely (red), and finally default noise
with disabled TMI channel (filled with 0s) to emulate a
failure of spacecraft and MOSA jitters correction by TDI
(blue). In all but the latter case, the summing method used
by TDI reduces the error to a comparable level. In the final
case, as expected, the postprocessing combination of TMI
and ISI cannot isolate the long-range measurement from
spacecraft jitter, which starts to impact significantly the
sensitivity around 4 mHz—above the drag-free frequency
bandwidth. It results in greater noise leaking into the TDI
channels in this case.
Hence, the blue curve provides an estimate of how the

spacecraft jitter would impact LISA sensitivity in the case
where TDI would not be efficient at isolating the detector
performance from spacecraft dynamics noise or in the case
of a failure in the TMI. The green and red traces are both
giving the no spacecraft jitter reference curve: in the first
case, force noise on spacecraft is essentially turned off,
while in the second case, there are no spacecraft dynamics
modeled in the first place, so no jitter exists by construc-
tion. Figure 8 then shows that the orange curve, including
both force noise on spacecraft and a correct setup for TDI,

FIG. 8. Spectrum of TDI-X channel in relative frequency
deviation units (i.e. as fraction of the laser central frequency
ν0 ¼ 281.6 THz) in four different analysis cases: no dynamics
data (red), thrust noise on (orange) and off (green), no jitter
information from local test mass IFO (blue). This plot demon-
strates TDI efficiency of suppressing realistic spacecraft longi-
tudinal and angular jitters. Below 2 mHz, the noise spectrum is
compatible with the acceleration noise injected in the simulation.
The black dashed line is drawn as a reference for drag-free jitter
suppression authority, and represents the frequency from which
the drag-free looses efficiency sensibly, that is, drops enough to
let noisy spacecraft-to-test mass accelerations through at a level
comparable to the test mass (absolute) acceleration noise.
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lines up well with the no jitter reference spectra, demon-
strating that TDI is mitigating efficiently the spacecraft
jitter, and bringing it down to subdominant contributions. It
is the first numerical demonstration of TDI jitter suppres-
sion within a full, time-domain LISA simulation.

IX. CONCLUSION

With this work, we provide a comprehensive framework
for describing mathematically the closed-loop dynamics
of the 3 × 17 d.o.f.s at play in the LISA constellation
system. We have derived the differential EOMs for the
longitudinal and rotational d.o.f.s of the moving bodies,
both in a vectorial form [Eqs. (48), (51), (53), and (58)] and
expressed in coordinate systems of interest specified in
Sec. II A [Eqs. (69)–(72)]. These EOM were inserted in a
MIMO feedback system, interfaced with sensors, actuators,
controllers, and noise sources within a control loop, the so-
called DFACS loop (cf. Sec. V). The resulting MIMO
differential system has been solved using several numerical
schemes, depending on whether the system dynamics was
linearized or not. For linear systems, semianalytical sol-
utions are available, while for the full nonlinear simula-
tions, we have preferred Runge-Kutta four numerical
solving scheme (cf. Sec. VI). In Sec. VII, the simulation
physics has been probed and interpreted with a selection of
injection experiments, and we have illustrated the excellent
agreement between the linear and the nonlinear simula-
tions, the existing residual being consistent with time-
varying and nonlinear dynamical contributions the LTI
model cannot capture (see Fig. 6). Finally, in Sec. VIII,
we have discussed the nontrivial interface between the
simulated physical quantities (spacecraft and test-mass
accelerations) with the interferometers’ beat notes, and
concluded with the numerical demonstration that the TDI
algorithm can suppress spacecraft and MOSA noisy motion
from the final interferometer data streams, in the idealized
case where no dynamical couplings (TTL, actuation cross-
talks, stiffnesses) are turned on.
This first end-to-end simulation offers the opportunity to

start quantitatively evaluating and optimizing postprocess-
ing techniques aimed at suppressing dynamical jitters’
imprints on TDI data streams (TTL mitigation, glitch
detection and suppression). More generally, it enables
the study of the impact of artifacts of dynamical origin
(jitter noise, micrometeoroids hitting the spacecraft [28])
and propagating due to physical couplings such as TTL or
stiffness forces [18,29], through the instrument response
and all the way down to the TDI time series. It breaks down
and reproduces the complex interplay between the DFACS
response, the propagation time delays and various echo
phenomena due to postprocessing which transforms an
impulse excitation signal into a much richer signature.
Because LISA will open a novel window on the Universe,
potentially capturing unexpected, transient signals, it is
crucial to characterize instrumental artifacts with the best

accuracy to discriminate instrumental from astrophysical
events. This E2E simulation will provide key information
to that end. We finally note that all the codes and the
software dependencies (LISAOrbits, PyTDI, …) are available
(on demand) to the consortium in the my-lisanode-sim1

GITLAB repository, from which one can download the full
environment encapsulated in a DOCKER or a SINGULARITY

container and from which one can run the E2E and
reproduce the results hereby presented (dedicated experi-
ment scripts are also provided).
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APPENDIX A: ANGULAR VELOCITY AND
ACCELERATION FROM BASIS VECTORS

In this appendix, we derive an analytical expression of the
angular velocity of the body as a function of the unit vectors
basis of a reference frame attached rigidly to the body.
Using the transport theorem at Eq. (1) as well as cross-

product properties, it can be found that

d
dt

����
J
½êx;B� ¼

d
dt

����
B
½êx;B� þ ω⃗B=J × êx;B

¼ ω⃗B=J × êx;B; ðA1Þ
d
dt

����
J
½êy;B� ¼

d
dt

����
B
½êy;B� þ ω⃗B=J × êy;B

¼ ω⃗B=J × êy;B; ðA2Þ
d
dt

����
J
½êz;B� ¼

d
dt

����
B
½êz;B� þ ω⃗B=J × êz;B

¼ ω⃗B=J × êz;B; ðA3Þ

1https://gitlab.in2p3.fr/hinchaus/my-lisanode-sim.
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which simplify since the basis vectors appear static in the
body frame B by definition. We now cross-multiply both
sides by its respective basis

êx;B ×
d
dt

����
J
½êx;B� ¼ êx;B × ω⃗B=J × êx;B; ðA4Þ

êy;B ×
d
dt

����
J
½êy;B� ¼ êy;B × ω⃗B=J × êy;B; ðA5Þ

êz;B ×
d
dt

����
J
½êz;B� ¼ êz;B × ω⃗B=J × êz;B: ðA6Þ

FromLagrange’s vector triple product formula:a×ðb×cÞ¼
ða ·cÞb−ða ·bÞc, and adding up Eqs. (A4)–(A6), we find

êx;B ×
d
dt

����
J
½êx;B� þ êy;B ×

d
dt

����
J
½êy;B� þ êz;B ×

d
dt

����
J
½êz;B�

¼ 3ω⃗B=J − ωB
x;B=J êx;B − ωB

y;B=J êy;B − ωB
z;B=J êz;B

¼ 2ω⃗B=J : ðA7Þ

This leads to the final equation for angular velocity

ω⃗B=J ¼ 1

2
êx;B ×

d
dt

����
J
½êx;B� þ

1

2
êy;B ×

d
dt

����
J
½êy;B�

þ 1

2
êz;B ×

d
dt

����
J
½êz;B�: ðA8Þ

APPENDIX B: FULL DERIVATION
OF EQUATIONS OF MOTION

FOR NONSTATIC MASS DISTRIBUTION

In the main part of this document, we have considered a
fully static mass distribution of the satellite system in its
body frame. However, since the two MOSAs onboard will
rotate accounting for yearly breathing of the constellation,
all masses within the spacecraft are not strictly static with
respect to the B frame. As a result, the c.m. will be
nonstationary in the body frame B. To model this extra
physical feature, it is convenient to define a new geomet-
rical point, denoted S, which corresponds to the c.m. of
the spacecraft platform alone, that is, excluding the two
MOSA bodies.

1. Test-mass longitudinal dynamics

Equipped with this new definition, the position of the
housing geometrical centersH relatively to the c.m.Bwrites

⃗rH=B ¼ ⃗rH=P þ ⃗rP=S − ⃗rB=S; ðB1Þ

where againP is the pivot point of theMOSAs rotation, andS
is the position of the c.m. of the spacecraft platform only
(excluding the MOSAs).

The term ⃗rP=S is assumed to be constant by construction,
and the term ⃗rH=P is the null vector since P coincides with
H by design (and in first approximation), so that

d2

dt2

����
B
½⃗rH=B� ¼ −

d2

dt2

����
B
½⃗rB=S�: ðB2Þ

Deriving the term d2

dt2

���
B
½⃗rB=S� requires expressing the

spacecraft’s c.m. as a function of the telescopes orientation.
The equation of the c.m. provides

mSBS
�!þmH1

BQ1

��!þmH2
BQ2

��! ¼ 0⃗; ðB3Þ

introducing the c.m. of the two MOSAs, respectively, Q1

and Q2, the masses mH1
and mH2

of the two MOSAs, and
the mass mS of the platform alone. Hence, using our
notation convention

mS ⃗rS=B þmH1
⃗rQ1=B þmH2

⃗rQ2=B ¼ 0⃗; ðB4Þ

using ⃗rB=Q ¼ ⃗rB=S þ ⃗rS=P þ ⃗rP=Q, we get after a few steps
of basic algebra

⃗rB=S ¼ ϵ1ð⃗rS=P1
− ⃗rQ1=P1

Þ þ ϵ2ð⃗rS=P2
− ⃗rQ2=P2

Þ; ðB5Þ

where we have introduced mass ratio parameters [Eq. (B6)]
between the MOSA masses and the total mass in order to
lighten the writing,

ϵ1 ¼
mH1

mS þmH1
þmH2

; ϵ2 ¼
mH2

mS þmH1
þmH2

: ðB6Þ

The term ⃗rS=P is constant so that the time derivative of
⃗rB=S writes

d
dt

����
B
½⃗rB=S� ¼ ϵ1ðω⃗H1=B × ⃗rQ1=P1

Þ þ ϵ2ðω⃗H2=B × ⃗rQ2=P2
Þ;

ðB7Þ
and its second derivative writes

d2

dt2

����
B
½r⃗B=S�

¼ ϵ1

�
d
dt

����
B
½ω⃗H1=B�× r⃗Q1=P1

þ ω⃗H1=B× ðω⃗H1=B× r⃗Q1=P1
Þ
�

þ ϵ2

�
d
dt

����
B
½ω⃗H2=B�× r⃗Q2=P2

þ ω⃗H2=B× ðω⃗H2=B× r⃗Q2=P2
Þ
�
:

ðB8Þ
Finally, adding the two contributions (B7) and (B8) from

the spacecraft c.m. time variations to the test-mass longi-
tudinal EOM (48), one finds after a few straightforward,
additional steps that
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d2

dt2

����
H
½⃗rT=H� þ 2ω⃗H=B ×

d
dt

����
H
½⃗rT=H� þ 2ω⃗B=J ×

d
dt

����
H
½⃗rT=H� þ

d
dt

����
B
½ω⃗H=B� × ⃗rT=H þ d

dt

����
J
½ω⃗B=J� × ⃗rT=H

þ 2ðω⃗B=J × ω⃗H=BÞ × ⃗rT=H þ 2ω⃗H=B × ðω⃗B=J × ⃗rT=HÞ þ ω⃗H=B × ðω⃗H=B × ⃗rT=HÞ þ ω⃗B=J × ðω⃗B=J × ⃗rT=HÞ

− ϵ1

�
d
dt

����
B
½ω⃗H1=B� × ⃗rQ1=H1

þ ω⃗H1=B × ðω⃗H1=B × ⃗rQ1=H1
Þ
�
− ϵ2

�
d
dt

����
B
½ω⃗H2=B� × ⃗rQ2=H2

þ ω⃗H2=B × ðω⃗H2=B × ⃗rQ2=H2
Þ
�

− 2ω⃗B=J × ½ϵ1ðω⃗H1=B × ⃗rQ1=H1
Þ þ ϵ2ðω⃗H2=B × ⃗rQ2=H2

Þ� þ d
dt

����
J
½ω⃗B=J� × ½⃗rH=S − ϵ1ð⃗rQ1=H1

þ ⃗rH1=SÞ − ϵ2ð⃗rQ2=H2
þ ⃗rH2=SÞ�

þ ω⃗B=J × ðω⃗B=J × ½⃗rH=S − ϵ1ð⃗rQ1=H1
þ ⃗rH1=SÞ − ϵ2ð⃗rQ2=H2

þ ⃗rH2=SÞ�Þ

¼
X f⃗ T

mT
−
X f⃗B

mB
: ðB9Þ

2. Spacecraft angular dynamics

As seen in the previous section, the stationarity condition
of the mass distribution within the spacecraft—that is, the
stationarity of the inertia tensor in the body frame B—is not
strictly met, for the MOSA rotating along with constella-
tion orbital breathing. A full mathematical treatment for
spacecraft attitude modeling would consist in breaking
down the inertia tensors into nondeformable pieces, thus
static in their respective frames: spacecraft body and its
frame B, MOSA bodies and their respective frames H, as
well as an additional body named platform to which is
attached a frame S of center S—the c.m. of the platform
considered alone, that is, MOSAs excluded. This gives a
decomposition

IB=B ¼ IS=B þ IH1=B þ IH2=B: ðB10Þ

With this, one can treat bodies separately in applying the
transport theorem suitably so that inertia tensors are
constant in time in proper frames. In addition, one also
needs to consider that the spacecraft c.m. about which the
inertia tensor is considered is itself dynamical. Therefore, S
is preferred as the point about which to evaluate the mass
distributions, and one has

IB=Bω⃗B=J ¼ IS=Sω⃗B=J þmS ⃗rB=S × ð⃗rB=S × ω⃗B=J Þ
þ IH1=Q1

ω⃗B=J þ IH2=Q2
ω⃗B=J

−mH1
⃗rQ1=B × ð⃗rQ1=B × ω⃗B=J Þ

−mH2
⃗rQ2=B × ð⃗rQ2=B × ω⃗B=J Þ; ðB11Þ

where we have to introduce the c.m. of the MOSAs alone as
well, denoted Q and labeled by test-mass index. The next
steps would consist in injecting (B11) into Eq. (49),
although one immediately sees that the number of terms
will explode while going through developments similar to
Sec. III A. Accounting for this nonstatic mass distribution
is likely to introduce numerous second-order terms, and

although full derivation of the corresponding equations of
motion have been performed symbolically, a Mathematica
treatment and cross-check will be necessary in order to
produce robust, cross-checked equations of motion able
to evaluate the magnitude of such corrections, and their
relevancy in the model.

APPENDIX C: FROM CONTINUOUS TO
DISCRETE STATE-SPACE MODEL

We start out in the continuous state-space form

dX⃗
dt

¼ AX⃗ðtÞ þ Bu⃗ðtÞ: ðC1Þ

For constant matrices A and B the solution to this is known
to be represented by matrix exponentials and given by

X⃗ðtÞ ¼ eAðt−t0ÞX⃗ðt0Þ þ
Z

t

t0

eAðt−τÞBu⃗ðτÞdτ: ðC2Þ

Then we discretize the solution with the grid spacing dt in
the time domain, using the short-hand notation

X⃗0 ≔ X⃗ðt0Þ; ðC3Þ

X⃗n ≔ X⃗ðtðnÞÞ; ðC4Þ
u⃗n ≔ u⃗ðtðnÞÞ: ðC5Þ

This yields

X⃗nþ1 ¼ eAðtðnþ1Þ−t0ÞX⃗0 þ
Z

tðnþ1Þ

t0

eAðtðnþ1Þ−τÞBu⃗ðτÞdτ; ðC6Þ

X⃗n ¼ eAðtðnÞ−t0ÞX⃗0 þ
Z

tðnÞ

t0

eAðtðnÞ−τÞBu⃗ðτÞdτ: ðC7Þ

To combine these two equations, multiply Eq. (C7) with
expðAdtÞ, use tðnþ1Þ ¼ tðnÞ þ dt, and then solve for the
first term
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eAðtðnþ1Þ−t0ÞX⃗0 ¼ eAdtX⃗n −
Z

tðnÞ

t0

eAðtðnþ1Þ−τÞBu⃗ðτÞdτ: ðC8Þ

This in turn can the be plugged into the previous Eq. (C6)
to get

X⃗nþ1 ¼ eAdtX⃗n þ
Z

tðnþ1Þ

tðnÞ
eAðtðnþ1Þ−τÞBu⃗ðτÞdτ: ðC9Þ

To proceed, a choice needs to be made on how u⃗ is
discretized. As mentioned in Sec. VI B, we chose a zero-
order hold here. Thus, in the relevant interval it is given by

u⃗ðτÞ ¼ u⃗n; τ∈ ½tðnÞ; tðnþ1Þ�: ðC10Þ

Plugging this into the integral of Eq. (C9) and using a new
variable λ ¼ τ − tðnÞ givesZ

dt

0

eAðdt−λÞdλBu⃗n: ðC11Þ

Given that A is invertible, this can be solved by the trickZ
dt

0

eAðdt−λÞdλ ¼ A−1
Z

dt

0

AeAðdt−λÞdλ;

¼ −A−1½eAðdt−λÞ�dt0 ;
¼ A−1ðeAdt − 1Þ: ðC12Þ

Together, we get the final form

X⃗nþ1 ¼ eAdtX⃗n þ A−1½eAdt − 1�Bu⃗n;

≕AdiscX⃗n þ Bdiscu⃗n: ðC13Þ

This solution to the first-order hold is more complex. There,
the external input u⃗ is approximated between time steps by

u⃗ðτÞ ¼ u⃗n þ
τ − tðnÞ

dt
½u⃗nþ1 − u⃗n�: ðC14Þ

More details on this can be found either in the source code of
the library [24] or in [30].

APPENDIX D: FULL SET OF EQUATIONS
OF MOTION FOR THE DIFFERENTIAL

SYSTEM SOLVER

As a reminder, the state vector has the following form:

X⃗ ¼
½ α⃗B=O ωB

B=O rH1

T1=H1
α⃗T 1=H1

rH2

T2=H2

α⃗T 2=H2
ṙH1

T1=H1
ωT 1

T 1=H1
ṙH2

T2=H2
ωT 2

T 2=H2

δϕtel;1 δϕ̇tel;1 δϕtel;2 δϕ̇tel;2 �:
ðD1Þ

The derivative of X⃗ is the interest of this section. First, the
derivatives of α⃗B=O, α⃗T 1=H1

, and α⃗T 2=H2
can be related to

ωB
B=O, ω

T 1

T 1=H1
, and ωT 2

T 2=H2
, respectively, by the following

type of equation [cf. Eq. (74)]

ω⃗ ¼ Eðα⃗Þ ˙α⃗ ⇔ ˙α⃗ ¼ Eðα⃗Þ−1ω⃗: ðD2Þ

For δϕtel;i the relation becomes trivial (i∈ f1; 2g). Then,
take Eq. (70) and invert the moment of inertia matrix to get

ω̇B
B=O ¼ −½TB

OT
O
Jω

J
O=J �×ωB

B=O − ðIBsc=BÞ−1½ωB
B=O�×IBsc=BωB

B=O

þ ðIBsc=BÞ−1½IBsc=BTB
OT

O
Jω

J
O=J �×ωB

B=O

− ðIBsc=BÞ−1½TB
OT

O
Jω

J
O=J �×IBsc=BωB

B=O

þ ðIBsc=BÞ−1
X

tBB − TB
OT

O
J ω̇

J
O=J

− ðIBsc=BÞ−1½TB
OT

O
Jω

J
O=J �×IBsc=BTB

OT
O
Jω

J
O=J : ðD3Þ

Note that the derivative ω̇J
O=J is an external input, i.e.,

ωJ
O=J is not part of the state vector.
Afterwards, the two derivatives of the MOSA attitude

(for the two MOSAs separately) of Eq. (72) can be put as

ω̇H
H=B ¼ −ðIHmo=QÞ−1½ωH

H=B�×IHmo=Qω
H
H=B

− ðIHmo=QÞ−1½TH
Bω

B
B=O�×IHmo=Qω

H
H=B

− ðIHmo=QÞ−1½TH
B T

B
OT

O
Jω

J
O=J �×IHmo=Qω

H
H=B

þ ðIHmo=QÞ−1
X

trel;HH : ðD4Þ

Then next, the two derivatives of the test-mass attitude
(for the two TMs separately) of Eq. (71) can be rewritten as

ω̇T
T =H¼−TT

Hω̇
H
H=B−TT

HT
H
B ω̇

B
B=O

−TT
HT

H
B ½TB

OT
O
Jω

J
O=J �×ωB

B=O−TT
HT

H
B T

B
OT

O
J ω̇

J
O=J

þTT
H½ωH

H=B�×TH
Bω

B
B=OþTT

H½ωH
H=B�×TH

B T
B
OT

O
Jω

J
O=J

þ½ωT
T =H�×TT

Hω
H
H=Bþ½ωT

T =H�×TT
HT

H
Bω

B
B=O

þ½ωT
T =H�×TT

HT
H
B T

B
OT

O
Jω

J
O=J þðITtm=TÞ−1

X
tTT :

ðD5Þ

Note here that the derivatives ω̇B
B=O and ω̇H

H=B have already
been calculated in the previous equations, so can be
regarded as a known input here. Equivalently you could
substitute the previous equation here to completely disen-
tangle the equations, but we believe this is conceptually not
necessary and would only increase computation times by
redundant computations, if implemented in the completely
disentangled form.
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Almost the last identity to use is that the derivatives of rH1

T1=H1
and rH2

T2=H2
are already known values recorded in the state

vector, namely ṙH1

T1=H1
and ṙH2

T2=H2
.

As a last step, the two second derivatives of test-mass position (for the two TMs separately) of Eq. (69) can be
reformulated as

̈rHT=H ¼ −2½ωH
H=B�×ṙHT=H − 2½TH

Bω
B
B=O�×ṙHT=H − 2½TH

B T
B
OT

O
Jω

J
O=J �×ṙHT=H − ½ω̇H

H=B�×rHT=H
− ½TH

B ω̇
B
B=O�×rHT=H − ½TH

B T
B
OT

O
J ω̇

J
O=J �×rHT=H − 2½TH

Bω
B
B=O�×½ωH

H=B�×rHT=H
− 2½TH

B T
B
OT

O
Jω

J
O=J �×½ωH

H=B�×rHT=H − ½ωH
H=B�×½ωH

H=B�×rHT=H
− ½TH

Bω
B
B=O�×½TH

Bω
B
B=O�×rHT=H − 2½TH

B T
B
OT

O
Jω

J
O=J �×½TH

Bω
B
B=O�×rHT=H

− ½TH
B T

B
OT

O
Jω

J
O=J �×½TH

B T
B
OT

O
Jω

J
O=J �×rHT=H þ ½rHH=P�×ω̇H

H=B − ½ωH
H=B�×½ωH

H=B�×rHH=P

− 2½½rHH=P�×ωH
H=B�×TH

Bω
B
B=O þ 2½TH

B T
B
OT

O
Jω

J
O=J �×½rHH=P�×ωH

H=B

þ ½rBH=B�×TH
B ω̇

B
B=O − ½½TH

B r
B
H=B�×TH

Bω
B
B=O�×TH

Bω
B
B=O þ 2½TH

B T
B
OT

O
Jω

J
O=J �×½TH

B r
B
H=B�×TH

Bω
B
B=O

þ
X fHT

mT
−
XTH

B f
B
B

mB
− ½TH

B T
B
OT

O
J ω̇

J
O=J �×TH

B r
B
H=B − ½TH

B T
B
OT

O
Jω

J
O=J �×½TH

B T
B
OT

O
Jω

J
O=J �×TH

B r
B
H=B: ðD6Þ

Note that all quantities other than the second derivatives of test-mass positions are known either as external inputs or from
previous equations in this section.
This gives all the derivatives of the state vector X⃗ in a way that can be interpreted as functions f⃗ðt; X⃗Þ and can thus

directly be fed into a numerical differential equation solver, which then gives an update for X⃗ at the next time step.
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