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The next generation of ground-based gravitational-wave detectors, the Einstein Telescope and Cosmic
Explorer, present a unique opportunity to put constraints on dense matter, among many other groundbreak-
ing scientific goals. In a recent study, the science case of the Einstein Telescope was further strengthened,
studying in particular the performances of different detector designs. In this paper we present a more detailed
study of the nuclear physics section of that work. In particular, focusing on two different detector
configurations (the single-site triangular-shaped design and a design consisting of two widely separated
“L-shaped” interferometers), we study the detection prospects of binary neutron star (BNS) mergers, and
how they can reshape our understanding of the underlying equation of state (EOS) of dense matter.
We employ several state-of-the-art EOS models and state-of-the-art synthetic BNS merger catalogs, and we
make use of the Fisher information formalism to quantify statistical errors on the astrophysical parameters
describing individual BNS events. To check the reliability of the Fisher information formalism method, we
further perform a full parameter estimation for a few simulated events. Based on the uncertainties on the tidal
deformabilities associated to these events, we outline a mechanism to extract the underlying injected EOS
using a recently developed metamodeling approach within a Bayesian framework. Our results suggest that
with ≳500 events with signal-to-noise ratio greater than 12, we will be able to pin down very precisely the
underlying EOS governing the neutron star matter.

DOI: 10.1103/PhysRevD.108.122006

I. INTRODUCTION

After the first detection of gravitational waves (GWs)
from a binary black hole (BBH) coalescence [1] and
the subsequent remarkable discoveries of the LIGO-
Virgo-KAGRA collaboration, GWs have become a new
tool for exploring the Universe and have already provided
important results in astrophysics, fundamental physics, and
cosmology (see, e.g., [2–9]). Current facilities, however, are

expected to reach, possibly on a timescale Oð10Þ yr, the
sensitivity limits allowed by their infrastructures and, to
fully exploit the potential of GWs as a new tool for
exploring the Universe, the GW community has developed
the notion of third-generation (3G) ground-based detectors,
in particular the Einstein Telescope (ET) [10–12] in Europe
and the Cosmic Explorer (CE) [13,14] in the U.S. The
science case for ET has been summarized in [15], while a
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recent comprehensive study of the ET capabilities for
coalescing binaries can be found in [16] and, for multi-
messenger observations, in [17].
In its original design [11,12], ET should be located

Oð200 − 300Þ meters underground in order to reduce the
seismic noise, and features a triangular geometry consist-
ing of three nested interferometric detectors; each detector
consists of two different instruments, a low-frequency
interferometer working at cryogenic temperatures and a
high-frequency interferometer working at room temper-
ature, a configuration referred to as a “xylophone.”
However, the ET collaboration is currently performing a
study to compare the original triangular design, with three
nested detectors in the same infrastructure, with a more
traditional geometry consisting of two widely spaced
L-shaped detectors (that we will refer to as the “2L”
configuration) while maintaining all other innovating
concepts of ET, such as underground locations, cryogen-
ics, and the xylophone configuration. This study involves
many aspects, from a comparison of the scientific return of
the triangle versus 2L configurations, to a comparison of
their costs, as well as of possible different financial
architectures. A detailed comparison between configura-
tions, from the purely scientific point of view, has been
recently presented in Ref. [18]. This work was realized in
the context of the activities of the Observational Science
Board (OSB) of ET,1 and involved the study of a large
number of aspects of the ET Science Case.
In the present paper, we elaborate a part of the study of

the nuclear physics section performed in Ref. [18]. In
particular, we will focus on GWs from binary neutron star
(BNS) systems since they are potentially among the best
natural laboratories to test the behavior of matter at super-
nuclear densities. A GW detector can provide a measure-
ment of the so-called tidal deformabilities of two coalescing
objects, i.e., how they deform under the influence of an
external tidal field (see, e.g., [19] for a review of the physics
we can extract from BNS observations). This is tightly
related to the internal structure, since neutron stars deform
under the action of gravity in a way that depends on the
physics in their interior (e.g., the particles species present,
densities associated to the core of NSs, or possible phase
transitions). Given an equation of state (EOS), the global
structure of the NS, i.e., the relations between mass and
radius or tidal deformability is fully fixed, in the context of
general relativity. Information on the underlying EOS can
then be obtained through measurements of tidal deform-
abilities for a sequence of masses. A measurement of the

tidal deformation, that mostly affects the later stages of the
coalescence (due to an accelerated inspiral and a merger at
a lower frequency) and the postmerger phase (through a
modification of the remnant stability and mass-ejection
processes), is however difficult. Furthermore, one can better
extract information on the so-called chirp mass and on a
combination of the tidal deformabilities of the two compo-
nent neutron stars of a BNS system, while accurate
information on the individual masses and tidal deformabil-
ities is considerably more difficult to obtain. For this reason,
the sensitivity improvement of 3G detectors is expected to
play a crucial role [20–27].
We start here with performing a population study of

the prospects of observing BNS mergers with ET in two
different designs for different EOSs, to assess how the
choice of the underlying EOS impacts the overall number
of detections as well as the statistical uncertainty in the
reconstruction of masses and tidal parameters, obtained
through a Fisher matrix analysis [28–30]. To assess the
adherence of the Fisher matrix approximation to a full
Bayesian parameter estimation (PE), we also carry out a
dedicated analysis on multiple injections, considering differ-
ent waveform approximants, thus with different treatments
of the tidal contributions.
Once the simulated “observations” within the Fisher

formalism are in place, we focus on extracting the infor-
mation on the properties of NS and the underlying EOS. We
employed the so-called metamodeling approach developed
recently, based on a expansion in density of the energy per
baryon [31,32]. Since nuclear matter parameters (NMPs)
serve as the model parameters within this formalism, it can
retain certain features of a more microscopic understanding
of matter through underlying correlations imparted by
experimental data. Yet, they are extremely cheap in terms
of computation time which provides the advantages of
agnostic approaches, e.g., piecewise polytropes [33], spec-
tral parametrization [34–36], or nonparametric Gaussian
process-based sampling [37–39], which are generally
employed in analyzing astrophysical data. Furthermore,
the metamodeling can provide the information on the
composition, where crust and core have a unified descrip-
tion [40], although the core is limited to assuming a purely
nucleonic composition. Various questions concerning the
data from low energy nuclear physics and nuclear astro-
physics were addressed recently using the aforementioned
technique [41–45].
In the present calculation, we aim to reverse engineer the

implicit EOS used in the Fisher formalism, employing the
previously explained metamodeling. Since, in reality, we
would not know the EOS realized in nature, we chose a
few EOSs from the CompOSE database [46] that support NSs
with at least two solar masses [47,48], and we show the
corresponding posteriors for different NS properties, along
with those for the NMPs, within a Bayesian formalism.
We put particular attention to how the results change with

1The OSB is in charge of developing the science case and the
technical tools relevant for ET. See https://www.et-gw.eu/index
.php/the-et-collaboration/observational-science-board for a pre-
sentation of the structure and activities of the OSB and a
repository of papers relevant for ET, produced in the context
of the OSB activities.
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different number of detections, and we compare the out-
comes with different ET designs.
The paper is structured as follows: in Sec. II we describe

our choices for the detectors configurations, the different
EOSs adopted for neutron stars, the EOS modeling we will
employ, the BNS population, and the waveforms used to
simulate the GW signals. In Sec. III we perform the
comparison among Fisher matrix results and full Bayesian
parameter estimation on selected injections. We then
present in Sec. IVA our results for the number of
detections and accuracy in the reconstruction of tidal
parameters for the chosen EOS. In Secs. IV B and IV C
we report our results for the reconstruction of the NS
properties and nuclear-physics parameters, respectively.
Finally, we summarize our findings in Sec. V.

II. SETUP OF THE ANALYSIS

We here give a summary of the choices adopted in this
work for the detector design, as well as for the equations of
state of neutron star matter, for the nuclear metamodel, and
for the population of merging BNS systems. We conclude
the section with a brief overview of the waveform models
used in the analysis.

A. ET detector designs

In Ref. [18] various different designs for ET have been
considered. In this work, we extend the analyses carried out
in Sec. 6.2 of [18] focusing for convenience only on two
representative configurations for ET:

(i) A triangular detector, composed of three nested
interferometers with 60° opening angle and 10 km
long arms. This configuration will be denoted as Δ
in the following.

(ii) Two well-separated L-shaped interferometers, with
15 km long arms and a relative orientation of 45°.
This configuration will be denoted as 2L in the
following.

In both cases, we consider the interferometers to feature
a xylophone design, i.e., to be actually constituted of
two instruments, one with optimized sensitivity at high
frequencies and one at low frequencies, with the latter
operating at cryogenic temperature.2 When considering
the triangular design, we locate the detector in the Sos
Enattos site in Sardinia, Italy, while, in the 2L case, we
locate again one detector in Sardinia and the other in the
Meuse-Rhine Euroregion, across Belgium, Germany, and
the Netherlands.3

B. Neutron star equations of state

To check our capability to recover the assumed nuclear
EOS and neutron star properties, we use different represen-
tative EOS models for obtaining the relation between tidal
deformability and gravitational mass, ΛðmÞ, used for injec-
tion. One model, APR [49], is based on a fit to variational
calculations of homogeneous nuclear matter starting from
realistic nucleon-nucleon interactions for the core. The inner
crust is described by the model of Douchin and Haensel [50]
and, for the outer crust, the work by Baym et al. [51] has
been used. The three other models—RG(SLy2) [52],
GPPVAðNL3ωρÞ [53,54], and PCP(BSk24) [55]—are
based on nuclear density functionals and are unified, i.e.,
NS crust and core have been obtained from the same
underlying nuclear interaction with a consistent crust-core
transition which avoids in particular uncertainties in the
predicted NS radius and tidal deformability [56,57]. The
models have been chosen to cover a certain range of
maximum masses between 2.05M⊙ and 2.75M⊙ and
nuclear matter and neutron star properties, albeit remaining
compatible with present constraints. Hence, two of the
models [APR and RG(SLY2)] predict NS tidal deformabil-
ities at the lower end of the nuclear prior, see Sec. II C, one at
the upper end [GPPVAðNL3ωρÞ], whereas the predictions
from the PCP(BSk24) lies well inside the region covered by
the nuclear prior. All EOS models are available in tabulated
form in the CompOSE database [46,58].

C. Nuclear metamodel for the analysis

Our analysis to extract information on nuclear properties
from the simulated distribution in measured neutron star
masses and tidal deformabilities will be based on a nuclear
metamodel which allows, in particular, to incorporate as a
prior our knowledge on the neutron star EOS from nuclear
physics and other astrophysical sources such as pulsar mass
measurements. Thus, we first generate a prior distribution of
EOSs by Monte Carlo sampling of a large parameter set of
17 independent, uniformly distributed empirical parameters.
These parameters characterize the density dependence of the
energy in symmetric matter (i.e., equal number of protons
and neutrons) and of the symmetry energy (i.e., the variation
of binding energy as a function of the neutron-to-proton
ratio). To name a few, the most important ones correspond-
ing to the symmetric matter areEsat, the energy at saturation,
and Ksat, the incompressibility connected to the second
derivative of energy with respect to density, both evaluated
at the saturation density nsat. Similarly, the ones of foremost
importance for the density dependence of the symmetry
energy are the Esym; Lsym, and Ksym connected to the
constant term, first (slope parameter) and second order
(symmetry incompressibility) density derivative, respec-
tively, all evaluated at nsat. The prior distribution for these
aforementioned ones along with the others varied in this
study is consistent with the present empirical knowledge for

2The sensitivity curves are publicly available at https://apps.et-
gw.eu/tds/ql/?c=16492.

3For the Sos Enattos site we choose as an example
flat ¼ 40°310; long ¼ 9°250g, while for the Meuse-Rhine site
flat ¼ 50°4302300; long ¼ 5°5501400g.
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a large set of nuclear data [31]. The use of the same
functional to describe the core and the inhomogeneous
crust [40] guarantees a consistent estimation of the crust-
core transition inside the neutron star and, thus, consistent
predictions for its radius. This approach enables incorpo-
rating priors from nuclear physics on the EOS and including
the uncertainties at high densities. The only limiting
assumption is that matter is composed of charged leptons,
nucleons, and nuclei only, and in particular that no first-
order phase transition occurs. There might also be some
dependence on the different approximations applied to treat
inhomogeneous matter, e.g., assuming vanishing temper-
ature, which could slightly modify the crust properties (see,
e.g., [59]). However, this should not affect the comparison
of different configurations and only has a very small impact
on the extracted neutron star and nuclear matter properties.
The assumed nuclear prior complies with the chiral effective
field theory energy per particle band for symmetric and pure
neutron matter as given by [60] for baryon number densities
0.02 fm−3 ≤ nB ≤ 0.18 fm−3, see [41,44] for details of the
current implementation.

D. Binary neutron star populations

For ease of comparison, we use the same number of
sources and redshift distribution as in [18] (to which we
refer for further details), obtained with the population
synthesis code MOBSE [61,62].4 In particular, the number
of simulated sources in our 1 yr catalogs is about 7.2 × 105.
For the source-frame masses of the objects, msrc

1 and msrc
2 ,

we choose uniform distributions between 1.1M⊙ and the
maximum allowed mass for each EOS. This allows us to
study the impact of the EOS also on the number of
detectable sources. From the two component masses we
then obtain the quadrupolar adimensional tidal deform-
ability parameters Λ1 and Λ2 through the ΛðmÞ relation
predicted by each EOS, reported in Fig. 1.
The aligned spin components, χ1;z and χ2;z, are sampled

from uniform distributions between ½−0.05; 0.05�,5 and the
remaining angular parameters (sky-position angles α and δ,
inclination ι, polarization angle ψ , time of coalesce tc, and
phase at coalescence Φc) are sampled uniformly in their
physical range.

E. Waveform models

To study the impact of waveform modeling on our
analysis, we use different waveforms with different recipes

on how to treat the tidal contributions to the merger. In
particular, we adopt

IMRPhenomD_NRTidalv2: [63–65] frequency-do-
main phenomenological model built to describe the
quadrupolar tidal contributions to the fundamental
ðl ¼ 2; m ¼ 2Þ mode of a GW signal produced by a
spin-aligned BNS coalescence.

IMRPhenomD_NRTidalv2_Lorentzian: [26] ex-
tension of the previous model, which further models
the main emission peak of the post–merger phase of
the signal.

SEOBNRv4T_surrogate: [66,67] frequency-
domain surrogate version of the aligned-spin BNS
waveform effective one body (EOB) [68–71] model
SEOBNRv4T, which includes both the quadrupolar
and octupolar tidal contributions to the fundamental
mode of the GW signal emitted by BNS systems.

For the EOB model, the tidal coefficients for the octupole
are computed from quasiuniversal relations in terms of
the quadrupole coefficients using the relations provided
in Ref. [72], thus keeping the number of parameters
fixed.

III. FISHER MATRIX FRAMEWORK

A fundamental building block of our analysis is the
capability to forecast for each event in the catalogs its
detectability and the attainable statistical uncertainties on
its parameters. Given the size of the catalogs and the
number of simulations needed, a full injection campaign
and Bayesian parameter estimation is computationally
unfeasible. We thus explore an approximated approach,
in which the detectability of an event is determined by a
threshold on its signal-to-noise ratio (SNR)

FIG. 1. ΛðmÞ relation for the EOS considered in the present
work. We also report in the legend the maximum mass allowed by
each EOS.

4The catalog that we use has been provided by Michela
Mapelli, and is publicly available at https://apps.et-gw.eu/tds/?
content=3&r=18321.

5The remaining spin components are set to 0 and not included
in the analysis. We do not expect this choice to strongly affect the
results, given the small expected spins for neutron stars in binary
systems.
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SNR2 ¼ 4Re
Z

∞

0

df
h̃�ðfÞh̃ðfÞ
SnðfÞ

; ð1Þ

where h̃ðfÞ denotes the Fourier-domain signal and SnðfÞ
the detector noise power spectral density. The statistical
errors on the source parameters for the detected events are
then computed resorting to the Fisher matrix approximation,
which is often used in the literature, and will be briefly
reviewed in the following (see [28–30] for comprehensive
treatments). We stress that the performance of a real detector
will obviously be different from the one simulated within
this simplified framework, yet it can provide a sensible
approximation that can be used to produce meaningful
forecasts and, e.g., compare different detector configura-
tions or choices for the population models.

A. Fisher formalism

Assuming that the time-domain signal sðtÞ in a GW
detector can be expressed as the superposition of a signal
hðt; θ0Þ (with θ0 denoting the true parameters) and sta-
tionary, Gaussian noise nðtÞ with zero mean, i.e.,
sðtÞ ¼ hðt; θ0Þ þ nðtÞ, the likelihood for a data realisation
sðtÞ conditioned on the parameters θ of a waveform
template is given by

LðsjθÞ ∝ exp−
1

2
ðs − hðθÞjs − hðθÞÞ; ð2Þ

with the inner product ðajbÞ being defined as

ðajbÞ≡ 4Re
Z

∞

0

df
ã�ðfÞb̃ðfÞ
SnðfÞ

; ð3Þ

where the tilde denotes a temporal Fourier transform. From
this definition it follows that Eq. (1) can be expressed
as SNR ¼ ½ðhjhÞ�1=2.
Expanding the template signal around the true values of

the parameters θ ¼ θ0 and retaining only first derivatives
of the signal (this goes under the name of linearized signal
approximation, LSA, which is equivalent to the high-SNR
limit [29]), the likelihood in Eq. (2) reduces to a multi-
variate Gaussian. In what follows, we will also focus on the
limit of zero noise, in which case the explicit expression for
the LSA likelihood is

LðsjθÞ ∝ exp

�
−
1

2
δθiδθjΓij

�
; ð4Þ

where δθ≡ θ − θ0 and we have introduced the Fisher
information matrix (FIM)

Γij ≡
�
∂h
∂θi

���� ∂h
∂θj

�����
θ¼θ0

: ð5Þ

The inverse of the FIM thus gives the covariance matrix
of the likelihood in Eq. (4), Covij ¼ Γ−1

ij , from which we
can get the statistical errors on the template parameters
as σi ¼

ffiffiffiffiffiffiffiffiffiffiffi
Covii

p
.

In our analysis, the parameters used to characterise the
GW signal are

θ ¼ fMc; η; dL; α; δ; ι;ψ ; tc;Φc; χ1;z; χ2;z; Λ̃; δΛ̃g; ð6Þ

where Mc denotes the detector-frame chirp mass, η the
symmetric mass ratio, and the combinations of the quad-
rupolar adimensional tidal deformabilities Λ̃ and δΛ̃ are
given by [73]

Λ̃ ¼ 8

13
½ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ�;

δΛ̃ ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
1 −

13272

1319
ηþ 8944

1319
η2
�
ðΛ1 þ Λ2Þ

þ
�
1 −

15910

1319
ηþ 32850

1319
η2 þ 3380

1319
η3
�
ðΛ1 − Λ2Þ

	
:

ð7Þ

To estimate SNRs and FIMs we use the publicly available
code named GWFAST, which was developed recently
[16,74].6,7

B. Checks with full parameter estimation runs

Before proceeding with a full population analysis and
EOS reconstruction, we want to assess the reliability of the
Fisher matrix approach in the estimation of statistical
uncertainties on the masses and tidal deformability param-
eters of BNS systems. To this purpose, we perform a
comparison on some selected events of the FIM results
with full Bayesian PE runs. We simulate signals with the
parameters given in Table I in zero noise, in order to avoid
biases caused by noise fluctuations, and to be able to
consistently compare with the results of the Fisher
analysis.
We employ the injection framework available in the Bilby

library [81,82]. We simulate signals with the IMRPhenomD_
NRTidalv2 and SEOBNRv4T_surrogate waveforms,
and we recover them with the same model used for injections.
For the parameter estimation analysis, the likelihood

6
GWFAST is available at https://github.com/CosmoStatGW/

gwfast.
7For other recent Fisher parameter estimation codes

see [75–80]. Results from these codes were cross-checked
within the activities of the ET Observational Science Board
[16,18].
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is sampled with the nested sampling [83,84] algorithm
DYNESTY [85,86] included in Bilby. We analyze the data
starting from 10 Hz, since going to lower frequencies would
significantly increase the computational cost of the analysis.8

The computational cost of PE analysis increases with both the
signal duration and the frequency range wewant to study. The
BNS signals considered for this comparison study have a
duration of roughly 20minutes, and choosing lower values for
the starting frequencies adds a significant amount of points
to the frequency grid over which we need to evaluate the
waveforms for the likelihood computation. In order to make
this analysis computationally feasible, we employ the relative
binning technique [87,88], as implemented in [89]. Moreover,
to further reduce the computational cost, we here focus on the
2L configuration only.
The parameters of the selected sources are listed

in Table I,9 and the priors employed are listed in
Table II. In Fig. 2, we report violin plots comparing the
FIM estimations and the full PE runs for Mc and the Λ̃
parameter (we here impose a prior m1 ≥ m2 in the FIM
results, which generates the small observed non-
Gaussianities). We overall find a good level of agreement
among FIM and full PE on the error estimate for Λ̃ (we here
focus on the width of the distributions) when using the
IMRPhenomD_NRTidalv2 waveform model. However,
this does not hold for SEOBNRv4T_surrogate, in which
case the FIM results underestimate the error attainable on Λ̃,
while the estimation is consistent among the full PE runs
with different waveform models. The disagreement is much
less pronounced on the chirp mass estimation. This behavior
can be understood from the variation produced in the output
of a waveform model as a consequence of a change in a
parameter. We can quantify this variation from the mis-
match, M, among the waveform predicted by an approx-
imant for a given set of parameters and the prediction of the
same model when varying one of the parameters. In
particular, given the overlap between two signals

Oðh1; h2Þ ¼
ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ

p ; ð8Þ

where ð·j·Þ denotes the inner product defined in Eq. (3), we
quantify the mismatch in two different ways: a “direct”
estimation, given by

Mdðh1; h2Þ ¼ 1 −Oðh1; h2Þ; ð9Þ

and the “standard” definition (see, e.g., [90,91])

Msðh1; h2Þ ¼ 1 −max
tc;Φc

Oðh1; h2Þ: ð10Þ

The advantage of the first definition is that the computation
of Md for a chosen template varying a single parameter is
closely related to the Fisher matrix, which is built upon the
signal partial derivatives with respect to each parameter
(keeping all the others fixed). Md is thus useful to have
some insight on the FIM behavior.
In Fig. 3, we report the mismatch for the source 1

estimated both using the definition in Eqs. (9) (left panel)
and (10) (right panel). Similar behaviors are observed also
for the other events considered in this section.
As it is apparent from the plots in Fig. 3, the variation in

the SEOBNRv4T_surrogatemodel is more pronounced
than for IMRPhenomD_NRTidalv2 when using the
mismatch definition in Eq. (9). Thus, when taking deriv-
atives keeping all the parameters fixed but the tidal
deformability Λ̃, the former approximant will result in a
bigger FIM element for this parameter, and consequently a
smaller error when inverting the FIM to obtain the
covariance matrix. On the other hand, if the mismatch is
computed by maximizing the overlap over the coalescence
time and phase, as defined in Eq. (10), then we find
comparable trends for SEOBNRv4T_surrogate and
IMRPhenomD_NRTidalv2. This reflects the results
we obtain for full PE runs, where we sample also on time
and phase, and then marginalize over them, together with
the other parameters, in order to find the Λ̃ posterior.
Regarding the Fisher matrix approach, we further veri-

fied that the uncertainty estimates on Λ̃ obtained using
SEOBNRv4T_surrogate are consistently smaller than
the ones obtained from IMRPhenomD_NRTidalv2, with
differences as big as one order of magnitude on average,

TABLE I. Table reporting the parameters of the sources used for the comparison among Fisher and full PE results. The masses are
given in source frame. In the last two columns we report the SNR for each source (in the 2L configuration) obtained with the
IMRPhenomD_NRTidalv2 and SEOBNRv4T_surrogate approximants, respectively.

Source m1 ½M⊙� m2 ½M⊙� dL [Mpc] χ1;z χ2;z Λ1 Λ2 SNR (Phenom) SNR (SEOBNR)

1 1.35 1.34 100 0.02 0.03 275 309 570.68 570.63
2 1.42 1.18 100 −0.03 0.04 276 898 134.99 134.98
3 1.95 1.88 360 0.02 0.04 18 27 90.88 90.87
4 1.80 1.67 460 0.0 −0.03 41 83 79.10 79.08

8When performing these checks, for consistency, we also
compute the FIMs with a frequency grid starting at 10 Hz, while
in the following analyses we use a low-frequency cutoff of 2 Hz.

9The difference in SNR among the first and second source,
which are at the same luminosity distance, is due to a difference in
the other angular parameters used for the injection.

FRANCESCO IACOVELLI et al. PHYS. REV. D 108, 122006 (2023)

122006-6



irrespectively of the chosen EOS model or detector
configuration. This also holds at the level of population
study. Also in this case, the effect is considerably less
pronounced for the uncertainties on the masses. Given the

findings reported in this section, in the following analyses
we will not employ the SEOBNRv4T_surrogate
model.10 We stress again that the observed behavior is
present only in the Fisher forecasts, and the full PE results
obtained in our simulations with the two models are
consistent.TABLE II. Priors employed in the PE analysis, where Mc;s

represents the chirp mass injected value of the specific source
analyzed. For the luminosity distance dL, the prior is taken
uniform in comoving volume; for all the other parameters, the
prior is uniform in the indicated range. The dL prior for sources 3
and 4 is wider because of the higher injected values of dL.

Parameter Range

Mc ½M⊙� [Mc;s � 0.05]
q [0.5, 1]
χ1, χ2 [0, 0.15]

dð1;2ÞL ½Mpc� [1, 500]

dð3;4ÞL ½Mpc� [1, 750]

Λ1, Λ2 [0, 5000]

FIG. 2. Violin plots comparing the measurement errors results for the chirp mass (top row) and Λ̃ parameter (bottom row) obtained for
the different considered sources in Table I and the two waveforms IMRPhenomD_NRTidalv2 and SEOBNRv4T_surrogate
adopting the Fisher formalism (orange) and performing a full Bayesian parameter estimation (violet). For ease of readability and
comparison among different sources, we report the distribution of Mc and Λ̃ minus the injected value.

10We also performed all the same checks employing the
TEOBResumSPA frequency-domain EOB approximant [92–96],
which can include the quadrupolar, octupolar, and hexadecapolar
tidal contributions to the signal, as well as subdominant har-
monics, finding, in the FIM case, error estimates even tighter than
the ones obtained employing SEOBNRv4T_surrogate, both
on single sources and at the population level. We did not perform
full PE runs for this model due to technical issues with the relative
binning method employed here, but, given the results obtained for
SEOBNRv4T_surrogate, we consider the FIM results for the
reconstruction of the tidal parameters too optimistic also in this
case. For these reasons, we decided not to employ this model
either in the following.
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FIG. 3. Mismatch of the various templates considered for the first source in Table I varying the Λ̃ parameter, using the definition in
Eq. (9) (left panel) and the one in Eq. (10) (right panel).

FIG. 4. (Inverse) cumulative distributions of the SNRs for the considered population as observed by ET in the triangular geometry
(green lines) and 2L-45° geometry (blue lines) for the two considered waveform models IMRPhenomD_NRTidalv2 (solid) and
IMRPhenomD_NRTidalv2_Lorentzian (dashed). Each panel shows the forecasts obtained adopting different EOS models,
reported in the title. The shaded area denotes the region below SNR ¼ 12, which we use as detection threshold. In the legend we further
report the number of observed events with SNR ≥ 12 with the IMRPhenomD_NRTidalv2 approximant.
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IV. RESULTS

We first summarize our main findings here regarding the
observational prospects of BNS systems in ET depending
on the underlying EOS, along with the statistical uncer-
tainties attainable on their tidal deformability parameters.
We then focus on the reconstruction of the underlying NS
properties and the NS EOS based on these observations,
exploring, in addition, the attainable accuracy on a set of
independent empirical parameters characterizing the den-
sity dependence of the energy in symmetric matter and of
the symmetry energy.

A. Population analysis results

In Fig. 4, we report cumulative distributions of the SNRs
for the considered populations and network configurations.
In each run we assume an uncorrelated 85% duty cycle for
each interferometer. Overall, we find a strong dependence of
the number of detections on the underlying EOS. This can
be traced to the difference in the maximummasses predicted
by the different equations of state: the ones allowing higher
masses result in higher number of detections, since more
massive systems produce a louder signal. Setting an SNR
threshold of 12 for a signal to be detectable, we find that the
number of observable sources (reported in the legend of
Fig. 4) can vary by a factor ∼1.5 comparing the results
obtained with RG(SLy2), which predicts the smallest mmax
(cf. legend of Fig. 1) among the chosen models, and the
ones obtained with GPPVAðNL3ωρÞ, which predicts the
highest one.11 We notice the overall higher number of
detections obtained with the two L-shaped interferometers
of 15 km as compared to the triangular design with 10 km
long arms. Nevertheless, we find the number of possible
detections to be never lower than ∼2.7 × 104 events=yr
with our assumptions on the merger rate and mass
distribution.
In Fig. 5, we report cumulative distributions of the relative

1-σ statistical uncertainties attainable on Λ̃ for all the events
that pass the chosen detection criteria SNR ≥ 12.12 From

these plots we see again the overall better performance of the
2L geometry, but we also notice that the level of accuracy
attainable on the very best events is comparable among the
two configurations, always being at the few percent level for
the IMRPhenomD_NRTidalv2 model. We further appre-
ciate the gain in terms of accuracy that can be obtained on Λ̃
thanks to the modeling of the postmerger phase present in
the IMRPhenomD_NRTidalv2_Lorentzian.

B. Neutron star properties

Even with 3G detectors, in our setup, it is extremely
difficult to measure the individual tidal deformabilities of
the two coalescing stars, except for very high-SNR events.13

A first question is then to which extent the individual tidal
deformabilities can be recovered from the different mea-
sured values of their combination Λ̃, defined in Eq. (7). As
representatives we choose the values of the tidal deform-
ability of a 1.4M⊙ and a 2M⊙ star, Λ1.4M⊙

and Λ2M⊙
,

respectively. Since Λ decreases with increasing mass, the
absolute values are smaller for a 2M⊙ star and more difficult
to determine. Thus, we expect that the relative uncertainties
will generally be larger for Λ2M⊙

than for Λ1.4M⊙
. An

additional point is that our capability to determine the tidal
deformability of a star with a given mass will depend on the
mass distribution of the measured events, a dependence
which is going to be more pronounced if only a few events
are detected. This can be seen from Fig. 6, where we show
the results for the two fiducial values of the radius and the
corresponding tidal deformabilities for a meagre number of
ten detections, NET ¼ 10. The PCP(BSk24) EOS has been
used for this study. The different violins correspond to
different random choices for the ten detections out of
∼6.9 × 104 simulated ones. The process was repeated over
50 iterations, out of which only a few representatives are
displayed. In all cases we improve over our prior and the
results remain compatible. The exact values and in particu-
lar the precision to which we are able to determine radii and
individual tidal deformabilities depend, however, on the
exact detection sample, but this indeterminacy quickly
vanishes as we increase the number of detections used in
the posterior estimation. For the results shown, the 2L
detector configuration has been chosen, but the conclusions
are exactly the same with the triangle one.
Let us now compare in more detail the detector configu-

rations with a higher number of detections, NET ¼ 1000. In
Fig. 7 we show the same radii and tidal deformabilities,
comparing the two detectors configurations and three
different injected EOS models, PCP(BSk24), RG(SLy2),

11This also follows from our choice of a flat mass distribution
up to the maximum allowed mass: we verified that, sampling
independently the two components’ masses from a Gaussian
distribution with mean 1.33M⊙ and standard deviation 0.09M⊙
[97] (always truncated at the maximum mass allowed by each
EOS), the number of detections is overall lower as compared to the
flat distribution case, due to the lack of more massive objects, but
rather similar among different EOS models (∼1.7 × 104 events=yr
for the triangular design and ∼4.2 × 104 events=yr for the 2L
configuration). This can be understood from the fact that the mass
cut imposed by each EOS is many sigmas away from the mean of
the chosen distribution.

12We further discard a small fraction (≲1%) of events with
unreliable inversion of the FIM, setting a threshold on the
inversion error ϵ≡ Γ · Cov ≤ 0.05, as done in [16]. The same
cuts in SNR and inversion error are employed in all the subsequent
analyses.

13Taking into account more sophisticated treatments of the
matter effects could improve on this, e.g., in our case a difference
in the errors among the waveforms including or not the first
postmerger peak is present also on the individual tidal parameters,
yet less pronounced than on Λ̃ (see Fig. 5), in particular due to
parameter degeneracy.

NUCLEAR PHYSICS CONSTRAINTS FROM BINARY NEUTRON … PHYS. REV. D 108, 122006 (2023)

122006-9



and GPPVAðNL3ωρÞ. The horizontal dashed lines indicate
the respective injected values. On the scale of the figure,
the injected values are very precisely reproduced and no
difference is observed between the two detectors. Looking
more closely at the corresponding numbers listed in
Tables III and IV, we first confirm that there is no significant
difference between the two detectors configurations in
recovering the NS properties with the same number of
detections, even though it is important to stress that the
overall number of expected detections does depend on the
different configurations, see Fig. 4. Second, the uncertain-
ties are very small on the extracted values, but we do not
exactly recover the injected ones, but there remains a tiny
offset. This is the case for all the injected EOS and the two
detector configurations. The reason is that the nuclear
metamodel does not exactly contain the injected EOS,
but only a representation which is very close and therefore
we can only reproduce the injected values up to the
precision to which the metamodel can represent the injected
EOS. The APR EOS is somewhat an exceptional case. To
start with, as shown in Fig. 1, its ΛðmÞ relation does not lie

inside the nuclear prior, in particular at high densities, i.e.,
high NS masses, it predicts Λ values lower than those
covered by the nuclear prior. Similarly, the obtained radii for
high masses are below the range of the nuclear prior.
Further, the metamodel representation of the APR EOS
becomes acausal much before reaching the 2M⊙ NS. A
dedicated study to understand this anomaly is in progress. It,
however, explains the slight tension observed between the
extracted and the injected values in particular for the 2M⊙
case for the APR EOS. It is important, to note that
RG(SLy2) is rather well recovered even though it has the
same behavior like APR in the Λ −m plane.
Another point is that the uncertainties are much larger for

the PCP(BSk24) EOS than for the others. This effect can be
understood looking at the results for the PCP(BSk24) EOS
as function of the number of detections, shown in Fig. 8. For
a small number of detections, the uncertainties remain large
and the extracted values are compatible with the injected
ones. Increasing the number of detections, as expected, the
extraction of radii and tidal deformabilities becomes more
precise. There is, however, a multipeaked structure formed

FIG. 5. Cumulative distributions of the relative 1-σ relative statistical uncertainties attainable on the adimensional tidal deformability
combination Λ̃ for the considered population as observed by ET in the triangular geometry (green lines) and 2L-45° geometry (blue
lines) for the two considered waveform models IMRPhenomD_NRTidalv2 (solid) and IMRPhenomD_NRTidalv2_Lorent-
zian (dashed). Each panel shows the forecasts obtained adopting different EOS models, reported in the title.
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with a competition between several most favored values,
including the injected one. Still increasing the number of
detections, the extracted results converge close to the
injected ones. The reason for the multipeaked structure is

that within the nuclear metamodel there is a degeneracy
between the nuclear matter parameters entering the model
description and there are several combinations which allow
equally well to recover the simulated detections for an

FIG. 7. Selected NS properties for detector configurations 2L and Δ obtained with NET ¼ 1000 and three different injected EOS
models (see legend). The obtained values are listed in Tables III and IV, respectively.

FIG. 6. NS properties for NET ¼ 10 over 50 iterations obtained for the 2L design with the PCP(BSk24) EOS.
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intermediate number of detections. With a sufficiently high
number of detections this structure disappears and the
solution close to the injected one becomes favored. For
the other EOS models, no such multipeaked structure exists,

see the GPPVAðNL3ωρÞ one shown in Fig. 8. This can be
explained by the fact that the PCP(BSk24) EOS lies in the
middle of our nuclear prior whereas the other EOS chosen
here for injection are at the upper or lower border of the

TABLE III. Values obtained from the analysis for the NS radius of a 1.4M⊙ and a 2M⊙ star as shown in Fig. 7 with NET ¼ 1000 and
the two different detector designs. The most probable values are also accompanied by the corresponding 1-σ uncertainties. The
corresponding injected values are listed in columns 2, 5 for each of the EOS models.

R1.4M⊙
[km] R2M⊙

[km]

EOS Injected 2L 15 km Δ 10 km Injected 2L 15 km Δ 10 km

PCP(BSk24) 12.59 12.660þ0.011
−0.001 12.662þ0.010

−0.003 12.31 12.246þ0.006
−0.008 12.249þ0.003

−0.011
GPPVAðNL3ωρÞ 13.73 13.714þ5×10−9

−5×10−9 13.714þ5×10−9
−5×10−9

14.04 13.989þ5×10−9
−5×10−9 13.989þ5×10−9

−5×10−9
RG(Sly2) 11.76 11.751þ3×10−7

−3×10−7 11.751þ8×10−7
−8×10−7

10.71 10.689þ5×10−7
−5×10−7 10.689þ1×10−6

−3×10−6
APR 11.34 11.323þ9×10−5

−9×10−5
11.323þ0.001

−0.001 10.87 11.281þ7×10−5
−7×10−5 11.281þ1×10−4

−1×10−4

TABLE IV. Same as Table III for the NS tidal deformabilities.

Λ1.4M⊙
Λ2M⊙

EOS Injected 2L 15 km Δ 10 km Injected 2L 15 km Δ 10 km

PCP(BSk24) 518.3 512.10þ3.18
−0.37 512.65þ2.63

−0.92 40.6 37.19þ0.09
−0.25 37.26þ0.01

−0.32
GPPVAðNL3ωρÞ 936.7 931.54þ2×10−6

−2×10−6 931.54þ2×10−6
−2×10−6

118.8 114.96þ2×10−7
−2×10−7 114.96þ2×10−7

−2×10−7
RG(Sly2) 309.0 306.15þ3×10−6

−3×10−6 306.15þ8×10−6
−8×10−6

11.4 11.16þ8×10−6
−8×10−6 11.16þ2×10−5

−2×10−5
APR 248.0 266.28þ0.01

−0.01 266.28þ0.02
−0.02 14.7 22.38þ0.003

−0.003 22.38þ0.004
−0.004

FIG. 8. NS properties for PCP(BSk24) and GPPVAðNl3ωρÞ EOS obtained with different values of the number of detections, NET,
ranging from 10 to 5000.
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nuclear prior, see Fig. 1. In this case the nuclear prior lifts
the degeneracy between the metamodel parameters and
enforces the solution close to the injected one. To make a
closing argument, our results suggest that we will pin down
the NS EOS with ≈500 BNS events with sufficiently high
SNR that lead to a tidal polarizability measurement.
Considering the results of Fig. 4, this should be possible
with all the proposed ET configurations.

C. Reconstruction of the nuclear-physics parameters

Concerning the extraction of information about nuclear
matter, let us start by comparing the two detector configu-
rations. In Fig. 9, we display three isoscalar NMPs, the
saturation density nsat, the binding energy at saturation, Esat
and the incompressibility Ksat as well as three isovector

ones, the symmetry energy Esym, its slope Lsym and the
symmetry incompressibilityKsym. In addition to the nuclear
prior, the extracted values for NET ¼ 1000 with injections
from the PCP(BSk24), the GPPVAðNL3ωρÞ and the RG
(SLy2) EOS models are shown. The injected ones are
indicated by the dashed horizontal lines. No significant
difference between the two detector configurations can be
observed. For GPPVAðNL3ωρÞ and RG(SLy2) the injected
values are perfectly recovered, whereas for PCP(BSk24),
again a multipeaked structure develops. This finding
perfectly illustrates the degeneracy already discussed
above: different combinations of nuclear parameters lead
to the almost the same EOS for β-equilibrated NS matter
and thus measuring the NS tidal deformability alone does
not allow to determine the nuclear matter properties.

FIG. 9. Nuclear matter parameters for detector configurations 2L and Δ obtained with NET ¼ 1000.
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Similar conclusions are discussed, e.g., in Refs. [43,98,99],
where a direct mapping of the nuclear matter parameters to
a function ΛðmÞ is attempted. This means that additional
information ideally on symmetric matter is needed in order
to pin down the nuclear matter properties, see the dis-
cussion in Ref. [43]. For GPPVAðNL3ωρÞ and RG(SLy2)
this additional information comes from the nuclear prior in
the sense that both being at the border of the prior
distribution, their nuclear matter parameters are suffi-
ciently constrained by the nuclear physics information
entering that prior. Increasing the number of detections to
up to NET ¼ 5000 does not considerably improve the
situation, see the results for PCP(BSk24) in Fig. 10, and
additional information on symmetric matter is needed. On
the other hand, the results for GPPVAðNL3ωρÞ clearly
show that, if we are able to additionally constrain the EOS

for symmetric matter, the extraction of the nuclear matter
parameters converges fast already for a moderate number
of detections.14 This shows that a joint effort from the
nuclear physics side [101–103] and 3G GW detectors will
allow us to determine the nuclear matter properties to
extremely high precision within less than one year of
operation for the latter.

FIG. 10. Nuclear matter parameters for PCP(BSk24) and GPPVAðNL3ωρÞ EOS obtained with different NET.

14It should again be noted that part of the results presented in
the current and previous section follow from our choice of a flat
NS mass distribution: employing a Gaussian distribution for the
masses as in footnote 11 we find a considerable degradation in the
accuracy in the extracted NS (cf. Fig. 7) and nuclear matter
(cf. Fig. 9) properties. This leads to the conclusion that informa-
tion from more massive BNSs (such as GW190425 [100]) might
turn out to be crucial.
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V. SUMMARY AND CONCLUSIONS

In this work we have performed a comparative study on
two proposed designs of the Einstein Telescope, which is
envisaged to be built within the next decade. We analyzed
their potential impact on our understanding of the EOS of
dense matter and the associated nuclear physics parameters.
This is a further elaboration on the prospective nuclear
physics goals to be addressed by ET, out of many enthrall-
ing science cases, as outlined recently in Ref. [18].
We simulated synthetic BNS coalescences with several

state of the art EOS models from the CompOSE [46,58]
database along and up-to-date merger rate distribution.
We obtained the statistical uncertainties on the observed
sources’ parameters employing the Fisher information
matrix formalism though the GWFAST package [16,74],
and we tested the reliability of the Gaussian approximation
with full parameter estimation studies on a few chosen
events. An interesting point here is that the adherence of the
FIM approach to a full PE for the tidal parameters depends
on the chosen waveform approximant, with the phenom-
enological model considered showing the best agreement.
An indication to explain this behavior is given by how
different models change when varying the tidal parameters,
as discussed in Sec. III B and shown in Fig. 3; more in-depth
checks, which go beyond the aim of the present work,
would anyway be needed. Given the observed behavior, we
only relied on phenomenological models for our analyses.
At the population level we have seen that the overall

number of detections depend on the considered EOS
model when adopting a flat mass distribution (with the
EOS predicting the higher maximum masses resulting in
the higher number of detections), with number of detec-
tions per year with SNR ≥ 12 never being below
Oð2.7 × 104Þ events=yr, and we also find about ∼1.5
more detections from the 2L design compared to the
triangular one. Also, if postmerger effects of the first
emission peak are incorporated in the waveform approx-
imant, the number of detected events with smaller relative
uncertainties in tidal deformabilities are found to be
slightly higher (no significant decrease in the uncertainty
of the very best events is anyway found). The signal-to-
noise ratio and the associated number of detections,
however, has no such dependence on the waveform model.
The extraction of neutron star properties, such as radius

and tidal deformability at fiducial values of the mass, along
with the underlying EOS used in the population generation

was carried out with a nucleonic metamodeling approach
within a Bayesian framework. We observed that with ≳500
detections, one can recover with great accuracy the NS
properties and the underlying injected EOS. These extrac-
tions are independent of the two considered geometries of
the ET. Concerning the associated NMPs, we also dem-
onstrated that they have some interdependent degeneracies,
which could not be disentangled by using information only
from β-equilibrated matter. Further experimental or obser-
vational information will be needed to improve this. Let us
however stress that the achieved accuracy on the NS radii
and the underlying EOS of β-equilibrated dense matter
from the proposed ETwould be unprecedented irrespective
of the chosen geometry.
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