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Quasiphysical model for removing short glitches from LIGO and Virgo data
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Gravitational-wave observatories become more sensitive with each observing run, increasing the

number of detected gravitational-wave signals. A limiting factor in identifying these signals is the presence

of transient non-Gaussian noise, which generates glitches that can mimic gravitational-wave signals.

Our work provides a quasiphysical model waveform for the four most common types of short transient
glitches, which are particularly problematic in the search for high-mass black hole binaries. Our model has
only a few, physically interpretable parameters: central frequency, bandwidth, phase, amplitude, and time.

We demonstrate the accuracy of our glitch template by fitting and removing a large sample of glitches from
a month of LIGO and Virgo data from the O3 observing run. We can effectively remove three of the four
types of short transients. We finally map the ability of these glitches to mimic binary black hole signals.
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I. INTRODUCTION

Advanced LIGO [1,2], Advanced Virgo [3], and
KAGRA [4] comprise a worldwide network of gravita-
tional wave observatories. They are designed to detect
gravitational-wave events in the tens of Hz to kHz band
with minimum noise at 100-200 Hz. Their sensitivity
is described via the power spectral density (PSD) of
the stationary noise contributions to the measured
gravitational-wave strain, which neglects non-Gaussian
and nonstationary contributions.

Glitches are the general name given to disturbances
that occur in the strain time series in addition to the
stationary Gaussian background [5]. There is a wide variety
of types and causes of glitches [6,7]. While some types of
glitches are present in all detectors, e.g., light scattering
noise [8,9], other glitch types are more prevalent in only
one detector, e.g., excess noise caused by tree logging near
LIGO Livingston [10].

We will focus here only on short transient glitches, less
than 0.1 seconds long. They are problematic because their
origin is generally unknown and they are similar to high-
mass binary black hole signals. Thus they degrade the
performance of the searches because they can be mistaken
for real signals, obscure a real event, or impact the sky
localization if they occur nearby in time [11-15].
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There are several known classes of glitches which are
common in the detectors, and most glitches that occur can
be identified as one of these classes. The identification is
made by human inspection of the appearance in a time-
frequency spectrogram of the strain data. Gravity Spy [16]
used citizen science volunteers to train a machine
learning model which automatically classifies glitches.
We use the database of these classifications as a starting
point for our model, and as a convenient way to identify
all of the occurrences of a specific class. Gravity Spy
identifies four classes of short transients, which have
been named blips [17], low-frequency blips, tomtes, and
koi fish [18].

These glitches have plagued O3 [19] and are expected to
be more of a problem with the increased sensitivity in O4.
See Table I for hourly glitch rates during the first part of the
third LIGO-Virgo observing run. They are particularly a
problem for searches for binary black holes with high
masses (>100M) because these are short with few

TABLEI Hourly glitch rate for Hanford, Livingston, and Virgo
detectors during the first part of third LIGO-Virgo observing run
assuming a machine learning 50% confidence score.

Blips Low frequency blips Tomtes Koi fish
Hanford 1.8 0.9 0.4 33
Livingston 1.0 4.0 8.6 2.6
Virgo 0.8 0.0 0.4 0.5
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gravitational-wave cycles to provide discriminating power.
The physical origins of these short transients are generally
unknown. Hence we do not know how similar glitches in a
given class actually are to each other. In the best case, they
would all be identical up to an overall amplitude, but we
will show that this is not the case. The ability to classify
them does however suggest that their waveform can be
described by a small number of latent variables.

In this paper, we build and demonstrate a precise
model of these glitches which can be used to identify
them with high confidence and also to subtract them from
the data. Our model is quasiphysical, meaning that it
encodes the characteristic properties of the glitches in a
few physically meaningful parameters, but is not derived
from a specific physical model of the glitch mechanism.
As long as the detector is near its operating point and
has not reached analog or digital saturation, the glitch
waveform is expected to be additive. Hence, if it can be
modeled, it can be subtracted. With the detectors now
online, it is urgent to develop methods to remove glitches
in real time.

Our model is data driven and is tested on a month of
LIGO and Virgo data from the O3 observing run. It
assumes the glitches (1) contain a single peak frequency,
(2) are either symmetric or antisymmetric in time, and
(3) have a spectrum that is normal in log frequency. We can
ensure the quick and accurate removal of the blip, low-
frequency blip, and tomte glitches by incorporating the
glitch templates from our model within the low latency
searches [20,21]. The koi fish glitches have more compli-
cated morphology making their removal less effective. Our
model is independent of glitch type. All glitches are fitted
to model parameters independent of Gravity Spy classi-
fication. The classification is simply used as means of
visualizing and interpreting the results.

Glitches have been investigated in numerous other
works [17,19,22-24]. Many authors propose glitch
removal via unmodeled subtraction techniques [23,25,26]
(BayesWave being the main glitch subtraction algorithm
in O3 [19]), which do not make specific assumptions about
glitch morphology, or make use of neural networks with
no physical inductive bias. While these methods are more
general and can remove a variety of glitches at the
postprocessing stage, they are also computationally expen-
sive and cannot be performed fast enough to avoid fake
triggers. Neural networks with no physical inductive bias
remove power reliably, but can also remove signal or other
forms of noise. They use a wavelet basis that requires
multiple tiles, each with its own noise, which brings in
additional degrees of freedom.

We also compute the match of these glitches to a bank of
compact binary coalescence (CBC) templates, using the
IMRPhenomXAS waveform [27]. We predict based on the
glitch parameters of our model which CBC templates will
be affected and map this to the different types of observed

glitches. This information can be used optimally to dis-
criminate between these types of glitches and actual CBC
signals in detector noise.

II. CAUSES OF GLITCHES

Glitches are caused by a wide variety of mechanisms of
which some are known. However, for several common-
occurring glitches, the cause is still unknown. The possible
causes are split into four categories, following the path of
the calibration loop [28]:

(1) Physical Glitches: A sudden motion of one of the
test masses will be perceived as a glitch. This can
be caused by external seismic motion or vibration
and should be detected by physical and environ-
mental monitoring sensors [29]. Some examples
are the shutter of a camera temporarily mounted
near the test mass and ravens pecking at the ice on
the liquid nitrogen supply pipe [30,31]. It is also
possible for internal mechanisms to cause glitches
such as the thermal popping of the mirrors due to
the release of stress or stray electric fields and
currents [32].

(2) Optical Sensing Glitches: The relative position of
the end mirrors is the primary observable of the
detectors—it measures the gravitational-wave
strain [33]. This is read out by the intensity of light
on the photodiodes at the output port of the
interferometer. Anything interfering with the beam
of light, e.g., some dust or a spot of damage on the
photodiode, can be misinterpreted as a length
change. Another source of optical sensing glitches
is scattered light glitches [8,34]. They are caused by
stray light reflected from beam tubes back to the
mirrors. This noise can be considerably reduced
using suspension control systems [9].

(3) DARM Loop Glitches: The mirrors must be kept
near their operating point despite external seismic
disturbances. This requires a number of control
loops that act on the length and angular degrees
of freedom. Here, we concentrate on the differential
arm (DARM) loop, which converts the optical
sensing above into feedback to the end test masses.
This is a digital control loop which shapes the
feedback to avoid exciting resonances in the sus-
pensions of the mirrors. Timing slips between the
front-end computers have caused DARM glitches in
the past [17].

(4) Actuation Glitches: The mirror positions and
angles are controlled by solenoid coils actuating
magnetically on masses above the test masses in
suspension [35]. The most sensitive, high-frequency
feedback is applied by electrostatic drivers [36],
which use large voltages to apply force to the
test mass. Problems in either of these electronic
systems could manifest as glitches. Some of the
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short transients investigated here appear to have an
electrical origin [37,38]. However, they have to be
investigated further to understand the exact origin.
There are many other mirrors in the detector and many
auxiliary lengths and angles which are also controlled.
Any glitch in these can affect the optical sensing causing
apparent motion in the strain channel. A known glitch of
this type is RF45 glitches [39], from the 45 MHz radio
frequency modulation system, which affects many aux-
iliary degrees of freedom. Typically, these kinds of glitches
will be sensed strongly by the auxiliary channel monitors
and will therefore have a known origin [40]. Hence
unknown glitches are more likely to arise in one of the
four systems listed above.

III. GLITCH DETECTION AND CLASSIFICATION

A. Q transform

The tool most often used to detect and inspect glitches
in LIGO and Virgo data is the Q transform [41]. The Q
transform defines a set of minimum-uncertainty tiles which
cover the time-frequency plane. These tiles are bisquare
windows in the frequency domain, effectively bandpasses
defined by their central frequency and bandwidth. The Q
transform whitens the data and then decomposes the
whitened signal onto the tiles, yielding the excess power
in each tile. The basis of tiles is nonadaptive except for
allowing different choices of the quality factor Q; larger
values of Q have less span in frequency (lower bandwidth)
and hence more span in time. The result is displayed in a
spectrogram of excess power which is called either a Q
scan or Omega scan. Only one value of Q is used for the
spectrogram, which can be determined either automati-
cally or by the analyst. Low Q values will better resolve
short transients at the cost of frequency resolution. While
this method has proved to be an effective visualization
method for human analysts, it has drawbacks. Like any
spectrogram, it discards the phase information and only
keeps the amplitudes of each tile, and the basis is not
orthogonal so it cannot be used to reconstruct a detailed
model of a glitch.

Omicron [42] is a method of searching for general
glitches using the Q transform. It runs on a single detector
channel (in our case the calibrated strain) and decom-
poses the data onto tiles for multiple values of Q. Tiles
above a given threshold in SNR are retained and clustered
over time. Because a glitch will intersect multiple tiles,
the results are clustered over time so that a glitch is
represented by a single trigger. The trigger is character-
ized by the SNR and frequency of the tile with the largest
SNR in the cluster.

B. Glitch classes

We focus on the four most common types of isolated
short glitches: blips, low-frequency blips, koi fish, and

tomtes [17,43]. The identification is made by the appear-
ance of their spectrogram in the time-frequency domain.
Blip glitches are characterized by a narrow tear-drop shape.
They are very short-duration transients (of the order of
5-10 ms) with a broad frequency distribution in the region
of maximum sensitivity of the detector. This glitch mor-
phology was first observed in Initial LIGO [22] and has
persisted onto Advanced LIGO and Virgo observation.
Tomte glitches are wider, have a triangular shape, and are
at a lower frequency. Low-frequency blips have a similar
rounded shape to blips but do not reach as high a frequency.
Koi fish glitches have a similar bandwidth to blips but have
extra noise on either side (including a feature around 60 Hz
which forms the “fins” of the fish).

C. Gravity spy

As an initial glitch classification, we use Gravity Spy
[16,18]. The Gravity Spy pipeline analyzes any Omicron
trigger with an SNR above 7.5; weaker glitches are difficult
to identify because they are obscured by noise. The
classification is from the appearance of the Q scan.
Citizen scientist volunteers have made more than a million
classifications and have also proposed new categories of
glitches [44]. A machine learning model trained using this
information now makes automated classifications, still
based on the Q scan.

We take May 2019, during the LVK O3a observing
period, as our dataset for this paper. The classifications
through O3 are discussed in [43], and the classifications
are publicly released on Zenodo [45]. We consider all
Gravity Spy classified glitches with a machine-learning
confidence score above 50% (though the confidence is
strongly peaked toward 100%). In the L1 (Livingston)
detector, there are 485 blip, 1544 low-frequency blip,
2920 tomte, and 1185 koi fish glitches. In HI (Hanford),
there are 738 blips, 325 low-frequency blips, 136 tomte,
and 1156 koi fish. In V1 (Virgo), there are 264 blips,
0 low-frequency blips, 96 tomte, and 196 koi fish. In our
further analysis, we will use up to 500 of each type of
glitch from each detector, chosen at random from the
sample [43].

We can begin to see some characteristics of the
population. There is a clear excess of tomte and low-
frequency blip glitches in L1. Examining the distribution
of SNR, frequency, and bandwidth calculated by Omicron
demonstrates the different characteristics of the glitch
types. As Fig. 1 shows, koi fish have much higher SNR,
while blips and tomtes are similar to each other. The
distributions are mostly separated in the frequency-SNR
plane. Tomtes have a low peak frequency while blips are
higher; koi fish span the range of both. Figure 2 shows that
only tomte have low bandwidth since they have the
highest range of bandwidths. We have suppressed low-
frequency blips for clarity, but they are similar to tomtes
with lower SNRs.
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FIG. 1. The SNR versus frequency distribution for the Gravity

Spy classifications of tomte, blip, and koi fish glitches for L1, H1,
and V1.

IV. GLITCH MODEL AND INFERENCE

Figure 3(a) shows the FFTs of the whitened strain for
tomte, blip, and koi fish glitches (low-frequency blips are
omitted for clarity). The whitening process causes dips in
the spectra corresponding to strong lines in the instrumental
noise. The koi fish and blips both have generally higher
central frequencies and wider bandwidths than tomtes.
However, the spectra seem to have similar shapes up to
scaling and shifting. An example of each glitch type is
shown in more detail in Fig. 3(b).
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FIG. 2. The SNR is plotted as a function of bandwidth for the
Gravity Spy classification of tomte, blip, and koi fish glitches for
L1, HI, and VI.

A. Quasiphysical model

We now propose a simple model for the glitch in the
calibrated strain channel. The model is defined in the
frequency domain. The whitened spectra are all fairly well
matched by a normal in logarithmic frequency, with the
parameters varying between different glitches. Because the
glitches are so short and have time-symmetric spectro-
grams, we find that they can be well represented by a
constant phase with respect to frequency. Hence their
power will be maximally concentrated around their center
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FIG. 3. The whitened strain of tomte, blip, and koi fish

glitches shown in the frequency domain for data taken in May
2019, during the O3a science run, for (a) many glitches in H1
and (b) selected glitches in H1 and L1. It can be seen that they
affect the sensitivity of the detector over a wide range of
frequencies. At first glance, the koi fish glitch appears to mimic
either the blip or the tomte. However, it has a higher amplitude
and exhibits some features that cannot always be removed
entirely with our simple model.

if the frequency-domain waveform is constant in phase.
In the frequency domain, the model is

holf) = N~ exp |~ (log £ —log fo?| (1)

h(f) = Aexp [igp — 2xifto)hy(f). (2)

The normalization factor is

A= — " 8,(f1)

with k the index over discrete frequencies so that the
template has constant SNR at A = 1.

The parameters of the model are the peak frequency f
and the inverse bandwidth squared y. In addition, we need
an overall amplitude (A), phase (¢), and central time of the
glitch (#y). Our data segments will be shifted to put the
glitch nearly in the center, but the f, parameter allows for
imperfect centering. A phase of ¢ =0 or z results in a
glitch that is symmetric in time. Conversely, ¢ = +x/2
results in a glitch which is antisymmetric in time.

B. Inference of glitch parameters

To determine the parameters of a given glitch, we make
use of Bayesian parameter estimation. The log-likelihood
for a modeled glitch added to stationary Gaussian noise is

d(f) = h(f)]?
o=@

where d(f) is the data, h(f) the glitch model, and S, (f)
the noise power spectrum, suitably discretized. We use a
sample rate of 8192 Hz, and our data segment is 1/8 sec
around each glitch, with the spectrum estimated by the
Welch method on 18 seconds of data surrounding the
glitch, with the central 2 seconds excised [46]. The strain
data have been scaled by a factor of 10?* to put it in a
reasonable numerical range.

We implement our model in NumPyro [47,48] with the
model and likelihood implemented in Jax [49]. We defined
a common prior for all glitches in amplitude, time, phase,
frequency and bandwidth:

(1) A~N(0,400).

2) ¢ ~U(-n,x).

(3) fo~U(10,600) [Hz].

4) y~U(0.25,38).

(5) 1o =0.01(2x = 1) [sec]; x ~ 3(2,2).

The text in brackets indicates units where applicable. The
time distribution is an affine transform of a beta distribution
chosen to be symmetric around O and of finite extent to
prevent wraparound.

We used NUTS sampling [50], which takes less than a
minute per glitch on a typical processor. However, the
priors are quite broad because they have to encompass a
wide range of possible glitches, and we do not yet know
the population distribution of these parameters. So we
have used a maximum-likelihood estimate for our primary
results, which is calculated in three seconds per glitch on a
single CPU core.

V. RESULTS

A. SNR and excess power

The results of performing inference are a precise model
of the glitch under consideration. We can use this to
subtract the glitch from the data stream, which should
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leave stationary Gaussian noise if there are no other glitches
or signals in the data segment. We can use this expectation
as a test to quantify the quality of the subtraction. Once we
verify that we have faithfully modeled the glitches, we will
investigate the distribution of parameters over the popula-
tion of each type of glitch.

Our model is a matched filter for the glitch and with the
parameter space of f, and y forms a manifold of templates.
We can therefore define the optimal matched-filter SNR
of a glitch as well as the match between any two glitch
templates—or the match with other types of waveforms
like compact binary coalescence templates, similarly to
Refs. [51,52]. We first define a scalar product

= sk [ L0

with f.., and f. the range of sensitive frequencies of
the detector (roughly 10 Hz to a few kHz). Though we
write this as an integral, it is straightforward to discretize.
The SNR is

df. (5)

p(t) = L (h(f)e21]d(£)), (6)

o

where ¢ = (h|h) is a normalization factor. We have
written the time-shift operator e~>%/" explicitly here, but
it can also be considered part of the template. The match of
two waveforms a and b is

M(a, b) = max——42)

to\/(ala){blb)

where the maximum is over the relative time and phase of
the two templates. Because our glitch template has no phase
evolution, the maximum over time and phase is unneces-
sary, making the match between any two of our glitch
templates very cheap to compute if needed.

We define the SNR of a glitch in real data as the
maximum of the SNR over our model parameters. We
calculate this value using the maximum-likelihood results.
Figure 4 compares this matched-filter SNR to the SNR
quantity reported by Gravity Spy (and computed by
Omicron). No single Q tile matches the glitch as well as
our model template, so the Omicron SNR is always lower.
Different types of glitches retain different fractions of the
total SNR, as indicated by the lines.

When quantifying the effectiveness of our model at
removing each glitch we do not use the SNR, as it assumes
that the glitch matches the template. Instead, we use an
excess power statistic which is agnostic to the waveform of
the glitch. The power P is computed as a sum of squares of
the whitened times series of the central 16th of a second,
divided by the expectation value. The whitened noise, with
no glitch or signal present, should be a sample of unit

(7)
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FIG. 4. The SNR reported by Omicron compared with the
matched filter SNR from our model template. As expected, the
value is lower; the lines mark the fraction of recovered SNR.

Gaussians; hence the power follows a scaled chi-squared
distribution with N degrees of freedom and scaled by 1/N,
where N is the number of time samples used. With only
noise present (no glitch or signal), P has mean 1 and

\/3 In our case, N = 8192/16 = 512. We find
that the power and matched filter SNR are well fit by

variance

p=/NP-1) (8)
for the majority of glitches.

B. Residuals

We visualize the effectiveness of the subtraction in
several different ways. We can compare the Q scan
spectrograms before and after the subtraction. Figure 5
shows the effect of the subtraction for sample tomte, blip,
low-frequency blip, and koi fish glitches. For each glitch,
the Q scan is shown before and after the subtraction on the
left, with a fixed color scale for the excess power statistic.
The removal is also shown for whitened data in both the
frequency and time domains. The expected spectrum in just
noise should be a straight line at a value of 1. The examples
in Fig. 5 are chosen to be representative glitches of the class
that also have good removals.

To test the reliability of the subtraction on the entire
dataset, we compute the residual power after each glitch
subtraction. An ideal removal would result in P consistent
with the expected scaled chi-squared distribution. Figure 6
shows the residual power compared with the power before
removal. We will consider the koi fish separately due to
their much larger amplitude distribution. Figure 7 displays
the residual SNR calculated using Eq. (8) versus the
original matched-filter SNR. The distribution appears to
be independent of the original SNR except for a small
proportion of outliers. Figure 8 shows the fraction of the
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(a) Tomte removal in L1, (b) low-frequency blip removal in L1, (c) blip removal in H1, and (d) koi-fish glitch removal in V1. In

each subfigure, the left panel shows the spectrogram before (top panel, left) and after subtraction (bottom panel, left), while the right
panel displays the strain in frequency (top panel, right) and time domain (lower panel, right). The fit (red) is subtracted from the data
(black) leaving behind the residual (green). Each case is an example of a successful subtraction with a residual ~1, i.e., noise level.

original SNR removed. This tends towards 1 as the original
SNR increases, while at a lower SNR the distribution is
wider. This can be due to both of the SNRs being relatively
more uncertain at low values, and the removal working less
well because noise has a greater effect on the inference of
the parameters.

After removal, the residual was greater than 2 for 16 out
of 442 total blips in H1, 9 out of 500 blips in L1, O out of
264 blips in V1, and for none of the tomtes (of 500 in L1,
135 in HI, and 53 in V1). Several of these ineffective
removals were due to Gravity Spy misidentifications: some
had multiple glitches rather than an isolated glitch, and
there were at least three rf whistle glitches misclassified
as blips.

The removal of koi fish glitches was far less effective
than the other types. Figure 9(a) shows the residual power
for V1 koi fish. There is a long tail, with 51 out of 196
glitches above a residual power of 2. Figure 9(b) shows the
fractional removal for all three detectors. The removal is
worse for the LIGO detectors, with half of the koi fish
above a residual power of 2. Some of these poor removals
are caused by the presence of multiple glitches when they

should be isolated. But the removal is imperfect in cases of
true koi fish glitches as well. The koi fish glitch has a more
complicated structure that is not as well captured by our
model as for the other types.

C. Inferred parameters

From our fits, we have access to the distribution of the
parameters of all of the glitches for which our model
worked well. Here we consider mainly the distribution of
SNR and phase. The low-frequency blips and tomtes
have very similar parameters, except the tomtes have
slightly higher SNR. In Fig. 10, the phase and SNR of
low-frequency blips and tomtes are compared, for each
detector. L1 has far more of these two types than the other
detectors. The tomtes all have a phase close to —z (i.e., a
negative symmetric peak in time). Low-frequency blips at
low SNR mimic this, but there is another population at a
phase of O with higher SNR. These are likely to be a
different population with a different cause. In H1, there are
clusters around both O and 7z, but the clusters have more
variance. In both cases, the phase varies around these values
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FIG. 6. The original and residual power after glitch removal is
shown for L1, H1, and V1. The residual centers at 1 as expected
for noise. The koi fish glitches will be displayed separately.

less at high SNR, but still enough to indicate intrinsic
variance rather than the effect of noise.

Figure 11 displays the results for all glitches in V1. Blips
and koi fish cluster around a phase of £z, which are
glitches antisymmetric in time. There is another weaker
cluster possible around z. This likely indicates a different
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FIG. 7. The residual SNR obtained after glitch removal as a
function of the original SNR for H1, L1, and V1. The solid line
indicates no reduction.

mechanism from the one causing the glitches in LIGO,
though the similarity of blips and koi fish indicates that
they may have a common cause, and only the amplitude
is different.

Figure 12 shows that the blips in H1 and L1 have similar
characteristics, with clusters at phases of both 0 and #
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which have equally strong SNRs. Most coherent signals are
expected to appear with opposite phases in HI and L1 since
they are nearly coaligned but mirrored, so there is a danger
of a blip with one phase accidentally appearing coincident
with a blip of the opposite phase in the other detector.
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FIG. 9. (a) The original and residual power after glitch removal
is shown for koi fish glitches in V1. (b) Fraction of SNR removed
in L1, H1, and V1 for koi fish glitches.

VI. MATCH WITH COMPACT BINARY
TEMPLATES

Our quasiphysical model allows direct calculation of
the impact that these glitches have on a CBC search. We
compute the match between CBC templates and a glitch
template [53,54]. For a glitch of SNR p, in the data, the
CBC template will have a peak of SNR p, = M, p,,
where M,, , is the match. In addition, the higher the match,
the more difficult it is to distinguish whether a glitch or a
CBC signal is present, even with an optimal method.

Figure 13 shows the distribution of observed blip and
tomte glitches in LIGO over the model parameters f; and y.
Under these contours, the maximum match over the CBC
template bank with a glitch template is displayed. We use
the standard IMRPhenomXAS [27] template and a model
O3 noise curve. The center of the blip distribution is in a
region where the match is only 0.5, so these glitches should
be difficult to mistake for real CBC signals. However, the
tomtes range over a region where the match is between 0.8
and 0.9, making them very similar to CBC templates.
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FIG. 13. The distribution of tomte (red) and blips (white) on the
best match computed when maximizing over total mass, spin, and
mass ratio. The contours show that the blip distribution peaks in
the low match region (M =~ 0.4-0.5), while the tomte peak at the
high maximum match (M = 0.8) and are thus more likely to be
mistaken for high mass binary black holes.

Figure 14 shows the match as a function of CBC
parameters for a typical blip and tomte glitches. The
overlap of blips with CBC templates peaks at M, =
M + M, of 90. The match peaks at equal masses, though
not strongly. The overlap of tomtes with CBC templates
peaks at M, = M, + M, of 160-200, depending on the
parameters of the glitch. Here, asymmetric mass ratios are
slightly preferred. In both cases, the highest matches occur
with a negative aligned spin. However, Fig. 14(c) shows
that tomtes still produce high matches even when the CBC
templates are restricted to zero spin. These results were
calculated using the Model O3 PSD for the LIGO detectors.
The results from blips can be compared with [55], which
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FIG. 14. Matching (a) blip and (b) tomte glitches to standard
IMRPhenomXAS templates, we see that the match with the blip
glitches is generally low and thus mistaking them for high mass
black holes can be avoided, while tomte glitches can more easily
be mistaken for high mass black holes. The maximum match
favors antialign spin. In (c) the average tomte is matched for zero
spin. Fixing the spin lowers the match significantly, i.e., by about
0.2. Furthermore, the match becomes independent of q even for
high M,

shows a peak at a similar total mass and a strong match
with antialigned spins. Our result for blips and tomtes also
agrees with [56], with tomtes matching higher mass CBCs
than blips. Because that paper uses a precessing CBC signal
model, it only shows that the glitch population matches a
high spin magnitude but does not specify which direction
of spin is preferred.

VII. DISCUSSION
A. Sketch of practical use

The two primary uses of our quasiphysical glitch model
are to reliably detect the presence of a glitch and to
precisely subtract the glitch from the data. In this work,
we have used Omicron and Gravity Spy to locate and do the
initial classification of glitches. But that could be replaced
by a matched-filter search using a template bank of model
glitches covering the range of observed parameters. The
matched filter gives a more accurate SNR and can predict
the effect on a CBC search. Also, comparing the SNRs for
each alternative can test whether a candidate event is a CBC
or a glitch. This is more optimal than methods that do not
have a matched-filter model for the glitch.

Whenever a glitch is detected, it is simple to remove.
The maximum likelihood estimate can be calculated in just
seconds. The residual data virtually eliminate the presence
of the glitch in the case of blips, low-frequency blips, and
tomtes. Koi fish will need further work and likely a more
complicated model to be subtracted effectively, but they can
at least be easily identified.

Our model can also be used in Bayesian parameter
estimation of CBC signals that overlap glitches. The glitch
model can be added to the likelihood and the glitch
parameter space adjoined to the prior to allow simultaneous
inference and disentangling of the two transients. Because
our model is effective with a low-dimensional parameter
space, it should not excessively affect the runtime of the
parameter estimation.

B. Possible glitch mechanisms

For the most part, the physical cause of these short
glitches is unknown. There have been extensive attempts to
find correlations with auxiliary witness sensors, but for the
most part, the glitches occur with no trace in any of these
systems. Some blip glitches in previous observing runs
were caused by delays in intercomputer communication in
the control system [17]. Others are correlated with low
humidity, possibly caused by static discharge in the
electronics [57,58]. Before and during O4, there are tomte
or low-frequency blip glitches caused by large electrical
power draws [38].

Our quasiphysical model of glitches models the spec-
trum and also the time series of the detector strain.
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A hypothetical mechanism for a glitch can hence be
compared to the physical motion of one of the test mass
mirrors that would be implied. For instance, the fact that
LIGO blips are equally likely to have either a positive or
negative sign could indicate that they arise from the motion
of either of the end test masses.

For glitches produced in another part of the sensing
chain (not as physical motion of the mirrors), the implied
disturbance can be reconstructed by modeling the transfer
function to strain. For instance, a disturbance in the light
reaching the readout photodiode will affect the measured
strain through the optical sensing function. The phases
seen in Virgo could indicate a derivative coupling as this
produces a phase shift of /2.

The amplitude and SNR distributions are also useful
clues to the origin of these glitches. It is difficult to identify
glitches at low SNR, and the Gravity Spy results have a
cutoff at SNR 7.5. We see that the SNR distributions are
peaked toward low values (except for koi fish), and are
truncated by the threshold. This suggests that a large
number of these glitches are not identified because of
the cutoff. The matched filter model presented here can be
used to detect and analyze these numerous glitches at
low SNR.

VIII. CONCLUSIONS

A limiting factor in identifying gravitational wave
signals continues to be transient non-Gaussian noise
glitches that mimic signals. In this paper, we have modeled
and removed short transient glitches which occur often in
both the LIGO and Virgo detectors. Our model provides a
glitch template that can be used to remove short glitches. It
reveals the similarity between the different glitch types
(spectral shape and lack of phase evolution) which enables
confident glitch removal and facilitates the distinguishing
of short glitches from signals. Our method is very fast,
taking at most several seconds on a typical CPU.

Although we do not have a detailed physical model of
the glitch process, we are able to create a parametrized
frequency-domain model based on their properties. The
glitches are very short with less than two cycles of
oscillation with power concentrated around their central
time. This is well-fit by a normal in log frequency with four
parameters: the peak frequency, bandwidth, amplitude, and
phase. Our model is tested on blip, tomte, low-frequency

blip, and koi fish glitches as classified by Gravity Spy. We
demonstrate the accuracy of the model and the effective-
ness of glitch subtraction by testing on one month of O3
data. More than 90% of blips, tomtes, and low-frequency
blips were successfully removed. The removal of koi fish
glitches is less effective because they have a more com-
plicated structure and also a very high amplitude.

We match the phase space of tomte and blip glitches to
binary black hole merger templates and find that most blip
glitches have a high mismatch of around 0.5 with high mass
black holes modeled by the IMRPhenomXAS template.
On the other hand, tomte glitches can be more easily
mistaken for high-mass black holes with a typical mismatch
of 0.2. The primary difference between the black hole
waveforms and the glitch waveform is the lack of phase of
the evolution of the latter.

We provide a sketch of practical uses of our glitch model
in black hole searches and parameter estimation and for
investigation of the causes of these glitches, which can be
used to mitigate or eliminate them.
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