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The emission of continuous gravitational waves (CWs), with duration much longer than the typical data
taking runs, is expected from several sources, notably spinning neutron stars, asymmetric with respect to
their rotation axis and more exotic sources, like ultralight scalar boson clouds formed around Kerr black
holes and subsolar mass primordial binary black holes. Unless the signal time evolution is well predicted
and its relevant parameters accurately known, the search for CWs is typically based on semicoherent
methods, where the full dataset is divided into shorter chunks of given duration, which are properly
processed and then incoherently combined. In this paper, we present a semicoherent method, in which the
so-called “five-vector” statistics is computed for the various data segments and then summed after the
removal of the Earth Doppler modulation and signal intrinsic spin-down. The method can work with
segment duration of several days, thanks to a double-stage procedure in which an initial rough correction of
the Doppler and spin-down is followed by a refined step in which the residual variations are removed. This
method can be efficiently applied for directed searches, where the source position is known to a good level
of accuracy, and in the candidate follow-up stage of wide-parameter space searches.
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I. INTRODUCTION

Gravitational wave astronomy started in 2015 with the
detection of gravitational waves (GWs) emitted in the last
stages of the coalescence of a black hole binary system [1].
To date, a total of 90 binary events have been observed
by the LIGO [2] and Virgo detectors [3], all due to the
coalescence of compact binaries made, in the vast majority
of the cases, by a pair of black holes and, in very few cases,
by a pair of neutron stars or by a black hole and a neutron
star [4].
However, many more kinds of sources are expected to

exist; see, e.g., [5–7] for recent reviews. In particular, we
are interested in continuous gravitational wave (CW),
sources, which emit signals with duration longer than
one day, for which the modulations due to Earth’s rotation
play a critical role. This kind of emission characterizes, for
instance, spinning neutron stars asymmetric with respect to
the axis of rotation. Asymmetric spinning neutron stars,
isolated or in a binary system, are considered the proto-
typical source of CWs. Their detection will be a funda-
mental milestone in GW physics because they can be
observed for very long times, becoming true laboratories
for fundamental physics and astrophysics. Recently, more
exotic sources of CWs have been also proposed which, if
detected, would shed light on several important aspects of

fundamental physics and cosmology, including dark matter.
One example is represented by ultralight boson clouds that
may form around Kerr black holes, as a consequence of a
superradiance process [8,9]. Once formed, the cloud will
dissipate through the emission of a CW signal, with a
secular spin-up in frequency. Another interesting example
is binary systems made of subsolar mass primordial black
holes [10,11]. Such systems, for values of the chirp mass
smaller than ∼10−3 solar masses, are characterized by a
very long coalescence time and thus emit a nearly periodic
signal with a slowly increasing frequency.
The search for CWs can be based on optimal fully

coherent methods (using matched filtering), only when the
source sky position, frequency, and frequency evolution are
accurately known; see, e.g., [12,13]. Otherwise, regardless
of the source, the search is computationally very heavy and
relies on semicoherent approaches that strongly reduce
the required computing power—with respect to matched
filtering—at the price of a sensitivity loss (see, e.g., [14–27]).
Several such methods have been applied to LIGO-Virgo
data from various runs; see, e.g., [23,23,28–32] for recent
results concerning all-sky searches and [33–35] for general
reviews on CW search methods. Generally speaking, in a
semicoherent method, the full dataset is divided into several
shorter chunks that are independently processed and then
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recombined incoherently, i.e., without taking into account
the signal phase. The various approaches differ under
different aspects: the segment length, the way in which
each data segment is processed, the statistics used to
measure the significance of the results, the way in which
noise artifacts are dealt with, and in several implementation
details. In any case, the goal is an analysis method that is as
sensitive, robust, and computationally cheap as possible.
In this paper, we introduce a new semicoherent method

of analysis that exploits the sidereal amplitude modulation
of CW signals, induced by the time-varying response of the
detector. The method is built on the so-called five-vector
statistics [13], largely used in targeted searches for known
pulsars, which is here adapted to a semicoherent scheme.
This new pipeline allows one to make sensitive and
computationally cheap searches, with coherence time of
several sidereal days, toward specific sky directions. As
such, it can be used, for instance, to make directed searches
toward globular clusters or the Galactic Center and for the
follow-up of outliers found in wide-parameter space
searches (like all-sky searches).
The paper is organized as follows. In Sec. II, a brief

introductory description of the method is given. In Sec. III,
the computation of the coarse-frequency grid is described.
In Sec. IV, the reader is briefly reminded of five-vector
statistics, and its use in the context of a semicoherent
method discussed. Section V is devoted to the outline of the
removal of the residual Doppler effect and the computation
of the semicoherent statistics. Section VI extends the
algorithm to the presence of a source intrinsic spin-down.
Section VII describes the experimental procedure used to
estimate the method sensitivity, including a comparison
with the theoretical computation, discusses some imple-
mentation details of the analysis procedure, and, finally,
briefly comments on the computational cost of the algo-
rithm. In Sec. VIII, the validation tests done with hardware
and software-simulated signals are discussed. Finally,
Sec. IX contains the conclusions. Details on the theoretical
sensitivity computation are given in Appendix A.

II. OVERVIEW OF THE METHOD

In this section, we give an overview of the analysis
method, leaving details to following sections. A scheme of
the method is shown in Fig. 1, where, as an example, data
from two detectors are considered and a fixed-sky direction
is assumed. The starting point is represented by band
sampled data (BSD) files containing detector calibrated
data, each file covering 1 month and a band of 10 Hz, and
cleaned from short duration disturbances [36]. For a given
target of the search to be performed, a coarse grid on the
parameter space, consisting of frequency, spin-down, and
possibly sky position, is built. The range covered by each
parameter depends on the specific target. For instance, for
the follow-up of an all-sky outlier, it will consist of a small
interval around the outlier parameters, determined by the

uncertainty associated with each of them. In the case of a
directed search toward, e.g., a globular cluster, we will
likely employ a large range of values for frequency and
spin-down, which are typically unknown, and just one, or a
few, sky position(s) in order to cover the globular cluster
extension.
For each dataset, the data time series is subject to a

heterodyne correction [36] of the Doppler modulation
(Sec. III) and intrinsic source spin-down (Sec. VI), done
over the coarse grid points. This allows for a partial
substraction of those frequency variations. The grid is built
in such a way that, over data segments of duration TFFT
(where FFT represents the fast Fourier transform), any
residual frequency variation is confined within one fre-
quency bin of width δf ¼ 1=TFFT. The choice of TFFT and
then the corresponding number of grid points is a matter of
compromise between sensitivity (longer TFFT) and compu-
tational cost (higher number of grid points). When a large-
frequency range is considered, for practical reasons, this is
split into several smaller bands, say 1 Hz wide, and the
analysis steps described in the following are repeated for
each of them. For each time segment of duration TFFT,
the five-vector statistics is computed (Sec. IV) for each
frequency bin (within a 1 Hz subband) and a time-
frequency map of the statistics values is built. The residual
variation in frequency and spin-down is then removed
by building a “refined” grid and applying the needed

FIG. 1. Scheme of the analysis method, assuming the analysis
is done toward a single sky direction and that data from two
detectors are used. See text for more details.
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corrections by properly shifting the frequency bins in the
time-frequency plane (Secs. Vand VI). At this point, a total
statistics is built by summing the statistics computed over
each segment. Finally, a fixed number of the most signifi-
cant outliers are selected in each 1 Hz subband, over the
whole sky and spin-down ranges [31]. The outliers are
subject to subsequent analyses steps, which have been
commonly used in previous searches [31] and for this
reason are not discussed in detail in this paper. In brief,
coincidences among outliers found in different datasets (see
penultimate box in Fig. 1) consist of initially taking only
those for which the distance in the parameter space is below
some predefined threshold, ranking them on the basis of a
combination of distance and critical ratio and keeping a
given number of the most significant among these; see, e.g.,
[37] for a detailed discussion. These surviving outliers are
subject to additional postprocessing [31,38,38] to discard
those that are not compatible with an astrophysical signal.
Further iterations of the semicoherent procedure are pos-
sibly applied to deeply follow any remaining candidate.
This method represents the evolution and improvement of a
previous simpler approach used in [39,40].

III. COARSE FREQUENCY GRID

In this section, we describe how the coarse frequency
grid is built, deferring the discussion on spin-down cor-
rection to Sec. VI and assuming a fixed-sky position. At
each point of this grid, a heterodyne correction is applied in
order to partially remove the Doppler effect.
A CW signal before reaching the detector can be

represented, in complex notation, as hðtÞ ¼ h0eiϕðtÞ. At
the detector, the signal is characterized by an amplitude
modulation, not relevant here and discussed in Sec. IV, and
a frequency modulation. The corresponding phase evolu-
tion for a signal with intrinsic frequency f0 and assuming,
for simplicity, zero spin-down (an assumption which will
be relaxed later) can be expressed as

ϕðtÞ ¼ ϕ0 þ ω0

�
tþ r⃗t · n̂

c

�
; ð1Þ

where ω0 ¼ 2πf0, n⃗ is the unit vector identifying the
direction to the source, and r⃗t is the time-dependent
detector position in the reference frame of the solar system
barycenter (SSB). The Roemer delay r⃗t ·n̂

c is responsible for
the Doppler effect due to the motion of the detector.
If we perform a heterodyne correction over the whole

dataset to compensate the Doppler effect, using the right
sky position and a wrong angular frequency ω0

0, i.e., we

multiply the data by a factor e−iω
0
0

r⃗t ·n̂
c , the resulting signal

phase is

ϕcorrðtÞ ¼ ω0tþ ðω0 − ω0
0Þ
r⃗t · n̂
c

: ð2Þ

Because of the wrong correction, the resulting signal
frequency is affected by a residual Doppler modulation,

fðtÞ ¼ 1

2π

dϕcorr

dt
¼ f0 þ ðf0 − f00Þ

v⃗t · n̂
c

; ð3Þ

where v⃗t is the detector velocity in the SSB reference frame
and f00 ¼ ω0

0=2π. At two different times t1 and t2, the
wrongly corrected and the true signal frequencies differ by

fðt1Þ − f0 ¼ ðf0 − f00Þ
v⃗t1 · n̂

c
; ð4Þ

fðt2Þ − f0 ¼ ðf0 − f00Þ
v⃗t2 · n̂

c
: ð5Þ

It follows that

fðt1Þ − fðt2Þ ¼ ðf0 − f00Þ
�
v⃗t2 · n̂

c
−
v⃗t1 · n̂

c

�
: ð6Þ

We use this equation to define the maximum time interval
TFFT ¼ t2 − t1 such that the full signal power is confined
within a single frequency bin δf ¼ 1=ðt2 − t1Þ. Specifi-
cally, the frequency variation given by Eq. (6) over the time
interval TFFT must meet the condition

����ðf0 − f00Þ
�
v⃗t2 · n̂

c
−
v⃗t1 · n̂

c

�����
max

≤
1

TFFT
; ð7Þ

where the maximum of the expression in parentheses is
taken across the whole observing time. For a fixed TFFT,
and for a given detector and sky position, Eq. (7) provides
the maximum allowed coarse-frequency step Δf ¼ f0 − f00
when looking for a CW source emitting at an unknown
frequency f0. When searching over a frequency band of
width B0 and starting point fstart, the grid frequencies f00 ¼
fstart þ K · Δf , K ¼ 1;…;M, where M ¼ roundðB0=ΔfÞ,
will thus differ from f0 by at mostΔf . It is important to note
that here we are not taking into account the signal sidereal
modulation, which determines an additional spread of the
signal power, which will be considered in Sec. IV. Through
Eq. (7) we can then set the values for the pair (TFFT;Δf ) in
order to find the best compromise between computational
load and search sensitivity. As an example, in Fig. 2 we
plot the frequency grid step Δf as a function of the FFT
duration TFFT for a source direction ðλ ¼ 193.3162°;
β ¼ −30.9956°Þ. Increasing TFFT improves the sensitivity,
at the same time requiring a smaller step Δf and hence a
larger number of frequency grid points over B0 to for which
to search. Moreover, in the more general situation in which
position and spin-down are not exactly known, the number
of grid points in the parameter space increases proportion-
ally to T4

FFT [20], further increasing the computational cost
of the analysis.
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For implementation purposes, see Sec. VII A, TFFT is
taken as an integer number of sidereal days, T⊕ ¼
86164.09 sec.

IV. FIVE-VECTOR STATISTICS

After the heterodyne coarse correction of the Doppler
effect, a CW signal is still not monochromatic in each data
segment if TFFT is larger than one sidereal day. This is due
to the sidereal modulation induced by the time-varying
detector response toward the source direction. In this
section, we remind the reader of the definition of the
five-vector statistics, which allows one to take this effect
into account.
The signal at the detector, after the Doppler correction, is

given by [13]

hðtÞ ¼ Re
�
H0

�
HþAþðtÞ þH×A×ðtÞ

�
eiðω0tþϕ0Þ�; ð8Þ

where H0 is the signal amplitude, and

Hþ ¼ cos 2ψ − iη sin 2ψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p ;

H× ¼ sin 2ψ þ iη cos 2ψffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p : ð9Þ

In Eq. (9), η ¼ −2 cos ι
1þcos2 ι, with ι being the angle between the

source rotation axis and the line of sight, while ψ is the
wave polarization angle. The two functions Aþ=×ðtÞ are
periodic functions of Earth’s sidereal angular frequency
Ω⊕ ¼ 2π=T⊕. They are linked to the classical radiation
pattern functions Fþ=×ðψ ; tÞ [12] by Aþ=× ¼ Fþ=×ðψ ¼ 0Þ.
The signal amplitudeH0 in Eq. (8) is related to the classical
strain amplitude h0 by the relation

h0 ¼
2H0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6 cos2 ιþ cos4 ι
p : ð10Þ

The sidereal modulation, which affects both the amplitude
and the phase of the signal, produces a splitting of the
signal power in five frequencies, ω0 � kΩ⊕, k ¼ 0;
�1;�2. This was exploited in [13] to introduce a detection
statistics, based on the concept of a five-vector, defined as
the complex vector containing the Fourier components of
the signal at the five frequencies associated with the
sidereal modulation. The five-vector of a given time series
of duration TFFT, and at an angular frequency ω0, is given
by (working, for simplicity of notation, in the continuous)

X ¼
Z
TFFT

xðtÞe−iðkΩ⊕þω0Þtdt: ð11Þ

In addition to the data five-vector X, the signal template
five-vectors Aþ;A× are also computed for each ω0 by
means of Eq. (11), replacing the time series xðtÞ with the
two functions Aþ=×ðtÞ. Although analytical formulas have
been derived for Aþ=×ðtÞ (see, e.g., [13]), the corresponding
five-vectors are computed numerically in order to take into
account features of real data, for instance, data gaps, which
would be difficult to deal with otherwise. These three five-
vectors are then combined, computing two matched filters
of the data with the signal templates,

Ĥþ ¼ X ·Aþ

jAþj2 and Ĥ× ¼ X ·A×

jA×j2 : ð12Þ

It can be shown [13] that Ĥþ=× are estimators of the
quantities H0Hþ=×eiϕ0 in Eq. (8). They are used to define
the five-vector statistics as

S ¼ jAþj4jĤþj2 þ jA×j4jĤ×j2; ð13Þ

which collects the signal power, spread due to the sidereal
modulation, over a time interval TFFT and which also
depends on the detector noise through the data five-vector.

V. REMOVAL OF THE RESIDUAL DOPPLER AND
COMPUTATION OF THE FINAL STATISTICS

In principle, once we have computed the five-vector
statistics for all frequencies of the grid and over all
segments of duration TFFT, the final statistics value would
be simply obtained by summing all the five-vector statistics
values at fixed frequency. In practice, however, we have to
take into account the remaining frequency spread due to the
coarse Doppler correction described in Sec. III; otherwise,
the signal power at a given frequency would not be fully
recovered.
The choice of Δf for a given TFFT on the basis of Eq. (7)

guarantees that, in each time interval TFFT, the signal power

0 5 10 15 20 25 30

Time [sidereal days]

10
-2

10
-1

f [
H

z
]

FIG. 2. Frequency coarse step Δf as a function of data seg-
ment duration TFFT, for a source direction ðλ ¼ 193.3162°;
β ¼ −30.9956°Þ.
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remains confined into a frequency bin. As a consequence,
in each time segment, the five-vector statistics is not
affected by the not-optimal Doppler correction. The
residual Doppler, however, acts by offsetting the values
of the statistics in different segments of the time-frequency
plan, as can be clearly seen in the top plot of Fig. 3,
obtained considering a simulated signal of unitary ampli-
tude with parameters shown in the first row of Table I
(“s1”), generated by assuming it is observed by the LIGO
Livingston detector. The plot shows the time-frequency
map of the five-vector statistics of the signal after the coarse
Doppler correction for the coarse-frequency value nearest

to the true signal frequency, taking data segments of
duration TFFT ¼ 3T⊕. In this case, the residual Doppler
amounts to about 8 × 10−5 Hz, which is much smaller than
the full uncorrected Doppler shift, ≃0.01 Hz, but larger
than the frequency bin of 1

3T⊕
≃ 3.9 × 10−6 Hz. Therefore,

before summing the statistics on the time axis, to obtain the
final semicoherent statistics, we need to properly shift the
frequencies in order to realign them correctly. Specifically,
from Eq. (3) it follows that

f0 ¼
fðtÞ þ f00

v⃗t ·n̂
c�

1þ v⃗t·n̂
c

� ; ð14Þ

where f00 denotes the frequency grid values. We have to
shift the frequencies fðtÞ by an amount DfðtÞ such that
fðtÞ −DfðtÞ ¼ f0. It thus follows, from Eq. (14), that

DfðtÞ ¼
ðfðtÞ − f00Þ v⃗t ·n̂c�

1þ v⃗t·n̂
c

� ; ð15Þ

and the new corrected frequencies are obtained as

fcðtÞ ¼ fðtÞ −DfðtÞ: ð16Þ

By construction, this shift will realign the signal peaks
only when f00 is the grid value nearest to the true signal
frequency. The bottom plot of Fig. 3 shows the time-
frequency plot of the five-vector statistics after the refined
Doppler correction, considering the nearest point to the
signal frequency. As expected, after the refined correction,
the statistics peaks are aligned. Because of the computation
of scalar products between the signal and the templates at
different frequency bins [Eq. (12)], the statistics presents
nine prominent peaks, although both the signal and the
templates are characterized by only five peaks. See Sec. VI
for a more detailed discussion. In the simulation, we have
taken into account gaps in O3 Livingston data: the empty
region in the plots corresponds to a one-month detector
commissioning break that occurred during the run. Figure 4
shows the final statistics before and after the residual
Doppler correction. Again, the effect of the correction is
clearly visible and produces stronger peaks. When the
refined step is applied to the other coarse grid points, the
resulting correction will be less accurate and produce less
significant peaks in the final statistics.
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FIG. 3. Time-frequency plot of the statistics computed with
TFFT ¼ 3T⊕ for a simulated source with unitary amplitude, sky
position, and polarization parameters corresponding to signal s1
in Table I, frequency ¼ 107.4421 Hz, zero spin-down, and
assuming it is observed by the LIGO Livingston detector. Top:
refers to the coarse correction done for the grid frequency value
nearest to the true signal frequency; bottom: refers to the
corresponding refined correction. The color bar gives the value
of the five-vector statistics computed through Eq. (13). Even
though the plots have been obtained considering only the signal,
i.e., without detector noise, data gaps of the O3 run have been
taken into account in the simulation.

TABLE I. Position (in ecliptical coordinates) and polarization
parameters of the two sets of simulated signals used to test the
pipeline performances.

Signal λ (°) β (°) cos ι ψ (°)

s1 193.3162 −30.9956 −0.081 25.4390
s2 276.8964 −61.1909 0.463 −20.8530
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VI. SPIN-DOWN CORRECTION

In previous sections we have focused on the Doppler
correction, neglecting any intrinsic frequency variation of
the signal. In this section, we describe how to remove from
the data the frequency variations due to the spin-down. In
particular, we consider here only the correction for the first-
order spin-down term (i.e., the first time derivative of the
frequency). As discussed in Appendix B, for any fixed
TFFT longer than one sidereal day, some portions of the
potentially explorable parameter space—especially for very
large absolute values of the first-order spin-down—would
require the second spin-down term to also be taken into
account. The correction of the second-order spin-down is
deferred to a future work. Suppose we carry out a search for
a source located at a given sky position and emitting a CW
signal with unknown frequency and spin-down, ranging,
respectively, in the interval ½fmin; fmax� and ½ḟmin; ḟmax�. As
for the Doppler, also in this case we first apply a coarse
spin-down correction followed by a refined correction to
subtract the residual spin-down frequency variation and to
realign the frequencies of the statistics values due to a CW
signal. For a fixed coherence time TFFT, the coarse spin-
down step, defined as the maximum mismatch such that the
signal power during the time interval TFFT, is confined to a
single frequency bin and is

δḟ0 ¼
δf

2TFFT
: ð17Þ

For that given sky position, we then perform a coarse
heterodyne data correction (for the Earth Doppler effect),
to scan the frequency range of interest at steps Δf as
discussed in Sec. III and, for each frequency, a coarse
heterodyne spin-down correction at spin-down values

ḟn ¼ ḟmin þ n× δḟ0, where n ¼ 0;…; roundðjḟmaxj=δḟ0Þ.
After this stage, the time-frequency plot of the statistics is
affected by the residual Doppler and spin-down effects, due
to nonoptimal signal corrections, that propagate over the
observation time as shown in the top plot of Fig. 5, which
refer to the values of the coarse frequency and spin-down
nearest to the true signal values. In this example, we show
for illustrative purposes the results of the analysis per-
formed on a fake signal with unitary amplitude, emitted by
a source with sky position and polarization parameters
corresponding to signal s1 in Table I, f ¼ 107.4421 Hz,
ḟ ¼ −8.3410−11 Hz=s, assuming it is observed by the
LIGO Livingston detector. We have run the algorithm over
the band [107–108] Hz, with step Δf ¼ 0.3275 Hz, as
given by Eq. (7) for the specific value of TFFT ¼ 3T⊕. At
this point, we remove the residual Doppler due to the
approximate frequency correction by properly shifting the
frequency of the statistics values, see Eq. (16). The middle
plot of Fig. 5 shows that the signal, after the residual
Doppler removal, is only affected by the residual spin-
down, due to the previous not-optimal spin-down correc-
tion. Now we make a loop over the refined spin-down grid,
with step δḟ ¼ δf

2Tobs
, which now covers the interval between

each pair of successive spin-down values of the coarse grid.
The grid step is chosen in such a way that the whole signal
power, over the total observation time Tobs, is confined
within a single frequency bin. In practice, the correction is
performed by shifting the frequency of the statistics values
according to the rule

fcðtÞ ¼ fðtÞ − Kδḟ · t; ð18Þ

where K ¼ 1;…; roundðδḟ0=δḟÞ − 1, and the time t refers
to the central time of each data segment. The bottom plot of
Fig. 5 shows the result of the refined corrections for both
Doppler and spin-down effects, done using the refined spin-
down value nearest to the correct one: the time-frequency
values due to the signal are now aligned in frequency.
Finally, the statistics are added on the time axis. Figure 6
shows the cumulative corrected detection statistics before
and after the spin-down correction. We find that both the
frequency and the spin-down of the fake signal have been
correctly recovered inside the refined frequency and the
refined spin-down bins.
As already noticed in Sec. V, from Figs. 5 and 6 it can be

seen that actually there are nine frequency values associated
with the injected signal, because the convolution between
the five-comb of the data and the five-comb of the
theoretical kernel leads to a nine-comb. The nine peaks
of the statistics are separated by one sidereal frequency bin
1=T⊕ and their relative amplitude depends on the unknown
signal polarization. For the specific case shown in Figs. 5
and 6, the central peak is the most significant. In general,
the effect of signal polarization, combined with that of
noise fluctuations, can result in a most prominent peak
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FIG. 4. Global statistics, see Eq. (19), before (black, continuous
line) and after (blue, dotted line) the refined correction for a
simulated signal with parameters given in the caption of Fig. 3
and assuming it is observed by the LIGO Livingston detector. The
asterisk indicates the signal frequency.
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different from the central one, that is, not corresponding to
the real signal frequency. This has implications for the
choice of the coincidence window, as we show in Sec. VII,
when outliers found in different datasets are compared.

A. Summary of the method

We conclude this section with a brief summary of
Secs. V and VI in order to clarify the main steps of the
pipeline. Consider a dataset covering a frequency band
of width B. For a chosen coherence time TFFT and sky
position, a coarse-frequency and spin-down grid are
defined. For each point of the coarse-frequency grid, with
step Δf derived from Eq. (7), and for each point of the
coarse spin-down grid, with step δḟ0 given by Eq. (17), a
coherent data correction over the whole dataset is per-
formed via heterodyne correction. A time-frequency map
of the detection statistics is computed over data segments of
length TFFT, through the definition in Eq. (13). For each
coarse-frequency value, the residual Doppler is removed by
Eq. (16) to get the time-frequency Doppler-corrected
statistics. On the corrected time-frequency map, further
shifts are applied for the refined spin-down values between
each pair of consecutive coarse spin-down bins, via
Eq. (18). Finally, for each refined spin-down value, the
sum of the statistics Si for each time segment of duration
TFFT is computed, where the index i identifies the fre-
quency bin, of width 1=TFFT. The final semicoherent
statistics is then a function of the frequency

SðfÞ ¼
XN
k¼1

Sk; ð19Þ
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FIG. 5. Time-frequency plot of the detection statistics for a
simulated signal with unitary amplitude, parameters given in the
text, and assuming it is observed by the LIGO Livingston
detector. The analysis has been carried out with TFFT ¼ 3T⊕.
Top: statistics after Doppler and spin-down coarse correction,
using the frequency and spin-down values nearest to the correct
signal values. Middle: statistics after refined Doppler correction.
Bottom: statistics after refined spin-down correction, done using
the refined spin-down value nearest to the correct one. Even
though the plots have been obtained considering only the signal,
i.e., without detector noise, data gaps of the O3 run have been
taken into account in the simulation.
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FIG. 6. Final statistics, see Eq. (19), as a function of the
frequency, before (red, dotted line) and after (blue, continuous
line) spin-down correction for TFFT ¼ 3T⊕ for a simulated signal
of unitary amplitude with parameters given in the text. The
asterisk indicates the signal frequency.
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where the sum extends to the N ¼ floor
�Tobs
TFFT

�
segments

contained in the observation window. Outliers are selected
on this final statistics, dividing the searched frequency band
in a number of subbands and choosing a given number of
the most significant candidates, based on the critical ratio
(see Sec. VII for definition). Outliers found in different
datasets are then subject to further analysis steps, as briefly
discussed in Sec. II. The whole procedure can be repeated
considering different sky positions, if needed.

VII. PIPELINE CHARACTERIZATION

This section is dedicated to characterizing the pipeline
in terms of sensitivity and computational cost. We start,
however, by providing a couple of implementation details
that will be relevant also for real searches.

A. Implementation details

As anticipated in Sec. III, the data segment duration TFFT
is chosen to be a multiple integer of the sidereal day of
Earth T⊕. In this way, the five-vector components corre-
spond to integer frequency bins. Hence, any five-vector can
be computed by selecting the proper frequency bins in a
FFT of the data. This approach, first introduced in [41],
brings a significant speedup (about 3 orders of magnitude)
with respect to the computation based on the direct
application of Eq. (11).
A second detail concerns the frequency discretization

that can lead to losses in the recovered signal power up to
36%, due to the mismatch between the signal frequency
and the central frequency of the bins [42]. A cheap method
to reduce this effect consists of estimating the FFT values at
half bins, using an “interbinning” interpolation [41,42],

XFFT;kþ1=2 ≈
π

4

�
XFFT;k − XFFT;kþ1

�
; ð20Þ

where XFFT;k denotes the value of the FFT sample at the kth
frequency bin. The impact of interbinning in the sensitivity
estimation will be discussed in the next section.

B. Sensitivity

The sensitivity is defined as the minimum strain ampli-
tude detectable with a given confidence level (CL), which
we choose to be 95%.
We have made an empirical estimation of the sensitivity

via software injections of simulated signals in a few fre-
quency bands of real detector data, which has been then
extrapolated to the full frequency band 10–2048 Hz,
as outlined in the following. We have used O3 LIGO
Livingston data in three different 1-Hz frequency bands:
[107, 108], [585, 586], and [883, 884] Hz. In each of them,
two sets of 80 and 40 signals, denoted as s1 and s2, have
been generated, respectively, with random frequency, while
spin-down, position, and polarization parameters were

fixed at the values given in Table I and added to the
detector data. Each set of 80 and 40 signals has been
injected from 10 to 15 times, each timewith different values
for the amplitude H0 [see Eq. (8)], chosen in a range that is
expected to contain the minimum detectable value, at the
95% confidence level. Data have been analyzed as they
would be in a real search, considering the whole 1-Hz band
but only two coarse spin-down bins1 around the injected
values (to save computing time). Both the coarse and the
refined corrections have been applied.
For each set of injected signals of amplitude H0 and for

each spin-down value, after running the analysis we select
the 300 most significant outliers, across the 1-Hz frequency
band. As standard in several wide-parameter searches, the
significance of a candidate is represented by its critical ratio
(CR) [20] computed on the projection on the frequency axis
of the time-frequency map of the detection statistics values
and defined as

CRðfÞ ¼ SðfÞ − μn
σn

; ð21Þ

where S is given by Eq. (19), and μn and σn are the mean
and standard deviation of the noise statistics. The noise
statistics is evaluated by replacing the data five-vector X,
Eq. (12), with a noise five-vector whose components are
randomly chosen over the 1-Hz frequency band so that it
cannot represent a physical signal. Adapting the procedure
typically used in searches for selecting coincidences among
outliers found in different datasets [43], we choose as
outliers those points in the search parameter space ðf; ḟÞ
(the sky position is fixed), for which the a-dimensional
distance from any of the injected signals is smaller than
the coincidence window Dmax. In other words, a signal is
considered as detected if the dimensionless distance [20]

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Δf
δf × Δ

�
2

þ
�
Δḟ
δḟ

�
2

s
≤ Dmax; ð22Þ

where Δf;Δḟ are the dimensional distances of the outlier
from the injected signal, and the factor Δ weights in the
proper way the frequency distance that can be as large as
four sidereal frequency bins (4=T⊕). This is due to the
unknown source polarization, as shown in Fig. 7. The
choice ofDmax has been studied in [43] in the context of all-
sky searches. In practice, here we take Δ ¼ 4 (in units of
sidereal frequency 1=T⊕) and, conservatively, Dmax ¼ 2.2

1Out of M ¼ roundðjḟmaxj=δḟ0Þ, see discussion in Sec. III.
2In the case of coincidences among outliers found in different

datasets, the value of Dmax is chosen depending on the number of
follow-ups that can be afforded, given an available amount of
time and computing power. A bigger Dmax allows for a more
sensitive search, at the cost of a bigger number of outliers to be
followed up.
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The expected number of random outliers, due to noise, that
verify the above condition is much smaller than 1. For each
signal amplitude, we count the fraction of detected signals
and construct detection efficiency curves. Figure 8 shows
an example of detection efficiency curves, for two different
coherence times TFFT ¼ 5T⊕ (circles) and TFFT ¼ 10T⊕

(asterisks), with (black curves) and without (gray curves)
interbinning. The sensitivity gain is clearly visible both
when we use ten sidereal days, rather than five, and when
the interpolation is used. The signal amplitude H0, such
that 95% of the injected signals have a coincident outlier,
corresponds to the sensitivity H0;95% for a specific set of
source parameters and for the specific 1-Hz frequency band
we are considering. In practice, the 95% level is estimated by
linearly interpolating the detection efficiency between the
two data points immediately below and above that value.
In order to compute an average sensitivity on the

standard strain amplitude h0, we rescale H0;95% with two
factors, one to average over the sky and polarization from
the specific sky position and polarization angle used in the
injections, and one to go fromH0;95% to h0;95%, given by the
mean value of the coefficient in Eq. (10), which implies
the average over the cosine of the star’s inclination angle.
This is equivalent and computationally much cheaper to
generating signals with random parameters. At the end, we
have three values of the sensitivity for the three frequency
bands we are considering, which correspond to regions
with different detector noise. Each of these three sensitivity
values has been extrapolated to the full frequency band
by applying a further frequency-dependent scaling factor,
given by the square root of the ratio SnðfÞ=hSn;ji of the
data power spectrum estimation SnðfÞ, over the band
10–2048 Hz, to the average power spectrum estimation
(with respect to the frequency) in each of the three bands
where the injections have been done, i.e., hSn;ji, with j ¼
1; 2; 3 corresponding, respectively, to [107, 108], [585,
586], and [883, 884] Hz. The final sensitivity estimation is
given by the average (computed in each frequency bin)
of the three sensitivity curves. Figure 9 shows the final
sensitivity hmin;95% for O3 LIGO Livingston data for two
different segment durations, TFFT¼5T⊕ and TFFT¼10T⊕.
The number of combined data segments depends on TFFT
and on the presence of gaps in the data and is 60 for
TFFT ¼ 5T⊕ and 30 for TFFT ¼ 10T⊕. From the sensitivity
curves, we have estimated a sensitivity depth [44,45]
D ¼ ffiffiffiffiffiffiffiffiffiffiffi

SnðfÞ
p

=hmin;95%ðfÞ ¼ 124� 4 for TFFT ¼ 10T⊕.
The sensitivity values hmin;95% for specific frequency
bands and for the above mentioned data segment duration
TFFT, together with the corresponding CR, CR95%, are
shown in Tables II and III. The estimated sensitivity has an
associated false alarm rate of Oð10−5Þ, which corresponds
to an expectation of Oð10Þ outliers in Gaussian noise for a
1-Hz frequency band, one refined spin-down bin, and one
sky location. We have also computed a theoretical sensi-
tivity via a mixed analytical-numerical approach, which
assumes Gaussian and stationary noise, as described in
Appendix A. The last column of the tables reports such
theoretical value. Overall, the theoretical values under-
estimate the empirical sensitivity, as expected due to non-
Gaussian and nonstationary features of real data, by at
most ∼10%–15%.
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FIG. 7. Critical ratio CR over a frequency band containing the
simulated signal s2, see Table I, injected in O3 LIGO Livingston
data and amplitude H0 ¼ 10−25. The statistics shows two peaks
having comparable significance. The two peaks are distant four
sidereal frequency bins, with the smaller one at the signal
frequency.

FIG. 8. Detection efficiency curves, done using several sets of
80 software-simulated signals with the parameters of the HI P3,
injected in the band [107–108] Hz of LIGO Livingston O3 data
with different amplitudes. The pair of gray curves are the detec-
tion efficiencies as a function of the signal amplitude, without
interbinning and using a coherence time of five (circles) and ten
(asterisks) sidereal days. The pair of black curves correspond
to the application of the interbinning procedure, which signifi-
cantly increases the detection efficiency. Signal amplitude is in
units of 10−26.
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C. Computational cost

The semicoherent five-vector method is not suited—at
least in its current implementation—for carrying out the
follow-up of a large (≫ 104) number of candidates, as those
produced in a typical all-sky search. Rather, it represents
an effective method to analyze deeper a relatively small
number [Oð103–104Þ] of significant candidates. To give an
idea of the required computational cost, to analyze one year

of data from ndet detectors, setting TFFT ¼ 3T⊕, a fre-
quency band of nf refined bins, a number nsky of sky points,
and nsd refined spin-down bins, the code takes less than
2 × 10−7nf · nsky · nsd · ndet core hours, corresponding to
about 7× 10−4 s=template. This would correspond to about
80 core hours for a typical follow-up, covering say
nsky ¼ 9, 0.1 Hz frequency band, five coarse spin-down
points, and a network of three detectors. It would be then
able to follow-up O(5000) candidates previously selected,
in about 1% of the time needed to perform the bulk of an
all-sky search.
Another reasonable use of the procedure, both in terms

of sensitivity and computational cost, concerns directed
searches toward, e.g., the Galactic Center or globular
clusters. Assuming, for instance, to run a directed search
over one year of data of a single detector, looking for a
single sky point, a frequency band of 2 kHz, and exploring
ten coarse spin-down values, would take about 1.2 × 105

core hours.
The algorithm is characterized by a high level of

parallelism, which can be exploited on suitable hardware
devices to speed it up. Porting the code on graphics
processing units will be the subject of a future work.

VIII. TESTS WITH HARDWARE INJECTIONS

Hardware injections (HIs) are simulated CW signals
injected during scientific runs by directly moving detector
mirrors. Checking the ability of an analysis pipeline to
correctly recover HIs is a standard validation test for
CW pipelines. In this section, we present results for two

FIG. 9. Search estimated sensitivity for O3 LIGO Livingston
(95% CL), obtained through the injection of simulated signals in
detector real data. The curves correspond to two different seg-
ment duration, 5T⊕ (gray, circles) and 10T⊕ (black, asterisks).
Interbinning has been applied, see text for more details.

TABLE II. Sample results from the sensitivity estimation, using the software-simulated signal s1 (see Table I). The
various columns represent the injection band (at random frequency), the data segment duration used in the analysis,
the mean of the CR for the detected signals, the sensitivity estimation for H0 obtained through injections, the
corresponding classical strain sensitivity, the corresponding average detector noise amplitude power spectrum
(which, for a given frequency band, is independent of the used segment duration), and finally the theoretical
estimation. All the sensitivity estimations are in units of 10−26.

Band (Hz) TFFT ðT⊕Þ CR95% Hmin;95% hmin;95%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihSnðfÞi
p ðHz−1=2Þ hthmin;95%

[107, 108] 5 6.1 3.13 4.24 4.97 × 10−24 3.86
[107, 108] 10 7.0 2.93 3.97 3.57
[585, 586] 5 6.3 3.85 5.21 5.87 × 10−24 4.37
[585, 586] 10 6.4 3.38 4.58 3.99
[883, 884] 5 7.9 4.94 6.70 7.53 × 10−24 6.54
[883, 884] 10 7.2 4.62 6.26 5.44

TABLE III. Same as in Table II, but using simulated signal s2 in Table I. All the sensitivity estimations are in units
of 10−26.

Band (Hz) TFFT ½T⊕� CR95% Hmin;95% hmin;95%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihSnðfÞi
p ðHz−1=2Þ hthmin;95%

[107, 108] 5 4.27 3.37 4.37 4.97 × 10−24 3.25
[107, 108] 10 6.19 3.00 3.88 3.23
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different kinds of tests. The first one consists of running the
analysis for specific HIs, assuming the exact sky position
and spin-down values and covering a 1-Hz range around the
signal frequency, using different data segment durations.
Table V shows the results of the analysis for three HIs
present in LIGO Livingston O3 data, namely, P3, P5, and
P11 for three different choices of TFFT, as indicated in the
second column. The third column gives the coarse-
frequency bin Δf used in the analysis, whose value depends
on the position of the source as well as the coherence time.
The fourth column is the frequency error in detecting the
signal, while the last column gives the CR. HI parameters
are shown in Table IV. In all cases the signal is well
recovered: the error in frequency recovery is always smaller
than one bin and the CR increases with TFFT, as expected
for sufficiently strong signals.
The second test consists of running a multistage analysis,

in which a small parameter space volume around HIs is
initially considered and explored with a given segment
duration, the most significant candidate selected, and then
followed up with longer segment duration. This test closely
resembles what would be done in the follow-up of an
outlier coming from a wide-parameter search.
In principle, the procedure has not any intrinsic limit on

the increasing data segment duration TFFT, which would
result in improving the sensitivity, in subsequent steps, to
confirm a potential CW candidate. The maximum achiev-
able TFFT is mainly constrained by the available computing
power and is related to the size of the search parameter

space and to the number of candidates that can be
reasonably handled. One further limitation may be present
for nearby sources with a high transverse velocity [46]
with respect to the line of sight, for which using values of
TFFT too large would introduce a sensitivity loss due to a
Doppler residual term associated with the variation of
source position during the observation time. In the follow-
ing, we do not take into account this possibility and, for
each HI, a double-step analysis has been done. First, a small
portion of the parameter space, specified below, around
each of sources has been analyzed with a coherence time
TFFT ¼ 3T⊕. A follow-up, with TFFT ¼ 10T⊕, has been
then performed over a smaller region around the most
significant candidate found in the previous step. As
representative of the results, we discuss here the case of
HI P5. The first analysis step focused on the spin-down
range ½−2.2449×10−11; 2.2449×10−11�Hz=s, a sky region
covering 0.02° in β and �1.125° in λ centered at the signal
position, corresponding to 15 points in the sky. The point
in this three-dimensional grid having the highest CR
(CR ≃ 93) has been selected as the signal candidate. It
corresponds to the exact source position and to frequency
and spin-down values less than one bin off the signal
values. We have applied the second analysis stage in a small
region around the candidate, increasing the coherence
time to 10T⊕ and exploring a sky patch of �0.4° in λ
and �0.015° in β, centered at the candidate position,
a frequency range of �0.03 Hz around the candidate
values, and a spin-down range ½−6.7347 × 10−13;
6.7347 × 10−13� Hz=s, corresponding to four coarse spin-
down values (and 152 total refined spin-down values)
around it. Figure 10 shows the maximum CR for each
point of the sky grid (whose position is measured with
respect to that of the initial candidate). Figure 11 shows the
distribution of the CR as a function of the distance in
frequency and spin-down from the starting candidate. All
parameters of the most significant candidate, which has
CR ¼ 243, are recovered within one bin of the refined
grid obtained with TFFT ¼ 10T⊕, with an error reduced
by a factor of ∼3.3 compared to the initial analysis.
Furthermore, the increase in CR is compatible with the
improvement in sensitivity. Several other high CR outliers
appear in Fig. 11, with slightly wrong parameters. This is
due to the fact that P5 is a rather strong signal and
parameters have some degree of correlation.

TABLE IV. Parameters of HIs used to test the search pipeline with LIGO Livingston O3 data. Frequency and spin-down refer to the
GW signal; position is in equatorial coordinates; cosðιÞ is the cosine of the angle among the source rotation axis and the line of sight; ψ is
the wave polarization angle, and H0 is the signal strain amplitude.

HI Frequency (Hz) Spin-down (ḟ) (Hz/s) ðα; δÞ (°) cos ι ψ (°) H0

P3 108.857 −1.46 × 10−17 (178.372, −33.437) −0.081 25.455 6.615 × 10−26

P5 52.808 −4.03 × 10−18 (302.627, −83.839) 0.463 −20.853 3.043 × 10−25

P11 31.425 −5.07 × 10−13 (285.097, −58.272) −0.329 23.589 2.045 × 10−25

TABLE V. Test with HIs. The various columns represent the
data segment duration TFFT (in sidereal days), the coarse-
frequency step, the error in signal frequency recovery (in bins),
and finally, the recovered CR.

HI TFFT ðT⊕Þ Δf (Hz) δferr (bins) CR

P3 3 0.330 −0.34 17.7
P3 12 0.025 0.11 31.0
P3 24 0.007 0.21 46.7
P5 3 0.500 0.12 94.3
P5 12 0.047 −0.02 291.2
P5 24 0.012 −0.04 465.8
P11 3 0.380 0.05 10.1
P11 12 0.027 0.28 18.5
P11 24 0.007 0.05 36.0
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IX. CONCLUSIONS

In this paper, we have presented a semicoherent analysis
method for the search of CW signals. The method is based
on a computationally efficient incoherent combination
of five-vector statistics computed over data segments of
duration larger than one sidereal day. The concept of five-
vectors has been originally introduced in the context of
full-coherent targeted searches and exploits the signal
sidereal modulation. Here we use it as a coherent step in
a semicoherent method in which an initial coarse hetero-
dyne Doppler and spin-down correction is followed by a
more refined correction based on the shift of frequencies in
the time-frequency plane. On one hand, we demonstrate
the heterodyne correction is robust: in order to confine the
signal power, in each time window TFFT, within the
“natural” bin width, given by the inverse of the data
segment duration δf ¼ 1=TFFT, it is enough to apply such
correction on a coarse grid with stepΔf ≫ δf. On the other,
we show that such coarse correction leaves a residual
frequency variation that can be efficiently removed by
shifting the bins of a time-frequency map built computing
the five-vector statistics over the single data segments.
The method can be thought as a building block of a

multistep procedure in which longer and longer data
segments are used, inspecting around a given interesting
point (or region) in the search parameter space. Two natural
applications are (i) the follow-up of significant candidates
found, e.g., in all-sky searches and (ii) directed searches
toward specific sky locations, like the Galactic Center or
globular clusters, over a large range of frequency and spin-
down values.
We have proved, by analyzing both software- and

hardware-simulated signals injected in O3 data, that the

procedure behaves as expected both in terms of improve-
ment of the candidate significance, when the data segment
duration is increased, and in terms of overall sensitivity as
compared to a theoretical computation.
The application of the method to wider parameter space,

like all-sky searches, is a future milestone for which
additional work is needed.
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APPENDIX A: THEORETICAL SENSITIVITY

In this appendix, we provide some details on the
computation of the theoretical sensitivity we refer to in
Sec. VII B. An analytical expression for the sensitivity is
difficult to derive for the sum of five-vector statistics, while
it has been obtained in [37] for the single five-vector
statistics, which we briefly summarize. Assuming Gaussian
noise with zero mean and variance σ2 and given the
linearity of the Fourier transform, each component of the
five-vector, defined by Eq. (11), is also distributed accord-
ing to a Gaussian with zero mean and variance σ2X ¼
σ2 · TFFT. The two complex amplitude estimators of
Eq. (12), then, have still a Gaussian distribution with zero

mean and variance σ2þ=× ¼ σ2X
jAþ=×j2. As a consequence, the

probability density function of the square modulus of the
two estimators is an exponential and then the detection
statistics defined in Eq. (13) is distributed according to a
linear combination of two exponentials with mean values
σ2þ=×, see Eq. (34) in [37].
In the presence of a signal of amplitudeH0, each term of

the linear combination follows a noncentral χ2 distribution,
with noncentrality parameter

βþ=× ¼ 2H2
0jejΦ0Hþ=×Aþ=×j2=σ2X: ðA1Þ

This applies to each term Si in Eq. (19). The distribution of
the final statistics S can be numerically obtained in a
straightforward way by generating the two aforementioned
distributions (exponentials or noncentral χ2, respectively,
for noise and noise plus signal) and then taking the sum
in Eq. (19).
The theoretical sensitivity is computed in the following

way. First, we generate the noise-only distribution of the
statistics, taking the data average power spectrum Pðf�Þ at
a given frequency, choose a p-value p, e.g., 0.01, and
determine the corresponding value of the statistics S�.
Then, for each value of the signal amplitude H0 in a given
range, a population of random source parameters is
generated and the corresponding noise plus signal proba-
bility distribution is computed. The area of the above
distribution on the right of S� is evaluated, and the valueH�

0

such that the area equals a given value of the detection
probability Γ, e.g., 0.95, is determined. The number H�

0 is

multiplied by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=2.4308

p
, to take into account the

average loss due to the uncertainty of the frequency with
respect to the frequency bin center [37], and by a factor
1.3258 to convert H0 to the standard strain h0 [see
Eq. (10)]. This number is the minimum detectable signal
amplitude at CL Γ and p-value p for the given value of the
data power spectrum. The sensitivity over the whole
frequency band is obtained by multiplying that value byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðfÞ=Pðf�Þp

, i.e., the square root of the ratio of the
frequency-dependent data power spectrum to the reference
value. Rather than plotting the full theoretical sensitivity, in
Table II we reported the theoretical sensitivity computed
over O3 LIGO Livingston data for a few frequency bands
and different data segment durations TFFT, together with the
empirical values obtained through the injection of simu-
lated signals, as described in Sec. VII B. The two estima-
tions are in good agreement, with the theoretical one
slightly better–by 15% at the most–as expected given they
are computed assuming an ideal Gaussian distribution for
the noise.

APPENDIX B: SECOND-ORDER SPIN-DOWN

The spin-down correction described in Sec. VI regards
only the first-order spin-down term ḟ. A second-order term
f̈ would not be corrected and could determine a sensitivity
loss. The condition for an uncorrected second-order spin-
down term to not produce a sensitivity loss is that the
frequency variation it causes during the observing period
Tobs is less than half frequency bin δf ¼ 1=2TFFT. The
frequency variation for spinning neutron stars can be
expressed through the second-order term of a Taylor
expansion as

Δf ¼ f̈
T2
obs

2
: ðB1Þ

Hence, the condition for neglecting the second-order spin-
down is

f̈ ≤
1

T2
obs · TFFT

: ðB2Þ

This can be translated in a maximum value of the second-
order spin-down term. Let us consider a power law to
describe the relation between the signal frequency and its
first time derivative,

ḟ ∝ fn; ðB3Þ

where n is the “braking index,” for which the value depends
on the mechanism driving the rotational evolution of the
star. By integrating the equation, we find the well-known
relation for the time dependency of the frequency,
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fðtÞ ¼ f0

�
1þ t

τ

� 1
1−n
; ðB4Þ

where τ ¼ ð1 − nÞ ḟ0f0 is the characteristic spin-down age
that, for values of the frequency and spin-down typical for
spinning neutron stars, is much bigger than any reasonable
observation time of gravitational wave detectors. By
deriving Eq. (B4) two times, we obtain the following
expression for the second time derivative:

f̈ ¼ f0
τ2

n
ð1 − nÞ2

�
1þ t

τ

�2n−1
1−n

: ðB5Þ

Neglecting the very weak time dependency of f̈ and
assuming n ¼ 5, which holds for objects in which spin-
down is dominated by the emission of gravitational waves,
we have the well-known relation

f̈0 ¼ 5
ḟ20
f0

: ðB6Þ

For each pair ðf0; ḟ0Þ of the searched parameter space, we
can then determine if the corresponding value of f̈0 satisfies
Eq. (B2). Figure 12 shows, for various values of TFFT, and
Tobs ¼ 1 yr, the portion of parameter space defined by
f0 ∈ ½20; 2000� Hz and jf̈0j ≤ 10−8 Hz=s, for which the
second-order spin-down can be neglected. The upper left
white corner of the plot, corresponding to small signal

frequency and very high spin-down, is the region for which
the second-order spin-down is never negligible as soon as
TFFT ≥ 1 day. On the other hand, as an example, a source
emitting a signal at f0 ¼ 100 Hz and analyzed dividing the
data in segments of duration TFFT ¼ 6 days could be
searched, neglecting the second-order spin-down only if
its first-order spin-down was jḟ0j < 1.55 × 10−9 Hz=s. For
each value of TFFT, the parameter space cut (the inclined
straight line separating regions of different color) corre-
sponds to a specific value of the second-order spin-down,
according to Table VI, which is the maximum allowed
value not requiring an explicit correction.
Two comments are in order. First, assuming a different

spin-down mechanism, which is a different value for the
braking index in Eq. (B3), would affect the position of the
cuts in Fig. 12 and the corresponding maximum allowed
second-order spin-down values of Table VI. In general,
when the spin-down of a spinning neutron star has non-GW
contributions, the resulting braking index is smaller than 5
(e.g., it is equal to 3 for pure dipole EM emission). This
results in a smaller f̈ for given values of ðf; ḟÞ. As a
consequence, the allowed regions shown in Fig. 12 are
conservative.
Second, known pulsars typically have second-order spin-

down values smaller than the values shown in the table.
Specifically, there is only one known pulsar, J0534þ 2200,
with f̈ ≃ 1.11 × 10−20 ðHz=s2Þ, for which the correction
for the second-order spin-down would be needed if
TFFT ≥ 20 days. While properties of the unknown neutron
star population could not be directly related to that of
known pulsars, we may expect that much larger second-
order spin-downs should not be extremely common.
Nevertheless, the extension of the analysis method to

include the correction of the second-order spin-down will
be an important step that we defer to future work.

FIG. 12. For various values of TFFT, and Tobs ¼ 1 yr, the plot
shows the portion of parameter space for which the second-order
spin-down can be neglected.

TABLE VI. Maximum allowed value of the second-order spin-
down that does not require an explicit correction, as a function of
TFFT and assuming Tobs ¼ 1 yr. Such value corresponds to the
separation line among different colored regions in Fig. 12.

TFFT (days) f̈0 (Hz=s2)

1 4.25 × 10−18

3 4.72 × 10−19

5 1.18 × 10−19

10 4.25 × 10−20

20 1.06 × 10−20
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