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In this study, we employ the homogeneous balance method to obtain an analytical solution to the
Balitsky-Kovchegov equation with running coupling constant. We utilize two distinct prescriptions of the
running coupling scale, namely the saturation scale dependent running coupling and the dipole momentum
dependent running coupling. By fitting the proton structure function experimental data, we determine the
free parameters in the analytical solution. The resulting χ2=d:o:f: values are determined to be 1.07 and 1.43,
respectively. With these definitive solutions, we are able to predict exclusive J=ψ production and
demonstrate that analytical solutions with running coupling are in excellent agreement with J=ψ
differential and total cross section. Furthermore, our numerical results indicate that the analytical solution
of the BK equation with running coupling constant can provide a reliable description for both the proton
structure function and exclusive vector meson production.
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I. INTRODUCTION

In high-energy scattering processes, the partonic density
exhibits a crucial phenomenon, primarily dominated by
gluonic density at the small-x region. The partonic density
increases rapidly with the decrease in Bjorken-x owing
to gluon splitting, while the overlapping gluons begin to
recombine and become prevalent at high density. This
results in a balance between splitting and recombination,
leading to a new state of gluon saturation [1,2]. The quan-
tum chromodynamics effective field theory, called color
glass condensate (CGC) [3–7], provides an efficient tool
to describe measurements of observables in high-energy
scattering processes, especially in the presence of satura-
tion. The widely used dipole model offers a holistic
approach to computing the observables in multiple proc-
esses, such as exclusive vector meson production [8] and
proton structure function F2 [9], based on gluon saturation.
The CGC effective field theory provides an excellent
platform to describe the phenomenon of gluon saturation

and facilitates the analysis and prediction of high-energy
scattering measurements.
A key ingredient in the calculation of the cross section in

the dipole model is the dipole scattering amplitude, which
includes all the information regarding the dipole-proton
strong interactions. The dipole scattering amplitude can be
obtained from phenomenological model, e.g., the GBW
model [10,11] and IIM model [12]. These models were
widely used in literature since its simplicity and ability for
describing simultaneously the total inclusive and diffractive
deep-inelastic scattering (DIS) cross section. For instance,
the GBW model gives a good description of the early
experimental data using few free parameters. Moreover,
these models can naturally capture some features observed
in high-energy scattering processes, such as the unitarity
and geometric scaling. However, these models are inad-
equate in describing the wealth of high precision exper-
imental data. Therefore, it is necessary to derive the dipole
scattering amplitudes from the QCD evolution equations,
which can be updated to a more elaborated version by
including higher order corrections.
One of the successful evolution equations for dealing with

the saturation effect is the Jalilian-Marian-Iancu-McLerran-
Weigert-Leonidov-Kovner (JIMWLK) equation [13–19].
The JIMWLK equation is derived by boosting the target,
whose nonlinear evolution reflects the saturation in the
target wave function. In practice, the application of the
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JIMWLK equation is limited due to the complexity of
solving an infinite coupled hierarchies of evolution equa-
tions for the Wilson line correlators. In the mean-field
approximation, the JIMWLK equation expressed with the
projectile wavefunction reduces to Balitsky-Kovchegov
(BK) equation [20,21], an equation at leading logarithmic
accuracy. The BK equation contains a nonlinear term which
reduces the increase of the partonic density and ensures the
dipole scattering amplitude satisfies the unitarity con-
straints. An important result of the BK equation is the
geometric scaling of the scattering amplitude, which is
verified by the experimental data of DIS in the HERA
energy region [22], which indirectly indicates the existence
of gluon-saturated matter, thus firmly supporting the CGC
theory. In recent years, the BK equation has been improved
by including higher order corrections, such as the running
coupling BK (rcBK) equation, which includes the contri-
bution from quark loops [23,24], the full next-to-leading-
order BK (fNLOBK) equation, which includes the
contributions from quark and gluon loops, as well as the tree
gluon diagrams with quadratic and cubic nonlinearities [25].
Meanwhile, the recent investigations indicate that the kin-
ematical constraint [26,27] and the target rapidity representa-
tion [28,29] also modify the kernel of the evolution equation,
which in turn affects the speed toward saturation.
It is important to point out that all of the above-

mentioned BK evolution equations are integro-differential
equations with nonlinear term. It is difficult to directly
solve these complex nonlinear equations. Hence, numerous
efforts have been implemented to obtain solutions of
the evolution equations, both analytically and numerically.
In terms of the numerical solution, the BK equation
and its elaborated versions have been deeply investi-
gated [9,30–35] as its simpler nature than the JIMWLK
equation. While the resulting dipole scattering amplitudes
from these equations give a fairly successful description
of the experimental data with free parameters from the
initial conditions, applications are hindered by the time-
consuming nature of the evolution. So, one may hope to
obtain a convenient and applicable formalism from the
analytical solution. One of the early works is given by
Levin and Tuchin [36]. They present an analytical solution
for the nonlinear evolution equation with the strategy diving
the equation into linear and nonlinear regions based on
the critical line. Later, the authors in Ref. [37] explore the
geometric scaling properties of the BK equation in the
saturation region. The sets of BK equations can be simplified
in the saturation region, allowing us to obtain an approxi-
mate analytical solution in this region [29,38,39].
The nonlinear BK equation can be viewed as the

combination of a linear Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation with a nonlinear term which tames the
growth of the gluon density. It has been shown that
the nonlinear BK equation reduces to the nonlinear

Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equa-
tion when the diffusion approximation is applied to the
BFKL kernel [40–42]. The FKPP equation is well known in
statistical physics and admits the asymptotic traveling-
wave solutions [43]. Based on this diffusion approxima-
tion, the nonlinear BK equation has been widely studied
and used to describe the deep inelastic scattering [7] (and
the references therein). While the reduction of the BK
equation reproduces some of the phenomenology, e.g., the
geometric scaling, it is limited in its application because its
solution is valid only in the vicinity of the saturation scale.
To circumvent these difficulties, Marquet, Peschanski,
and Soyezan proposed an iterative method to extend the
solution to the nonasymptotic region [44,45]. In a recent
study [46], the recurrence relations for the dipole densities
are proposed. By summing the larger Pomeron loops, the
scattering amplitude is found to decrease at large values of
rapidity. This behavior is a consequence of the diffusion
approximation to the BFKL kernel, which does not lead to
the saturation both in the BK equation and in the dipole-
dipole amplitude. Therefore, it is critical to develop a more
realistic approximation to the BFKL kernel.
Although there are limitations in the application of the

BK equation with the diffusion approximation, it is of
interest to search for its solutions and investigate its
properties using new approaches. In fact, the FKPP
equation can be solved by using the homotopy perturbation
method [47] and the homogeneous balance method [48].
Applying the homogeneous balance principle, we obtain an
analytical traveling-wave solution for the nonlinear BK
equation with fixed coupling constant [49]. It is essential to
acknowledge that the running of the quantum chromody-
namics (QCD) coupling is a high-order effect. Assigning
the coupling as a constant could lead to an ambiguous
result. In order to obtain a comprehensive evolution equa-
tion, it is necessary to account for at least the correction
arising from the running coupling constant. In this study,
we employ the homogeneous balance method to the non-
linear BK equation with running coupling constant. We
investigate two distinct prescriptions of running coupling
scale, i.e., the saturation scale dependent running coupling
and the dipole momentum dependent running coupling. By
fitting the proton structure function, we obtain the defini-
tive solution of the BK equation with running coupling
constant, which can also provide a good explanation for the
J=ψ production. The findings suggest that the analytical
solution of the BK equation with running coupling constant
can effectively describe the proton structure function and
the exclusive vector meson production. The current study
highlights the importance of considering the correction
from the running coupling constant to obtain a precise
evolution equation. Furthermore, the analytical solution
offers a promising avenue to predict and explain exper-
imental findings in high-energy collisions.
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II. ANALYTICAL SOLUTION OF BK EQUATION
USING HOMOGENEOUS BALANCE METHOD

In this section, we provide a detailed description of the
numerical solution of the BK equation using the homo-
geneous balance method, which is an efficient method for
constructing exact solutions of a set of nonlinear partial
differential equations. In order to introduce the notation and
set up the framework, we first review the general aspects of
the BK equation and introduce the homogeneous balance
method to obtain the analytical solution for the BK equa-
tion with fixed coupling. Then, we extend this method to
the BK equation with running coupling constant.

A. Analytical solution of BK equation with fixed
coupling constant

The BK equation is first derived by Balitsky [20] and
Kovchegov [21] at leading logarithmic accuracy. It des-
cribes a dipole (consist of a quark and an antiquark with
transverse size r) evolution with rapidity Y by the emission
of soft gluon. In the large Nc limit, it can be written as

∂Nðr; YÞ
∂Y

¼ ᾱs
2π

Z
d2z⊥

r2

r21r
2
2

�
Nðr1; YÞ þ Nðr2; YÞ

− Nðr; YÞ − Nðr1; YÞNðr2; YÞ
�
; ð1Þ

where r1, r2 is the two new daughter dipole transverse size in
the evolution. Here, the coupling ᾱs is keep fixed. As we can
see, the right hand of Eq. (1) contains linear terms (the first
three terms) and nonlinear term (the last term).When the size
of the dipole is small enough (N ≪ 1), the nonlinear term
can be neglected, then the BK equation reduces to the linear
BFKL equation [50,51]. However, in the saturation region,
the nonlinear term becomes extremely significant due to
the saturation effects, as it has been verified in high-energy
scattering experiments. For this nonlinear equation, it is diffi-
cult to obtain an exact analytical solution. There are many
efforts to obtain an approximate analytical solution in the
literature, such as the semiclassical approximation [36,52]
and the traveling wave approach [53].
It should be noted that Eq. (1) is an integro-differential

equation in coordinate space. The BK equation is usually
translated into momentum space as it has a simple form,
which is friendly for solving analytically and numerically.
Through Fourier transform, Eq. (1) becomes [54]

∂N ðk; YÞ
∂Y

¼ ᾱsχ

�
−

∂

∂L

�
N ðk; YÞ − ᾱsN 2ðk; YÞ; ð2Þ

where L ¼ log ðk2=Λ2Þ. The BFKL kernel is

χðγÞ ¼ 2ψð1Þ − ψðγÞ − ψð1 − γÞ: ð3Þ

The ∂=∂L in Eq. (2) is a differential operator acting on
N ðY; kÞ. As an approximation, one can expand the BFKL

kernel around the critical point γ0. As suggested by Munier
and Peschanski [40], one can only keep the first three terms
of the expansion to avoid the mathematical difficulties
regarding the infinite-order differential equation. The trun-
cation of the BFKL kernel to second order derivative is
called diffusion approximation. A precise application of
the solution in this approximation is limited as it is asymp-
totic. In order to extend the solution to the nonasymptotic
regime, Marquet, Peschanski, and Soyezan proposed an
iterative method to find the solution to the nonasymptotic
region [44,45]. They found that the truncation of the BFKL
kernel up to second order agrees with the numerical
solution in the nonasymptotic region when the free param-
eters are adjusted. Consistent with Ref. [45], we assume
that the diffusion approximation with free parameters can
be extended to the nonasymptotic region. In the diffusion
approximation, the BK equation reduces to

A0N −N 2 −
∂N
∂Ȳ

− A1

∂N
∂L

þ A2

∂
2N
∂
2L

¼ 0; ð4Þ

with Ȳ ¼ ᾱsY.
The coefficients Ap (p ¼ 0, 1, 2) are given by

Ap ¼
X2−p
i¼0

ð−1Þi χ
ðiþpÞðγ0Þ
i!p!

γi0: ð5Þ

Now, Eq. (4) shares the same university class as the non-
linear FKPP equation through variable transformation [40].
In our previous study [49], we have shown that the
FKPP equation can be solved by using homogeneous
balance method. Homogeneous balance method is an
effective approach to search for the solution of a commu-
nity of the nonlinear partial equations Pðu; ux; ut; uxx; uxt;
utt;…Þ ¼ 0 [55–57]. The main idea is to choose a suitable
linear combination of the heuristic solutions, which in
general contains undetermined coefficients. Then make
the highest nonlinear term and the highest order partial
derivative term to be balanced to obtain the exact solution.
A more detailed process for searching the solution of a
nonlinear partial equations can be found in Ref. [56].
Applying the homogeneous balance method, the definitive
traveling-wave solution for Eq. (4) is given by [49]

N ðL; YÞ ¼ A0e
5A0 ᾱsY

3�
e
5A0 ᾱsY

6 þ e
½−θþ

ffiffiffiffiffi
A0
6A2

q
ðL−A1ᾱsYÞ�

�
2
; ð6Þ

where θ is a free parameter comes from the heuristic
solution in homogeneous balance method.
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B. Analytical solution of BK equation with running
coupling constant

In the above subsection, we have show the analytical
solution for the nonlinear BK equation with fixed coupling
constant. However, the phenomenological studies with
the structure functions [9] and particle production [58,59]
indicate that the BK equation with fixed coupling constant
is insufficient to describe the experimental data. So, we
need consider some corrections to modify the QCD evo-
lution equation in order to get a rather good description for
more and more accuracy experimental data. One of the
most corrections is the running coupling correction. Using
three different formulations of modified BK (kinematically
constrained BK, collinearly improved BK, and target rapi-
dity representation BK) evolution equations to numerically
fit the reduced cross section data, the authors in Ref. [60]
found that three different schemes give an equally good
descriptions to the reduced cross section data, which means
that the running coupling correction is the dominant correc-
tion among them. This founding was supported by our
analytical solution in the suturation region [61]. There-
fore, the exact analytical solution for the BK equation
with running coupling constant is a key ingredient to under-
stand the saturation phenomenal in high-energy scattering
processes.
To include the running coupling correction, we rewrite

the BK equation as

∂N ðk;YÞ
∂Y

¼ ᾱsðμÞχ
�
−

∂

∂L

�
N ðk;YÞ− ᾱsðμÞN 2ðk;YÞ: ð7Þ

Applying the diffusion approximation for Eq. (7),
expanding the BFKL kernel to the second order, the BK
equation with running coupling constant can be written as

A0N −N 2 −
1

ᾱsðμÞ
∂N
∂Y

− A1

∂N
∂L

þ A2

∂
2N
∂
2L

¼ 0: ð8Þ

Different from Eq. (4), where the coupling is fixed, the
coupling in Eqs. (7) and (8) is a scale dependent variable.
At one-loop accuracy, it is given by

ᾱsðμÞ ¼
1

b log μ2

Λ2

; ð9Þ

where

b ¼ 11Nc − 2Nf

12Nc
; ð10Þ

with Nc and Nf is the number of color and number of
flavor, respectively.
In the literature, one can choose the running coupling

scale as the mother dipole size or the smallest dipole size
in the evolution in coordinate space. Correspondingly, the

running coupling scale is usually set as the individual
dipole momentum in the momentum space. However, as an
alternative approach, it is most intuitive to assume that the
scale in the running coupling constant is the saturation
scale, since its value implies the typical momentum of the
gluon in the saturation region. In this work, we shall
consider both the saturation scale prescription and the
dipole momentum prescription.
In the saturation scale prescription, the running coupling

becomes

ᾱsðQ2
sÞ ¼

1

b log Q2
s

Λ2

: ð11Þ

The saturation scaleQs is a character of gluon saturation.
It is proportional to the gluon density and increases with
rapidity. Specifically, in the running coupling case, the
saturation scale is a related to the rapidity through [37]

log
Q2

s

Λ2
¼

ffiffiffiffiffiffi
cY

p
; ð12Þ

with c is a free parameter.
Submitting Eqs. (11) and (12) into Eq. (8), one can get

A0N −N 2 −
bc
2

∂N
∂t

− A1

∂N
∂L

þ A2

∂
2N
∂
2L

¼ 0: ð13Þ

Here, we make t ¼ ffiffiffiffiffiffi
cY

p
for mathematical convenience

to derive the analytical solution. According to the homo-
geneous balance method, we can get the solution of
Eq. (13) through starting with a heuristic solution as [48]

N ðL; tÞ ¼
XN

mþn¼1

amþn
∂
ðmþnÞ

∂Lm
∂tn

f
	
φðL; tÞ
: ð14Þ

According to the homogeneous balance principle, the
power of ∂=∂L and ∂=∂t in the highest order derivative
term and highest order nonlinear term should be balance,
respectively [48,56]. Based on this principle, we can obtain

m ¼ 2; n ¼ 0; and N ¼ mþ n ¼ 2: ð15Þ

Let the coefficient in the highest order derivative be
equal to one. Then, the heuristic solution is given by

N ðL; tÞ ¼ f00ðφÞφ2
L þ f0ðφÞφLL þ a1f0ðφÞφL þ a0: ð16Þ

Substituting the heuristic solution into Eq. (13) and using
the principle that the highest power of the derivative of φ
should be balance, we get

A2fð4ÞðφÞ −
	
f00ðφÞ
2 ¼ 0: ð17Þ

Equation (17) has a particular solution,
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f ¼ −6A2 logφ: ð18Þ

Assume the formalism of φ has the traveling wave
structure,

φ ¼ 1þ eαLþβtþθ: ð19Þ

Substituting this ansatz solution into Eq. (13), collecting
all terms with the same order of f, and setting the co-
efficients of each order of f to be zero, we can get a set of
algebra equations with the undetermined parameters.
Solving these equations, we can obtain the selected results
for the parameters,

a0 ¼ 0; a1 ¼
ffiffiffiffiffi
A0

pffiffiffiffiffiffiffiffi
6A2

p ; α ¼
ffiffiffiffiffi
A0

pffiffiffiffiffiffiffiffi
6A2

p ; and

β ¼

ffiffiffiffiffiffi
6A0

p
A1ffiffiffiffi

A2

p þ 5A0

bc
: ð20Þ

Note that θ is still a free independent parameter, which
will be determined by fitting experimental data. Submitting
Eqs. (18) and (20) into Eq. (16), the solution of the BK
equation with running coupling constant in saturation scale
prescription is given by

N ðL;YÞ ¼
A0 exp

�
2θþ 2

� ffiffiffiffiffi
6A0

p
A1ffiffiffi

A2
p þ5A0


 ffiffiffiffi
cY

p

3bc

�
�
exp

�
θþ

� ffiffiffiffiffi
6A0

p
A1ffiffiffi

A2
p þ5A0


 ffiffiffiffi
cY

p

3bc

�
þ exp

� ffiffiffiffi
A0

p
Lffiffiffiffiffiffi

6A2

p
��2

:

ð21Þ

In the dipole momentum prescription, the running
coupling constant becomes

ᾱsðk2Þ ¼
1

bL
: ð22Þ

Submitting Eq. (22) into Eq. (8), we have

A0N −N 2 − bL
∂N
∂Y

− A1

∂N
∂L

þ A2

∂
2N
∂
2L

¼ 0: ð23Þ

This is a nonlinear partial differential equation with
variable coefficient, and it is extremely difficult to solve.
One can only solve it under some approximation.
Following Ref. [45], this equation can be transferred into
a nonlinear ordinary differential equation through an
appropriate change of variable. This can be done by
assuming

N ðL; YÞ ¼ A0UðsÞ; ð24Þ

with a scaling variable,

s ¼ L

�
−
A0

A1

−
1

c̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b − 2A1

Y
L2

r �
; ð25Þ

where c̃ is a free parameter. Inserting Eq. (24) into Eq. (23),
the BK equation with running coupling becomes

UðsÞ −U2ðsÞ þU0ðsÞ þ A0A2

A2
1

U00ðsÞ ¼ 0: ð26Þ

Applying the same strategy as Ref. [45], the terms
proportional to 1=c̃ have been neglected. In fact, this
approximation is reasonable as the parameter 1=c̃ is small.
In our simulation in Sec. IV, we found that the value of c̃ is
9.89, accordingly the value of 1=c̃ is 0.101. This result
indicates that the approximation of discarding the terms
proportional to 1=c̃ is safe. At this approximation, the
evolution equation has been slightly modified, this effect
has been absorbed into the A0A2=A2

1 factor. Therefore,
A0A2=A2

1 should be adjusted through solving Eq. (26).
According to the homogeneous balance principle, the
heuristic solution can be written as [62]

U ¼ a2ω2 þ a1ωþ a0; ð27Þ

where

ω ¼ Tanhðαsþ θÞ: ð28Þ

Using the same approach in the saturation scale pre-
scription, we can get the selected results of the parameters,

a0 ¼
1

4
; a1 ¼

1

2
; a2 ¼

1

4
; and α ¼ −

5

12
: ð29Þ

Noting that the A0A2=A2
1 factor should be modified to

6=25 in order to make sure that the scaling variable s still
satisfies Eq. (26). This is reasonable since the critical point
may shift under the approximation and then affects the
coefficient values in the expansion. Substituting the
above parameter into Eq. (27), the approximated solution
is given by

UðsÞ ¼ 1

4

�
1þ Tanh

�
−
5s
12

þ θ

��
2

: ð30Þ

Then, the approximate solution of the BK equation with
running coupling constant in dipole momentum prescrip-
tion is given by

N ðL;YÞ¼1

4
A0

(
1þTanh

"
5L

�
A0c̃þA1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b−2A1Y

L2

q 

12A1c̃

þθ

#)2

:

ð31Þ
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III. THEORETICAL FRAMEWORK OF PROTON
STRUCTURE FUNCTION AND EXCLUSIVE

VECTOR MESON PRODUCTION

In this work, we will use our analytical solution to
describe the proton structure function and particle produc-
tion data. For later convenience, we review in this section
the general aspects of the calculations of the proton
structure function and exclusive vector meson production.

A. The proton structure function

The proton structure function at small-x region is one
of the valuable experimental data to test and explore
the phenomenon in high-energy scattering processes.
Specially, the proton structure function data are usually
used as an input to determine the model parameters due to

its high precision and extensive dynamical covering. In the
momentum space representation, the proton structure
function can be expressed in terms of the dipole scattering
amplitude,

F2ðx;Q2Þ ¼ Q2R2
pNc

4π2

Z
∞

0

dk
k

×
Z

1

0

dzjΨγðk2; z;Q2Þj2TðL; YÞ; ð32Þ

where x is the Bjorken-x, Y ¼ logð1=xÞ,Q2 is the virtuality
of the photon, and z is the longitudinal momentum fraction
of the incoming photon carried by quark. jΨγj2 denotes the
photon wave function and is given by [63]

jΨ̃ðk2; z;Q2Þj2 ¼
X
f

�
4ϵ2

k2 þ 4ϵ2

�
2

e2f

�
½z2 þ ð1 − zÞ2�

�
4ðk2 þ ϵ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðk2 þ 4ϵ2Þ

p arcsinh

�
k
2ϵ

�
þ k2 − 2ϵ2

2ϵ2

�

þ 4Q2z2ð1 − zÞ2 þm2
f

ϵ2

�
k2 þ ϵ2

ϵ2
−
4ϵ4 þ 2ϵ2k2 þ k4

ϵ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðk2 þ 4ϵ2Þ

p arcsinh

�
k
2ϵ

���
; ð33Þ

where ϵ2 ¼ zð1 − zÞQ2 þm2
f, and ef and mf is the charge

and mass of the quark with flavor f, respectively.

B. Exclusive vector meson production in dipole picture

In addition to the proton structure function, the vector
meson production is also an important observable to probe
the gluon saturation. In particular, the investigation of
saturation is facilitated by the exclusive vector meson
production processes. On the one hand, the vector meson
production cross section is proportional to the square of the
gluon density, which makes it more sensitive to saturation.
On the other hand, the gluon distribution is easily probed
by measuring the distribution of the squared momentum
transfer t.
In the dipole model, the exclusive vector meson pro-

duction in electron-proton scattering is divided into three
stages. First, the virtual photons from electrons split into
quark-antiquark pair (the dipole). The dipole then interacts
with the proton by exchanging gluons. Finally, the quark-
antiquark pair recombines into a vector meson. According
to factorization theory, the imaginary part of the exclusive
vector meson production can be written as [64]

Aγ�p→Vp
T;L ðx;Q2;qÞ ¼ i

Z
1

0

dz
4π

Z
d2rðΨ�

VΨÞT;L
× e−izr·qTðr;q; YÞ; ð34Þ

where q is the momentum transfer, which is related with the
squared momentum transfer through t ¼ −q2. In Eq. (34),

the dipole amplitude was expressed as a function of the
momentum transfer q instead of the impact parameter b
as the experimental data are directly measured as a func-
tion of squared momentum transfer. According to MPS
model [64], the momentum transfer expressed amplitude is
given by

Tðr;q; YÞ ¼ σ0e−Bq
2

N ðr; YÞ; ð35Þ

where σ0 and B are free parameters.
In this work, we shall use the analytical solution in the

momentum space to predict the exclusive J=ψ production.
The dipole amplitude N ðr; xÞ in Eq. (35) can be expressed
by the inverse Fourier transformation,

N ðx; rÞ ¼ r2

2π

Z
d2ke−ik·rN ðx;kÞ

¼ r2
Z

dkkJ0ðk · rÞN ðx; kÞ: ð36Þ

Another ingredient to calculate the exclusive vector
meson production is the vector meson overlap wave
function ðΨ�

VΨÞT;L. Its transverse and longitudinal compo-
nents can be written as [8]

ðΨ�
VΨÞT ¼ êfe

Nc

πzð1 − zÞ
�
m2

fK0ðϵrÞϕTðr; zÞ

−
�
z2 þ ð1 − zÞ2�ϵK1ðϵrÞ∂rϕTðr; zÞ

�
; ð37Þ
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ðΨ�
VΨÞL ¼ êfe

Nc

π
2Qzð1 − zÞK0ðϵrÞ

�
MVϕLðr; zÞ

þ δ
m2

f −∇2
r

MVzð1 − zÞϕLðr; zÞ
�
; ð38Þ

where e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4παem

p
and MV is the mass of vector meson.

Here, ϕðr; zÞ is the scalar function. We shall use the boosted
Gaussian scalar functions since it give a rather good
description for exclusive J=ψ production,

ϕTðr; zÞ ¼ N Tzð1 − zÞ exp
�
−

m2
fR

2
T

8zð1 − zÞ

−
2zð1 − zÞr2

R2
T

þm2
fR

2
T

2

�
; ð39Þ

ϕLðr; zÞ ¼ N Lzð1 − zÞ exp
�
−

m2
fR

2
L

8zð1 − zÞ

−
2zð1 − zÞr2

R2
L

þm2
fR

2
L

2

�
: ð40Þ

For J=ψ, NT ¼ 0.578, NT ¼ 0.575, and RT;L ¼ 2.3 [8].
Taking into account the real part contribution and the

skewness effect correction, the differential cross section for
the exclusive vector meson production is given by

dσγ
�p→Vp
T;L

dt
¼ ð1þ β2ÞR2

g

16π

��Aγ�p→Vp
T;L ðx;Q2;qÞ��2; ð41Þ

where β2 factor denotes the contribution from the real part
of the scatting amplitude, and the skewness effect con-
tribution is denoted by the Rg factor. These two factors can
be expressed in terms of the imaginary part,

β ¼ tan

�
πξ

2

�
; and Rg ¼

22δþ3ffiffiffi
π

p Γðξþ 5=2Þ
Γðξþ 4Þ ; ð42Þ

with

ξ ¼ ∂ lnðAγ�p→Vp
T;L Þ

∂ lnð1=xÞ : ð43Þ

The total cross section can be written as

σγ
�p→Vp
T;L ¼ ð1þ β2ÞR2

g

16πBD

��Aγ�p→Vp
T;L ðx;Q2;qÞ��2t¼0

; ð44Þ

where BD is the diffraction slope parameter [65].

IV. NUMERICAL RESULTS

Our fitting dataset is the proton structure function from
H1 and ZUES Collaborations [66,67]. As the BK equation

is a theory framework for describing the small-x (x ≤ 0.01)
behavior, the data with x > 0.01 are excluded. Moreover,
we only consider the data with 1 < Q2 < 45 GeV2. The
lower cut on Q2 is selected to ensure that it is in the
perturbative region. The upper cut on Q2 is to prevent
overly high values, which should include the corrections
from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution.
The definitive solution for the BK equation with running

coupling constant is obtained by fitting the proton structure
function F2. To demonstrate the influence of the choice
of two different prescriptions for running coupling scale,
we fix Rp ¼ 3.2 GeV−1, Λ ¼ 0.2 GeV, and only fit the
parameters from the dipole scattering amplitude in
Eqs. (21) and (31). In the fitting, we have 85 experimental
data. The parameters and χ2=d:o:f: results are shown in
Table I. From the χ2=d:o:f:, we can see that the saturation
scale prescription (SSP) gives a slightly better description
for the structure function than the dipole momentum
prescription (DMP).
Figure 1 shows the fitting results of proton structure

function as a function of Bjorken-x at different virtuality
Q2. The solid lines and the dashed lines are fitting from
saturation scale prescription and the dipole momentum
prescription, respectively (similarly, hereinafter). The data
are from H1 and ZUES Collaborations [66,67] at HERA.
As we can see, both prescriptions give similar trends for the
proton structure function. However, the saturation scale
prescription provides a rather better description in high Q2.
It means that the saturation scale prescription is more
favored by the experimental data, which is consistent with
the χ2=d:o:f: in Table I. The slightly better performance for
the saturation scaling prescription can be attributed to the
two facts that saturation scale is the typical momentum of
the gluon in the saturation and Eq. (21) is obtained without
too great approximation.
Figure 2 presents the dipole scattering amplitudes of

Eqs. (21) and (31) with parameters from Table I. It is clear
that the dipole scattering amplitude is scale dependent in
the running coupling case. However, the values of dipole
scattering amplitude have little difference in certain regions
as is shown in Fig. 2. Therefore, both prescriptions can give
a good description for the proton structure function.
Exclusive vector meson production is sensitive to satu-

ration physics and can be an excellent probe of gluon
saturation. The study of its distribution has attracted a great
deal of interest. As it was shown that the exclusive vector

TABLE I. Parameters and χ2=d:o:f: results from the fit to 85
proton structure function experimental data.

A0 A1 A2 c c̃ θ χ2=d:o:f:

SSP 6.98 −8.46 2.95 3.11 � � � −2.76 1.07
DMP 22.20 −36.06 14.06 � � � 9.89 −1.66 1.43
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meson production can be well described in the dipole
model [8]. To test the robustness of our analytic solution,
we use the solutions from Eqs. (21) and (31) with the same
parameters fitting from the proton structure function to
predict the exclusive J=ψ production in the framework of
dipole model. For comparison, we also present the results
obtained from the numerical solutions of the running
coupling BK equation.
Figure 3 shows the differential cross section for J=ψ as a

function of squared momentum transfer at different vir-
tualities. The J=ψ experimental data are taken from H1 [68]
and ZUES [69] Collaborations. In the simulation, the free
parameters from the MPS model are B ¼ 2.2 GeV−2 and
σ0 ¼ 68 GeV2. The dash-dotted lines (NS) donate the

results from the numerical solution of the running coupling
BK equation in previous study (similarly hereinafter) [70].
From Fig. 3, one can see that both presentations give a good
description for the differential cross section expect for the
data at Q2 ¼ 7.0 GeV2 with large uncertainty.
We also present the total cross section for exclusive J=ψ

production. Figures 4 and 5 present the predictions for the
total cross section for J=ψ as a function of virtuality and
photon-hadron center-of-mass energy. The results from
both presentations are in good agreement with the exper-
imental data. As shown in Figs. 3–5, the results obtained
from the analytical solutions are consistent with those
obtained from the numerical solutions. Note that the
parameters from the dipole scattering amplitude are the
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same as the proton structure function. Therefore, our analy-
tical solutions are robustness. These results indicate that our
analytical solution of the BK equation with running con-
stant can give a good description for the proton structure
function and the exclusive vector meson production.

V. CONCLUSIONS AND DISCUSSIONS

An analytical solution for the BK equation, incorporating
running coupling constant, has been derived utilizing the
homogeneous balance method. The saturation scale de-
pendent running coupling and dipole momentum depen-
dent running coupling, which correspond to two distinct
nonlinear evolution equations, have been considered. By
applying the homogeneous balance principle, a heuristic
solution with undetermined parameters is obtained. The
experimental data of the proton structure function has been
fitted to obtain the corresponding definitive solution for the
BK equation, in different running coupling scale prescrip-
tions. The χ2=d:o:f: values for saturation scale prescription
and dipole momentum prescription are 1.07 and 1.43,
respectively, indicating a scale dependent solution.
However, the values have little difference in certain regions,
suggesting that both prescriptions provide a good descrip-
tion for the proton structure function. The definitive
solutions have been utilized to calculate exclusive J=ψ

production, which demonstrates that the analytical solu-
tions with running coupling constant are in line with the
J=ψ differential and total cross section. These outcomes
indicate the usefulness of the homogeneous balance
method in investigating the solution of the nonlinear BK
equation. Furthermore, the analytical solution for the
BK equation with higher order corrections is worth
exploring, as more accurate data will be collected from
future Electron Ion Collider (EIC) [71], Large Hadron
Electron Collider (LHeC) [72], and Electron-ion Collider in
China (EicC) [73,74], facilitating the study of gluon
saturation. Overall, this approach holds promise for pro-
viding a robust analytical solution to predict proton
structure function and the exclusive vector meson
production.
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