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Heavy weakly interacting massive particle (WIMP) effective field theory is used to compute the WIMP-
nucleon scattering rate for general heavy electroweak multiplets through order my /M, where my, and M
denote the electroweak and WIMP mass scales. The lightest neutral component of such an electroweak
multiplet is a candidate dark matter particle, either elementary or composite. Existing computations
for certain representations of electroweak SU(2),, x U(1), reveal a cancellation of amplitudes from
different effective operators at leading and subleading orders in 1/M, yielding small cross sections that are
below current dark matter direct-detection experimental sensitivities. We extend those computations and
consider all low-spin (spin-0, spin-1/2, spin-1, spin-3/2) heavy electroweak multiplets with arbitrary
SU(2)y x U(1)y representations and provide benchmark cross section results for dark matter direct
detection experiments. For most self-conjugate TeV WIMPs with isospin < 3 the cross sections are below
current experimental limits but within reach of next-generation experiments. An exception is the case of
pure electroweak doublet, where WIMPs are hidden below the neutrino floor.
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I. INTRODUCTION

The field of dark matter direct detection [1-4] comprises
a large class of experiments mainly designed to detect
weakly interacting massive particles (WIMPs) [5-15].
WIMPs can naturally explain the astronomically observed
relic abundance of dark matter mass density, created in
thermal equilibrium with other particles in the early
Universe [16]. The primary signal process for these experi-
ments is elastic scattering of WIMPs from atomic nuclei,
detected by observing the recoiling nucleus. Since the
precise nature of the dark matter particle is unknown, the
WIMP-nucleus cross section is a priori unknown. In order
to make predictions, the problem can be approached
from the “top-down” or the “bottom-up” perspective. In
the “top-down” approach, a specific UV complete theory
determines all possible couplings between the new particle
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and Standard Model (SM) particles [17]; however, the
parameter space of all new physics models is large and
predictions rely on model assumptions. In the “bottom-up”
approach, a nonrelativistic expansion enforcing only the
constraints of spacetime symmetries can be employed
[18,19]. While this approach does not depend on the
underlying UV theory of the dark matter, the coefficients
of the associated effective operators, and hence the dark
matter-nucleus scattering rate, are undetermined.

The null results of collider searches up to a few
hundred GeV [20,21] and thermal relic abundance esti-
mates [22-25] suggest WIMP masses greater than the
electroweak scale, M =z few x 100 GeV > my. Heavy
WIMP effective theory (HWET) is operative in this regime
and has advantages of both the “top-down” and “bottom-
up” approaches. By using the scale separation between iy,
and M, HWET describes large classes of UV theories, and
predicts absolute WIMP-nucleus cross sections.

The interactions of electroweak-charged WIMPS with
quarks and gluons involve two classes of quark and gluon
operators, transforming as spin-0 and spin-2, that largely
cancel at the amplitude level, resulting in an “accidentally”
suppressed cross section. Such cancellations have been
found using relativistic WIMP effective theory in specific
UV completions [26], and in HWET at both leading and
subleading power [27-29]. For example, for benchmark
Wino-like or Higgsino-like particles, the leading order of
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HWET predicts a cross section one or a few orders of
magnitude smaller [30] than the current experimental
limits. In fact, the cancellation essentially remains after
including 1/M power corrections, and accounting for
potential differences in nuclear responses for spin-0 and
spin-2 channels [31,32]; subleading contributions do not
lift the cross sections up to the discovery limits of current
direct detection experiments.

The next generation dark matter direct detection exper-
imental sensitivities will be improved by orders of magni-
tude [33-35], and more stringent constraints on the
supersymmetric electroweak multiplets will be placed by
collider experiments [36,37]. To shed further light on the
above-mentioned amplitude cancellation and to determine
sensitivity targets for next generation experiments, we
consider more general WIMPs with arbitrary electroweak
representation and spin. We aim to carry out a thorough
survey of general electroweak-charged heavy WIMPs and
compute their cross sections for scattering on a nucleon
utilizing heavy WIMP effective theory through first sub-
leading power, providing benchmark theoretical results for
future direct detection phenomenology. Our computations
will show that, for most of the self-conjugate WIMPs with
low isospins, the WIMP and nucleon elastic scattering
spin-independent cross sections naturally lie close to the
neutrino floor of direct detection experiments, and are
within striking range of next-generation experiments at or
below the neutrino floor.

The remainder of the paper is organized as follows.

Section II constructs the heavy WIMP effective theory at
|

the electroweak scale including order 1/M power correc-
tions. Section III constructs the low-energy effective theory
containing the WIMP and low-energy QCD. Section IV
matches the electroweak scale heavy WIMP effective
theory onto this low-energy effective theory. Section V
illustrates minimal UV completions of the electroweak
scale heavy WIMP effective theory. Section VI computes
the cross sections for WIMP-proton elastic scattering and
provides comparisons with experimental sensitivities.
Section VII is a summary.

II. SUBLEADING POWER HEAVY WIMP
EFFECTIVE THEORY

Let us consider an electroweak multiplet with mass M
large compared to the weak scale, and construct the
effective theory for this heavy particle in powers of 1/M.
We restrict attention to the case of a self-conjugate heavy
particle; this forbids tree level 7% boson interactions,
enabling the particle to survive current experimental
exclusion limits. Universal behavior is shared by heavy
WIMPs of different spin at the leading order of the heavy
WIMP effective theory [27]. We here investigate effects
through subleading order 1/M and will consider Lorentz
spin-0, spin-1/2, spin-1, and spin-3/2 WIMPs.

A. Effective Lagrangians

The effective Lagrangian in the one-heavy-particle sector
takes the following form for spin-0, spin-1/2, spin-1, and
spin-3/2:

Eg’w&:qﬁj}{iU.D—ém—%—@_g(Vx}m—&-...]qﬁv, (1)
Eif&ia‘%z—h[z‘v-D—ém—%—@—W+..lxm (2)
E;féSET:VﬁT[(i%D—ém—Z%—fng))(—gﬂ,,)—I—Q(WZ;/I%—I—..}V’{,, (3)
£i§’é3;§¥2=Eﬁ[(iv-D—5m—%—%)(—gw>+%+..}5Z. (4)

Here the ellipses denote terms of order 1/M?, v# is the
heavy WIMP velocity with v> = 1, and dm is a residual
mass matrix after integrating out the heavy particle.
The covariant derivative is D, = d, —ig;YB, —ig; W;T"
where Y is the U(1), hypercharge and 7¢ are SU(2)y,
generators, with a =1,2,3. Perpendicular components
are projected using ¢ = ¢*¥ — v*v¥ as usual (thus e.g.,
o = ¢V 64y D =D’ —v'v-D). We have applied

field redefinitions to remove redundant operators, and
enforced the constraints for expressing heavy particles in
terms of four-component Dirac spinors with vector indices
(e.g., v, Vi =0, p& = &, and y,& = 0) [38]. The Higgs-
WIMP interaction f(H) will be discussed below. Terms
contained in g(W,B) give rise to suppressed spin-
dependent scattering rates and will not be considered
further in this work [32].
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B. Higgs interactions

The Higgs-WIMP interaction, f(H), depends on the
specific spin and electroweak representation of the WIMP.
Let us construct gauge- and Lorentz-invariant operators
containing WIMP and Higgs fields, for a general (J,Y)
representation of SU(2),, x U(1),, with J being SU(2)
isospin and Y being U(l) hypercharge. Since we are
concerned with the one-WIMP sector, there must be two
WIMP fields in the Lagrangian interaction. Since the
Standard Model Higgs H is a (1/2,1/2) representation
under SU(2),, x U(1l)y, there is no three-point gauge-
invariant interaction. The leading WIMP-Higgs interaction
arises from four-point interactions with two WIMP fields
and two Higgs fields. The Higgs bilinear H"H transforms
as a singlet, and H'7H transforms as a triplet with z¢ the
isospin Pauli matrices. It is convenient to introduce
H = i?H*, which transforms identically to H under
SU(2) but has opposite hypercharge.

The possible forms for f(H) can be tabulated by first
considering manifestly Lorentz-invariant Lagrangians and
then making the identifications,

spin-0: ®(x) = \/%e_iM”'x%(x), (5)

spin-1/2: y = V2e ™M (g, + X,), (6)

|
spin-1: V¥(x) = \/;e"M”'xV’é(x), (7)

spin-3/2: & = \/Ee_iM”'x(fﬁ + ), (8)

where for y and &, the second terms in parentheses denote
antiparticle degrees of freedom that are integrated out (the
components satisfy gy, = y,, ¥&" =&, and X, = -X,,

=t = —E). Let us consider separately the cases of spin 0,
1/2, 1, and 3/2.

1. Spin-0

The relativistic spin-0 electroweak multiplet and Higgs
interaction takes the form

L = ¢ o p pHTH + ¢y 00 1 pH " H
+ (e300 “@HT*H + H.c.)dy 12
+ (04’0¢TZ‘Q$HTTQFI —+ H.C.>5Y'_1/2, (9)
where ¢ is an SU(2) generator, ¢p = U¢* and U is a (2J +

1) x (2J + 1) matrix acting as a similarity transformation
for isospin-J representation [39],

U<eia~t)* U—l — eia't’ (10)

where ¢ = (t',72,*) are SU(2) generators and a =
(a1, ap, a3) are real parameters. The explicit matrix ele-
ments are

- ( m2J + 1= m)Symr +/n(2J +1- n)a,,,m_l)/z,

t%nn - _l( m<2‘] +1- m)511,m+1 - n(2J +1- n)énm—l>/27

fon = (J + 1
Umn = (_1)m+1

- m)émn’

6m+n,2J+2»

where m,n = 1,2, ...,2J + 1. In particular, when J = 1/2,
U is the matrix iz> that we have introduced above in the
construction of H. The coefficient ¢;o has a subscript 0
standing for spin-0. The notation H.c. denotes hermitian
conjugate. Gauge-invariant interactions among electroweak
multiplets including Higgs field can also be obtained by
brute-force construction of gauge-singlets using Clebsch-
Gordan coefficients [39], and we have checked the equiv-
alency of the two methods. Electroweak multiplets and
Higgs interaction has also been constructed in [40].
When the hypercharge Y = 0, we restrict attention to
integer isospin, for which there is an electrically neutral
dark matter candidate. For integer isospin, the SU(2)

(11)

[

representation is real, and the scalar field ¢» may be chosen
real, and identified with @ in Eq. (5). Interaction ¢,
vanishes in this case, and only ¢ appears; according to
Eq. (5), f(H) = ¢, gH'H = —cyyH"H [27,31]. Real scalar
triplet and Higgs interaction has also been constructed
in [41]. When Y # 0, the field ® in Eq. (5) is identified with
the column vector of two real scalar fields,

1 *
¢:<?w+i», -
5 =97

and f(H) may be read off according to Eq. (5).
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2. Spin-1/2

For a spin-1/2 electroweak multiplet, let us construct the self-conjugate fields from Weyl spinors, w; and y7,

transforming under SU(2),, x U(1), as

it pipY

YL — e Vi,

The general spin-1/2 Higgs interaction is then

l///L N e—ia-t‘e—i/inI//L. (13)

in- 1 ¥ . N . b a gy T
Li" V2= Y |:C1,%H‘H<W/LTZGZV/L> + Cz,%HITaH(W/LTWztaV/L) + 03,%H'TaH(W{ZGZUTfalI/J‘SY,l/z

+ ey JH e H(y ] ic® 1" Uy )8y 1o + s JH T H(y [i6* Ut 1%y )Sy i 2

oy HiT H (0 Uy, )3y 1y + He . (14)

To connect with Eq. (6), let us embed y; and y/; into the
Dirac field y, with its conjugate y°,

VL V/L
w=<.2,*>, w”=<.2*>7 (15)
iocoyy o7y}

where the Pauli matrix o2 acts as a generator in the Lorentz
group. The self-conjugate (Majorana) fermion field y in
Eq. (6) is then identified with

1

(e

= | . (16)
X2

For hypercharge ¥ =0 and integer isospin, we may
choose irreducible representations involving a single
Weyl fermion, i.e., )} = . For this case, all interactions
except ¢, 1 vanish. Coefficient ¢y may be chosen real’ and
according to Eq. (6), f(H) = ¢; ) H'H = —2cyH'H [32].
For the Dirac fermion (Higgsino) case, / =Y = 1/2, the
gauge-invariant interaction (14) may be simplified. After
expressing y; and y/ in terms of y, via Egs. (15), (16),
and (6), f(H) in Eq. (2) is expressed as a matrix with four
real parameters [32].> The Dirac fermion and Higgs
interaction has also been constructed in [42,43]. The

Weyl fermion doublet and Higgs interaction has also been
constructed in [44,45].

3. Spin-1

Similar to the spin-O case, the spin-1 electroweak
multiplet and Higgs bilinear interaction takes the form,

L = ¢\ VeV HYH + ¢ \ V¥V H 2 H
+ (03’1‘//41'2‘0‘7”1':[*1“]_[ =+ H.C.)5Y.1/2
+ (csy VW19V, H'2H + H.c.)8y _y 12, (17)

where Vﬂ = UV, and the self-conjugate basis consists of
two real vectors,

1 i
Vi = — (VK + VHT), VE =—(Vr—Vvr), (18
f= GV V= (v ), (18)

where V¥ = (V/, V5)T is the relativistic field mapping onto
the heavy vector V), in Eq. (7).

4. Spin-3/2

Similar to the spin-1/2 case, the spin-3/2 electroweak
multiplet and Higgs bilinear interaction takes the form

in. 1 . 3
L33/ i [cl_%H'H(q'/g‘Tiaz‘PﬂL) + ey Hie H(W) i0?14W,, ) + ¢33 H e H(W, iU 1% .1 )8y 10

+ ey H e H(PL ic? U, )8y 1 + o5 ) H I v H(W, ic? U 1%, )6y _y 0

+ o HYe H (P oUW, )5y 1 + H.c.} , (19)

"This may be obtained by field redefinition sy, ~ (HTH/M?)y,.
*The correspondence with Eq. (2) of Ref. [32] is @ = —Re(c,)/2, b = —(c} + ¢4)/2 and ¢ = —Re(c; — ¢,/2)/2.

116023-4



GENERAL HEAVY WIMP NUCLEON ELASTIC SCATTERING

PHYS. REV. D 108, 116023 (2023)

where we have the Rarita-Schwinger field W* and its
conjugate W,

PH PH
w_< L,*>, w_< L*>. (20)
ic’¥} ic?V

Constructing self-conjugate fermions from W* and W,

1 l‘fi H _ \puc
5?:%(‘1’ + P, éz—ﬂ(‘f' wre), (21)

we identify & = (&, f’z‘)T as the relativistic field in Eq. (8).

5. EWSB and Feynman rules

After electroweak symmetry breaking, the Higgs field
acquires its vacuum expectation value

= (V). 22)

and in the self-conjugate basis, the mass matrix becomes

2

SM(v) = 6m + — (M' TRe(My)

—Im(M,)
—Im(M,) )

M, — Re(M,)
(23)

where the matrices M| and M, are

(M) = (A+Bk)dy,
(M) =08y.12C(=1)*\/ (k= 1) (2T +2= k)84 127+
+8y 10C (=) k(2T +1=k)8 1041, (24)

with £,/ =1,2,...,2J 4+ 1 and

1
A= 3 [Re(c; ) —Re(cy ) (I + 1),
1
B = ERe(c2s)v
3yt Cag
C = % (53*,% + 53%) + C3 ¢ (5“,’0 + 5&1)’
! C; s + Cé.s
C' = =00y + 85y + cas(Boo + 0s1). (25)

where s = 0,1,1,3, is the spin.

For even dimension isospin multiplets we focus on the
case Y = £1/2, where C # 0 breaks the mass degeneracy
between electrically neutral states. Diagonalizing the mass
matrix Eq. (23), when isospin J is half-integer (even-
dimension representation) and hypercharge Y = 1/2, the
eigenvalues are

V2 V2

—(A+B),—(A+B

2M( + >’2M( + B),

(142 p e (4] [s

2M | 2 2 ’

”—2—A+ 18 e+ | (1+1) —ep

2M 2 2 ’

”—2_A+ s+ x e (14 1) — e

2M 2 2 ’
(26)

forintegern = 1,...,J — 1/2. The two mass eigenvalues in

the first row correspond to the components with the largest
magnitudes of charge, Q = +(J + 1/2). The nonvanishing
C term acts to split the degenerate mass of two neutral

components and £ [A+ (J +3)B— (J+1)|C|] in the
second row is the mass of the lightest neutral component,
the WIMP. The four mass eigenvalues in the last two rows
are for the two pairs of components with opposite charges
Q0 = +n.

When isospin J is a half-integer and hypercharge

Y = —1/2, the mass eigenvalues are

v? v?
—(A+(2J+1)B),—(A+(2/+1)B
(A 21+ D)B) 5 (A+ (27 + 1)B),

Cag (15 Npx Jwep i [(10 1) 2 IC|2
M 2 " 2) 7" ’
U—Q-AJr 7+ 084 Jemr 4 [(1+1) el iop
M 2 " 2) 7" ’

(27)

with similar notation as for the Y =1/2 case. Here
2 A+ (J + 1B~ (J +1)|C'|] is the mass of the lightest
neutral component, the WIMP.

When J is an integer (odd-dimension representation),
the hypercharge must be an integer to provide a neutral
component for the WIMP. Further, if the electroweak
multiplet is self-conjugate, hypercharge must be zero.
After electroweak symmetry breaking, the mass matrix
becomes

SM(v) = 6m + — M, (28)

where

(M}) = (A" + B'k)éy, (29)
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for k,l=1,2,...,2J + 1, with

A" =Re(cy;) - Re(c2,s)(‘] + 1),
B = Re(cy,). (30)

The eigenvalue for the neutral state is v*[A'+
B'(J +1)]/(2M).

After electroweak symmetry breaking, the WIMP inter-
acts with the dynamical components of the Higgs field, ¢,

¢», ¢5 and h as follows:

1 (1 +ig,
+E<h+i¢3>’ GD)

and the Lagrangian of the heavy field after electroweak

symmetry breaking in the charge and mass eigenstate
()

H = (H)

basis yy~ is

L=7"|iv-0+eQv-A+ Cofzaw v Z(T° —sin’6y, Q)
+\g/2§v-(W+T++W—T—)—5M—Z%
g%jLer... Yot (32)

where the WIMP is the lightest neutral state of the

electroweak multiplet which we denote as )((()” ) (with or
without the vector index u depending on its spin), and the
tilded gauge generator matrices refer to this basis. Here
f(h) describes the WIMP interaction with the Higgs boson,
cf. Fig. 1. The Feynman rule for this vertex, ivcy(g,,)/M,
is related to the mass eigenvalue of the lightest neutral state.
When hypercharge ¥ = 1/2, it is

—i% {A+ <J+%>B— <J+%>|C|]. (33)

When hypercharge ¥ = —1/2, it is

—i% {A+ <J+%>B— <J+%>|C’|]. (34)

When hypercharge Y = 0, it is

.V
——

A+ (U + 1B, (35)

If inelastic scattering is considered, the relevant operators
will involve components in the electroweak multiplet other
than the WIMP, as well as ¢, ¢,, ¢ps components in the
Higgs field, which can be found by inserting Eq. (31) into
the f(H) term in the Lagrangians, Eqgs. (1)-(4), then
diagonalizing to the charge and mass eigenstate basis as

'

FIG. 1. WIMP-WIMP-Higgs boson effective interaction at
order 1/M. The double line denotes the heavy WIMP field
and the dashed line denotes the Higgs boson.

in the above procedure. We focus on elastic scattering in
this paper and leave the inelastic case to future work.

III. LOW-ENERGY EFFECTIVE THEORY

After electroweak symmetry breaking, the dark matter

particle ;((()” ) is a singlet under SU(3), x U(1). ,,- The low-
energy effective operators for dark matter (DM) and
nucleon scattering at the quark level can be constructed
from heavy WIMP bilinears, and quark and gluon bilinears.
We focus on WIMP-nucleon spin-independent elastic
scattering, which is the dominant process for many dark
matter direct detection experiments. The relevant low-
energy effective theory for the spin-independent interaction
of spin-0 and spin-1/2 heavy WIMP with quarks (the top-
quark has been integrated out) and gluons is [29,46]

L= )_(0)(0{ Z [c,(,o) 05,(» + c(qz) vﬂvy0£,2>” ”}

q=u.d,s,c,b

+ 000 4 P vﬂvyOéz)’"'}, (36)
where

] Sl
0y =m,aq. O —§q<7{‘ lD_}—th_)q,

} 1
0(90) _ GA”UG;}D, Oéz)ll —_ —GA’M'GAD/{ 4 EgMD(Ggﬁ)Q’

(37)

with DX = D* — D,

For higher-spin particles, no essentially new operators
appear in the spin-independent sector of the low-energy
effective theory.3 For spin-1 and spin-3/2 heavy WIMPs
interacting with quarks and gluons, we have

. 0) (0 2 2)a,
L :;/‘0;(0{ Z [cé)Og) + c;)vavﬁOg) ﬂ}
q=u,d,s,c,b
+ céo) O(go) + c§2> v(lv/,»Oéz)aﬂ}gﬂy. (38)

3This may be seen by constructing an explicit basis, and
enforcing the constraints on higher-spin representations for heavy

particles [38], e.g., v,xf = 0, Bxh = X6 €vapu v 01t = 0.
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(al) E (a2)
(a4) E (a5)
(a7) jjggjjjjjggii (a8)
(q10) % § (ql1)
(q13) (q14)

(q15)

Mwﬁww

FIG.2. Diagrams contributing through 1/M order to quark matching. Double lines denote the WIMP, solid lines denote quarks, zigzag
lines denote weak-gauge bosons, and dashed lines denote the Higgs boson. The encircled cross denotes an insertion of 1/M-order

effective operators.

-

AR A

(g1) (22) (g3)

)

~—

(g7 (8)

FIG. 3.

(29)

SR

R A

(g4) (g5) (26)

(g10) (g11)

Diagrams contributing through 1/M order to gluon matching, with the same notation as in Fig. 2. Curly lines denote gluons.

Diagrams with both gluons attached to the upper quark line or with one gluon attached to each of the upper and lower quark lines are not

shown in the second row.

IV. WEAK MATCHING

To determine the Wilson coefficients in the effective
theories Eqgs. (36) and (38) and obtain results for WIMP-
nucleon elastic scattering, we match the low-energy
Lagrangian to the electroweak scale effective theory (32)

by integrating out the weak-scale particles.
The matching diagrams for WIMP and quark operators

are shown in Fig. 2. Note that all diagrams involving

Nambu-Goldstone bosons are suppressed compared to the
diagrams present in Fig. 2. All Standard Model particles are
treated as massless except the weak scale particles W+, Z°,
h, t-quark, which will be integrated out. The matching for
WIMP and gluon operators are shown in Fig. 3. The details
of the matching can be found in [47].

The renormalized Wilson coefficients in Eqs. (36)
and (38) for the low-energy five-flavor quarks and gluons
effective theory are
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A0) N fz ﬁ _ (U2 My Ch
¢y (w) 2xh <fw+ >+8cW( Cy A )T IM AR
W =-5(r +fz L2 (PR P2y g, T
b Zx%l v 8cw v PRIV (x4 1)3 ﬂMath
A0\ (k) fz Nz 1 my 1( ()2 (U)2)
&g (u)= An {6[%<fW+c%V +fwl5 5 2( 1) +7zM3a2xh 16CW +CA +4 cy e,
4(48yP —2yf +9y7 1) ' 8 32y (8y7 =7)
St gy e (V1
L/ we  (wp 32y (24y; =21y7 +5) 4(144y7 =70y! +9y7 =2)
+—< - )3 - tan( /4y2—1) = :
2lev e Ty, @r=1)" arctan Vi 3y - 17
e ) =5 L ) = el ) B g
w
A2 Jw  f 2 f 2
80 =54 gV ) B ) = e
w
L Spp [ 3x,+2 2 myx7(1-x{+4a7logx,)
Y2 30k, +1)? 3 M (x2—1)> ’
A2) ag(u) 4 1) (243x,) 7 (1223 =36x} +36x3 —12x24+3x,-2) . x,
2fw|Ng| —zlog——= - lo
P00~ o el -3 -5 O, 1) SE
2x,(= 3+7x%)1 g2_48xt+24x,—104xf—35x?+20x?+13x,+18 Ly 8log——1
9(x2—1)3 36(x2—1)2(1+x,) YoM 3 Cmy 3
16x} 43x2=1),  u  16x? 4(4x9 —16x} +6x7+1)
—— ' logx,l T g log2x, — 1
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ET IS ) R B Yo Jur o I T (el +3 (e 4 |
32 wr ) [324yF =21y —4y! +5y7 - 1) Y,
L ( n ) tan( \/4y2—1) ="
|: 9 0og mZ :| CA 9<4yt2—1)7/2 arctan Vi 3
4(48y% +62y7 —47y? +9) N <c(U)2 —c(U)z) 4y?(624yt —538y? +103) _ 13y,
9(4y? —1)} oo 9(4y7 —1)? 3
32y2(104y6 —91y4 +35y2—5
SN 9959 1) |
Vi —
fsz[<(U)2 (>) (<> ())} H
“Wil2 log--——1
243 M cy ey )3 ey ey 80gmZ
(W24 01 [1 —18y7 +36y!  8(1—4y7+3yf +18y7)logy,
oo (4y7—1)2 (4y7-1)°
16y2(2— 13y +32y4 — 18y¢ 1 1—i/4y2—1
vi( );’+ 7/);’ yt)[Zarctan<>logyt—ImLi2<l 2yt >H
(4yt_1) \/4}/?—1 2y;
8—59y? + 108y} (29—128y? +108y})logy
42 (W2 _ U2y | _ ‘ r ‘ ! t
+4y; (cy ca’) 4y —1) (4y2—1)
2(=7+38y2 —82y4+ 108 1 1—i/4y2 =1
(=7+38y7 —82y: +108y7) 2arctan | ———— | logy, —ImLi, % , (39)
(4y7-1)"2 421 2y}

(8)

where the reduced coefficients ¢;”’ are given in terms of

(8)

the original Wilson coefficients by ¢;”’ = (wa3/ m%v)él(»s) with

oy = g% /(4rx), where i = u,d, s, c, b, g is the index for quark or gluon and U denotes up-type while D denotes down-type
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FIG. 4. Matching condition for the coefficients in the EFT for UV theory consisting of the Standard Model plus an electroweak
multiplet real boson. Solid lines denote the boson, dashed lines denote Higgs doublet, zigzag lines denote SU(2),, x U(1), gauge fields.
The black square denotes a counterterm contact interaction. Matching is performed in the electroweak symmetric theory. Double lines

on the rhs denote heavy WIMPs and the encircled cross denotes insertion

and we have neglected small corrections from |V,,|* and
|V s|?, The u and ¢ quarks have the same coefficients, as do
d and s quarks through all the weak-matching calculations.
The group theory factors are fy =J(J+1)=Y?, f, = Y2
The strong coupling is denoted by a,(y). The mass ratios
are defined as x; = m;/my and y; = m;/m; where my is
the mass of Z° boson, and j is the index of the specific
particle, e.g., j = t stands for top quark, j = h for Higgs

boson. Liy(z) = >, zF/k? is the dilogarithm function. it
Ny, =72 is the number of massless Standard Model
generations.

For

V. ILLUSTRATIVE UV COMPLETIONS

At subleading order 1/M, the underlying UV completion
impacts spin-independent direct detection cross sections
via the single parameter cy, cf. Eq. (39). This parameter is
in turn determined by coefficients A, B, C, A’, B/, and C’ in
Egs. (33)—(35) We illustrate the determination of cy by
considering minimal Standard Model extensions with a
new electroweak multiplet containing our dark matter
WIMP. For the spin-1/2 case, ¢y in Egs. (45) and (47)
is determined by the corresponding renormalizable
Lagrangian in Eqgs. (44) and (46). For the spin-0, spin-1,
and spin-3/2 cases, we consider weakly coupled UV
models with associated UV scale Ayy, and estimate cy
in Egs. (42), (43), and (49) by including the leading
logarithmically enhanced contribution when Ayy > M.

where
theory
terms

A. Real bosons

For a real boson electroweak multiplet, the matching
between the UV theory and the effective theory to

For

116023-9

of a 1/M effective theory vertex.

determine WIMP-Higgs interaction operators is shown in
Fig. 4.

For a real scalar, we take the Lagrangian

pino 1 1
Lo 5 D@D D — S M0, (40)

and for a real vector, we take the Lagrangian

1 1
== (DY, = DY,)(D'V = D'V + - MPV, V.
(41)

a real scalar, a generalization of the results in

Ref. [31] yields

2

AUV
TR

JJ+1)
2

AP0 — a3 log (42)
Ayv is a scale intrinsic to the UV theory (the “UV
of the UV theory” scale) and the ellipsis denotes
that are not logarithmically enhanced in the limit

Ayy > M. In models such as a weakly interacting stable
pion [48], this scale is Ay, ~ M?/a,, and we consider this
case in Sec. VI. Similarly, for a real vector we find

oo JT+1 A2
ci_‘,’ml— (6+ )aglogl‘};;/.

(43)

B. Fermions

fermionic electroweak multiplets with hypercharge

Y = +1/2, we consider a UV theory containing a Dirac
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FIG. 5.

Matching condition for the coefficients in the EFT for UV theory consisting of the Standard Model plus electroweak

multiplet self-conjugate fermion. Solid lines denote the fermions, with the blue line denoting the heavier fermion with mass M’.
Double lines denote the WIMPs. Other notations are the same as in the bosonic matching, Fig. 4. The third diagram on the lhs only
appears when Y = +1/2 for even-dimension electroweak multiplet. The last diagram on the lhs appears when the fermion

is spin-3/2.

field v, related to the self-conjugate field y as in Eq. (16).
We include another electroweak multiplet Majorana fer-
mion », in a (J',Y’) representation of SU(2),, x U(1),,
with mass M’ > M. The field y' serves to split the
degenerate mass of the neutral components in y (for
Y’ # 0, the Majorana fermion ' is a reducible representa-
tion of SU(2),, x U(1), constructed from a Dirac fermion
A, similar to the construction of y from ). We include the
general renormalizable interaction F(y,y’, H) allowed by
gauge invariance,

in- . Lo
Lsp ]/2 (lp—M)l//+§)(/(lp_M/>)(/+F(W7)(/’H),

(44)

where the detailed expression of F(y,y’, H) can be found
in the Appendix.

The matching is shown in Fig. 5. The Higgs-WIMP-
WIMP coupling is determined by the quantities A, B, and C
in Eq. (25), which are given by explicit computation as in
the Appendix. In the pure WIMP limit, i.e., M’ > M, the
Wilson coefficient in the Feynman rules Egs. (33) and (34)
reduce to

3
Cy = _50!2[](] + 1) +tan*0y | Y| + tan*@y Y7, (45)

where 0y, is the weak mixing angle, and Y = +1/2 for
even-dimension electroweak multiplets.

For the Y = 0 case, we consider the limit M’ — oo and
the renormalizable Lagrangian containing a single electri-
cally neutral component reduces to

Espm 12

x(ip—M)y. (40)

1
2*
The matching is again described by the diagrams in Fig. 5.
In the pure WIMP limit, we have A’ = ( any @J(J + 1) and
B’ = 0, and the Wilson coefficient from Eq (35) reduces to

3
CH:_EGZJ(J+1) (47)

For a Rarita-Schwinger, spin-3/2, WIMP, we take the
effective UV Lagrangian to be

ﬁspm 3/2

qm[(lp - M)g/u/ -
+7,(iD + M)y, |,

(iy,D, + iy,D,)
(48)

and do the matching as in Fig. 5, similar to the procedures
for the spin-1/2 case. We obtain the coefficient

2
cy = —gaQ[J(J+ 1) + tan’0y | Y|

4y 21100 AV
+ tan*Qy Y }logm+

116023-10
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where Y = 0 for odd-dimension multiplets and ¥ = +1/2
for even-dimension multiplets.

VI. CROSS SECTIONS

The benchmark WIMP-nucleon elastic scattering spin-
independent cross section is

2
mr
on = IMY + MY, (50)

where N = n, p is a nucleon, m, = myM/(my + M) ~
my is the reduced mass of the WIMP-nucleon system, and
the scattering amplitude is

MY =S ) (N0 (wo)IN). (1)

i=q.9

where § = 0,2 for operators with different spins. The
nucleon states |[N) are nonperturbative and we use lattice
QCD to evaluate the nucleon matrix elements at energy
scale py ~ GeV. So the heavy quarks, bottom and charm
need to be integrated out from the 5-flavor QCD theories,
Eq. (36). Renormalization group evolution from the
S5-flavor effective QCD theory at the weak scale u, to
the bottom quark mass scale y;, ~ m,, threshold matching
at p4;,, running from p;, to charm quark mass scale u, ~ m,.,
threshold matching at y,., further running from g, to u, are
performed. Details can be found in Ref. [29]. Specifically,
we take y;, = (m; + my)/2 = 126 GeV, u;, = 4.75 GeV,
U, = 1.4 GeV, and py = 1.2 GeV. For the spin-0 coeffi-
cients, renormalization group evolution and threshold
matching are performed at next-to-next-to-next-to leading
order (NNNLO). For spin-2 coefficients, the running and
matching are at NLO. In the end, we obtain the 3-flavor
effective QCD theory, with ¢ = u, d, s in Eq. (51) being the
three light flavors and g denoting the gluon. We take the
same lattice QCD data for nucleon matrix elements as
in Ref. [32].

For our default matching scales y;, y;, u. and pg, and
with the central values of all nucleon matrix elements at
scale pg, we find that the spin-0 and spin-2 amplitudes for
WIMP and proton scattering are (normalized by spin-2

amplitude ./\/li,z)| Mo =J(J+ 1) when ¥ =0)

MY =—0.82J(J +1)-0.42Y? —299.50611%,

MP =J(J+1)=025¥2—[0.51J(J +1) —O.O72Y2]%,
(52)

where the low-energy effective theory of WIMP and
3-flavor QCD operators at 1/M order is yet to be
determined by one parameter cy. We may constrain cy
by current direct detection experimental limits [1]. We plot
the allowed region of ¢y for different isospins of a WIMP

in Fig. 6. For half-integer J the hypercharge is Y = +1/2.
For integer J the hypercharge is Y = 0. For comparison, we
also display the constraints that would be obtained by
neglecting electroweak loop corrections, i.e., including
only tree-level Higgs exchange diagrams (q2) in Fig. 2
and (g2) in Fig. 3.

We may match onto the minimal UV theories in Sec. V
to obtain concrete values for ¢y and predict benchmark
results for general WIMP and nucleon spin-independent
scattering cross sections. For a real bosonic heavy WIMP,
the central values for the amplitudes are

0 _ _ 1)(0.824 — 0.3427 ™ 10g UV
M, J(J + )( 342y~ Flog— 7= ).
MP =y +1) <1 - 0.515";;“), (53)

where n =1 for a spin-0 WIMP, # = 1/3 for a spin-1
WIMP, and Ayy is a UV scale. We take Ayy ~ M/ /a; ~
10M for illustration, as discussed in Sec. V. For a self-
conjugate spin-1/2 heavy WIMP, the amplitudes are

MW = —0.824J(J + 1) — 0.417Y?
+[0.513J(J + 1) + 0.153]Y]| + 0.0457Y?] %

MY = J(J+1) - 0.2477?
—[0.515J(J + 1) — 0.0716Y?] % (54)

For a self-conjugate spin-3/2 heavy WIMP, the amplitudes
are

MY = —0.8247(J + 1) — 0.417Y2 + [0.456J(J + 1)

m A
0.136|Y| + 0.0407Y%] — ¥ 1og =Y |
+ Y|+ ]M g,

MY = J(J +1) - 0.2477?
—[0.515J(J + 1) = 0.0716Y?] % (55)

where again Ayy is a UV scale and we will take it to be
M/, /a,. From Egs. (53)—(55) we see clearly the cancella-
tion between spin-0 and spin-2 amplitudes. For all values
of spin and for all electroweak quantum numbers with
J(J + 1) > Y? (such that the multiplet contains an electri-
cally neutral component), M is negative at leading
power and M® is positive. Similarly at 1/M order, the
contributions to M©) and M) have opposite sign. The
cancellation is especially severe for the Higgsino-like
case J =Y =1/2.

We plot the spin-independent cross sections for different
heavy WIMPs and proton scattering in Figs. 7 and 8, versus
the mass of the WIMP. When evaluating the nucleon-level
amplitude, we have perturbative uncertainties from Wilson
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FIG. 6. Constraints on the dimensionless parameter ¢z for WIMPS with different isospins, versus WIMP mass. Zoomed bounds for
WIMP mass smaller than 2 TeV are shown at upper-left corners. Dashed lines are constraints on ¢y neglecting electroweak radiative

corrections as described in the text.

coefficients and nonperturbative uncertainties from had-
ronic matrix elements. Uncertainty for perturbative com-
putation of the matching coefficients is estimated by
varying the matching scales within the ranges m3,/2 <
pr <2mi, my/2 <pp <2my, mi/2 < pi<2mZ, and
1.0 GeV < pug < 1.4 GeV. Uncertainties from neglect
of higher order (starting from 1/M? order) power correc-
tions are estimated by shifting ME,Z) - M;2)|M_>oo[1:|:
(my/M)?]. Uncertainties from nucleon matrix elements
are propagated to the observable cross section [29,49-52].
We add the errors in quadrature from different sources
mentioned above, for spin-0 and spin-2 amplitudes sepa-
rately. Uncertainties from perturbative calculations of

Wilson coefficients and lattice QCD calculations of had-
ronic matrix elements are comparable. Compared to had-
ronic and perturbative uncertainty, neglected 1/M? power
corrections are estimated to dominate for M < 500 GeV, to
be comparablee for 500 GeV <M <1 TeV and to be
negligible for M 2 1 TeV.* The maximum and minimum

of all possible values of the combination |./\/l§,0) + ME,Z) | set
the bounds of the colored cross section bands for each
WIMP in Figs. 7 and 8. The cross section increases as the
isospin increases, and the central value varies from

*For a more detailed discussion of hadronic, perturbative, and
power correction uncertainty, see Refs. [31,32].
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Spin-independent scattering cross section for different fermionic WIMP multiplets on proton, versus the WIMP mass. For half-

integer J the hypercharge is ¥ = +1/2. For integer J the hypercharge is Y = 0.

107 ¢cm? order to 107# cm? order from lowest isospin
J = 1/2 to highest isospin J = 3 for WIMP mass at 1 TeV.

In Figs. 7 and 8, also shown are the recent dark matter
direct detection experimental exclusion (90% confidence)
limits [1-4] for the relevant TeV mass range. Above the
TeV scale, for isospin J smaller than 3, the WIMP proton
cross section is below current experimental sensitivity. For
fermionic WIMPs, when J = 3, the cross section overlaps
with LUX-ZEPLIN (LZ) experiment limit in the 1 TeV mass
region. For bosonic triplet (/ = 1) WIMPs, the cross section
is close to the neutrino floor [53]. For fermionic doublet
(J = 1/2) WIMPs, the cross section upper bound is much
lower than the neutrino floor. Other low-isospin WIMPs lie
between current experimental limit and the neutrino floor.

VII. SUMMARY

We have used heavy particle effective theory to
study general heavy WIMP and nucleon scattering at
subleading 1/M order, and to compute cross sections for

arbitrary electroweak representations and low-spin par-
ticles. We focused on the elastic and spin-independent
process which is a primary target for dark matter direct
detection experiments.

The spin-independent cross section is universal at lead-
ing power, determined by Standard Model parameters once
the WIMP spin and electroweak representation are speci-
fied. At subleading 1/M order, dependence on the UV
structure is encoded by a single coefficient cy describing
the WIMP-WIMP-Higgs boson coupling. We constrain this
coefficient using current experimental exclusion limits [1]
and find —0.2 < ¢y < 0.1 (90% CL) at 1 TeV WIMP mass,
with a slight dependence on the isospin of the WIMP,
cf. Fig. 6. These model-independent results can be inter-
preted as constraints on the parameter space of specific UV
completions, cf. e.g., Ref. [54]. In contrast to WIMP-
nucleus scattering for direct detection, the pair production
of WIMPs at collider experiments, and the pair annihilation
of WIMPs leading to relic abundance constraints and
indirect detection signals, are sensitive to the underlying
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WIMP model, e.g., scalar versus fermion and composite
versus elementary. WIMP mass constraints from specific
models can be readily overlaid in the plots of Figs. 7 and 8,
cf. e.g., Refs. [21,23-25,55-57] for mass constraints in
specific models.

We also predict benchmark cross sections in dark matter
direct detection experiments through 1/M order, by match-
ing our heavy WIMP effective theory to minimal UV
extensions of Standard Model to obtain cy. The corre-
sponding cross sections are below current experimental
limits for low isospin electroweak multiplets, either bosonic
or fermionic, mostly lying between the experimental limit
and the neutrino floor. Central values vary between
~1079 ¢cm? and ~107% c¢m? from lowest isospin J = 1/2
to highest isospin J = 3 for WIMP mass at 1 TeV. These
cross sections are within striking range of next-generation
experiments, with the exception of electroweak doublets,
which hide below the neutrino floor. In general, higher-
isospin WIMPs have larger cross section and for a given
WIMP mass will be discovered or excluded by direct
detection first. Uncertainties due to nuclear effects of
the heavy element experimental target, e.g., Xenon, are
similar in magnitude to uncertainties of the cross section
which have been computed here, and are not expected
to change the predicted discovery range for these

WIMPs [32]. For most cases these heavy WIMPs can be
discovered or excluded with next-generation direct detec-
tion experiments. An exceptional case is the electroweak
doublet, whose cross section is impacted by a severe
amplitude cancellation. Experimental methods such as
directional discrimination, annual modulation, and
improved flux measurements [58—60] may allow access
to cross sections below the neutrino floor, complementing
indirect searches.
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APPENDIX: DETAILS OF UV MATCHING ONTO HWET FOR FERMIONS

Consider the Lagrangian,

spin- _— 1_, .
L =g = M)y + 37D - M)y

2

+ Oyry—1 2 AWk [AVWVKk = 1814216y g1 /2 + BiV2J + 2 = kSySy g1 24 H,
—Wi[=AIV2 + 1 =k 16y y_1pp + Bl\/%él,kﬁ-léJ’J-&-l/z]/llHl

+
<

+ |
2 §q| §h| fp\ 5| 5'

+ 1
|€|€|§§'§'

_|_

AWK =181y y_1 /2 + BIV2T +2 = kyby g1 o)y’ A H
—AW2T + 1= k8187 o1 + BIVKS 18y g1 )y H
AgV2T + 1= kdyby y_1/2 — BsVkS 1418y g1 2] A5 H
[AsVk = 18,418y 212 + BsV/2J +2 = k8yy g1 ) H
AT + 1= kS8 g-1/2 — BeVkS js18y g )V A H
iVk = 1813187 _1/2 + ByV2J +2 = kdydy 141 0)r A Hs }
vy 2 {=WlANK = 18,4218 210 + BoV2T + 2 = kSyy g ol H
A2+ 1 — kb 16y go12 + ByVkS; 416 J+1/2)iH
A’ \/_511< 107, g-1/2 + BY2J +2 - kéydy, 101207 M H
AT + 1= k8418 g-1/2 + ByVkS 1418y 141 2)7° A H
[AV2T + 1= k88 12 — BsVkS 416, J+1/2)4  Hy
i[As \/—51k 107.9-1/2 + BgV2J +2 - kdydy J+1/2)A Hy
WEIAGY2T + 1 =k6udy g1/ — BV kS 1116y 01/2)7 2 Ho
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— WAV — 181416y j-172 + BgV2J 42 — kb g1 2l7 A5 H  }
+ Sy —y 1AW (1) AV k = 18144274267 212
— B3V2J + 2 = kb1 1125430 y41/2)4  Hy

— (=1 [AsV2T + 1= k8p 4271187 y-1/2 + BsVkS1i4274287 i1 2 ASH,
+ (=D)AL E = 161407207 o172 — ByV2T + 2 = kS 11274387 111 2P A H
— @ (=DMASV2T + 1 = k6120118 0-1/2 + BBy 4251207, sl A Hy
— W (=D [AV2T + 1= k127187 172 + BiVkSi 127108 i1 ) H
— W (=D [=AVk = 184127198 o172 + BV2T + 2 = kbyi 127438y 111 0) i H
—wi(—DMAYW2T + 1 = kby24165 y-1)2 + 37\/_5k+1 24207y 2lr M H
— (D =AWk = 18,y 127207 o172 + ByV2T + 2 = kpy1074307 51127 M H3)

+ 8y1—y—1 A=W (1) [AsVk = 18144271287 -1/
= ByV2J + 2 = kbii1 27430, g1 2 A HY

— (=) [=AgV2T + 1= k81127187 o172 + BaVkS 12720 11 2) A5 H

— (=D AWK = 1615274207 12 — ByV2JT +2 = k1274307 41 27 A H

— (DX [~ALW2T + 1= k) 4270107 2172 + ByVkS1i12s 1207 511 2Jr A H

+ W_]L;(_l)k[AS V2J + 1= kbiy 127116y y-1/2 + Bs \/];5k+l,21+25]’.J+1/2]/11H2

— W (=D [=AsVk = 181274207 s-172 + BsV2T +2 = kry 1271307 11 /2] H

+ (=) ASV2T + 1 = kyiy274187 o172 + B k1127120, 7412077 A Hy

— W (=D [=ANk = 1811274207 J-12 + B5V2T +2 = kSx12s 1307 701 2]7 4 H 1 } + Hec. terms, (A1)

where 4 is a Dirac fermion to construct y’, similar to the role of y for y, A;, A} and B;, B/ are coupling constants in the UV
theory. We match the UV theory Eq. (A1) onto the effective theory Eq. (14), and determine the effective theory coefficients
from the UV couplings.

Let us do the matching for the operator % lH rH j» where a, f = 1,2 are indices for two Majorana fermions y; or y», m,

[ = 1,2 are indices for two components of each Majorana fermion y,, and i, j = 1, 2 are indices for the two components of
Higgs doublet. The first diagram on the left-hand side with exchange of two W fields yields a group factor

(TaTb)Zlé<TaTb + TbTa)ij 2 (‘] =+ 1)5aﬂ5m15uv (A2)
When the first diagram of the left-hand side contains one W and one B exchange, it gives a group factor
[(THTO)Z% + (TOTa)Z'ﬁI](TaT +1%%),; = Yoo5(J3 00 + Jni00) + 1Y 6505 (=818 + 8028p1), (A3)

where a, b =1,2,3.
When the first diagram of the left-hand side contains two B fields exchange, it gives a group factor

. Y?
(TOT0) (%20 + 2%2°),; = 76(,/;6m,5ij. (A4)
Thus, working out all the Feynman rules and the first diagram of the left-hand side contributes to the operator 2 )(;}H jHj
a coefficient

1 Y?
- E‘,(J + )925m151] + Yglgz(']jnlallj + Jila?j) + _g?énlléij 5(1/)’1100p lYg]QZGlj ml( 6(115/12 + 5(125/11)1100p’ (AS)

2

116023-15



QING CHEN, GUI-JUN DING, and RICHARD J. HILL PHYS. REV. D 108, 116023 (2023)

where I}, is the loop integral for the first diagram on the left-hand side and

Tioop = / o e RS 7 S el (3 —2¢). (A6)

27)? [(p + q)* = M? +i0](p> +i0)>  (4x)>¢ M'*2

with d = 4 — 2e.

The second diagram vanishes by straightforward computation in dimensional regularization. The only surviving
diagram on the right-hand side is the last diagram and other diagrams vanish since the loop integrals are scaleless but
dimensionful.

Specifically, let us consider the matching when J'=J —1/2 and Y =Y — 1/2 = =Y 4 1/2 = 0. Other choices will
bring us similar results and the heavy-limit result is the same as we will see in Eq. (45). When we choose a = f =1,
i=j=1and m = [, we obtain

i
RH.S = —E[Re(cl.l/z) —Re(cp12)(l =7 = 1)]6,u1,

1 Y?
LHS = - EJ(‘]+ ) 5 1511 + YgIQZ(Jl 16 +‘]3 ’%) +79‘115m15ij Iloop
4M’ (JA [ + 1A5]> 4 A7 + [As]?) (2T + 1 = 1)6,, (A7)
and
3 4 voa M 2 2 2 2
Re(cy 1) = WU(JJF g5 + Ygi] - Vi (14117 + |A3|* + [A7]* + [Ag])J,
69%9% 2 2 2
RelCas) = SO5 ¥ = (0P AP + Aol + 4) (a9

Then we have the coefficients in Eq. (25),

1
A= E[Re(cl 172) — Re(cy12)(J + 1))
3 4 2 4 M 2 2 2 2
— S AU 1) =28 BV 1)+ P+ L (AP AP+ A + AP
1 34793 M
B = 3Re(cas) = (93 ¥ = 5 (AP AP + AP + [4P) (49)

To obtain the coefficient C in Eq. (25), let us consider the matching for operator ./ )(ZH iH; and we choose a =2, =1,
i=j=1l.andm+1=2J+1,

Can/2 €30
RHS = —T/(—Uh/l(zj 1= D)8pmayets
LH.S _4— AAL (=) 1(2T + 1= Domayots (A10)

yielding

Caip+ 6 A3A M
== 2/ All
¢ 5 Tk (A1)
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