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The enhancement mechanism due to the resonant properties of the ρ and ω mesons, which are close in
mass, is analyzed when such resonances carry different momenta. Considerations from the particular
process where they appear to the individual resonant features are at play for the appearance of the global
resonant manifestation. In this work, we first consider the eþe− → π0π0γ process. We use the differential
cross section at a given angle of emission of one of the pions, to tune the individual features of the two
resonances and exhibit how both resonances combine to produce the enhancement. Then, we incorporate
the ρ0 using the information obtained from the eþe− → π0π0γ total scattering process and show that, it
becomes important thanks to the same enhancement mechanism between the ρ and the ω. In a second step,
we use a similar approach to describe a model dependent contribution to the τ− → π−π0ντγ decay, the so-
called ω channel. We show that the dipion invariant mass distribution at particular angles is sensitive to the
individual resonant states. We compute the interference of this channel with the known dominant model
independent contribution, and show how a better knowledge of the eþe− → π0π0γ process can help to
properly account for such model dependent effects. The implication on the isospin symmetry breaking
correction to tau-based estimates of the muon magnetic dipole moment is assessed.

DOI: 10.1103/PhysRevD.108.116020

I. INTRODUCTION

The closeness in mass between the ρ and ω resonances
plays an important role in the understanding of many low
energy hadronic phenomena. The so-called ρ − ωmixing is
one of the key ingredients in the proper description of the
eþe− → πþπ− scattering data, which is the dominant
hadronic contribution for the standard model (SM) pre-
diction [1–6] of the muon g-2 magnetic dipole moment
(MDM) [7]. There, both mesons carry the same transferred
momentum, thus their corresponding resonant features
appear split in energy only by the mass difference. A kind
of similar contribution of the ρ and ω resonances can be
seen in the eþe− → π0π0γ scattering process. However, in
this case the mesons carry different momenta, due to the
pion emission. Thus, kinematical considerations are at play,
in combination with the individual resonant features, for
the appearance of the global resonant manifestation.
Characterize it in terms of the parameters involved may
be useful to reliable describe other processes with similar
characteristics, but milder or null experimental information.

The eþe− → πþπ−γ process is expected to be less sensitive
to these features since it also includes other radiation
mechanisms.
Another scenario for the appearance of both resonances

with different momentum dependence can be seen in the
τ− → π−π0ντγ decay, which is dominated by the model
independent (MI) part for soft photon emission [8–16], in
agreement with Low’s theorem [17]. There, a model
dependent (MD) contribution, associated to the so-called
ω channel, which has a similar hadronic structure as the one
in eþe− → π0π0γ, has been observed to have a relevant
effect in the dipion spectrum. Properly accounting for this
channel is of relevance for the isospin symmetry breaking
correction on a tau-based estimate of the muon g-2 MDM
prediction in the SM. While this radiative process has not
been measured, experimental prospects in Belle II [18]
might offer a first insight on it.
In eþe− scattering, the total cross section measured by

SND [19–21] and CMD2 [22] experiments, at low energies,
can be described considering the intermediate state to be
driven by the ρ and ω. Refinements require the incorpo-
ration of the ϕ and ρ0 mesons [23–27]. In the τ decay, the
considered observable is the dipion invariant mass distri-
bution. These observables exhibit the general behavior
produced by the presence of both resonances, but not the
specific role of each of them, making it difficult to identify
how the particular properties combine to get the total result.
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This is not a trivial fact, since the processes involve a
ρ − ω − π vertex where at least one of the mesons is off-
shell. Due to energy conservation, ρ and ω do not resonate
at energies which differ just by the mass gap between them
but larger, to account for the energy carried out by the pion.
In this work, first we analyze the behavior of the

resonances in eþe− → π0π0γ considering the differential
cross section for a particular angular emission of one of the
pions as an additional observable. There, we use the angle
to tune the individual features of the ρ and ω resonances
and exhibit how they combine to produce the global
enhancement. Then, we incorporate the ρ0 using the
information obtained in a previous analysis [27] of low
energy observables. We show that, although it is a sub-
dominant contribution, it becomes important thanks to the
same enhancement mechanism between the ρ and the ω,
since the kinematical energy shift allows bothω and ρ0 to be
on-shell. Once the angular distribution is characterized, in
terms of the parameters involved at the current precision,
we consider the ω channel of the τ− → π−π0ντγ decay,
exhibiting the analogue features to eþe− → π0π0γ angular
distribution in the dipion spectrum. Then, we compute its
interference with the known dominant MI contribution and
determine the radiative correction function GEMðtÞ. We
evaluate the isospin symmetry breaking correction to tau
based estimates of the muon MDM from this source. We
show how a better knowledge of the eþe− → π0π0γ can
help to properly account for such MD contribution. At the
end we discuss the results and present our conclusions.

II. ENERGY ROLE IN THE FORM FACTOR

We can define the individual form factor associated to a
vector meson (V) as a Breit-Wigner distribution:

fV ½s�≡ m2
V

m2
V − sþ imVΓV

; ð1Þ

where s is the kinematical variable associated and mV
and ΓV (V ¼ ρ, ω) are their corresponding mass and
decay width. The pole mass is not the same by definition
but we will refer to them indistinctly. The particular
numerical values are taken from [28]. Thus, for different
energy dependence, we will have fρ½s� and fω½s1� for
the ρ and ω respectively. For the broad decay width
of the ρ, we consider the energy dependent form
ΓρðsÞ ¼ Γρðm5

ρ=s5=2Þλðs; m2
π; m2

πÞ3=2=λðm2
ρ; m2

π; m2
πÞ3=2,

where λðx; y; zÞ is the Källen function, while the narrow
width of the ω is taken as a constant. The masses of the
particles involved are labeled accordingly.
Let us consider the hadronic interaction between the ρ, ω

and π as shown in Fig. 1, where both ρ and ω are, in
general, off-shell. Although ρ and ω are close in mass, it
does not necessarily imply that both resonances show up
close enough to each other at a given kinematical configu-
ration. In order to illustrate this point, let us consider the

energy of the pion (Eπ) in the ρ rest-frame, which links
s≡ ðp1 þ p2Þ2 and s1 ≡ ðq − p1Þ2 variables by s1 ¼
sþm2

π − 2
ffiffiffi
s

p
Eπ . The difference between s and s1 is not

trivial since it depends on Eπ . If the pion carries the
minimal energy, Eπ ¼ mπ , the energy available for the
ω at s ¼ m2

ρ is
ffiffiffiffiffi
s1

p ¼ 0.63 GeV, far below its mass, even
considering the decay width of the ω. On the other
hand, the minimal energy to have the ω on-shell is

ffiffiffi
s

p ¼
mω þmπ ¼ 0.92 GeV, which is nearly mρ þ Γρ. Thus, the
appearance of both resonances requires the ρmeson energy
to be at least one unit of its decay width away from its mass.
Phase space effects, coming from the particular process
where this vertex is involved, will produce further mod-
ifications in the observables, as we show below.

III. RESONANT ENHANCEMENT
IN e+ e − → ωπ0 → π0π0γ CROSS SECTION

In the following, we will explore the behavior associated
to the form factors defined above within the eþe− → π0π0γ
cross section. Then, we incorporate the ρ0 contribution,
which is not negligible, thanks to the same enhancement
mechanism between the ρ and theω, where now both ρ0 and
ω are allowed to be on-shell.
We follow the vector meson dominance model (VMD) to

describe the coupling between the neutral vector mesons
and the electromagnetic current [29]. The interaction
among hadrons is described in an effective way, consistent
with general considerations in extensions of the VMD
[30–33]. The effective Lagrangian including the light
mesons ρ, π, and ω, in addition to the ρ0 can be set as

L ¼
X
V¼ρ;ρ0

gVππϵabcVa
μπ

b
∂
μπc

þ
X
V¼ρ;ρ0

gωVπδabϵμνλσ∂μων∂λVa
σπ

b

þ
X

V¼ρ;ρ0;ω

em2
V

gV
VμAμ: ð2Þ

(q)

(p  )

(p  )

1

2

FIG. 1. ρωπ interaction.
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The couplings are labeled to identify the corresponding
interacting fields. In general, V, A and π refers to the vector
meson, photon, and pion fields, respectively. This approach
allows to incorporate the strong interaction among hadrons
and the resonances in an energy region were they can be
considered as the degrees of freedom, provided the param-
eters can be fixed from experimental information, sym-
metries or low energy theorems.
Let us set the momenta notation (within parenthesis) for

the process as: eþðv1Þe−ðv2Þ → π0ðp1Þπ0ðp2Þγðp3; η�Þ,
where η� is the polarization vector of the photon. The
process is depicted by the diagrams in Fig. 2, where both
the ρ and ρ0 intermediate states are considered. Further
contributions from other intermediate states, such as the ϕ
meson or scalars, are not considered at this stage, although
they may be relevant when considering this process for
precision observables analysis [24,25,34]. The amplitude
for the diagram of Fig. 2(a) can be written as:

MðaÞ ¼
e2

q2
ðCρ þ eiθCρ0 Þϵμσϵλqσðq − p1Þϵ

× ϵαβν
λðq − p1Þαp3

βη�νlμ; ð3Þ
where lμ ≡ −iev̄ðv1Þγμuðv2Þ, s ¼ q2 ¼ ðv1 þ v2Þ2, s1 ¼
ðq − p1Þ2 and the global factor associated to the ρ and ρ0
intermediate states is defined in terms of the couplings and
form factors by:

Cρ ¼
�
gωρπ
gρmω

�
2

fρ½s�fω½s1�;

Cρ0 ¼
gωρ0πgωρπ
gρgρ0m2

ω
fρ0 ½s�fω½s1�; ð4Þ

with a relative phase eiθ between both channels. The
amplitude for Fig. 2(b) is obtained by interchanging
p1 ↔ p2 momenta.

The total cross section measured by SND Collaboration
[19–21] and by CMD2 Collaboration [22] have been
analyzed following the above description, in combination
with a larger set of observables, to determine the model
parameters consistency region [27]. The parameters rel-
evant for our purposes, are listed in Table I.
Let us now explore the differential cross section as a

function of the angular emission of one of the pions with
respect to the collision axis, as a way to scan the relative
energy between the ω and the ρ resonances. In order to
calculate the differential cross section, we follow the
kinematics as given in Ref. [35] (A factor of ð2πÞ9 is
added to agree with the phase space convention used by the
Particle Data Group [28]), which involves five Lorentz
invariant variables: s and s1 defined above in addition to
t0 ¼ ðv1 − p1Þ2, u1 ¼ ðq − p2Þ2 and t1 ¼ ðv1 − p2Þ2. The
differential cross section at a given angle between the initial
state particle eþðv1Þ and the final state particle π0ðp1Þ
momenta (as seen from the center of mass frame) is
given by

dσðeþe−→ 2π0γÞ
dζ

¼ 1

512π4jv1jjv2jλðs;m2
e;m2

eÞ1=2
Z

s1þ

s1−

ds1
ð1−ξ21Þ1=2

×
Z

u1þ

u1−

du1
λðs;m2

π;u1Þ1=2ð1−η21Þ1=2

×
Z

t1þ

t1−

dt1
ð1−ζ21Þ1=2

jMj2; ð5Þ

where ζ ≡ cos θ ¼ p1 · v1=jp1jjv1j is the angle between the
positron and the neutral pion momenta, which in the center
of mass frame can be seen as the pion emission angle with
respect to the collision axis, where the following kinemati-
cal definitions are considered

ξ1 ¼ ½sðsþm2
π − s1Þ − 2sðm2

e þm2
π − t0Þ�½λðs;m2

e; m2
eÞλðs; s1; m2

πÞ�−1
2;

η1 ¼ ½2sðs1 þm2
πÞ − ðsþm2

π − u1Þðsþ s1 −m2
πÞ�½λðs;m2

π; u1Þλðs; s1; m2
πÞ�−1

2;

ζ1 ¼ ðω1 − ξ1η1Þ½ð1 − ξ21Þð1 − η21Þ�−
1
2;

ω1 ¼ ½sðsþm2
π − u1Þ − 2sðm2

e þm2
π − t1Þ�½λðs;m2

e; m2
eÞλðs;m2

π; u1Þ�−1
2: ð6Þ

FIG. 2. The eþe− → ωπ0 → π0π0γ scattering.

SIZING THE DOUBLE POLE RESONANT ENHANCEMENT IN … PHYS. REV. D 108, 116020 (2023)

116020-3



The limits of integration are

s1− ¼ m2
π; s1þ ¼ ð ffiffiffi

s
p

−mπÞ2;

u1� ¼ sþm2
π −

ðs1 þm2
πÞðsþ s1 −m2

πÞ
2s1

� ½λðs;m2
π; s2Þλðs; s1; m2

πÞ�12
2s

;

t1� ¼ m2
e þm2

π −
sþm2

π − u1
2

� ½λðs;m2
e; m2

eÞλðs;m2
π; u1Þ�12

2s
X1�;

X1� ¼ ξ1η1 � ½ð1 − ξ21Þð1 − η21Þ�
1
2: ð7Þ

In order to fix the angle, the t0 variable is turned into the
ζ variable by

t0 ¼ m2
π − 2ðEv1Ep1

− ζjv1jjp1jÞ; ð8Þ

where Ev1 ¼ 1
2

ffiffiffi
s

p
, Ep1

¼ m2
πþs−s1
2
ffiffi
s

p , jv1j ¼ jv2j ¼ 1
2

ffiffiffi
s

p
and

jp1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
v1 −m2

π

q
are obtained at the center of mass frame.

This gives us the freedom to choose a specific value for ζ
between ð−1; 1Þ, while fulfilling the limits of integration
for t0.
For the sake of clarity let us consider, at this stage, only

the ρ contribution in the amplitude Eq. (3). The effect due
to the ρ0 will be included at the end. In Fig. 3 we show the
differential cross section as a function of the center of mass
energy

ffiffiffi
s

p
for a set of values of ζ. We observe that it

increases as it gets closer to ζ ¼ 1. Negative values are
highly suppressed. This is explained by picturing a final-
state pion recoiling from the incident lepton trajectory. We
consider the case for ζ ¼ 0.9 as a definite example to
analyse. In Fig. 3, we plot this particular case (bold line),
noticing the presence of two bumps; the first and small
one at

ffiffiffi
s

p
≈ 0.78 GeV and the second and big one atffiffiffi

s
p

≈ 1.097 GeV. The former coincides with the energy for
the ρ meson on-shell, s ¼ m2

ρ, but not the ω. The latter
corresponds to the ω meson on-shell which, since it is not
explicitly dependent on s but s1, it is reflected at a higher
energy. A remaining question is, at which extent these two

resonant contributions interfere with each other? For that
purpose we explore the Dalitz region for

ffiffiffi
s

p
and

ffiffiffiffiffi
s1

p
at

ζ ¼ 0.9, as shown in Fig. 4. Analyzing this distribution we
identify that the cross section resonates at

ffiffiffiffiffi
s1

p ¼ mω ¼
0.78266 GeV as it must be. At

ffiffiffi
s

p ¼ mρ, the
ffiffiffiffiffi
s1

p ¼ mω

condition is out of the region. However, at
ffiffiffi
s

p ¼
1.097 GeV≡max (maximum value identified from
Fig. 3) that condition can be reached. This explains the
biggest bump, where both ρ and ω particles resonant
features combine to give a maximal enhancement.
Although the ρ is off-shell, its large decay width allows
it to make a sizeable contribution. An indicator of the phase
space effect is that the biggest bump starts rising at

ffiffiffi
s

p
≈

0.93 which intersects with
ffiffiffiffiffi
s1

p ¼ mω GeV, corresponding
with the opening of the ω − π states on-shell, but the
maximum is reached at a higher energy. Measuring the
energies in units of the corresponding decay width Γρ for

FIG. 3. Differential cross section of the eþe− → ωπ0 → π0π0γ
process for a set of values of ζ ¼ cos θ.

TABLE I. Parameters of the model, obtained in Ref. [27].

Parameter Value

gρ 4.962� 0.093
gω 16.652� 0.473
gρ0 12.918� 1.191
gωρπ (GeV−1) 11.314� 0.383
gωρ0π (GeV−1) 3.477� 0.963
θ=π 0.872� 0.051

FIG. 4. Dalitz region for
ffiffiffi
s

p
and

ffiffiffiffiffi
s1

p
at ζ ¼ 0.9. The vertical

and horizontal lines intersection defines the region where the ω
and ρ resonances have maximum interference, in units of their
corresponding decay width.
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ffiffiffi
s

p
and Γω for

ffiffiffiffiffi
s1

p
, we can identify that the maximum is 2Γ

away from the mass value. That is, it defines a rectangular
region where both ρ and ω resonant effects produce the
maximum enhancement, as observed in Fig. 3.
A description of the differential cross section at ζ ¼ 0.95

including the ρ0 and the region defined by the parameters
uncertainty is shown in Fig. 5. It is significantly sensitive to
the gωρ0π coupling, the broad shaded region is defined by its
uncertainty. The narrow shaded region corresponds to the
relative phase parameter uncertainty. This suggest that by
measuring the angular distribution in the region around
1.2 GeV, it may be possible to determine the resonant
parameters involved with a better precision, namely the
gωρ0π coupling constant and relative phase, θ. Notice that
mρ0 ¼ 1450 MeV and Γρ0 ¼ 400 MeV, makes the ω rela-
tively closer to the ρ0 than to ρ in the context described
above, using the decay width as a representative magnitude.
Using a constant or an energy dependent width (modeled in
a similar way to the ρ) makes no significant difference.

IV. RESONANT ENHANCEMENT IN THE
τ − → π −π0ντγ DECAY

In this section we describe the τ− → π−π0ντγ decay
along the same lines as in [10–12]. We explore the so-called
ω channel dimeson invariant mass and angular distribution,
similar in spirit to eþe− → π0π0γ previously discussed.
Then, we obtain the radiative correction function to
the τ− → π−π0ντ decay, GEMðtÞ. Then, we compute the
isospin symmetry breaking correction from this source to

ΔaðHVP;LOÞμ paying attention to the uncertainties of the
parameters involved.
Let us set the notation for the process as τ−ðpÞ →

π−ðp−Þπ0ðp0ÞντðqÞγðk; ϵ�Þ, where in parenthesis are the

corresponding momenta and ϵ� is the polarization vector of
the photon. We define the auxiliary variablesQ≡ p0 − p−,
k− ≡ p− þ p0, and kþ ≡ k− þ k and the invariant variables
t ¼ k2− and t0 ¼ k2þ ¼ tþ 2k− · k.
The total amplitude for the τ− → π−π0ντγ process can be

written in general as [9,36]:

MT ¼ eGFV�
udϵ

�μ½FνūðqÞγνð1 − γ5Þðmτ þ p − =kÞγμuðpÞ
þ ðVμν − AμνÞūðqÞγνð1 − γ5ÞuðpÞ�; ð9Þ

where the first line corresponds to the τ radiation, Fν ≡
Qν

fþ½t�
2p·k and fþ½t� is the hadronic form factor obtained from

the corresponding non radiative decay. GF is the Fermi
constant and V�

ud the CKM matrix element. The Vμν and
Aμν tensors correspond to the vector and axial contributions
from theW− → π−π0γ transition respectively (here Aμν ¼ 0

in accordance with previous analysis). Vμν has the follow-
ing structure:

Vμν ¼ −fþ½t0�
p−μ

p− · k
ðQ − kÞν − fþ½t0�gμν

þ fþ½t0� − fþ½t�
k · k−

k−μQν þ V̂μν; ð10Þ

where

V̂μν ≡ v1p− · kFμνðp−Þ þ v2p0 · kFμνðp0Þ
þ v3p0 · kp− · kLμðp−; p0Þp−ν

þ v4p0 · kp− · kLμðp−; p0Þkþν; ð11Þ
and we have made use of the following functions:

Lμða; bÞ≡ aμ
a · k

−
bμ
b · k

;

FμνðaÞ≡ gμν −
aμkν
a · k

:

The vi functions are determined from the specific model
considered for the hadronic description. In our case, given
by the Lagrangian Eq. (2), in addition to the vector meson-
photon interaction (VVγ), which is taken in analogous way
as for the W gauge boson (WWγ) incorporating the finite
width effect in a gauge invariant way [37]. The structure
independent (SI) diagrams are depicted in Fig. 6, which
include MI and MD parts, this last associated to the ρ
meson MDM (β0) and taken to be β0 ¼ 2 in e=2mρ units.
The weak ρ coupling is set to Gρ ¼

ffiffiffi
2

p
m2

ρ=gρππ . The vi
functions are given by:

v1 ¼ −v2 ¼ β0
½fþðt0Þ − fþðtÞ�

2k− · k
;

v3 ¼ 0;

v4 ¼ 2

�
β0
2
− 1

� ð1þ iΓρ=mρÞ
m2

ρ

½fþðt0Þ − fþðtÞ�
k− · k

; ð12Þ

FIG. 5. eþe− → ωπ0 → π0π0γ differential cross section at
ζ ¼ 0.95. Considering the ρ alone (solid line), and then adding
the ρ0 (dashed line). The broad band region corresponds to the
uncertainty from gωρ0π and the narrow band to the θ phase
uncertainty.
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where we have used ðfþ½t0�−fþ½t�Þ
2k−·k

¼ ð1þ iΓρ=mρÞ fþ½t�fþ½t
0�

m2
ρ

.

We identify the MI part, in accordance to the Low theorem,
as those contributions of order Oðk−1Þ and Oðk0Þ [17]:

MLow ¼ eGFV�
udϵ

�μ
�
fþ½t�Lμðp; p−ÞQν

þ 2p0 · kLμðp0; p−Þ
dfþ½t�
dt

Qν

−
fþ½t�
2p · k

½FμνðQÞQ · kþ iQαkβϵναβμ�

− fþ½t�Fμνðp−Þ
�
lν; ð13Þ

where lν ¼ ūðqÞγνð1 − γ5ÞuðpÞ. This is the same result
obtained previously in the VMD [11,12] and chiral per-
turbation theory (χPT) [9,14] descriptions, with V̂μν and
Aμν null.
The form factor fþ½t� is obtained from a fit to the two

pion invariant mass distribution of the non radiative decay,
measured by Belle [38]. It includes the ρð770Þ, ρð1450Þ
and ρð1700Þ vector mesons by:

fþ½t� ¼
1

1þ β þ γ
ffρ½t� þ βfρ0 ½t� þ γfρ00 ½t�g; ð14Þ

where β ¼ B0eifb and γ ¼ G0eifg . The parameters are
listed in Table II.
The involved couplings from the model are related to the

fit by:

β

1þ β þ γ
¼ m2

ρ

m2
ρ0

Gρ0gρ0ππ
Gρgρππ

;

γ

1þ β þ γ
¼ m2

ρ

m2
ρ00

Gρ00gρ00ππ
Gρgρππ

; ð15Þ

whereGρ,Gρ0 andGρ00 are the corresponding vector mesons
weak couplings. Notice that only the ratios are involved and
fixed by the fit parameters. A comparison of the form factor
with respect to the dispersion relation result can be seen
in [13].

FIG. 6. Feynman diagrams of the τ− → π−π0ντγ decay corresponding to the structure independent part.

TABLE II. Parameters obtained from a fit to the Belle data form
factor fþ½t�.
Parameter Value Parameter Value

mρ 0.7747 GeV Γρ 0.14612 GeV
mρ0 1.3832 GeV Γρ0 0.5653 GeV
mρ00 1.868 GeV Γρ00 0.3941 GeV
B0 −0.4028 fb 1.1321
G0 −0.1725 fg 4.3756 × 10−8
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Now, we proceed to analyze the MD part coming from
the ω channel, depicted in Fig. 7. There, we show the
diagram for the τ− → π−π0ντγ decay, driven by the
presence of the ρ and ω intermediate states. It has been
shown that this is the only MD relevant channel [11,12].
The amplitude can be written as:

Mω ¼ eGFV�
ud

Gρffiffiffi
2

p g2ωρπeiθw

gρm2
ρm2

ω
fω½r�fo½t0�

× ϵασμ
λϵϕλχ

νkσpα
0ðp0 þ kÞϕpχ

−ϵ
�μlν; ð16Þ

where r≡ ðp0 þ kÞ2 and fo½t0� includes the ρ and ρ0
contributions

fo½t0�≡ 1

1þ B1eiθ
ffρ½t0� þ B1eiθfρ0 ½t0�g: ð17Þ

The parameter B1 is related to the coupling constants of
the model by B1 ¼ jðmρ=m0

ρÞ2ðGρ0=GρÞðgωρ0π=gωρπÞj (with
Gρ0=Gρ determined from the parameters of fþ½t�) and θ is
the relative phase between the ρ and ρ0 contribution to the ω
channel. This strong phase has the same origin as in
eþe− → π0π0γ, and therefore is assumed to be the same.
Global phase effects may be different compared to the eþe−
mechanism. The relative phase between the channel itself,
encoded in θw, and the SI amplitude is taken to be positive.
Thus fo½t0�, although similar in structure to fþ½t� (without
the ρ00) involves different values for the parameters asso-
ciated to the ρ0 contribution, determined in a previous
analysis [27].
The amplitude can be set in the general structure form,

Eq. (9), as:

Mω ¼ eGFV�
udϵ

�μV̂ðωÞ
μν lν; ð18Þ

and V̂ðωÞ
μν contributes to V̂μν with the following coefficients:

vω1 ¼ −Cωfω½r�fo½t0�ðp0 þ 2kÞ · p0;

vω2 ¼ Cωfω½r�fo½t0�ðp0 þ kÞ · p−;

vω3 ¼ Cωfω½r�fo½t0�;
vω4 ¼ −Cωfω½r�fo½t0�; ð19Þ

where Cω ¼ g2ωρπ=ðm2
ωgρgρππÞ.

In order to evaluate the corresponding contributions we
use the values for the couplings obtained from the param-
eter analysis [27], Table I.

A. Pion angular distribution

The dipion invariant mass distribution has been shown to
be a useful observable to study the underlying dynamics of
τ− → π−π0ντγ decay [9,10,14]. The distribution associated
to a particular angular emission of the charged pion with
respect to the dipion momenta in the τ rest frame may
resemble the behavior observed in the eþe− → π0π0γ
process discussed previously. In Fig. 8, we show the
dimeson invariant mass distribution due to the ω channel,
normalized to the nonradiative decay width (Γnr) for
several angles of the charged pion emission, obtained
using the same kinematics as in Ref. [10]. Lines in the
upper region of the figure (full) consider ρ and ρ0. The
lines in the lower region consider only the ρ0 contribution,
for the corresponding angles. We observe that small
angles are favored and the individual resonant structures
are split.
In Fig. 9, we show the dipion invariant mass distribution

regardless of the angle. The dotted line corresponds to the
total dipion invariant mass (obtained from the SI diagrams
plus interference with the ω channel), the dot-dashed line is

(k)

(p  )

(p  )

( p )

( q )

−
−

−

−
0

0

−

FIG. 7. Contribution to the τ−→π−π0ντγ decay, driven by theω.

FIG. 8. Dimeson invariant mass distribution due to the ω
channel, normalized to the nonradiative decay width (Γnr) for
several angles of the charged pion emission. Lines in the upper
region of the figure (Full) consider ρ and ρ0. The lines in the lower
region consider only the ρ0 contribution, for the corresponding
angles.
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the contribution excluding the ρ0 in the ω channel, and the
solid line is the SI contribution. We use a cutoff for the
photon energy of Eγmin ¼ 300 MeV, implemented by
introducing a fictitious mass at the kinematical level,
such that the photon energy cannot go lower than that
energy.

B. Correction to the τ-based muon MDM estimate

The muon MDM estimate, based on τ data, requires to
incorporate the correction from all the contributions that
break the conserved vector current (CVC) hypothesis. In
particular, to determine the leading hadronic contribution,

aðHVP;LOÞμ , from the two pions decay mode, requires to

incorporate the correction, ΔaðHVP;LOÞμ , from all isospin
symmetry breaking sources, denoted by RIBðtÞ, with t the
dipion invariant mass square:

RIBðtÞ ¼
FSRðtÞ
GEMðtÞ

β3πþπ−

β3
πþπ0

����FV ½t�
fþ½t�

����
2

; ð20Þ

where FSRðtÞ accounts for the final state radiation from the
pions, GEMðtÞ is the electromagnetic radiative correction
function, β3πþπ−=β

3
πþπ0 is the phase space factor correction

and jFV ½t�=fþ½t�j2 is the form factor correction from the
charged ðfþ½t�Þ with respect to the neutral (FV ½t�) one.
These corrections have been computed, with the main
source of uncertainty coming from the form factors ratio
and the electromagnetic term [1,4,9,14,39–42].
Here, we focus on the correction to aðHVP;LOÞμ from

GEMðtÞ, which is estimated by [8,9]:

ΔaðHVP;LOÞμ jGEMðtÞ ¼
1

4π3

Z
tmax¼m2

τ

tmin¼4m2
π

dtKðtÞKσðtÞ
KΓðtÞ

dΓ2πðγÞ
dt

×

�
1

GEMðtÞ
− 1

	
; ð21Þ

where KðtÞ is the QED Kernel function, given by

KðtÞ ¼ x2

2
ð2− x2Þþ ð1þ x2Þð1þ xÞ2

x2

�
lnð1þ xÞ− xþ x2

2

�

þð1þ xÞ
ð1− xÞ x

2 lnðxÞ; ð22Þ

where

x ¼ 1 − βμ
1þ βμ

; βμ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

μ=t
q

; ð23Þ

KΓðtÞ ¼
G2

FjVudj2m3
τ

384π3

�
1 −

t
m2

τ

�
2
�
1þ 2t

m2
τ

�
; and

Kσ ¼
πα2

3t
: ð24Þ

This contribution, due to the lack of experimental
information, is estimated theoretically by considering the
virtual and real photon emission in the τ− → π−π0ντγ
decay. The ω contribution enters through the interference
with the SI bremsstrahlung [39] and has been studied
considering only the ρ in the ω channel. Here, we extend
the analysis to incorporate the ρ0, which is already far from
the soft photon approximation regime and requires to
consider the results with caution as they are fully model
dependent. Still, we do it in an attempt to explore the role of
the parameters involved.
Let us recall the general procedure to compute the

electromagnetic correction: The photon inclusive dipion
invariant mass distribution at OðαÞ can be set, in terms of
the nonradiative decay, Γ0

2π , as [9]

dΓ2πðγÞ
dt

¼ dΓ0
2π

dt
GEMðtÞ; ð25Þ

where GEMðtÞ encodes the long distance radiative correc-
tions. In general, the electromagnetic function can be split
into two parts [9,11]:

GEMðtÞ ¼ G0
EMðtÞ þ Grest

EMðtÞ; ð26Þ

where G0
EMðtÞ accounts for the virtual and real contribution

up to Oðk−2Þ, and Grest
EMðtÞ includes the remaining higher

order contributions from the real part. G0
EMðtÞ has been

computed in [9] and Grest
EMðtÞ, which includes MI and MD

parts, has been computed in two frameworks, χPT [9,14]
and VMD [10–12], as mentioned before. In Fig. 10 we

FIG. 9. Dipion invariant mass distribution using a cut off of
Eγmin ¼ 300 MeV. The dotted line corresponds to the total
dipion invariant mass, the dot-dashed line is the contribution
excluding the ρ0 in the omega channel, and the solid line is the SI
contribution.
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show the electromagnetic function including different
contributions. Total (black solid line) corresponding to
the SI and interference with the ρ part of the ω channel. The
uncertainties associated are not visible at the current scale,
that is, at this stage the MD contribution is well settled.
Adding the ρ0 and using the current uncertainties on the
parameters defines the shaded region, signaling the lack of
precision on such contribution. We have also plotted the
contribution only from the ρ0 in the ω channel (green
dashed line), the SI contribution (solid red line) and the
result for G0

EMðtÞ (black dashed line).
In Fig. 11, we show the electromagnetic function for the

current uncertainties on the ρ0 parameters (broad shaded
region), as in Fig. 10, and the projection region (inside
region) considering an improvement on the gωρ0π of 20%,

which may be attainable by measuring the eþe− → π0π0γ
angular distribution described in the first part of this work.
Following the form of GEMðtÞ as in Eq. (26), we can

compute the contributions to ΔaðHVP;LOÞμ jGEMðtÞ from the
different terms. Namely, G0

EMðtÞ and then adding Grest
EMðtÞ

parts. The numerical integration is performed in the
region from tmin ¼ 0.0773 GeV2 to tmax ¼ 3.14 GeV2.
In Table III, we show the results considering the different
contributions, namely:

(i) G0
EMðtÞ;

(ii) GEMðtÞðSIÞ, the SI part in addition to G0
EMðtÞ;

(iii) GEMðtÞ (Full), the SI plus the ρ contribution in the ω
channel in addition to G0

EMðtÞ;
(iv) GEMðtÞ (Fullþ ρ0), similar to the previous case but

adding the ρ0 contribution in the ω channel.
(v) GEMðtÞ (Projection) is the result for a projected

reduction of 20% in the gωρ0π uncertainties, while
keeping the central value fixed. The uncertainties are
taken to account for the corresponding individual
parameters uncertainties, assumed uncorrelated.

The results here obtained for ΔaðHVP;LOÞμ jGEMðtÞ considering
(i) and (ii) are consistent with the ones obtained in previous
works, for example in [8,9]. The result considering (iii) is
consistent with previous estimates −37 × 10−11 [11,12,39].
This large contribution from the ω channel is well
under control with relatively small uncertainties mainly
associated to the gωρπ coupling. The result considering
(iv) becomes anomalously large and may signal the break
of the approach, and would call for further analysis, we
have pointed out the origin of the main uncertainties to the
ρ0 and its interaction with the ω through the gωρ0π coupling.
It is close to −ð76� 46Þ × 10−11 obtained at Oðp6Þ in a
Chiral description with resonances [14].
For comparison purposes, we can consider the total

contribution to ΔaðHVP;LOÞμ from the rest of the isospin
symmetry breaking terms in RIBðtÞ and the SD electroweak
radiative correction SEW, as obtained in [39]. This would

imply a shift in the total ΔaðHVP;LOÞμ from −ð16.07�
1.85Þ × 10−11 to −ð18.0� 1.69Þ × 10−10 considering only
the ρ in the ω channel, and −ð23.55þ3.6

−9.34Þ × 10−10 when
adding the ρ0.

FIG. 10. GEMðtÞ function including several contributions: Total
(black solid line) is the SI contribution and the interference with
the ω channel considering only the ρ. Adding the ρ0 and using the
current uncertainties on the parameters defines the shaded region.
The contribution from only the ρ in the ω channel (blue dashed
line) and the contribution from only the ρ0 in the ω channel (green
dashed line), the SI contribution (red solid line) and the result for
G0

EMðtÞ (black dashed line).

FIG. 11. GEMðtÞ function for the current uncertainties on the ρ0
parameters (broad shaded region) as in Fig. 10 and the projection
region (inside region) considering an improvement on the gωρ0π of
20%. We also include the result for G0

EMðtÞ.

TABLE III. ΔaðHVP;LOÞμ jGEMðtÞ (×10−11) for several contribu-
tions of GEMðtÞ.

GEMðtÞ ΔaðHVP;LOÞμ (×10−11)

(i) G0
EMðtÞ 18.3

(ii) GEMðtÞðMIÞ −12.03
(iii) GEMðtÞðSIÞ −14.8
(iv) GEMðtÞ (Full) −38.51þ4.04

−4.83
(v) GEMðtÞ (Fullþ ρ0) −94.03þ32.2

−92.04
(vi) GEMðtÞ (Projection) −94.03þ28.15

−66.22

SIZING THE DOUBLE POLE RESONANT ENHANCEMENT IN … PHYS. REV. D 108, 116020 (2023)

116020-9



V. CONCLUSIONS

We have explored the enhancement mechanism due to
the resonant properties of the ρ and ω mesons, when such
resonances carry different momenta, to exhibit how both
resonances combine to produce the enhancement. First, we
considered the eþe− → π0π0γ process and made use of the
differential cross section at a given angle of emission of one
of the pions, to tune the individual features of the two
resonances. There, we found that the main combined
resonant contribution takes place when both are within
the energy region defined by mV � 2ΓV. Then, we incor-
porated the ρ0 and showed that, it becomes important early
in the energy region, with respect to its mass, thanks to the
same enhancement mechanism between the ρ and the ω.
We identified the sensibility to two parameters of the ρ0,
namely the relative phase with respect to the ρ and the gωρ0π
coupling. The angular distribution proved to be a scenario
where this last can be determined with improved precision.
In a second step, we considered the radiative τ− → π−π0ντγ
decay, whose main MD contribution, the ω channel,
exhibits similar features to eþe− → π0π0γ. Thus, following
the same approach, we showed that the dipion invariant
mass distribution at particular angles of the charged pion
emission is sensitive to the individual resonant states. We
computed the interference of this channel with the known
dominant SI contribution, and obtained the electromagnetic
function GEMðtÞ, this is found to be well settled in the soft
photon approximation regime, dominated by the ρ meson.
A large source of uncertainty was identified upon the
inclusion of the ρ0, described in a similar way as in
eþe− → π0π0γ. We obtained the electromagnetic correction
to the muon MDM estimate. The leading contribution is in
accordance with previous determinations regardless of the
model. The MD part involves two sources, the ρ meson
MDM whose value we fixed to β0 ¼ 2, and the so-called ω
channel, being this last the main contribution. Our results
confirm the previous finding [11,12] that a large MD effect
is at play and is the reason of the observed deviation with
respect to the Chiral approach at Oðp4Þ [9]. The contri-
bution of the ω channel have relatively small uncertainties
considering only the ρ meson and becomes anomalously

large upon the inclusion of the ρ0 (with also large
uncertainties). In view of the soft photon approximation,
this may point out to a possible breaking of the approach.
Estimates using the χPT with resonances at Oðp6Þ [14],
found out that the higher order terms were important,
pointing out to the relevance of the ω and other contribu-
tions, although with a different handling of the uncertainties
due to the model approach.
The form factor used to compute GEMðtÞ by definition

appears in the numerator and denominator. Thus, its effect
becomes subdominant and should not make difference in the
results obtained above. Also isospin symmetry breaking
associated to the neutral and charged pion mass difference,
within the radiative process, is subdominant and thus its

effect onΔaðHVP;LOÞμ is negligible. For theω decay width we
made use of a constant width, based on the fact that the main
contribution is for energies around the ω mass. Corrections
from an energy dependent width are expected for off-shellω,
mainly from the opening of the ω → ρπ channel. This is
particular important for the precision estimate of g-2 con-
tribution from eþe− → π0π0γ. We have neglected this and
other effects such as the ϕ meson, where the same consid-
eration about thewidth takes place [23–25]. For the radiative
τ decay correction, which is already subleading, this effect is
expected to be also negligible in general grounds, we are not
aware of any particular work on this aspect.
We would like to conclude stating that the link between

the eþe− → π0π0γ process and the ω channel of the τ− →
π−π0ντγ decay, that is the double pole resonant enhance-
ment, can be used to gain further insight into the description
of such processes and that there are particular scenarios
where we can profit from this effect.
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